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The mass sensitivity of the chiral phase transition of QCD with and without axial UAð1Þ-symmetry
breaking at vanishing and finite quark chemical potential is investigated. To focus on the low-energy sector
of QCD, a quark-meson model with three dynamical quark flavors is employed. Nonperturbative quantum
fluctuations are taken into account with the functional renormalization group. The inherent ambiguities in
fixing the low-energy model parameters away from the physical mass point and their consequences
for spontaneous chiral symmetry breaking are discussed in detail and a heuristic parameter fixing
scheme motivated by chiral perturbation theory is proposed. The influence of vacuum and thermal
fluctuations of quarks and mesons on the order of the chiral phase transition is additionally assessed with a
mean-field analysis.
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I. INTRODUCTION

Quantum chromodynamics (QCD) at finite temperature
and density predicts a phase transition at low energies from
confined hadronic matter to a deconfined quark-gluon
plasma. The nature of the QCD transition is the subject
of intense studies and relevant to ongoing and planned
heavy-ion experiments [1–6]. The global QCD symmetries
associated to this transition are the chiral and center
symmetries, which are realized only in two antipodal
extreme limits of the quark masses. In the limit of infinitely
heavy quarks, i.e., the pure gauge theory, the QCD vacuum
obeys center symmetry. In this limit a first-order transition
to a phase with spontaneously broken center symmetry
occurs at a critical temperature of Tc ∼ 270 MeV [7]. In the
opposite limit of vanishing quark masses the QCD action is
invariant under global chiral symmetry and, at least for
three massless flavors, also a first-order transition is
expected [8].
For finite quark masses both chiral and center symmetry

are explicitly broken. As a consequence, the associated
phase transitions weaken away from both quark-mass limits
and finally terminate at critical points of second-order
transitions that belong to the three-dimensional Z2 Ising

universality class. For physical quark masses the chiral
and deconfinement transitions are smooth analytic cross-
overs with approximately coinciding pseudocritical tem-
peratures [9–12].
For the case of two degenerate light (up and down) quarks

and one strange quark the mass dependence of the order of
the phase transitions is summarized in the Columbia plot
[13]. In the heavy quark regime the Columbia plot, and even
its extension to finite baryon density, is by now well
understood both from continuum and lattice studies, e.g.,
[14–18]. In the latter case, the sign problem becomes
treatable due to the large quark masses. The region of small
masses is less well understood, see, e.g., [19–26] for lattice
studies of the location of the chiral critical line for three
degenerate quark flavors. However, the majority of lattice
results confirm the existence of a first-order region close to
the three-flavor chiral limit. Although improved calculations
indicate a small first-order region, the results still show huge
discrepancies due to the notoriously difficult implementa-
tion of chiral fermions on the lattice.
Another long-standing problem concerns the order of the

chiral transition in the chiral limit of two-flavor QCD. In
the Columbia plot, this is the point of massless light quarks
and infinitely heavy strange quarks. There is also a history
of conflicting lattice results in this case, e.g., [27–30]. The
two-flavor case is particularly intriguing since it is expected
that the order of the phase transition is most sensitive to the
fate of the global UAð1Þ symmetry [8]. While this sym-
metry is anomalously broken in the QCD vacuum [31], its
restoration is expected at large temperatures [32]. If the
restoration occurs close to the two-flavor chiral phase
transition in the chiral limit, the transition can be of first
order. Otherwise, a second-order transition is expected and
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depending on the axial anomaly strength at the chiral
transition, the associated critical behavior can be SUð2ÞL ×
SUð2ÞR ≅ Oð4Þ or Uð2ÞL ×Uð2ÞR=Uð2ÞV, whose corre-
sponding critical exponents are very similar [8,33–36]. In
case of a second-order transition in the two-flavor and a
first-order transition in the three-flavor chiral limit, the
Oð4Þ critical line of the light quark chiral limit and the Z2

critical line at finite quark masses meet at a tricritical
strange quark mass m�

s . The existence and its relative
location of this tricritical point with respect to the physical
mass point is not established yet [37] and even the
possibility m�

s → ∞ cannot be excluded [38].
An additional open problem is the interplay between the

three- and two-flavor chiral theories at finite chemical
potential μ. It is not known whether a tricritical point m�

s at
μ ¼ 0, if it exists, is analytically connected by a tricritical
line to the tricritical point at finite μ in the two-flavor
theory. For a positive curvature of the chiral critical surface,
i.e., when the first-order region around the chiral limit
increases with μ, both theories are connected analytically
most probably and hence a critical end point (CEP) exists
for physical quark masses. However, if the size of the first-
order region shrinks for increasing μ the situation can
completely change. Even if the two-flavor chiral theory
exhibits a tricritical point at some finite μ it need not be
(analytically) connected to the chiral critical surface, which
thus hampers any conclusions about the existence of a
critical end point in the phase diagram [39].
In summary, the nature of the chiral transition in the

small mass region of the Columbia plot is still controversial
concerning several lattice QCD studies for two and three
quark flavors. However, functional continuum approaches
such as the functional renormalization group (FRG) or
Dyson-Schwinger equations do not suffer a sign problem
at finite density and the implementation of chiral fermions
is straightforward. Renormalization-group methods such as
the FRG are also best suited to investigate universal
features of phase transitions. Much progress towards an
understanding of the QCD phase structure from first
principles has been made in recent years with these
methods, e.g., [40–45] and references therein. For example,
FRG results predict a second-order transition in the two-
flavor chiral limit [46].
Valuable qualitative and quantitative insights into the

chiral phase structure can be gained from effective low-
energy QCD models such as the linear sigma (LSM),
quark-meson (QM) or Nambu–Jona-Lasinio (NJL) models.
These models share the same global symmetries with QCD
by construction and exhibit similar or even the same
symmetry breaking pattern as the chiral transition in
QCD. Their criticality belongs to the same universality
class as QCD. Initiated by the first renormalization group
analysis of the LSM in [8], the investigation of the
Columbia plot with low-energy models has a long history.
For example, an investigation of the influence of the axial

UAð1Þ anomaly on the chiral phase transition within the
Cornwall-Jackiw-Tomboulis (CJT) formalism in Hartree
approximation of the LSM yields a large first-order chiral
transition region in absence of the anomaly. Including the
anomaly the results depend drastically on the sigma-meson
mass and no first-order transition is found at all in the most
realistic case [47]. In [48,49] a zero temperature para-
metrization for the mass dependence of the couplings based
on chiral perturbation theory (χPT) in an optimized
perturbation theory scheme for the LSM results in a
first-order region around the chiral limit which persists
up to large strange quark masses. In contrast, NJL models
on a mean-field level predict a very small first-order region
[50]. In optimized perturbation theory and the mean-field
treatment of the QM model a large first-order region in the
chiral and in the light chiral limit is obtained [51,52].
Interestingly, in such studies, the Columbia plot exhibits
features which are qualitatively independent of the axial
anomaly [53].
However, one drawback of these model investigations

is the parameter dependency which in parts can be reduced
by combining effective low-energy QCD models with the
FRG such that an improved nonperturbative truncation can
be obtained in a systematical manner, see, e.g., [54–57].
In this work, we go beyond these previous studies and

perform a nonperturbative FRG study of the Columbia plot
in a three-flavor quark-meson truncation at vanishing and
finite density as well as with and without the axial UAð1Þ
anomaly for the first time. The FRG allows us to incor-
porate arbitrarily high loop orders as well as genuine
nonperturbative effects [58,59]. A recent FRG study for
a quark-meson truncation with Nf ¼ 2þ 1 dynamical
quark flavors has been done in [60] in a leading-order
derivative expansion, the local potential approximation
(LPA), where the effective potential is treated as energy
scale dependent, while all other correlation functions are
kept constant. It was found that the chiral transition in the
light chiral limit at physical strange quark masses is of
second order belonging to theOð4Þ-universality class in the
presence of the axial anomaly. Without the anomaly, the
transition was of first order in this limit. The influence of
scale-dependent correlation functions beyond the leading
LPA has been worked out in [61]. However, the full
Columbia plot has not been studied with the FRG yet.
Our approach allows us to systematically study the impact
of thermal and vacuum fluctuations of quarks and mesons
on the order of the chiral phase transition for arbitrary quark
masses.
Any investigation of the Columbia plot with a low-

energy QCD description faces the problem to fix the initial
parameters unambiguously. At the physical mass point the
parameters can be adjusted to reproduce certain experi-
mental observables. Away from the physical point no such
phenomenological guidance can be found. We discuss
the physical consequences of different parameter fixing
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procedures and propose a heuristic fixing scheme moti-
vated by χPT.
This paper is organized as follows: After the introduction

of our effective low-energy description of QCD in terms
of a quark-meson model in Sec. II, the incorporation of
nonperturbative quantum fluctuations by the FRG is sum-
marized in Sec. III. In Sec. III B the vacuum fluctuations of
quarks, which are relevant for QCD thermodynamics, are
included in the conventional mean-field approximation.
Owing to the ambiguity in the model parameters away
from the physical point, two different parameter fixing
schemes are introduced in Sec. III C. Our numerical findings
on the chiral critical lines in the Columbia plot at vanishing
and finite chemical potential with and without the axial
anomaly are presented in Sec. IV. A summary with an
outlook can be found in Sec. V. Details of our numerical
implementation are given in the Appendix.

II. THREE-FLAVOR QUARK-MESON MODEL

In this section we briefly describe our setup of the three-
flavor quark-meson model as a low-energy effective model
for QCD. It is based on a linear sigma model where the
(pseudo)scalar meson nonets are represented by a color-
singlet Nf × Nf matrix field Σ. It shares the same global
chiral symmetry properties as QCD. The inclusion of
constituent quarks then facilitates the study of finite
chemical potential and significantly improves the chiral
dynamics such that, e.g., the chiral critical temperature at
vanishing density is much closer to lattice QCD, see e.g.,
[53,62]. In general, quark-meson models arise from QCD
by successively integrating out quark and gluon fluctua-
tions towards low energies, see, e.g., [44,45,56,63,64].
Under the assumption that gluon fluctuations decouple

below a certain UV scale Λ, the ULðNfÞ ⊗ URðNfÞ chiral
invariant part of the Euclidean effective action is given by

Sχ ½q; q̄;σa;πa� ¼
Z
x
fq̄ð=∂þ γ0μ̂þhΣ5Þq

þTrð∂μΣ†∂μΣÞþUχðρ1;ρ2Þg; ð1Þ

with the three-flavor quark field q ¼ ðu; d; sÞT [65,66]. The
scalar and pseudoscalar meson fields σa and πa comprise in
the complex matrix fields

Σ ¼ Taðσa þ iπaÞ ð2Þ

and Σ5 ¼ Taðσa þ iγ5πaÞ, where Ta label theUðNfÞ group
generators. They are given explicitly by T0 ¼ 13=

ffiffiffi
6

p
and

Ti ¼ λi=2, with the eight Gell-Mann matrices λi,
i ¼ 1;…; 8. The action includes standard kinetic terms
for the quark and meson fields as well as a Yukawa type
interaction vertex ∼h. A quark chemical potential matrix
μ̂ ¼ diagðμu; μd; μsÞ is included. In the following we
restrict the discussion to symmetric quark matter

μ≡ μu ¼ μd ¼ μs. We consider chirally invariant meson-
meson interactions of arbitrary order within an effective
chiral potential Uχðρ1; ρ2Þ which is a function of the chiral
invariants ρn ¼ Tr½ðΣ†ΣÞn�, n ≤ Nf. In the effectve poten-
tial a third invariant ρ3 has been dropped for the sake of
simplicity. If the chiral potential Uχ would only depend on
one invariant ρ1, it would exhibit an enhanced SOð18Þ
flavor symmetry. Adding a second invariant ρ2 breaks this
symmetry down to the desired chiral SUð3ÞL × SUð3ÞR ×
Uð1ÞA symmetry [65,67]. Hence, the general dependency
on ρ1 and ρ2 represents a minimal requirement to capture
the correct flavor symmetry.
To effectively account for finite current quark masses as

well as the axial UAð1Þ anomaly, we add the following
symmetry breaking terms to the action:

LSBðσa; πaÞ ¼ −Tr½jaTaðΣ† þ ΣÞ� − cAξ; ð3Þ

where the first term models the explicit breaking of the
chiral SULðNfÞ ⊗ SURðNfÞ due to finite quark masses.
The anomalous breaking of the UAð1Þ symmetry is
described by the second term, which represents a bosonized
version of the ’t Hooft determinant, ξ ¼ detðΣ†Þ þ detðΣÞ
[31,68,69]. The determinant gives a Nf-meson interaction
vertex which leaves SULðNfÞ ⊗ SURðNfÞ ⊗ UVð1Þ intact
but explicitly breaks the UAð1Þ symmetry down to ZAðNfÞ.
Later, we will effectively explore the effect of the anoma-
lous breaking and consider the two constant cases: cA ¼ 0
and cA ≠ 0. However, in QCD this coupling has also an
explicit temperature and/or density as well as a scale
dependency which we ignore in the present work. For
exploratory studies see, e.g., [54,70–73].
The vacuum expectation values (VEVs) for the fields are

found at the stationary point of the action. Due to parity and
(approximate) isospin symmetry as well as flavor neutrality
of the vacuum only the diagonal components of the scalar
meson sector related to the generators T0 and T8 can have
finite expectation values. Hence, we assume light isospin
symmetry and write q ¼ ðl; l; sÞT . At the stationary point
we can therefore express the chiral invariants and the
explicit symmetry breaking action, Eq. (3), in terms of the
light and strange scalar meson VEVs σ̄l ¼ hσli and σ̄s ¼
hσsi as follows:

ρ̄1 ¼
1

2
ðσ̄2l þ σ̄2sÞ;

ρ̄2 ¼
1

8
ðσ̄4l þ 2σ̄4sÞ;

LSBjEoM ¼ −jlσ̄l − jsσ̄s − cA
σ̄sσ̄

2
l

2
ffiffiffi
2

p : ð4Þ

σ̄l and σ̄l are directly related to the light and strange chiral
condensates hl̄li and hs̄si. The fields denoted by the indices
l, s are expressed in the light-strange basis. They are related
to the ones in the singlet-octet basis, Eq. (2), via the rotation
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�
σl

σs

�
¼ 1ffiffiffi

3
p

�
1

ffiffiffi
2

p

−
ffiffiffi
2

p
1

��
σ8

σ0

�
: ð5Þ

The pion and kaon decay constants can be expressed in
terms of the light and strange meson VEVs as [62]

fπ ¼ σ̄l; fK ¼ σ̄l þ
ffiffiffi
2

p
σ̄s

2
; ð6Þ

which yield the quark masses

ml ¼
h
2
σ̄l; ms ¼

hffiffiffi
2

p σ̄s: ð7Þ

The current quark-mass sensitivity of the chiral phase
transition can be controlled by varying the explicit sym-
metry breaking parameters jl and js. Since we have no
direct access to the perturbative QCD regime within the
used low-energy description, it is more sensible to express
the Columbia plot in terms of the purely light pion and the
open strange kaon masses, mπ and mK , instead of the
corresponding current quark masses. It is therefore useful to
derive relations between the explicit symmetry breaking
sources and the pion and kaon masses,

jl ¼ fπm2
π; js ¼

ffiffiffi
2

p
fKm2

K −
1ffiffiffi
2

p fπm2
π: ð8Þ

The light-quark chiral limit jl ¼ 0 always implies mπ ¼ 0,
while the strange quark chiral limit js ¼ 0 leads to the
relation m2

K ¼ fπm2
π=ð2fKÞ. As a consequence, kaons are

always massive as long as the pions are. Equation (8) can be
derived by using the equations of motion ∂ðUχ þ LSBÞ=∂σl;s ¼ 0 together with the explicit expressions for m2

π and
m2

K in Appendix D of [61].

III. NONPERTURBATIVE QUANTUM
FLUCTUATIONS

For an accurate description of the chiral phase transition
all quantum, thermal, and density fluctuations, in particular
in the vicinity of the transition, should be taken into
account in a nonperturbative manner. As mentioned in
the Introduction this can be achieved with the FRG, which
is a semianalytical method providing a nonperturbative
regularization and renormalization scheme for the resum-
mation of an infinite class of Feynman diagrams. For QCD
related FRG reviews, see, e.g., [58,59,74–77].

A. Functional renormalization group

The central object of the FRG is a scale-dependent
effective action Γk that is identified with the classical action
S ¼ ΓΛ at some UV-cutoff scale Λ. By successively
integrating out fluctuations momentum shell by momentum
shell, the full quantum effective action Γ ¼ Γ0, i.e., the

generating functional of all one-particle irreducible corre-
lation functions, is recovered in the infrared (IR) at k → 0.
The renormalization-group flow of Γk is governed by
the Wetterich equation [78], which for the quark-meson
model reads

∂kΓk½q; q̄; σa; πa� ¼
1

2
STr½ðΓð2Þ

k þ RkÞ−1ΣΣ∂kRΣ
k �

− STr½ðΓð2Þ
k þ RkÞ−1qq̄∂kR

q
k �: ð9Þ

Here, Γð2Þ
k denotes the second functional derivative with

respect to the corresponding meson or quark fields.
Fluctuations with momenta p2 < k2 are suppressed by
appropriate regulator functions RΣ;q

k . The super trace STr
indicates the trace over discrete (color, flavor, spinor) and
continuous (loop momenta) indices as well as various
fields. The Wetterich equation (9) represents an exact
functional equation whose solution involves an infinite
tower of partial differential equations. Hence, in practice Γk
has to be truncated. In this work we choose the LPAwhich
amounts to a scale dependence of the meson potential
Uχ;kðρ1; ρ2Þ. All other parameters are k-independent. Thus,
the scale-dependent effective action reads

Γk½q;q̄;σa;πa� ¼ Sχ;k½q; q̄;σa;πa�þ
Z
x
LSBðσa;πaÞ; ð10Þ

where Sχ;k is given by Eq. (1) with a scale-dependent
effective potential Uχ → Uχ;k. The symmetry breaking part
LSB, Eq. (3), is unchanged. In this approximation, and by
employing optimized regulators for the spatial momenta
[79–81], the Wetterich equation turns into the following
partial differential equation for the effective potential:

∂kUχ;k ¼
k4

12π2

(X2N2
f

b¼1

1

Eb
coth

�
Eb

2T

�

−2Nc

XNf

f¼1

1

Ef

�
tanh

�
Efþμ

2T

�
þ tanh

�
Ef−μ

2T

��)
:

ð11Þ

The quark and meson quasiparticle energies are abbreviated
as Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
with the corresponding light-quark and

strange quark masses, ml ¼ hσl=2 and ms ¼ hσs=
ffiffiffi
2

p
. The

meson (curvature) masses mb are obtained from diagonal-
izing the Hessian of the full effective potential Uχ;k þ LSB,
for explicit expressions we refer to the Appendix of
Ref. [61]. Details on the truncation and regularization of
the effective action can be found in Ref. [60]. We remark
that improved LPA truncations as well as a different
regulator choice are likely to have some quantitative effects
on the presented results. In the present context the former
has been studied in [61,82] and the latter has been
discussed in [83]. However, the qualitative statements in

RESCH, RENNECKE, and SCHAEFER PHYS. REV. D 99, 076005 (2019)

076005-4



this work are expected to be unaffected by truncation and
regularization effects.

B. Extended mean-field approximation

In order to understand the effect of the mesonic fluctua-
tions we also solve the quark-meson model in a mean-field
approximation, which can conveniently be achieved by
switching off the meson contributions to the flow equa-
tion (11). The mesonic quantum fields are replaced by their
vacuum expectation values on the level of the action. The
remaining contribution is quadratic in the quark fields and
thus yields the conventional Gaussian path integral for the
quark contribution to the effective potential.
The quark contribution contains an UV-divergent vac-

uum part which requires regularization. In a standard (or
no-sea) mean-field approximation (MFA) this contribution
is simply ignored. However, as shown in [84] the vacuum
contribution has a significant impact on the chiral dynamics
of the QM model. In the present context, the order of the
chiral transition in the light chiral limit depends crucially on
fermionic vacuum fluctuations [85]. For these reasons, we
also explore the Columbia plot in the extended mean-field
approximation (EMFA), which takes these vacuum fluc-
tuations into account.
We want to emphasize that the vacuum contribution is

automatically included, and properly regularized, in the
FRG approach. This also includes the mesonic vacuum
fluctuations. Hence, by switching off the meson loops in
Eq. (11) we directly work in the EMFA. Alternatively, the
vacuum contribution of the QM model in EMFA can also
be regularized with standard techniques like, e.g., dimen-
sional regularization yielding a renormalized QM model
potential, e.g., [85]. However, performing a MFAwithin the
FRG it is guaranteed that the same nonperturbative regu-
larization and renormalization schemes are employed.

C. Parameter fixing

Here, we discuss the initial effective action we use to
initiate the RG flow of our model. The general idea is to fix
the couplings of the effective action Γk¼Λ, Eq. (10), at a UV
scale Λ such that the resulting effective action Γk¼0

reproduces phenomenologically known quantities in the
infrared, like meson masses and decay constants. The RG

evolution is determined by the flow equation (9). For initial
scales Λ larger than the scale of chiral symmetry breaking
(in our case around kχSB ≈ 500 MeV) the VEVs of the
mesons are small. The meson masses are large and
consequently their fluctuations are negligible. Therefore
it is reasonable to expand the initial effective meson
potential about small VEVs of the mesons and keep only
the leading terms. It turns out for Λ≳ 700 MeV that finite
initial values for marginal and relevant terms are sufficient.
Furthermore, choosing Λ≳ 700 MeV also guarantees that
UV-cutoff artifacts at the relevant temperature and chemical
potentials are negligible. For a recent discussion regarding
UV-cutoff effects in low-energy effective models we refer
to [86]. Irrelevant couplings, i.e., those with a negative
mass dimension, are suppressed due to small initial meson
fluctuations. Their initial values can be set to zero. This
yields the initial potential

UΛ ¼ a10;Λρ1 þ
a20;Λ
2

ρ21 þ a01;Λρ̃2 − jlσl − jsσs − cAξ;

ð12Þ

where we have introduced a modified chiral invariant
ρ̃2 ¼ ρ2 − ρ21=3. For this ansatz seven parameters
fa10;Λ; a20;Λ; a01;Λ; cA; jl; js; hg have to be fixed in the
UV. At the physical point, i.e., for realistic masses, we
can fix the initial parameters such that we reproduce well-
known masses and decay constants in the IR. Note that,
without anomalous breaking, cA ¼ 0, one hasmη0 ¼ mπ and
mη is completely fixed by the kaon and pionmasses and their
decay constants, cf. [62]. For the mean-field approximation
an identical parameter fixing procedure with the same UV-
cutoff scale Λ is employed, see [53] for further details. The
used parameters are summarized in Table I.
We want to emphasize that irrelevant couplings, even

though they are zero initially, are generated during the RG
flow towards the IR. This has been demonstrated explicitly
within a QM model in [82]. In QCD, this follows from the
fact that the QCD effective action just above the chiral
symmetry breaking scale is dominated by effective four-
quark interactions whose resonance signals the spontane-
ous breaking of chiral symmetry [44,45,54,56]. Based on
this, we assume that higher-order mesonic operators are
generated only after the decoupling of the gluons. These

TABLE I. Initial UV parameters and the resulting experimental IR values for the FRG and EMFA calculations at the physical point.

The remaining parameters for the physical point are Λ ¼ 700 MeV, jðphysÞl ¼ 120.733 MeV3, jðphysÞs ¼ 336.413 MeV3, h ¼ 6.5with the
corresponding IR observables fπ ¼ 92.4 MeV, fK ¼ 113 MeV, mπ ¼ 138 MeV, mK ¼ 496 MeV, and ml ¼ 300 MeV.

a10;ΛðMeV2Þ a20;Λ a01;Λ cA (MeV) mσ (MeV)
ffiffiffiffiffiffiffiffiffiffiffiffi
m2

η0 þm2
η

p
(MeV)

FRG 562.022 26.31 50.38 4807.84 530 1103.6
FRG 345.842 14.73 108.70 0 500 649.6

EMFA 756.782 11.40 27.11 4807.84 530 1103.6
EMFA 666.072 −4.21 63.09 0 500 649.6
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operators are quantitatively and qualitatively relevant for
the nonuniversal physics considered here. We therefore
solve the flow equation for the full effective potential
∂kUχ;kðρ1; ρ2Þ, Eq. (11), on a two-dimensional grid instead
of resorting to an expansion in terms of only relevant and
marginal operators, see the Appendix.
In order to investigate the mass sensitivity and the

influence of the axial anomaly on the chiral phase
structure the corresponding symmetry breaking parame-
ters jl;s and cA are varied and thus the system is tuned
away from the physical point. We cannot rely on IR
observables to fix the initial conditions in this case. Since
the initial UV parameters are fixed in general by the
underlying fundamental theory of the strong interactions,
it is a priori not clear how the remaining parameters of
the low-energy model change when the current quark
masses and/or the ’t Hooft coupling are tuned away from
the physical point.
For the axial symmetry parameter cA, two scenarios are

considered (see Table I): One is where a constant cA is
chosen such that the η0-meson mass is fixed to its
experimental value at the physical point. In the other case
we assume that the axial anomaly is absent, i.e., cA ¼ 0.
The corresponding initial UV parameters are fixed in such a
way that the same experimental IR values (as listed in
Table I) are obtained. We want to emphasize that the latter
case is not directly connected to QCD, at least for small
temperatures, since the QCD vacuum always breaks the
UAð1Þ symmetry through quantum fluctuations. Only for
high temperatures [32] or in the large-Nc limit [87] is this
symmetry restored. Thus, we implicitly assume the limit of
infinite colors for the cA ¼ 0 computations. Nonetheless, it
is interesting to investigate the influence of a UAð1Þ
symmetry on the phase structure and study the conse-
quences for the mass sensitivity from a more general point
of view. For exploratory FRG studies about UAð1Þ-sym-
metry breaking, see [54,70–73].
While varying the explicit chiral symmetry breaking jl;s

is less delicate, it gives rises to ambiguities for the
parameter fixing of low-energy models. In principle, the
initial action of the low-energy model at a given scale Λ
could be determined for varying current quark masses by
solving the corresponding QCD flow: Starting with a
microscopic QCD action at a perturbatively large energy
scale k ≫ 1 GeV the RG evolution towards Λ would yield
the desired initial conditions in a unique way. This is
beyond the scope of the present work, see, e.g., [88] for an
explicit example of a model parameter fixing procedure
within a NJL model framework.
Owing to the scarce information about QCD away from

the physical point, we explore two strategies to fix the
parameters in this case:

(i) Fixed-UV scheme: Away from the physical point
only the explicit symmetry breaking sources jl;s are
assumed to change, while all other parameters of the

initial effective action are identical to the ones at the
physical point. So the symmetric part of the initial
effective action does not change in the UV.

(ii) Fixed-fπ scheme: For each jl;s the initial effective
action is adjusted such that the IR pion decay
constant is always fixed to its physical value, i.e.,
fπ ¼ 92.4 MeV at every mass point in the Colum-
bia plot.

The fixed-UV scheme is practically the simplest choice
and it has been used frequently in the literature, e.g.,
[47,50,53,89,90]. In this scheme the initial action is given
by the parameters listed in Table I at the cutoff scale
Λ ¼ 700 MeV and only jl;s are varied to explore the
quark-mass sensitivity of the phase transition. The under-
lying assumption is that a change in the current quark
masses of QCD can be mapped directly onto a change of
the symmetry breaking sources jl;s in the effective low-
energy model. The fixed-fπ scheme is motivated by the
findings of chiral perturbation theory [91]. In the light
chiral limit, jl ¼ 0, the pion decay constant only slightly
decreases. In the chiral limit when also js ¼ 0, it does
not change at leading order. Since χPT suggests a change
of fπ only on the order of 10% towards the chiral limit,
we always adjust the initial conditions such as to yield
fπ ¼ 92.4 MeV in the IR, independent of jl;s. A more
accurate adaption to a more precise quark-mass depend-
ence of fπ (and also other observables) will only lead to
minor quantitative changes which are irrelevant in the
present case. So in the fixed-fπ scheme we demand
(approximate) compliance with χPT. A similar parameter
fixing procedure for a linear sigma model based on χPT
has been proposed in [48].
It is a priori possible that both schemes give the same

results. However, we will demonstrate that there are drastic
differences and discuss the physical reasons in the next
section. The Yukawa coupling h and the anomaly coupling
cA are not running in our current approximation. In
addition, we assume that they do not change away from
the physical point. The parameters that can potentially be
adjusted in the fixed-fπ scheme are a10;Λ, a20;Λ, a01;Λ, jl,
and js. Clearly, there is no unique choice for the initial
parameters in this case since we assume that mπ, mK , and
fπ are the only IR quantities we know away from the
physical point. An exception is the chiral limit, where also
the relation between fπ and fK as well as the masses of the
pseudoscalar meson octet are fixed by chiral symmetry. Our
model consistently reproduces this case. It turns out that for
decreasing jl;s it is always possible to find a larger initial
scale Λ0 > Λ with a10;Λ0 ¼ a10;Λ, a20;Λ0 ¼ a20;Λ, and
a01;Λ0 ¼ a01;Λ (cf. Table I) such that the fixed-fπ scheme
is realized. This procedure is equivalent to a change in the
initial parameters for a fixedΛ. It is numerically much more
convenient since everything is controlled by only one
parameter at given jl;s. In Table II we exemplify the initial
conditions within the two employed schemes for three
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different choices of explicit symmetry breaking parameters
jl;s, parametrized as�

jl
js

�
¼ α

�
jphysl

jphyss

�
; ð13Þ

where jphysl;s are the values at the physical point, explicitly
given in the caption of Table I.

IV. NUMERICAL RESULTS

Lattice QCD calculations establish that for vanishing
quark chemical potential the chiral three-flavor phase
transition is a smooth crossover at the physical mass point
[9]. This is also a generic outcome of linear sigma- and
quark-meson models. In this work we extend the inves-
tigation of the chiral phase transition for arbitrary symmetry
breaking sources jl and js as well as finite chemical
potential. We begin by reviewing various limiting cases:

(i) js → ∞: Increasing js above its physical value, the
strange quark and all mesons with strangeness be-
come heavier and eventually decouple from the flow
towards the infrared. This limit is equivalent to the
case of only two degenerate light flavors and, depend-
ing on the fate of the UAð1Þ anomaly, will resemble
either a Oð4Þ-symmetric or an Uð2ÞL ⊗ Uð2ÞR-
symmetric system.

(ii) jl ¼ 0 and js > 0: We call this limit the light chiral
limit. It corresponds to two massless light-quark
flavors but finite strange quark masses and coincides
with the (mπ ¼ 0) axis in the Columbia plot.

(iii) jl > 0 and js ¼ 0: This limit corresponds to the
strange chiral limit. The kaons then obey
m2

K ¼ fπm2
π=ð2fKÞ. This defines the line of smallest

possible kaon masses in the Columbia plot.
(iv) jl ¼ js ¼ 0: All quark masses vanish and chiral

SUð3ÞL ⊗ SUð3ÞR symmetry is not explicitly bro-
ken. Since this is the Nf ¼ 3 chiral limit, we refer to
it as the chiral limit.

A. Spontaneous symmetry breaking

As discussed in Sec. III C, the model parameter fixing
away from the physical point is not unique. In principle, the
effective action ΓΛ at a given initial UV scale Λ is
determined by a RG flow from the perturbative QCD
regime down to Λ. At least for the physical point this
ambiguity in the initial action of the low-energy model can
be circumvented by adjusting the initial action to known IR
observables. As soon as the physical point is left this
procedure is not constructive anymore.
In order to proceed we apply the in Sec. III C already

introduced two parameter fixing methods when the sources
jl;s are varied. The fixed-UV scheme, where all other
parameters remain fixed (cf. Table I), has been used in a
FRG study of the light chiral limit [60] and in a similar
MFA study for the whole Columbia plot [53]. In the latter
case a rather heavy sigma mass of the order of 800 MeV
was required in order to observe spontaneous chiral
symmetry breaking in the chiral limit, which is in conflict
with recent experimental data [92].
While the fixed-UV scheme yields a reasonable value for

fπ ≈ 87 MeV in the light chiral limit which is in agreement
with chiral perturbation theory, we find that both light
and strange condensates vanish towards the chiral limit
and spontaneous chiral symmetry breaking is lost. This is
displayed in Fig. 1 where the light [Fig. 1(a)] and the

TABLE II. Exemplary initial conditions for the two different
parameter fixing schemes employed here (fixed UVand fixed fπ)
for broken axial symmetry (cA ≠ 0). α parametrizes the value of
the explicit symmetry breaking sources jl;s according to Eq. (13).
All units are the same as in Table I.

Fixed UV Fixed fπ

α Λ a10;Λ a20;Λ a01;Λ Λ a10;Λ a20;Λ a01;Λ

1 700 562.022 26.31 50.38 700 562.022 26.31 50.38
0.17 700 562.022 26.31 50.38 1000 562.022 26.31 50.38
0 700 562.022 26.31 50.38 1143 562.022 26.31 50.38

(a) (b)

FIG. 1. (a) and (b) show the light and strange condensates as a function of light and strange condensate as a function of temperature
towards the chiral limit in the fixed-UV scheme. The parameter α linearly interpolates between the physical point (α ¼ 1) and the chiral
limit (α ¼ 0), cf. Eq. (13). Both condensates vanish in the chiral limit, signaling no spontaneous symmetry breaking (see text for details).
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strange [Fig. 1(b)] condensates are shown as a function of
the temperature for different points on a path connecting the
physical point to the chiral limit in the Columbia plot. This
path is parametrized by a factor α ≥ 0 as defined in
Eq. (13), such that α ¼ 1 corresponds to the physical mass
point and α ¼ 0 to the chiral limit. Both condensates melt
with decreasing α and at the chiral limit they vanish.
Furthermore, the (pseudo)critical temperature Tc drops, in
particular Tc → 0 towards the chiral limit. The same
behavior is seen for the RG scale of spontaneous chiral
symmetry breaking, kχSB. Hence, the system remains in the
symmetric phase in the chiral limit.
This observation can be understood already on the mean-

field level. In this case the initial meson potential Eq. (12)
matches the full meson potential. For the light sector of the
potential in the chiral limit,

UMFðσ̄lÞ ¼
a10
2

σ̄2l þ
1

8

�
a20 þ

a01
3

�
σ̄4l ; ð14Þ

a finite expectation value σ̄l can only be generated for a10 <
0 if the potential is bounded from below, which in turn
requires a positive quartic coupling ða20 þ a01=3Þ > 0.
With the fixed-UV scheme we find for sigma masses in
the range mσ ∈ ½400; 600� MeV a positive a10, and thus
spontaneous symmetry breaking cannot occur. In the MFA
this can be circumvented by choosing unphysically large
sigma masses (mσ ≳ 800 MeV) [53].
The above mean-field argument cannot directly be

transferred to the FRG case, since the full effective
potential as a function of arbitrary powers of the chiral
invariants is evaluated beyond mean field. For instance, the
FRG flow only allows for sigma masses in the range
mσ ∈ ½400; 600� MeV. Basically, mσ is controlled by the
quartic meson coupling. Vacuum stability of the initial
potential requires a positive quartic coupling which fixes
the lower bound formσ. On the other hand, the upper bound
is given by the requirement that mesons have to decouple at
large energy scales. Since the initial meson masses decrease
with increasing quartic coupling, this coupling cannot be
arbitrarily large. In order to understand why spontaneous
chiral symmetry breaking is lost in the fixed-UV scheme,
we need to understand the fluctuations that eventually drive
the system to criticality.
We observed that the values of the condensates, as well

as kχSB and Tc, decrease with decreasing α, i.e., with less
explicit symmetry breaking. At first glance, this seems to be
counterintuitive since smaller jl;s imply lighter current
quark masses that yield a potential enhancement of sym-
metry breaking fermionic fluctuations. Furthermore, the
quark masses are always lighter than the RG scale above
kχSB, i.e., ml=s;k ≪ k for k ∈ ½kχSB;Λ�, so that any varia-
tions in the current quark masses should have less impact
on kχSB. However, in the fixed-UV scheme the meson
masses increase with decreasing sources jl;s at the initial

scale Λ. This also includes the critical sigma mode which is
related to the correlation length via ξ ¼ 1=mσ . Conversely,
the initial correlation length decreases with smaller jl;s such
that (pseudo)criticality is reached later in the RG flow.
Hence, kχSB, the condensates and, as a consequence, Tc
decrease with decreasing jl;s. The reason for the sensitivity
of the initial meson masses on the explicit symmetry
breaking parameters is that they change the evaluation
point of the effective potential that defines the physical
parameters and not the global form of potential itself, see,
e.g., [82]. Thus, different jl;s can change the meson masses
substantially.
This observation contradicts our current understanding

of chiral dynamics in the chiral limit. For example, χPT
predicts in the chiral limit only minor modifications of the
decay constants as discussed in Sec. III C. In addition, this
observation might propose that the lower bound of the
conformal window, Nc

f, where spontaneous chiral sym-
metry breaking is lost for Nf ≥ Nc

f chiral quarks in the
fundamental representation, would be Nc

f ¼ 3. However,
functional continuum methods, supersymmetry-inspired
all-orders beta function approaches and lattice QCD studies
suggestNc

f ≈ 8–12, e.g., [55,93–96] and references therein.
It is therefore reasonable to conclude that the fixed-UV
scheme is not applicable within the present low-energy
theory. We note that this statement is unlikely to be affected
by truncation or regularization scheme effects within the
QM model. The main effect discussed above is the drastic
increase of the initial meson masses with decreasing jl;s. It
follows directly from the form of the initial effective action.
Only if the RG flow is initiated at larger scales where gluon
dynamics are relevant, our results would be independent of
the form of the initial meson potential (as long as mesons
are decoupled from the dynamics). This clearly goes
beyond the low-energy effective model employed here
and is discussed in detail in the context of dynamical
hadronization in [44,54,56].
In the following we assume that chiral symmetry of the

QCD vacuum is spontaneously broken in the chiral limit.
By demanding compliance with χPT we introduced the
fixed-fπ scheme in Sec. III C. It follows from Eq. (6) and
the symmetric form of the initial effective potential (12)
that fixing fπ to a finite value for any jl;s always implies
spontaneously broken chiral symmetry in the infrared. As
discussed above, if we fix a10;Λ, a20;Λ, and a01;Λ at a given
UV cutoff Λ, a decrease of the explicit symmetry breaking
parameters jl;s not only decreases the pion and kaon masses
in the IR but also leads to an unphysically large reduction of
the initial correlation length. Since the quark fluctuations
that drive the system to (pseudo)criticality do not change
much for scales k > kχSB and decreasing jl;s, we expect that
the same behavior holds for the correlation length. Due to
the intimate relation between the decay constants and the
chiral condensates, a larger UV correlation length also
entails larger IR decay constants. So the fixed-fπ scheme
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resolves the problems of the fixed-UV scheme by con-
struction. At the physical mass point our initial conditions
are fixed such that fK=fπ ≈ 1.2, in agreement with lattice
QCD [97]. As we will demonstrate below, our procedure
naturally leads to fK ¼ fπ in the chiral limit, in accordance
with chiral symmetry. Thus, the fixed-fπ scheme, backed
up in particular by χPT, seems to be a physically reasonable
procedure to fix the initial conditions away from the
physical mass point as it provides a natural interpolation
between the physical point and the chiral limit. A more
accurate procedure to fix the initial conditions that also
takes the scaling, e.g., of fπ , fK ,mπ , andmK near the chiral
limit as predicted by χPT into account is beyond the scope
of the present work. But since the physical picture
presented here is expected to hold in general, we anticipate
only minor quantitative changes.
Our findings within the fixed fπ-scheme are shown in

Fig. 2, where the light and strange condensates [Figs. 2(a)
and 2(b)] as well as the pion and sigma-meson masses
[Fig. 2(c)] as a function of temperature for different UV
cutoffs towards the chiral limit from Λ ¼ 700 MeV at the
physical point to Λ ∼ 1143 MeV in the chiral limit are
shown. Again, a straight path in the Columbia plot from the
physical point to the chiral limit has been chosen, see
Eq. (13). The light condensate σ̄l is always fixed to
fπ ¼ 92, 4 MeV at T ¼ 0 by construction for every α.
With decreasing α the chiral phase transition becomes
steeper and turns into a first-order transition below a critical
value αc ≲ 0.04. At αc (not shown in the figure) the sigma
mass drops to zero at the critical temperature signaling a
second-order phase transition. Since the sigma meson is the
only critical mode at αc, the transition lies in the three-
dimensional Ising universality class.
The constituent quark mass consists of the current quark

mass and a contribution from spontaneous chiral symmetry
breaking proportional to the chiral condensates. Thus,
towards the chiral limit no significant changes for the light
quarks are expected, while the strange quark constituent
mass decreases substantially. Since σ̄s is connected to the

strange constituent quark mass via Eq. (7), it also decreases
significantly with decreasing α. In fact, in the chiral limit
chiral symmetry implies the relation σ̄l ¼

ffiffiffi
2

p
σ̄s, which

results in fK ¼ fπ, cf. Eq. (6). The pseudoscalar meson
octet with the pions, kaons, and the η-meson becomes
massless. The pseudoscalar singlet η0-meson remains mas-
sive in the presence of the UAð1Þ anomaly. The masses of
the scalar meson nonet with the sigma, f0, a0, and the
kappas, are generated solely by spontaneous chiral sym-
metry breaking. This is exactly what we find.

B. Columbia plot in mean-field approximation

We begin with an investigation of the Columbia plot in
the extended mean-field approximation as outlined in
Sec. III B. We express the symmetry breaking in terms
of the pion and kaon masses, mπ and mK, by using the
identities in Eq. (8). We will concentrate on lower and
moderate mass values in the Columbia plot since the
opposite quenched mass limit is unreachable without direct
access to gauge degrees of freedom. As parameter fixing we
also apply the fixed-fπ scheme by adjusting the UV cutoff
Λ such that fπ is fixed in the vacuum for any values of mπ

and mK . This extends the analysis in [53], where the
Columbia plot has been computed in standard MFAwhere
vacuum quark fluctuations are omitted. Together with the
following FRG investigation, we are now able to distin-
guish between effects stemming from fermionic (vacuum as
well as thermal) and/or mesonic fluctuations.
In standard MFA the chiral transition is of first order in

the light chiral limit, apparently independent of mK and of
the presence of the axial anomaly. Particularly, this would
imply a first-order chiral transition in the two-flavor limit.
In Fig. 3 the mass sensitivity of the chiral phase

transition in the (mπ , mK)-plane as well as for finite
chemical potentials in EMFA are shown. The results differ
significantly from the MFA results in [53]. Including the
anomalousUAð1Þ-symmetry breaking (left panel) we find a
distinctive first-order region around the chiral limit for

(a) (b) (c)

FIG. 2. Temperature dependence of the light and strange condensates [(a) and (b)] and the sigma-meson masse [(c)] at μ ¼ 0 towards
the chiral limit in the fixed-fπ scheme. For each Λ the initial action has been adjusted such that σ̄l ¼ 92.4 MeV is fixed in the vacuum.
Λ ¼ ð1143; 1100; 1000; 700Þ MeV corresponds to α ¼ ð0; 0.04; 0.17; 1Þ. In the chiral limit a first-order phase transition is found.
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vanishing chemical potentials. The transition is of second
order in the light chiral limit for kaon masses larger than the
physical ones and in particular in the two-flavor limit.
These findings agree with the predictions in [8] for the
three- and two-flavor chiral limits. Since standard MFA
predicts a first-order transition [84], our results imply that
the second-order transitions in the light and two-flavor
chiral limits are induced by fermionic vacuum fluctuations.
Similarly, and in contrast to a standard MFA study [53], a
tricritical pointm�

K ¼ 169 MeV on themK axis for μ ¼ 0 is
found when quark vacuum fluctuations are taken into
account. At this point the second-order chiral transition
line in the light chiral limit terminates and the transition
turns from second to first order with decreasing mK . In the
opposite direction for finite pion masses the chiral critical
line terminates at the js ¼ 0 axis (dashed orange line in
Fig. 3) corresponding to mπ ≈ 110 MeV. Everywhere else
the transition is a smooth crossover for μ ¼ 0.
For μ > 0 the size of the first-order region around the

chiral limit increases such that the chiral critical surface has
a positive curvature, cf. [98]. Consequently, a chiral critical
end point exists in the (T, μ)-phase diagram for physical
masses which is marked as a red point at the vertical line in
Fig. 3 and represents the intersection point with the chiral
critical surface [22]. In this scenario the found tricritical
point m�

K at μ ¼ 0 is expected to be analytically connected
by a tricritical line to the tricritical point at some finite μ in
the two-flavor chiral limit by increasing mK [99]. This
behavior is also confirmed in Fig. 3: For increasing μ and
larger mK the chiral critical line has a positive slope and
saturates for mK ≳ 500 MeV at μc ¼ 239 MeV and is
continuously connected to the critical end point in the
two-flavor chiral limit. For chemical potential below the

chiral critical line the chiral transition is always of second
order for mπ ¼ 0 and first order above.
Without the UAð1Þ-symmetry breaking [Fig. 3(b)] no

first-order phase transition for μ ¼ 0 is found at all. This is
in disagreement with [8] as well as standard MFA results
[53]. A second-order transition is found in the light chiral
limit independent of mK when the quark vacuum fluctua-
tions are included and a first-order one if not. Hence,
fermionic vacuum fluctuations induce a second-order
transition in the (light) chiral limit. A first-order region
is only seen at larger chemical potentials. In the chiral limit
at μc ¼ 232 MeV which rises to μc ¼ 256 MeV for a kaon
mass around mK ¼ 243 MeV and then slowly declines
again. At the physical point, we find a critical end point
at μc ∼ 298 MeV.
Note that in the standard MFA analysis [53] an extended

first-order region along the mK axis is seen independent of
the UAð1Þ-symmetry breaking. However, in order to obtain
a spontaneous symmetry breaking in the chiral limit a large
sigma-meson mass was chosen. We have also verified that
with vacuum fluctuations and a comparatively large sigma-
meson mass similar results as in Fig. 3 are obtained. This
confirms that the differences we found can indeed be
attributed to fermionic vacuum fluctuations.

C. Columbia plot with the FRG

In Fig. 4 the Columbia plot for μ ¼ 0 with vacuum and
thermal quark and meson fluctuations within the FRG
framework is presented. On the mK axis a second-order
chiral phase transition line is found that terminates at the
tricritical point m�

K ≈ 23 MeV, which is significantly
smaller than the physical mass and the EMFA result.
For smaller kaon masses surrounding the chiral limit a

FIG. 3. Chiral phase transition without meson fluctuations (EMFA) in the ðmπ; mKÞ- and ðμ; mKÞ-plane [(a) with UAð1Þ-symmetry
breaking, cA ≠ 0, (b) without, cA ¼ 0]. First-order and crossover regions are separated by a second-order chiral critical line (solid red
line). The vertical line indicates the physical mass point with a critical point (red point), crossover (black dashed line), and first-order
transition (green solid line). In the dashed area, close to the mπ axis, js is negative. The orange dashed line corresponds to the strange
chiral limit where js ¼ 0.
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small first-order region is formed that is limited by a
second-order line in agreement with the predictions of [8].
The physical mass point is far outside the plot range and
lies deep within the crossover region. In comparison to the
EMFA findings, the first-order region around the chiral
limit shrinks drastically upon the additional inclusion of
mesonic fluctuations.
It is important to stop the RG flow as deep in the IR as

possible towards the chiral limit. The reason is that the
lowest IR mass scale in the system determines when the RG
flows freeze out and the mesons in the pseudoscalar octet
become very light close to the chiral limit. Integrating out

fluctuations at very small scales, k≲mπ=2, is numerically
expensive due to the convexity of the effective potential
where the flow in the flat potential region approaches a
singularity [82,100]. We used kIR ¼ 70 MeV throughout
this work. In particular, the location of the chiral
critical line close to the tricritical point is sensitive to
IR-cutoff effects. The gray shaded area in Fig. 4 gives a
rough estimate for the sensitivity of the critical line on kIR.
The upper boundary of this area was extracted at
kIR ¼ 100 MeV, while the lower boundary (red line)
denotes the critical line at kIR ¼ 70 MeV. Between k ¼
100 MeV and k ¼ 70 MeV the tricritical point moves
towards lower kaon mass by ΔmK ∼ 6 MeV, while the
location of the critical line is already frozen for k≲
100 MeV and mπ ≳ 10 MeV. We therefore expect only
very minor changes for even smaller kIR so that our main
finding, the surprisingly small first-order region around the
chiral limit, will not be altered. Scaling properties at the
critical lines/points and a precise determination of m�

K are
not in the scope of the present work.
The Columbia plots obtained with the FRG for vanishing

as well as finite μ with and without the axial anomaly are
shown in Fig. 5. With the axial anomaly [Fig. 5(a)] the first-
order region at μ ¼ 0 around the chiral limit is significantly
smaller than the corresponding region in EMFA. To be
more precise: Towards the SUð3Þ-symmetric chiral limit,
i.e., where the light- and strange quark masses coincide and
consequently mπ ¼ mK, the boundary of the first-order
region at μ ¼ 0 is located at a critical pion mass mc

π ∼
17 MeV compared to mc

π ∼ 86 MeV in the EMFA and
mc

π ∼ 150 MeV in the standard MFA. Thus, the conclusion
is that vacuum quark as well as meson fluctuations
significantly reduce the size of the first-order region in
the Columbia plot around the chiral limit at μ ¼ 0.

FIG. 4. Chiral phase structure in the (mπ ,mK)-plane for μ ¼ 0
including the axial anomaly obtained with the FRG. First-order
and crossover regions are separated by a chiral critical line (solid
red line). The red dot denotes a tricritical point at (m�

π ; m�
K)

∼ð0; 23Þ MeV. The dashed region is excluded since it corre-
sponds to js < 0. The gray region around the tricritical point
gives an estimate of the IR flow sensitivity of the critical line (see
text for details).

(a) (b)

FIG. 5. Chiral phase structure in the (mπ ,mK)- and (μ; mK)-plane with the FRG (similar to Fig. 3). (a) WithUAð1Þ-symmetry breaking
and for mσ ¼ 530 MeV a small first-order region is obtained around the chiral limit corner. (b) Without the UAð1Þ breaking and for
mσ ¼ 500 MeV the first-order region is extended along the mK axis. The vertical line indicates the physical mass point with a critical
point (red point), crossover (black dashed line), and first-order transition (green solid line).
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The second-order chiral critical line extends from the
tricritical point at m�

K ≈ 23 MeV along the mK axis to the
two-flavor chiral limit. For μ > 0 the critical line steeply
rises to μ ≈ 200 MeV around mK ≈ 50 MeV and then
slowly grows to μ ≈ 295 MeV at physical kaon masses.
Similar to the EMFA case the chiral critical surface has a
positive slope such that the size of the first-order region
around the chiral limit increases with increasing μ. Also
shown in Fig. 5(a) is the extrapolation to the two-flavor
chiral limit. An explicit FRG calculation with a chiral
[SUð2Þ ⊗ SUð2Þ]-symmetric quark-meson truncation with
the same sigma-meson mass and fπ ¼ 92.4 MeV yields a
critical μc ¼ 281 MeV, which is also shown in Fig. 5(a).
However, this comparison should be viewed with some
caution since in a chiral [SUð2Þ ⊗ SUð2Þ]-symmetric
setup the axial UAð1Þ symmetry is maximally broken
while in our Nf ¼ 2þ 1 setup the UAð1Þ-symmetry break-
ing, albeit large, is still finite.
Below the chiral critical line the transition for mπ ¼ 0 is

always of second-order as in the EMFA case but the area is
clearly larger in the FRG computation, which can be
attributed to the mesonic fluctuations. In both calculations
the tricritical point and the two-flavor critical point are
continuously connected by the chiral critical line.

Our result without explicit UAð1Þ-symmetry breaking is
shown in Fig. 5(b). The transition is always first order in the
light chiral limit at μ ¼ 0, independent of mK . This is in
particular true for the chiral limits in the three- and two-
flavor cases, in agreement with [8]. Hence, while we
concluded in the last section that fermionic vacuum
fluctuations induce a second-order transition in the light
chiral limit in absence of the axial anomaly, we observe
here that additional meson fluctuations induce a first-order
transition again. In the light chiral limit the transition is
always of first order, also at finite μ. We find a chiral critical
line at vanishing density atmπ ∼ 20 MeV for allmK except
very small ones, where we see a slight bending towards
larger mπ.
In Fig. 6 the mK-dependency of the CEP in the (T, μ)-

plane is shown for cA ≠ 0 in the light chiral limit. Dashed
green open symbols correspond to EMFA and solid purple
symbols are the FRG results. Starting from the tricritical
point at μ ¼ 0 which has the highest critical temperature,
the CEP moves towards larger μ and smaller T with
increasing kaon mass. The mK-dependency of the CEP
is similar to the movement of the CEP when the sigma-
meson mass is increased as seen in [53].
We summarize our results in the chiral limits and

compare with the available literature in Tables III and IV.
The obtained order of the chiral transition in different
chiral limits with and without the axial anomaly is
confronted to other works in Table III. The important
influence of quantum fluctuations and the axial anomaly
is evident.
In Table IV the critical pion massmc

π at μ ¼ 0 and cA ≠ 0
for three degenerate quark flavors is compared to available
lattice results. Even recent lattice results show enormous
discrepancies depending on the implementation of fer-
mions. The general trend is that the closer one approaches
the continuum limit, by decreasing the lattice spacing or by
improving the action, the lightermc

π becomes. It was argued
in [101] that converged lattice results for the critical pion
mass are expected to be very small. Our continuum results
are certainly in favor of a very small critical mc

π .

FIG. 6. Kaon mass dependency of the CEP in the (T, μ)-plane
in the light chiral limit with the axial anomaly (dashed green open
symbols, EMFA; solid purple symbols, FRG).

TABLE III. Chiral phase transition order in different chiral limits with and without the axial anomaly from various methods
(masses in MeV units). No predictions are labeled as X. The transition is always of second order above a given upper bound on mK
in the light chiral limit and similarly a crossover in the strange chiral limit when an upper bound on mπ is given. In the CJK LSM
[47] the Columbia plot was explored in the (ml, ms)-plane and the results with the lightest available sigma mass (600 MeV) has
been chosen.

Light chiral limit, Nf ¼ 3 Strange chiral limit, Nf ¼ 3 Chiral limit, Nf ¼ 3 Chiral limit, Nf ¼ 2

cA > 0 cA ¼ 0 cA > 0 cA ¼ 0 cA > 0 cA ¼ 0 cA > 0 cA ¼ 0

ϵ-exp. LSM [8] X X X X 1st 1st 2nd 1st

CJT LSM [47] 2nd ∀mK 1st ∀mK crossover 1st ∀ml ≲ 12 2nd 1st 2nd 1st

MFA QM [53] 1st ∀mK 1st ∀mK 1st ∀mπ ≲ 177 1st ∀mπ ≲ 50 1st 1st 1st 1st

EMFA QM 1st ∀mK ≲ 169 2nd ∀mK 1st ∀mπ ≲ 110 crossover 1st 2nd 2nd 2nd

FRG QM 1st ∀mK ≲ 23 1st ∀mK 1st ∀mπ ≲ 20 1st ∀mπ ≲ 25 1st 1st 2nd 1st
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V. SUMMARY

We studied the mass sensitivity of the chiral phase
transition, the left side in the Columbia plot, within a
low-energy effective description of QCD. To fully account
for nonperturbative corrections to the effective potential
caused by quark and meson fluctuations, we applied the
functional renormalization group. In addition, we also
performed an extended mean-field computation within
our framework in order to discern between effects from
different fluctuation sources. This allowed us to system-
atically assess the impact of vacuum and thermal fluctua-
tions of quarks and mesons.
In the presence of the axial UAð1Þ anomaly in the light

chiral limit, fermionic vacuum fluctuations induce a sec-
ond-order phase transition for larger kaon masses at
vanishing density. A rather extensive first-order region
around the three-flavor chiral limit emerges. It is separated
from a crossover region by a chiral critical line. Meson
fluctuations significantly reduce the size of the first-order
region. In both the EMFA and FRG computations the
tricritical point at μ ¼ 0 and the two-flavor CEP at finite μ
are continuously connected by a chiral critical line. The
critical surface bends away from the origin, i.e., the first-
order region increases for increasing μ. The physical point
always lies deep within the crossover region at vanishing
density. Consistent with the curvature of the chiral critical
surface a CEP is found at rather large μ.
For the UAð1Þ-symmetric system, we have shown that

fermionic vacuum fluctuations, on top of thermal fluctua-
tions, induce a second-order phase transition in the light
chiral limit. As a consequence, there is no first-order region
in the Columbia plot. Meson fluctuations then turn this
second-order transition in the light chiral limit into first
order and move the chiral critical line to finite mπ values.
There is no CEP for any μ for very small pion masses since

the transition is always first order. Thus, the effects of
quantum fluctuations on the order of the phase transition
drastically depend on the fate of the axial anomaly.
We have also demonstrated the crucial importance of a

proper definition of the initial action of the employed low-
energy effective model. Simply varying the current quark
masses at the initial scale of the effective theory results in
the loss of spontaneous chiral symmetry breaking in the
chiral limit. This contradicts our current knowledge about
gauge theories with light fermion flavors. We argued that
the variation of the explicit chiral symmetry breaking
parameters leads to sizable modifications of the initial
correlation length and therefore concluded that the loss of
spontaneous symmetry breaking can indeed be attributed to
an improper choice for the initial action. We proposed the
fixed-fπ scheme for fixing the initial action for arbitrary
values of the current quark masses. Its motivation is drawn
from χPT results on the quark mass and flavor dependence
of the decay constants. It implies that the initial action has
to be modified when the explicit chiral symmetry breaking
parameters are varied.
Our results outline the crucial role that fluctuations play

for the order of the chiral phase transition. We were able to
identify how different sources of quantum fluctuations
affect the phase transition. A major drawback of the present
analysis is the absence of gluon fluctuations. This can
conveniently be taken into account with the FRG by using
dynamical hadronization along the lines of, e.g., [56]. The
advantage of this approach is that the RG flow can be
started in the perturbative regime and the low-energy
physics is uniquely fixed by the parameters of microscopic
QCD. In addition to the access to the influence of gauge
degrees of freedom on the phase transition, it also cures the
problem of a heuristic determination of the initial effective
action. Another drawback is the implementation of the
axial anomaly via a constant coupling to the ’t Hooft
determinant. In a more realistic scenario, the anomaly
coupling cA depends on the medium parameters such as T
and μ as well as on the RG scale k.
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APPENDIX: NUMERICAL SETUP

The flow equation (11) is a highly nonlinear partial
differential equation. We reduce this equation to an

TABLE IV. Critical pion mass mc
π for three degenerate quark

flavors at μ ¼ 0 of continuum QM model studies in comparison
to various lattice QCD results (adapted from [101]). The lattice
results are labeled with the corresponding fermion implementa-
tions and the number of time slices Nt.

Method mc
π (MeV) Year

Standard staggered, Nt ¼ 4 [20] ∼290 2001
p4 staggered, Nt ¼ 4 [21] ∼67 2004
Standard staggered, Nt ¼ 6 [22] ∼150 2007
Stout staggered, Nt ¼ 6 [23] Could be zero 2014
Wilson clover, Nt ¼ 6, 8 [24] ∼300 2014
HISQ staggered, Nt ¼ 6 [25] ≲50 2017
Wilson clover, Nt ¼ 8, 10 [26] ≲170 2017
MFA QM [53] ∼150 2008
EMFA QM ∼86 2017
FRG QM ∼17 2017
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ordinary differential equation by discretizing the effective
potential on a two-dimensional grid in the variables

x ¼ σ2l ; y ¼ 2σ2s − σ2l : ðA1Þ

The first and second derivatives of the potential with respect
to the fields, which are needed for the meson masses, are
found by interpolating the grid points with cubic splines
including the appropriate derivatives. The resulting coupled
ordinary differential equation for the potential at each grid
point can be solved with any time stepping algorithm. After
the evolution towards the infrared to some kIR we recover the
full effective potential with spline interpolation and evaluate
the minimum of the IR potential, which yields the con-
densates σl and σs as well as the meson masses.
Alternatively, one can solve the flow equation by a

Taylor expansion of the effective potential in powers of the
fields around some expansion point. For each coupling a

coupled differential equation can be derived representing
the corresponding beta function. In principle, it is to some
extent also possible to capture a first-order transition with a
local Taylor expansion on a fixed background field con-
figuration, but the grid method is more suitable to compute
the global effective potential structure [61,82,102]. This is
of more importance in particular close to the chiral limit
where the effective potential becomes flat due to convexity.
The grid setup was tuned such that results converge for

grid sizes of the order of Nx × Ny ¼ 40 × 25. Since the
symmetry breaking parameters cl and cs are scale inde-
pendent and furthermore do not enter in the meson masses,
the symmetry breaking terms −clσl − csσs can be added to
the evolved infrared potential in the chiral limit. Note that a
similar treatment for the UAð1Þ-symmetry breaking term is
not possible since the ’t Hooft determinant is cubic in the
meson fields and therefore enters in the meson masses.
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