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We solve the integration-by-parts (IBP) identities needed for the computation of any planar two-loop
five-point massless amplitude in QCD. We also derive some new results for the most complicated
nonplanar topology with irreducible numerators of power as high as six. We do this by applying a new
strategy for solving the IBP identities which scales better for problems with a large number of scales and/or
master integrals. Our results are a proof of principle that the remaining nonplanar contributions for all two-
loop five-point massless QCD amplitudes can be computed in analytic form.
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I. INTRODUCTION

Gauge theories, whose predictivity is dependent on
calculations of scattering amplitudes at higher perturbative
orders, have been hugely successful in describing natural
phenomena. The focus of this work is on perturbative
quantum chromodynamics (QCD) which can be viewed as
a prototype for a generic unbroken nonsupersymmetric
gauge theory. QCD is also special because multiloop QCD
amplitudes are the backbone of theoretical predictions for
precision collider observables like the ones measured at the
Large Hadron Collider.
At present, calculations in massless QCD are possible at

four (partially five) loops [1–5] for self-energy diagrams
and three (partially four) loops [6–11] for vertexlike
processes. Four-point massless amplitudes are fully known
through two loops (partially three) [12–17] while five-point
ones are fully known at one loop (partly two [18–26]). The
ultimate goal of this work is to extend the two-loop frontier
to the complete set of five-point massless QCD amplitudes.
The integration-by-parts identities (IBP) approach [27,28]

has been the method of choice for computing multiloop
QCD amplitudes. The method has produced countless
results; see some recent reviews [29,30]. The way the IBP
approach works is rather simple. A generic squared or
suitably decomposed multiloop UV-unrenormalized ampli-
tude can be written as

M ¼
XN
i¼1

fiIi: ð1Þ

The above expression follows from a straightforward
application of Feynman rules applied to the process at hand
and, if appropriate, after summation over spin and/or color.
Throughout this work we assume that all divergences
are regulated by working in d ¼ 4 − 2ϵ dimensions. The
coefficients fi are rational functions of kinematic invariants
and the space-time dimension d, and Ii are scalar Feynman
integrals. The number N of such integrals tends to be very
large and grows quickly with the number of loops, legs
and/or parameters in the problem.
The IBP approach makes it possible to express the

Feynman integrals Ii appearing in Eq. (1) as linear combi-
nations of a small number of Feynman integrals Îm

Ii ¼
X̂N
m¼1

ci;mÎm: ð2Þ

The integrals Îm are known as master integrals (or simply
masters) and the coefficients ci;m are rational functions of the
kinematic invariants and the space-time dimension.
The utility of the IBP approach stems from the fact that

N̂ ≪ N. For example, for the problem we consider in the
present paper, N̂ ∼Oð102Þ while N ∼Oð104Þ.
Finally, substituting Eq. (2) in Eq. (1) one gets the

desired minimal form for the amplitude in Eq. (1)

M ¼
X̂N
m¼1

ĉmÎm; with ĉm ¼
XN
i¼1

ci;mfi: ð3Þ

The evaluation of the bare amplitude M consists of two
steps: first, solve the IBP equations by deriving the required
set of coefficients ci;m appearing in Eqs. (2), (3) and,
second, evaluate the master integrals Îm.
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The subject of this work is the calculation of the
coefficients ci;m. We note that they are process-independent
in the sense that they are the same for every massless two-
loop five-point amplitude. Their universality is one of the
advantages of the IBP method. All process-specific infor-
mation is encoded into the coefficients fi which are
comparatively easy to compute.
The master integrals Îm are also process independent.

In the context of Eq. (2) they are interpreted as a basis of
the N̂-dimensional vector space V ≡ fIig spanned by the
infinite number of possible integrals Ii. We note that the
choice of such a basis is not unique; moreover, it can
happen that two or more master integrals are linearly
related to each other when viewed as integrals. In the
context of the IBP approach, however, the masters have to
be treated as independent basis elements. In this work we
will not be concerned with their evaluation since this is a
separate, albeit not unrelated [31–38] problem. All planar
master integrals relevant for the present work are known in
analytic form [39].
The solving of the IBP identities in the past 20 years or

so has been based on the Laporta algorithm [40]. Many
computer implementations of this algorithm exist [41–47].
Although the results are analytic in the kinematic variables,
they remain numeric in the powers of the propagators and
cannot, therefore, be expected to solve problems of
arbitrary complexity. As experience shows, the evaluation
of the massless two-loop five-point QCD amplitudes is at
the boundary of what is possible with the existing imple-
mentations of the Laporta approach.
Many novel ideas for the solving of the IBP equations

have been proposed in the recent past [25,48–53]. These
new ideas and methods have made possible the evaluation
of specific/planar all-gluon five-point amplitudes [18–24]
as well as some nonplanar ones [26]. Ideas towards solving
the IBP identities in abstract form have also been put
forward [54].
In this work we explore a different strategy for solving

the IBP identities. We demonstrate that supplementing
this strategy with the standard Laporta algorithm is
sufficient to solve the IBP identities needed to compute
the complete set of planar two-loop five-point amplitudes
in massless QCD (with quarks and/or gluons) in analytic
form. We also present new nontrivial nonplanar results.
Based on our experience we expect that the nonplanar
contributions can be computed in analytic form with our
strategy.

II. OUR STRATEGY FOR SOLVING THE
IBP IDENTITIES

Our starting point is the assumption that the IBP system
has a solution, i.e., every loop integral Ii can be expressed
through a set of basis master integrals as in Eq. (2) and that
such a basis set of masters is known.

The existence and construction of a finite basis of master
integrals is an old problem [55–57]. Here we take a
pragmatic viewpoint which is informed by the observation
that all problems known to us do possess such a finite basis.
There are several ways to construct such a basis. For
example, one could solve the IBP system over a restricted
set of integrals and/or use numerical values for the
kinematic invariants. In any case, finding a basis is not a
bottleneck and we consider this step to be trivial. This is
certainly true for the two-loop five-point massless ampli-
tudes considered here, where we have easily identified the
sets of masters for all topologies.
The index i labeling the integral Ii is a composite index.

It is natural to express it through the powers of the
propagators appearing in the corresponding integral. For
example, for a generic two-loop integral we have

Ii ≡ Iðn1;…; nPÞ ¼
Z

ddk1ddk2
1

Πn1
1 …ΠnP

P
: ð4Þ

The functions Πn are the corresponding propagators which
are bilinear functions of the loop and/or external momenta.
Specific examples are given in Sec. III. Equation (4) can, of
course, be generalized to any loop order in a completely
straightforward way.
In this notation Eq. (2) now takes the form

Iðn1;…; nPÞ ¼
X̂N
m¼1

cmðn1;…; nPÞÎm: ð5Þ

Just like the index i, the index m is also a composite one
and we will sometimes use its explicit form.
To solve the IBP identities means that for any required

integral Ii one must derive the set of coefficients ci;m
appearing in Eqs. (2), (5). In existing approaches for
solving IBP identities, the full set of coefficients ci;m
(for a given i) is derived simultaneously. In this work
we pursue a different strategy for their solving where the
projection of Ii onto each master is derived independently.
Put differently, we split the problem of solving the system
of IBP equations into N̂ independent problems, one for
each of the N̂ projections.
This strategy is implemented in the following way: we

apply the usual set of IBP identities to a modification of the
space V such that N̂ − 1 of its elements (corresponding to
all but one of the masters) are set to zero beforehand. For
example, in order to derive the projection onto master Î1 of
any integral Ii, one first sets Î2 ¼ Î3 ¼ … ¼ ÎN̂ ¼ 0 and
then solves the IBP equations. This way, once the IBP
system has been fully solved, one will have a solution that
is of the following form

Iðn1;…; nPÞ ¼ c1ðn1;…; nPÞÎ1; ð6Þ
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i.e., one will have derived the coefficients c1ðn1;…; nPÞ
which are the projection of the full solution onto the master
Î1. Repeating the same approach but setting Î1 ¼ Î3 ¼ … ¼
ÎN̂ ¼ 0 one derives the coefficients c2ðn1;…; nPÞ and so on.
To obtain the complete solution of the IBP system one
simply needs to add all N̂ independently derived projections.
To the best of our knowledge, this strategy is new and has

not been applied before.1 It is easy to see why it leads to the
correct solution of the IBP equations. Its correctness
follows from the fact that each integral Ii has an expansion
in the set of masters Îm, i.e., at each step the IBP equations
can be rewritten as a homogeneous linear combination of
all master integrals. Since the IBP equations are themselves
linear and homogeneous in terms of the integrals Ii, one can
see that the IBP equations never mix projections belonging
to different master integrals. In essence, our proposal states
that each of these projections can be computed in isolation
from the others.
The IBP solving strategy described here is independent

of the approach used for solving the system of IBP
equations. In practice, we will use the standard Laporta
algorithm but one does not have to. In fact, we arrived at
this idea while trying to find a way for solving the IBP
system in closed form. We hope to return to this in a
future work.
We have checked the correctness of our strategy in a

number of nontrivial examples, such as the complete two-
loop four-point amplitude (cross-checked with the program
REDUZE [43,44]) and a number of two-loop five-point
planar and nonplanar cases as explained in detail in Sec. III.
At this point it will be beneficial to contrast our strategy

to the usual way of solving IBP identities and to discuss the
origin of increased efficiency. To this end we need to
introduce the notion of a sector which is well-known in the
IBP literature.
A sector is effectively a subtopology indexed by 0s and

1s and defined by the position of a subset of propagators.
For example, ½1; 1; 1; 0;…; 0� represents a sector. In the
notation of Eq. (4) this sector contains all integrals
Iðn1;…; nPÞ for which n1;2;3 > 0 while n4;…;P ≤ 0. The
number of different propagators that define a sector is
called its weight. For example, the sector ½1; 1; 1; 0;…; 0� is
of weight 3. A sector is called a zero-sector if all integrals
that belong to it vanish. For the massless two-loop five-
point amplitudes, all sectors with weight <3 are zero-
sectors. Some sectors with weight ≥3 are also zero-sectors.
Our strategy can lead to a more efficient solving of the

IBP system for several reasons. First, once N̂ − 1 masters
are set to zero, many sectors become zero-sectors and thus

do not need to be computed. In practice, this is a major
simplification.
Second, setting masters to zero at the outset of the

calculation simplifies the intermediate steps. The reason is
that, taking the example of the Laporta algorithm, the IBP
equations that will be solved first are generated from seeds
that are in some sense close to the master integrals.2 In this
way the information about vanishing masters is incorpo-
rated into the resulting IBP equations early on in the
solving process. In large systems with many masters, our
strategy could lead to a significant reduction in the size of
the intermediate expressions. This, in turn, would reduce
the computer memory requirement that is the limiting
factor in solving large problems.
Third, by solving for one master at a time one can

parallelize the problem by computing several projections at
the same time. The amount of parallelization achieved is
only restricted by the available computer memory and
CPU. One should keep in mind that, as we explain in
Sec. III, the run-times for different masters can be vastly
different.

III. RESULTS

For definiteness, in this work we focus on the squared
two-loop amplitude M ¼ hAð2ÞjAð0Þi for the process
qq̄ → q0q̄0g. From the viewpoint of the IBPs it is represen-
tative of the other massless five-point two-loop amplitudes.
The Feynman integrals appearing inM belong to several

topologies. We label the family of nonplanar ones B and the
family of planar ones C. There are two nonplanar topol-
ogies (B1 and B2) that have the maximum possible number
of propagators (eight) as well as two computationally
simpler topologies with fewer than eight propagators.
For the planar case, we have two topologies with eight
propagators (C1 and C2) and one more, C3, with seven
propagators. All master integrals needed in the computation
of the three planar C topologies have been computed in
analytic form [39] within the approach of Ref. [58]. Work
toward the remaining nonplanar ones is ongoing [59,60].
The four topologies with the maximum number of propa-
gators are shown in Fig. 1.
The B and C families of topologies are defined through

the following sets of 11 propagators:

B ¼ fk21; k22; ðk1 þ p1Þ2; ðk1 þ p1 þ p2Þ2;
ðk2 − p3Þ2; ðk2 − k1 − p3Þ2;
ðk2 − k1 − p1 − p2 þ p4Þ2; ðk2 þ p4Þ2;
ðk2 þ p1 þ p2Þ2; ðk2 þ p1Þ2; ðk1 þ p3Þ2g ð7Þ

1After this work was made public we learned that the latest
update of the program KIRA offers the option of computing the
coefficients of a subset of masters. Since the algorithm behind
this is not described in [47], nor in the program’s manual, we are
unable to comment on how it compares with our approach.

2Assuming that, as is usually the case, the masters are chosen
with the help of the same ordering criterion that is used to
generate the seeds for solving the IBP equations.
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C ¼ fk21; k22; ðk1 þ p1 þ p2Þ2; ðk1 − k2Þ2;
ðk2 þ p1Þ2; ðk2 þ p1 þ p2Þ2; ðk2 − p3Þ2;
ðk1 þ p1 þ p2 − p3Þ2; ðk1 þ p1 þ p2 − p3 − p4Þ2;
ðk2 − p3 − p4Þ2; ðk1 þ p1Þ2g: ð8Þ

The momenta p1 and p2 are incoming while p3 and p4 are
the two independent outgoing momenta.
The four 8-propagator topologies shown in Fig. 1 as well

as the 7-propagator one, C3, are defined by their highest-
weight sectors (see Sec. II for definitions)

B1 ¼ B½1; 1; 1; 1; 1; 1; 1; 1; 0; 0; 0�;
B2 ¼ B½1; 1; 1; 1; 0; 1; 1; 1; 0; 0; 1�;
C1 ¼ C½1; 1; 1; 1; 1; 1; 0; 1; 1; 0; 0�;
C2 ¼ C½1; 1; 1; 1; 1; 0; 0; 1; 1; 0; 1�;
C3 ¼ C½1; 0; 1; 1; 1; 1; 0; 1; 0; 0; 1�: ð9Þ

We have identified the master integrals in each of the five
topologies in Eq. (9). We find 113 masters in B1, 75 in B2,
62 in C1, 28 in C2 and 10 in C3. Their explicit definitions,
in the notation of Eqs. (7)–(9), can be found in an electronic
file attached to this paper [61].
In this work we have computed and are making publicly

available all coefficients ci;m belonging to the most com-
plicated planar topologyC1 needed for the evaluation of the
amplitude qq̄ → q0q̄0g. This includes the results for all
required integrals with irreducible numerators of power as
high as −5 and/or squared denominators.
To demonstrate the power and flexibility of our strategy,

we have also computed and present here the coefficients
of the masters belonging to the highest-weight sector
(with weight ¼ 8) for topologies B1 (9 masters) and B2

(3 masters). We have computed all integrals with numerator
powers as high as −6 and/or a squared denominator.

All results mentioned above are available for download
in electronic form from the following website [62].
Our results have been cross-checked in the following

ways: the masters for all five topologies in Eq. (9) have
been independently derived with REDUZE [43,44]. Using
the results in Refs. [49,54] we have related all (five)
integrals with irreducible numerators of power −5 belong-
ing to topology C1 to integrals with lower numerator
powers. Using our calculation for those integrals with
lower numerator powers we find complete agreement with
our direct calculation of the integrals with numerators of
power −5. We have checked that this agreement holds for
the projections on to the full set of masters in topology C1.
This is a highly nontrivial check for both our calculation
and the results in Refs. [49,54].
We have also checked that our calculation for topology

B2 agrees with the results in Ref. [26] by comparing all
integrals with numerator powers of −4 (which is the highest
numerator power computed in that paper). Reference [25]
has claimed to compute the planar integrals with numerator
power −5 with the help of the program FIRE [42,46].
However, since that reference does not provide explicit
results or details about their calculation, we are unable to
compare.
A few comments about our calculation are in order. We

have implemented the strategy proposed in this work in a
private C++ code. A bottleneck in solving the IBP identities
is the manipulation of large rational expressions. To that
end we have used the program FERMAT [63].
The run-times for different master integrals are vastly

different. The calculation of the coefficients of the master
integrals in the highest-weight sector (i.e., those with the
maximum number of propagators) is simplest and takes
only a few minutes. The calculations corresponding to
masters with fewer propagators, however, become pro-
gressively more complex and can be orders of magnitude
slower.
The projections which are hardest to compute are the

ones corresponding to the masters of lowest weight (the
ones with 3 propagators for the two-loop five-point mass-
less case). We have found that the difference between the
run-times among the set of masters of lowest weight
belonging to the same topology (there are six such masters
in topology C1) spans an order of magnitude.
The solutions of the full set of IBP identities in com-

pressed format are in excess of 20 GB and are available for
download from the website [62]. We have not attempted to
simplify the expressions for the individual coefficients ci;m
since such a simplification is likely to be useful only at the
level of the complete amplitude Eq. (3).
When computing the squared amplitude hAð2ÞjAð0Þi for

the process qq̄ → q0q̄0g we have used the program REDUZE

[43,44] for the generation of the Feynman diagrams, for
their squaring and for the summation over color and spin
traces. Some of those calculations have been sped up with

FIG. 1. The 8-propagator topologies B1, B2, C1 and C2. B1 and
C1 are the most complicated nonplanar and planar topologies,
respectively.
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the help of the program FORM [64]. The Feynman diagrams
have been visualized with the help of the program
JAXODRAW [65].

IV. CONCLUSIONS

In this work we propose and develop a new strategy
for solving the IBP identities. With its help we are able to
solve in analytic form the complete set of IBP identities
required for the construction of all planar two-loop five-
point massless QCD amplitudes with quarks and/or gluons.
Since all required planar master integrals are known, the
problem of the derivation of the planar five-point two-loop
amplitudes in QCD is thus solved.
The gigabyte-size of the resulting expressions makes

their numerical evaluation nontrivial. A dedicated effort
will be required if one is to use them for collider
phenomenology. We hope to report on a parallel effort
in this direction in the near future.

With the completion of the planar amplitudes all atten-
tion now turns towards the remaining nonplanar topologies,
which constitute a much harder problem than the planar
ones. Based on our experience in the context of the present
work we believe that our strategy will be able to solve this
problem in an acceptable timeframe.
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