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In this paper, we study the pseudo-Wigner solution of the quark gap equation with a recently proposed
algorithm in the framework of the (2þ 1)-flavor Nambu-Jona-Lasinio (NJL) model. We find that for the
current quark mass mu;d ¼ 5.5 MeV and chemical potential μ < μTCP ¼ 272.5 MeV, the Nambu solution
and the positive pseudo-Wigner solution obtained via this algorithm is consistent with the physical solution
obtained with the iterative method. Furthermore, the algorithm we used can help to illustrate the evolution
of the solutions of the gap equation from the chiral limit to nonchiral limit and gives a prediction where the
crossover line is located in the phase diagram for μ < 272.5 MeV. In addition, we also study the chiral
susceptibilities as well as the loss of solutions for different chemical potentials.
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I. INTRODUCTION

As a basic theory to describe the strong interacted matter
and the dynamics of it, the quantumchromodynamics (QCD)
plays an important role in the standard model of particle
physics. For the low energy scale, the nonperturbative
property is characterized in QCD, and the dynamical chiral
symmetry breaking (DCSB) and color confinement are two
critical phenomena in this scheme: the former explains the
source of 98% mass of the visible universe, and the latter is
responsible for why the quark cannot be observed in the
experiment. In fact, there are many approaches to study the
QCD phase transition theoretically. As one of the most
reliable one, the lattice QCD (LQCD) [1,2] confronts the
“sign problem,” making it difficult to carry out the calcu-
lations at finite chemical potential. Therefore, people
recourse to the effective models such as the Dyson-
Schwinger equations (DSEs) [3–9] and the Nambu-Jona-
Lasinio (NJL) model [10–13]. Some progresses have been
made through these effectivemodels in the study of the QCD
phase transition and the QCD phase diagram [4,8,9,12–14].

As we know, the QCD phase diagram contains rich
information: the upper left region of the diagram corre-
sponds to the domain of the thermal QCD where the
temperature is very high, and the features of the early
universe as well as its expansion can be addressed here
[15,16]; the lower right region of the diagram corresponds
to the domain of the dense QCD where the chemical
potential is very large, and the study of the neutron star is
implemented here [17–23]. At present, a popular scenario
is in favor of the existence of the critical endpoint (CEP)
[24–29]: for the chemical potential smaller (larger) than
this point, as the temperature increases, the QCD system
will confront a crossover (first order phase transition).
Analogously, in the case of chiral limit where the current
quark massm ¼ 0, the tricritical point (TCP) is favored: for
the chemical potential smaller (larger) than this point, as the
temperature increases, the QCD system will experience a
second order phase transition (first order phase transition).
However, whether the CEP exists and where it is located
are still open questions and model dependent. In addition,
the relation between the deconfinement phase transition
and the chiral phase transition is also unknown currently,
but people believe that they are tightly connected [4,30].
For many studies [31–33], these two kinds of transitions
are regarded to happen simultaneously and the rigorous
distinction between them is ignored. In this work, we will
also employ this viewpoint.
It is well known that the gap equation can be strictly

solved in the framework of the (2þ 1)-flavor NJL model
with many methods, such as the graphical and the iterative

*licm.phys@gmail.com
†yinpl@njupt.edu.cn
‡zonghs@nju.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 076006 (2019)

2470-0010=2019=99(7)=076006(9) 076006-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.076006&domain=pdf&date_stamp=2019-04-09
https://doi.org/10.1103/PhysRevD.99.076006
https://doi.org/10.1103/PhysRevD.99.076006
https://doi.org/10.1103/PhysRevD.99.076006
https://doi.org/10.1103/PhysRevD.99.076006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


method. And in the case of the chiral limit, there are two
important solutions to the quark’s gap equation, namely the
Nambu solution and the Wigner solution. The physical
meaning of these two solutions is very clear, i.e., the stable
state with the breaking or restoring of the chiral symmetry.
However, by solving the quark’s gap equation in the case of
nonchiral limit, we have found multiple solutions, which
has been studied by a variety of studies within the two-
flavor effective models [12,31,34–44]. In addition to the
physical meaning of the Nambu solution, the physical
meaning of other solutions is unclear (especially for the
solution which is closely related to the Wigner solution in
the case of chiral limit), because the chiral symmetry is
explicitly broken and only can be partially restored in the
nonchiral limit. We believe that if we do not solve this
problem, it is meaningless to discuss the chiral phase
transition of strong interacted matter in an effective model,
such as the NJL model in this work. On the other hand, in
the crossover region of the QCD diagram (for T > TE ¼
48 MeV or μ < μE ¼ 324 MeV in the (2þ 1)-flavor NJL
model with the Hatsuda-Kunihiro parameters [45,46]), the
physical solution of the quark gap equation is positive and
decreases smoothly to the nonzero current quark mass as
the temperature or chemical potential increases to infinity.
Then a question naturally arises: When the pseudo-Wigner
solution (see the description at the end of Sec. II for the
definition of the pseudo-Wigner solution) emerges? In the
past, people used to utilize the QCD susceptibilities
(the linear responses of the quark condensate to the external
fields) to give a criterion [47–49], but the pseudo-Wigner
solution in the nonchiral case is still not clarified.
In a word, only if we find out the pseudo-Wigner

solution of the gap equation in the nonchiral limit and
figure out its relation to the Wigner solution in the chiral
limit, the statement can make sense that the phase of strong
interacting matter evolves from Nambu phase to pseudo-
Wigner phase as the temperature and chemical potential
increase. The main purpose of this paper is to study how the
Wigner solution of the quark gap equation evolves with the
current quark mass in the case of chiral limit to the so-called
pseudo-Wigner solution in the nonchiral limit with the
(2þ 1)-flavor NJL model. To achieve the above objectives,
we only use the algebraic method provided by the Ref. [44],
because this algebraic method can express the Wigner
solutions evolution with the current quark mass from the
case of the chiral limit to nonchiral limit clearly and directly.
It is noted that the previous studies also throw light on

the loss of solutions of the gap equation [35,50]. Similar to
the analysis in these papers, the algorithm we employ in
this paper also meet this issue when dealing with the
evolution from the Wigner solution to the pseudo-Wigner
solution, because the derivatives of the effective quark
masses M0

u, M0
s might diverge for some values of (T, μ) as

the current quark mass increases. As a result, the Nambu
and pseudo-Wigner solution evolved from the chiral limit

might fail to cover the strict physical solution in nonchiral
limit, thus implying a region of the QCD phase diagram
inaccessible with this algorithm.
This paper is organized as follows: In Sec. II, we briefly

discuss some contemporary perspectives of the dynamical
chiral symmetry breaking and restoring within the (2þ 1)-
flavor NJL model. In Sec. III, the recently proposed
algorithm [44] is applied in the study of the solutions
(especially the pseudo-Wigner solution) of the quark gap
equation with nonzero current quark mass for finite temper-
ature and chemical potential. Then we present the loss of
solutions in different schemes. For a better understanding
of the evolution of the solution, the chiral susceptibilities as
well as a prediction of part of the QCD phase diagram with
our algorithm are also calculated in this section. Finally, a
brief summary and discussion are given in Sec. IV.

II. DYNAMICAL BREAKING AND RESTORING
OF THE CHIRAL SYMMETRY WITHIN 2+ 1

FLAVORS NJL MODEL

As one of the most typical phenomena in the non-
perturbative QCD, chiral symmetry breaking and restoring
is a hot issue at present, and the study of it helps a lot
for the developing of the quark model. Compared with the
basic energy scale ΛQCD, the current uðdÞ-quark mass is
very small, which is estimated to be 3.5þ0.5

−0.2 MeV in
Ref. [51], thus the QCD Lagrangian shows an approximate
chiral symmetry for the flavor SU(2) version. For the flavor
SU(3) version, the current s-quark mass is much larger
than that of uðdÞ-quark (95þ9

−3 MeV in Ref. [51]), then its
contribution to the chiral symmetry breaking cannot be
neglected. Actually, if the current quark mass is nonzero,
no matter how small it is, the chiral symmetry is explicitly
broken. Oppositely, in the case of chiral limit where the
current uðdÞ-quark mass is fixed to be zero, the chiral
symmetry is preserved in the Lagrangian. But the chiral
symmetry of the QCD system is still broken in this case due
to the dynamical (or “spontaneously” for some different
profiles) chiral symmetry breaking mechanism. It is noted
that this mechanism is different from the Higgs mechanism,
because the chiral symmetry is a global symmetry whose
current does not couple to the gauge fields. Besides, the
QCD vacua are distinguishable with the order parameter’s
different orientations.
In the past, the QCD vacuum is considered as a

condensed state of quark-antiquark pairs, and its corre-
sponding vacuum expectation value hψ̄ψi ¼ ψ̄RψL þ
ψ̄LψR (also denoted as ϕ sometimes) is regarded as a
good indicator of the chiral symmetry. However, there is a
popular perspective that the quark condensate is actually
a property of hadrons [52,53], thus strongly interacted
with the quarks confined in hadrons. From this viewpoint,
the chiral symmetry and its breaking can be reflected by
the constituent (effective) quark masses. Nevertheless, in
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the regime of strong coupling strength, the perturbative
QCD is invalid and nonperturbative approaches are needed.
In this work, we will employ the (2þ 1)-flavor NJL model
to study the chiral phase transition via the solutions of the
quark gap equation.
The NJL model is a good candidate for the study of QCD

with low energy scales. Using the same notations as
Ref. [45], its Lagrangian of 2þ 1 flavors reads1:

LNJL ¼ ψ̄ði∂ −mÞψ þ LS þ LA; ð1Þ

with

LS ¼
gS
2
½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�; ð2Þ

and

LA ¼ gD½det ψ̄ð1 − γ5Þψ þ H:c:�: ð3Þ

Here λa is the Gell-Mann matrix in flavor space and λ0 ¼ffiffi
2
3

q
I. m ¼ diagðmu;md;msÞ represents the matrix of the

current quark mass. Under the mean-field approximation,
the gap equations can be written as,

Mi ¼ mi − 2gSϕi − 2gDϕjϕk; ð4Þ

where ϕi is the quark condensate of flavor i and
ði; j; kÞ ¼ any permutation of ðu; d; sÞ. To proceed the fol-
lowing calculations, a certain regularization should be
employed. In this work, we will use the three-momentum
cutoff regularization with an ultraviolet cutoff Λ. By
definition, the quark condensate can be expressed as,

ϕi ¼ −
Z

d4p
ð2πÞ4 Tr½S

iðpÞ�

¼ −Nc

Z þ∞

−∞

d4p
ð2πÞ4

4Mi

p2 þM2
i

¼ −
NcMi

π2

Z
Λ

0

dpp2½1 − ðeEp;i−μ
T þ 1Þ−1

− ðeEp;iþμ

T þ 1Þ−1�=Ep;i; ð5Þ

where the trace “Tr” is taken in the Dirac and color spaces
and Nc ¼ 3 is the number of colors. SiðpÞ ¼ 1

ipþMi
and

Ep;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

i

p
represents the dressed quark propagator

and the on-shell quark energy of flavor i, respectively. Then
the thermodynamic potential (which is also called the total
free energy) has the following form,

Ω ¼ gSðϕ2
u þ ϕ2

d þ ϕ2
sÞ þ 4gDϕuϕdϕs

− 2Nc

X
i¼u;d;s

Z
Λ

0

d3p
ð2πÞ3 fEp;i þ T ln½1þ e

−ðEp;i−μÞ
T �

þ T ln½1þ e
−ðEp;iþμÞ

T �g; ð6Þ

In general, the quark gap Eq. (4) can be solved with many
methods, such as the iterative method and the graphical
method. Also, the solutions can be obtained via searching
for the extreme value of the thermodynamic potential. In
this way, we can see not only the quantities of the solutions
but also the positions of them more directly. In this work,
the parameter set employed is shown in Table I, same as
that in Ref. [45] for the case of 2þ 1 flavors.
In many cases, the gap Eq. (4) has more than one solution,

meaning that we will encounter the issue of multiple
solutions. For example, in Figs. 1 and 2, we can see that
for zero temperature and chemical potential, no matter in
the chiral limit case or in the case ofm ¼ 5.5 MeV, there are
three extreme values of Ω: two valley points and one saddle
point, corresponding to three numerical solutions of the
gap Eq. (4) in this scheme. Just as the declaration in
Refs. [31,35,36,44], the negative solution of Mu;d is only
a mathematical solution with no physical meanings.
Therefore we will only study the solutions with Mu;d ≥ 0.
In the chiral limit, the Nambu solution (Mu;d > 0 with a

local minimum thermodynamic potential) represents the
breaking of the chiral symmetry, and can be distinguished
from the pseudo-Nambu solution (Mu;d > 0 with a local
maximum thermodynamic potential) and the Wigner sol-
ution (Mu;d ¼ 0, thus the chiral symmetry is restored). But
in the nonchiral limit, things become complicated because
the chiral symmetry is explicitly broken and multiple
solutions are always found. For low temperature and high

TABLE I. Parameter set fixed in our work.

m [MeV] ms [MeV] Λ [MeV] gS [MeV−2] gD [MeV−5]

5.5 135.7 631.4 9.21 × 10−6 −9.26 × 10−14

FIG. 1. The thermodynamic potential in the chiral limit for
T ¼ 0 and μ ¼ 0.

1We will work in the Euclidean space throughout this paper,
and the exact isospin symmetry between the u and d quark is
utilized, that is, mu ¼ md ≡m. And from the following calcu-
lations in this paper we can see that Mu ¼ Md, ϕu ¼ ϕd.
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chemical potential where the first-order chiral phase tran-
sition happens, the solution with a biggestMu;d as well as a
local minimum thermodynamic potential is still called the
Nambu solution, while the solution with a smallest Mu;d

and a local minimum thermodynamic potential is always
called the pseudo-Wigner solution where the chiral sym-
metry is partially restored.2 Then how about the scheme
with high temperature and low chemical potential where no
chiral phase transition but a crossover happens? As we
know, there is only one solution satisfyingMu;d > 0 in this
case, thus it is hard to figure out when the chiral symmetry
is partially restored directly. In the past, people used to
resort to various linear responses of the quark condensate,
i.e., the susceptibilities to determine the starting point of the
pseudo-Wigner solution in this case.
In the following of this work, we will employ a new

algorithm to solve this problem. Furthermore, the solutions
of the gap equation in the nonchiral limit can be related
naturally to that in the chiral limit with this algorithm. And
the loss of solutions as well as the QCD phase diagram are
also discussed in this work.

III. SOLUTIONS OF THE QUARK GAP EQUATION
WITH THE NEW ALGORITHM

In this section, we will introduce a recently proposed
algorithm to explore the solutions of the quark gap equation
in the nonchiral limit case, especially the pseudo-Wigner
solution which is difficult to ascertain at low chemical
potential and high temperature. In fact, for a certain
temperature and chemical potential, we can regard the
effective quark masses Mu and Ms as functions of the
current uðdÞ-quark mass m, and the derivative of Eq. (4)
can be derived as,

M0
u ¼ 1 − 2gSϕ0

u − 2gDðϕ0
uϕs þ ϕuϕ

0
sÞ; ð7Þ

M0
s ¼ −2gSϕ0

s − 4gDϕ0
uϕu: ð8Þ

The derivative of the quark condensate is

ϕ0
i −

NcM0
i

π2

Z
Λ

0

dp

�
p4

ðp2 þM2
i Þ

3
2

þ M2
i p

2

Tðp2 þM2
i Þ
�

e
Ep;i−μ

T

ðeEp;i−μ
T þ 1Þ2

þ e
Ep;iþμ

T

ðeEp;iþμ

T þ 1Þ2
�

−
p4

ðp2 þM2
i Þ

3
2

�
1

e
Ep;i−μ

T þ 1
þ 1

e
Ep;iþμ

T þ 1

��
: ð9Þ

We can find that the derivative of the quark condensate is
proportional to the derivative of the effective quark mass.
Thus Eqs. (7) and (8) are actually coupled linear equations
of M0

u and M0
s. Assuming we have already known the

Wigner or pseudo-Wigner solution of Eq. (4), then we can
substitute it into Eqs. (7) and (8) to get M0

u and M0
s. If the

matrix of δfM0
u;M0

sg
δfMu;Msg is not singular, the coupled Eqs. (7) and

(8) will only have one solution. In other words, if the matrix
above is singular for a certain (μ, T), the derivativesM0

u and
M0

s will become infinity, resulting in a invalidation of our
algorithm under this scheme.
With the Wigner solution of Eq. (4) in the chiral limit

(which is actually the trivial solution by the analysis in
Sec. II) and its corresponding derivative, the pseudo-
Wigner solution of the gap equation for the nonchiral limit
can be derived via the following equations,

MW
u ðmÞ ¼ MW

u ð0Þ þ
Z

m

0

dm̃M0
uðm̃Þ; ð10Þ

MW
s ðmÞ ¼ MW

s ð0Þ þ
Z

m

0

dm̃M0
sðm̃Þ: ð11Þ

From Eqs. (10) and (11), we can see that this algorithm also
requires the continuity ofM0

u andM0
s with the increasing of

m. If we discretize the range of m̃ to N grids, the integral
will approximate to the summation with an interval of
Δm ¼ m=N. In this work, we set the number of discreti-
zation points N ¼ 550. Then the pseudo-Wigner solution
for small Δm ¼ 0.01 MeV is

MW
u ðΔmÞ ¼ MW

u ð0Þ þM0W
u ð0ÞΔm ¼ M0W

u ð0ÞΔm; ð12Þ

MW
s ðΔmÞ ¼ MW

s ð0Þ þM0W
s ð0ÞΔm: ð13Þ

For the mass m ¼ nΔm, n ≥ 1,

MW
u ðnΔmÞ ¼ MW

u ððn − 1ÞΔmÞ þM0W
u ððn − 1ÞΔmÞΔm;

ð14Þ

FIG. 2. The thermodynamic potential in the case of current
quark mass m ¼ 5.5 MeV for T ¼ 0 and μ ¼ 0.

2In principle, the pseudo-Wigner solution should also be
physical with Mu;d ≥ 0. However, to clarify the whole evolution
process from the Wigner solution in the chiral limit to the pseudo-
Wigner solution in a nonchiral limit with our algorithm in this
paper, both the physical and unphysical pseudo-Wigner solutions
are collectively referred to as the pseudo-Wigner solution.
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MW
s ðnΔmÞ ¼ MW

s ððn − 1ÞΔmÞ þM0W
s ððn − 1ÞΔmÞΔm:

ð15Þ

In addition, the algorithm above can also be applied to
finding the Nambu solution of the quark gap equation in
the case of nonchiral limit, which can test the validity of
the algorithm from the other side. In Fig. 3, we study the
evolution of solutions of the quark gap equation from the
chiral limit to nonchiral limit for μ ¼ 0, T ≠ 0. In this
figure, we can see that there is a second-order chiral phase
transition at T ¼ 183.3 MeV in the chiral limit, and for
T > 183.3 MeV, the Nambu solution vanishes. As the
current quark mass m increases, the pseudo-Wigner sol-
ution for T < 183.3 MeV is going to be negative, but for
T > 183.3 MeV, it turns to be positive and connects well to
the Nambu solution. As a result, the chiral phase transition
is second-order in the chiral limit, but a crossover in
nonchiral limit.
InFig. 4,we compare the strict solutionof thegapequation

with our result in the nonchiral limit. We can see that for
μ ¼ 0 and m ¼ 5.5 MeV, the Nambu and positive pseudo-
Wigner solution obtained with our algorithm are in good
agreement with the physical solution obtained with the
iterative method. And to clarify the loss of solutions in the
evolution from the chiral limit to the nonchiral limit, we
draw Fig. 5. In this figure, the loss of the pseudo-Wigner
solution is shown in them–T plane for μ ¼ 0. We present the
diverge points of the derivativeM0

u in the green line. Above
this line, our algorithm is invalid to give the pseudo-Wigner

solution. From this figure, we can see that in the scheme of
μ ¼ 0, the algorithm we employed will encounter the loss
of pseudo-Wigner solution for T ∈ ð157.4; 183.3Þ MeV
through the evolution from the chiral limit tom ¼ 5.5 MeV.
Experimentally, for a certain physical system, its linear

responses to the external field are always measured to
investigate the properties of the system, such as the
conductivity and susceptibility. Therefore, besides the
calculation of the effective quark masses, we will also
calculate the chiral susceptibilities for a better understand-
ing of the solution of the quark gap equation. According
to the definition, the chiral susceptibility of flavor i has
the following form,

FIG. 3. The evolution of solutions of the quark gap equation
with our algorithm from the chiral limit to nonchiral limit for
μ ¼ 0 and T ≠ 0. The effective quark mass Mu and Ms of the
Nambu solution in the chiral limit is shown in the red solid line
and green solid line, respectively. The Mu and Ms of the Wigner
solution in the chiral limit is shown in the blue dashed line and
magenta dashed line, respectively. TheMu andMs of the Nambu
solution for the current u, d quark mass m ¼ 1.0, 3.0, 5.5 MeV is
shown in the black dashed line and black dotted line, respectively.
The Mu and Ms of the pseudo-Wigner solution for the current
u, d quark mass m ¼ 1.0, 3.0, 5.5 MeV is shown in the cyan
dashed line and cyan solid line, respectively.

FIG. 4. The comparison of the solutions of the gap equation
with our algorithm and with the iterative method in the scheme of
m ¼ 5.5 MeV for μ ¼ 0 and T ≠ 0. The strict physical solution
of Mu and Ms is shown in the red solid line and green solid line,
respectively. The strict unphysical solution of Mu and Ms is
shown in the blue dashed line and magenta dashed line,
respectively. The other lines in this figure is shown in the same
plot type as in Fig. 3.

FIG. 5. The loss of the pseudo-Wigner solution in our algo-
rithm, shown in the m–T plane for μ ¼ 0. The green line means
that in the scheme of μ ¼ 0, for a certain (T,m), the derivativeM0

u
is going to be infinity, thus the algorithm is invalid to give the
pseudo-Wigner solution above the green line in this diagram.
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χs;i ¼ −
∂ϕi

∂m : ð16Þ

We present the chiral susceptibilities of u, d quark for μ ¼ 0
in Fig. 6. From this figure, we can find that in different
schemes, the chiral susceptibilities of theNambu andpositive
pseudo-Wigner solution keep finite, but the negative pseudo-
Wigner solutions diverge at different temperatures. It is noted
that the diverging points in this diagram can also be found
in the green line of Fig. 5, i.e., the points ðT;mÞ ¼
ð176; 1.0Þ; ð167; 3.0Þ; ð157.2; 5.5Þ MeV on the m–T plane.
Actually, from Eq. (9) we can see that if the derivative M0

u
diverges, ϕ0

u will also diverge, which is just the opposite
number of the chiral susceptibility of u, d quark.
Then we extend our calculation to the finite chemical

potential. In fact, if the chemical potential is not so large
that the chiral phase transition is still a second-order phase
transition in the chiral limit, the evolution of the solutions
of the gap equation will be different only quantitatively, but
qualitatively unchanged. However, if the chemical potential
is large enough that μ > μTCP ¼ 272.5 MeV, things will
become thoroughly different. Specifically, we will set μ ¼
300 MeV in the following to study the evolution of the
solutions of the gap equation with our algorithm.
As we know, for μ > μTCP, the QCD system in the chiral

limit will encounter a first-order chiral phase transition as
the temperature increases. In the region of multiple sol-
utions, the Nambu, pseudo-Nambu, and Wigner solutions
coexist, just as the red solid line, red dot-dashed line, and
the red dotted line shown in Fig. 7. However, the pseudo-
Nambu solution has a local maximum thermodynamic
potential, thus does not correspond to a physically stable
state. In Fig. 8 we can see that the potential of the pseudo-
Nambu solution is the highest of three potentials, therefore
we will not consider the evolution process of the pseudo-
Nambu solution.

In Fig. 7, the Wigner solution and pseudo-Nambu
solution converge at about T ¼ 42.8 MeV in the chiral
limit, and the pseudo-Wigner solution evolves to two
branches separated by this point in the nonchiral limit.
As m increases, the distance of the positive and negative
pseudo-Wigner solution is going to be farther and farther.
Although the Nambu solution does not encounter the loss
of solution in the evolution from the chiral limit to non-
chiral limit, it just cannot connect to the positive pseudo-
Wigner solution for any m like that in Fig. 3.
In Fig. 9 we compare the solutions of the gap equation

with our algorithm and with the iterative method for
m ¼ 5.5 MeV. And the solution is found to be absent in
the region of T ∈ ð54.8; 60.89Þ MeV with our algorithm,

FIG. 6. The chiral susceptibilities of u, d quark in the nonchiral
limit cases obtained with our algorithm for μ ¼ 0 and T ≠ 0. The
red solid line, green solid line, and blue solid line correspond to
the chiral susceptibility of the Nambu solution for m ¼ 1.0, 3.0,
5.5 MeV, respectively, while the dashed line in the same color
represents the chiral susceptibility of the pseudo-Wigner solution
in the same case.

FIG. 7. The evolution of solutions of the quark gap equation
with our algorithm from the chiral limit to the nonchiral limit
for μ ¼ 300 MeV and T ≠ 0. The effective quark mass Mu and
Ms of the pseudo-Nambu solution in the chiral limit is shown in
the red dot-dashed line and green dot-dashed line, respectively.
The Mu and Ms of the Wigner solution in the chiral limit is
shown in the red dotted line and green dotted line, respectively.
The other lines in this figure are shown in the same plot type as
in Fig. 3.

FIG. 8. The thermodynamic potentials of the Nambu, pseudo-
Nambu, and Wigner solution in the chiral limit for μ ¼ 300 MeV
and T ≠ 0, shown in the red solid line, red dot-dashed line, and
red dotted line, respectively.
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thus cannot cover the strict physical solution and results in
the invalidation of our algorithm in this scheme.
To check the loss of solutions in the evolution process,

we plot Fig. 10, and the green line in this figure represents
the same meaning as in Fig. 5. The difference is that there is
a sharp gap in the green line for μ ¼ 300 MeV, demon-
strating a different process of the loss of solutions as m
increases. For m < 1.62 MeV, the positive pseudo-Wigner
solution will experience the loss of solution as m increases;
for 1.62 < m < 3.26 MeV, the loss region of the solution
keeps almost unchanged; and for 3.26 < m < 5.5 MeV,
the negative pseudo-Wigner solution starts to undergo the
loss of solutions while the loss region of the positive pseudo-
Wigner solution does not change in this case. During the
evolution from the chiral limit tom ¼ 5.5 MeV, the pseudo-
Wigner solution will encounter a total loss range of
T ∈ ð35.7; 60.89Þ MeV. And we can imagine that for other
chemical potentials larger than 272.5 MeV, similar things
will happen as that for μ ¼ 300 MeV.

On the other hand, we also present the chiral suscep-
tibilities of u, d quark to study the loss of solutions for
μ ¼ 300 MeV, which can be found in Fig. 11. In this
figure, when m is small, the χs;u of the positive pseudo-
Wigner solution diverges at some temperature but the
negative branch does not. As m increases to a relatively
large amount, the positive branch finally keeps finite but
the negative branch begins to diverge. Unlike the case of
μ ¼ 0, during the whole evolution process, the χs;u of the

FIG. 9. The comparison of the solutions of the gap equation
with our algorithm and with the iterative method in the scheme of
m ¼ 5.5 MeV for μ ¼ 300 MeV and T ≠ 0. The lines in this
figure is shown in the same plot type as in Fig. 4.

FIG. 10. The loss of pseudo-Wigner solution in our algorithm,
shown in the m–T plane for μ ¼ 300 MeV. The green line in this
figure has the same meaning as in Fig. 5.

FIG. 11. The chiral susceptibilities of u, d quark in the
nonchiral limit cases obtained with our algorithm for μ ¼
300 MeV and T ≠ 0. The magenta solid line, red solid line,
green solid line, and blue solid line corresponds to the chiral
susceptibility of the Nambu solution for m ¼ 0.2, 1.0, 3.0,
5.5 MeV, respectively, while the dashed line in the same color
represents the chiral susceptibility of the pseudo-Wigner solution
in the same case.

FIG. 12. Part of the QCD phase diagram obtained with our
algorithm in this work. The blue solid line characterizes the
vanishing edge of the Nambu solution, that is, the Nambu
solution obtained with our algorithm exists under this line.
The green dashed line denotes the starting edge of the positive
pseudo-Wigner solution, i.e., the positive pseudo-Wigner solu-
tion obtained with our algorithm exists above this line. For
μ ≤ 272.5 MeV, these two lines coincide, implying the location
of the crossover line in the QCD phase diagram. But for
μ > 272.5 MeV, they separate from each other, causing a lack
of information in the domain between these two lines.
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positive pseudo-Wigner solution does not connect to that of
the Nambu solution.
Given the evolution process of the Nambu and pseudo-

Wigner solution of the gap equation from the chiral limit to
nonchiral limit in different schemes, we can get part of the
QCD phase diagram with our algorithm, which is shown in
Fig. 12. In this figure, we denote the endpoint of the Nambu
solution in the blue solid line, and the starting point of the
positive pseudo-Wigner solution in the green dashed line.
For μ < 272.5 MeV, these two lines coincide with each
other, demonstrating a crossover between the correspond-
ing two solutions, and the location of them just indicate a
part of the crossover line predicted by our algorithm. But
for μ > 272.5 MeV, these two lines separate from each
other, presenting a lack of information of the QCD system
in the separation area, thus our algorithm is invalid in this
situation.

IV. SUMMARY AND DISCUSSION

In this paper, we briefly discuss some current perspec-
tives on the chiral symmetry breaking and restoring at first,
and then in the framework of the (2þ 1)-flavor NJL model,
the solutions of the quark gap equation (especially the
pseudo-Wigner solution) in the nonchiral limit are studied
within a recently proposed algorithm. In this approach,
supposing we have already obtained the solution (Muðm0Þ,
Msðm0Þ) of the quark gap equation in the case of m ¼ m0,
then the derivatives (M0

u, M0
s) only have one finite solution

because of the linearity of the coupled derivative equations.
Via the recursive formula of the effective quark masses, the
value of (Muðm0 þ ΔmÞ, Msðm0 þ ΔmÞ) (Δm is a tiny
variable) can be derived. Combining with the Nambu and
Wigner solution (Muð0Þ, Msð0Þ) in the chiral limit (con-
venient to calculate with a simple iteration method), we can
get the Nambu and pseudo-Wigner solution (MuðmÞ,
MsðmÞ) for m ¼ 5.5 MeV in this work.
In particular, we apply this algorithm to two schemes: 1,

μ ¼ 0 and T ≠ 0; 2, μ ≠ 0 and T ≠ 0. We find that the
effective quark masses of the pseudo-Wigner solution in
these two schemes both experience an absent region, while
the Nambu solutions does not. By calculation and analysis,
we find that for μ < 272.5 MeV where the second-order
chiral phase transition happens as temperature increases in
the chiral limit, things come similar to that for μ ¼ 0 and
T ≠ 0: the Nambu and positive pseudo-Wigner solution
connect smoothly at a certain temperature, indicating a
crossover in the QCD phase diagram. Furthermore, the
solutions obtained with our algorithm are consistent with
the strict physical solution obtained via the iterative method

for m ¼ 5.5 MeV. However, for μ > 272.5 MeV, things
are different: the Nambu solution does not connect to the
positive pseudo-Wigner solution for any m, resulting in
missing information of the QCD system in the discontinu-
ous region and the invalidation of our algorithm.
For a better understanding of the evolution process of the

Nambu and pseudo-Wigner solution with our algorithm, we
present the chiral susceptibilities of the u, d quark in these
two schemes. We find that the diverging points of the chiral
susceptibilities are same with the corresponding loss points
of pseudo-Wigner solutions in the m–T plane, because the
derivatives M0

u and ϕ0
u are tightly connected by Eq. (9).

In addition, the positive pseudo-Wigner solution does not
encounter the loss of solutions for μ < 272.5 MeV, which
is different from the scheme of μ > 272.5 MeV. For
example, when μ ¼ 300 MeV, the loss of solutions occur
in the positive pseudo-Wigner solution for m < 1.62 MeV,
but in the negative pseudo-Wigner solution for m >
3.26 MeV.
In conclusion, although the NJL model is a little rough as

a phenomenological model of the QCD in some sense, it
gives many qualitatively good predictions and explanations
to QCD related fields such as the hadron physics. With the
algorithm we employed in this paper, the evolution proc-
esses of the Nambu and pseudo-Wigner solution from the
chiral limit to nonchiral limit can be clearly displayed. And
for μ < 272.5 MeV in the QCD phase diagram, the Nambu
and positive pseudo-Wigner solution we obtained are in
good agreement with the strict physical solution of the gap
equation, naturally giving a criterion of the starting point of
the positive pseudo-Wigner solution.
In the future, a deeper understanding of the gluon

propagator rather than taking it as a constant will improve
the reliability of the model. In addition, the method beyond
the mean field approximation might supply a more reliable
calculation. Without doubt, it could not be better if the
LQCD overcomes the “sign problem” and provides the
most powerful simulations of the strong interacted matters
at finite chemical potential.
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