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We have performed a calculation of the DD̄, DD̄�, D�D̄, D�D̄� components in the wave function of the
ψð3770Þ. For this we make use of the 3P0 model to find the coupling of ψð3770Þ to these components, that
with an elaborate angular momentum algebra can be obtained with only one parameter. Then we use data
for the eþe− → DD̄ reaction, from where we determine a form factor needed in the theoretical framework,
as well as other parameters needed to evaluate the meson-meson self-energy of the ψð3770Þ. Once this is
done we determine the Z probability to still have a vector core and the probability to have the different
meson components. We find Z about 80%–85%, and the individual meson-meson components are rather
small, providing new empirical information to support the largely qq̄ component of vector mesons, and the
ψð3770Þ in particular. A discussion is done of the meaning of the terms obtained for the case of the open
channels where the concept of probability cannot be strictly used.
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I. INTRODUCTION

The nature of hadronic resonances is a field of continu-
ous debate [1–4]. The simple picture of mesons as qq̄
objects and baryons as qqq objects gave an impressive
boost to hadron physics and large amount of mesons and
baryons were described with this picture [5]. Yet, the
advent of a new wave of experiments in the charm and
bottom sectors has brought new information that clearly
challenges this early picture in many cases [2–4]. Even in
the light quark sector there are mesonic resonances that
clearly cannot be represented as qq̄ states, as the low lying
scalar mesons [f0ð500Þ; f0ð980Þ; a0ð980Þ; � � �] [6–9]. On
the other hand, the elaborate analysis of meson-meson data
by means of QCD and large Nc argument concluded that
low lying vector mesons are largely qq̄ objects [10].

It is unclear whether in the charm or bottom sector one
can come to a similar conclusion. In fact, in Ref. [11] as
study was made within the quark model of the meson-
meson components of the charmonium vector states, and it
was concluded that even the ground state J=ψ had only as
survival probability as a vector of about 0.69 when the
meson-meson components to which it couples were con-
sidered. This makes us think that higher excited vector
charmonium states could actually have even smaller qq̄
components.
In the present work we retake this issue for the ψð3770Þ

vector state using data from the eþe− → DD̄ reactions. We
make an elaborate study of the DD̄, DD̄�, D�D̄, D�D̄�

components of this resonance using the 3P0 model for
hadronization of qq̄ into meson-meson components which
requires only one parameter. By means of this and the data
of the eþe− → DþD−; D0D̄0 reactions we can determine
the parameters of the theory that allows us to evaluate the
meson-meson self-energy of the ψð3770Þ. The data of the
eþe− → DD̄ reaction are essential for the reliable calcu-
lations of the self-energy, since the unknown couplings and
a form factor entering the calculation are extracted from the
data. In fact the form factor is relevant to the evaluation of
the meson-meson probabilities and we show that it is tied
to the fast fall down of the eþe− → DD̄ cross section above
the ψð3770Þ peak.
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The asymmetry of the ψð3770Þ peak observed in the
eþe− → DD̄ reactions [12–14] has been the subject of
intense discussion (see Ref. [15] for a recent review). In
Ref. [15] a work similar to the one we do here, but using
only the DD̄ components, which are the most relevant, is
done, and the shape of the ψð3770Þ peak is tied to a form
factor that is introduced in an empirical way. We also
implement this form factor in the same form and two
different forms to estimate uncertainties. What we find is
that the ψð3770Þ is largely a qq̄ state and the meson-meson
components are small. The Z probability of having a qq̄
vector core for the ψð3770Þ is about 80%–85% and the
individual meson-meson components are small.
This paper is organized as follows. In Sec. II, we esta-

blish the formalism of calculating the cross section for
eþe−→DD̄ through the dressed propagator of ψð3770Þ,
and the meson-meson probabilities in the ψð3770Þ wave
function. In Sec. III, we present the results on the line shape
of ψð3770Þ fitting to the experimental data, and then
calculate the Z probabilities using the parameters extracted
from the fitting. A summary is presented in Sec. IV. The
angular momentum algebra employed in the calculations is
done explicitly in the Appendix.

II. FORMALISM

Our starting point is the hadronization in the process
ψ → Dð�ÞD̄ð�Þ shown in Fig. 1, where we introduce a q̄q
pair with the quantum numbers of the vacuum, and insert
it between the quark constituents of ψð3770Þ, cc̄. The
insertion of q̄q is implemented in a 3P0 state [16,17], which
indicates that the inserted q̄q has positive parity and zero
angular momentum, and since q̄ has negative parity we

need an orbital angular momentum L ¼ 1 for q̄q to fix the
parity, which makes q̄q couple to spin S ¼ 1, then S ¼ 1
and L ¼ 1 couple to total angular momentum J ¼ 0. The
ψð3770Þ according to Ref. [5] corresponds to a D-wave cc̄
state with no radial excitation, a 13D1 state with JPC ¼ 1−−.
The hadronization in Fig. 1 proceeds as follows:

ψ → cc̄ → cðūuþ d̄dþ s̄sþ c̄cÞc̄ → F; ð1Þ

with F

F ¼
X4
i¼1

cq̄iqic̄ ¼
X4
i¼1

M4;iMi;4 ¼ ðM2Þ4;4; ð2Þ

where M corresponds to the following matrix

M ¼ ðqq̄Þ ¼

0
BBB@

uū ud̄ us̄ uc̄

dū dd̄ ds̄ dc̄

sū sd̄ ss̄ sc̄

cū cd̄ cs̄ cc̄

1
CCCA: ð3Þ

Alternatively, we can write qq̄ in Eq. (3) in terms of their
meson components by means of the ϕ matrix for pseudo-
scalar mesons with the mixing between η and η0 taken into
account [18],

ϕ ¼

0
BBBBBB@

1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 πþ Kþ D̄0

π− − 1ffiffi
2

p π0 þ 1ffiffi
3

p ηþ 1ffiffi
6

p η0 K0 D−

K− K̄0 − 1ffiffi
3

p ηþ
ffiffi
2
3

q
η0 D−

s

D0 Dþ Dþ
s ηc

1
CCCCCCA
: ð4Þ

Similarly, the vector matrix corresponding to qq̄, which is
also needed in our calculations, is given by

V ¼

0
BBBBB@

1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω ρþ K�þ D̄�0

ρ− − 1ffiffi
2

p ρ0 þ 1ffiffi
2

p ω K�0 D̄�−

K�− K̄�0 ϕ D�−
s

D�0 D�þ D�þ
s J=ψ

1
CCCCCA
: ð5Þ

As shown in Eq. (2), where the matrixM could either be
the pseudoscalar matrix (which is labeled as P in the
following) or the vector matrix (labeled as V), we can have

four different types of hadronization of the ψð3770Þ leading
to PP, PV, VP, and VV. For example, when both M in
Eq. (2) are pseudoscalar matrices we have

ðM2Þ4;4 → ðϕϕÞ4;4 ¼ D0D̄0 þDþD− þDþ
s D−

s ; ð6Þ

where we have neglected η2c which is too heavy to be
operative in the meson-meson loop that we shall consider
below. It can be noticed that, since the ψð3770Þ has isospin
zero, the final hadronized combination ofD0D̄0þDþD−þ
Dþ

s D−
s has isospin zero. Indeed, recalling the isospin

doublets

FIG. 1. Hadronization process for ψð3770Þ → Dð�ÞD̄ð�Þ.
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�
Dþ

−D0

�
;

�
D̄0

D−

�
; Dþ

s ; D−
s ; ð7Þ

Eq. (6) can be rewritten in a isospin-zero combination,
which is

ðPPÞ4;4jI ¼ 0i ¼
ffiffiffi
2

p
jDD̄; I ¼ 0i þ jDþ

s D−
s i: ð8Þ

Similarly, we can write the combinations coming from VP,
PV, and VV

ðPVÞ4;4 ¼ D0D̄�0 þDþD�− þDþ
s D�−

s ; ð9Þ

ðVPÞ4;4 ¼ D�0D̄0 þD�þD− þD�þ
s D−

s ; ð10Þ

ðVVÞ4;4 ¼ D�0D̄�0 þD�þD�− þD�þ
s D�−

s : ð11Þ

Note that the combination ðPVÞ4;4 þ ðVPÞ4;4 that we get
has the desired negative C-parity as it corresponds to the
ψð3770Þ (CD� ¼ −D̄� in our formalism).
In order to interpret the line shape of the ψð3770Þ we

follow the steps of Ref. [15]. We consider the propagator of
the vector meson R≡ ψð3770Þ

GμνðpÞ ¼
�
−gμν þ

pμpν

M2
R

�
GðpÞ; ð12Þ

with GðpÞ ¼ 1
p2−M2

Rþiε.

The fact that ψð3770Þ couples to PP, PV, VP, VV
indicates that ψð3770Þ will get a self-energy ΠðpÞ that we
depict diagrammatically in Fig. 2. One can keep the
covariant form of Π, but as shown in Ref. [15] only
the transverse part of the propagator is relevant for the
discussion here. We argue in a different way, with the same
conclusion. In the loop one has Π ∼

R
d4qGðqÞGðp − qÞ

and the relevant part of it that enters the shape is ImΠ,
where the two intermediate mesons are placed on shell. The
evaluation of the cross section for eþe− → DþD− will
place the D, D̄ on shell and the D momenta are about
250 MeV. With this small momentum one can neglect the
zero component of the ϵμ polarization vectors. Indeed, as
shown in the Appendix of Ref. [19], the error induced
by neglecting the zero component in this case is 0.7%.
Hence we need only the spatial component, ϵi, and deal
with GijðpÞ ¼ δijGðpÞði; j ¼ 1; 2; 3Þ. When we dress the
propagator with the self-energy of the diagrams in Fig. 2
we obtain

GðpÞ ¼ 1

p2 −M2
R − ΠðpÞ ; ð13Þ

and we must evaluate ΠðpÞ. Note that we write MR rather
thanMψ becauseMR is now the bare mass of the resonance.
The novelty in the present work with respect to Ref. [15] is
that we include the contribution of PV, VP, VV mesons in
the self-energy. They only contribute indirectly to the line
shape of the ψð3770Þ because ImΠ is zero in all these cases.
However,

ImGðpÞ ¼ ImΠðpÞ
ðp2 −M2

R − ReΠðpÞÞ2 þ ðImΠðpÞÞ2 ; ð14Þ

and then ImΠ in the numerator comes only from DD̄, but
ReΠðpÞ in the denominator comes from all the channels.
Yet, the most novel thing here is that we will evaluate the
probability that the ψð3770Þ contains PV, VP, and VV
components in its wave function.
The evaluation of Π requires us to relate the strength of

the PP, PV, VP, and VV couplings to the ψð3770Þ. This
we can do with the help of the 3P0 model and the details are
given in the Appendix. While the evaluation is involved,
requiring elaborate sums of many Clebsch-Gordan (CG)
coefficients, the results are very simple and we write the
ψð3770Þ → PP;PV; VP; VV couplings below

Vψ ;ðMMÞi ¼ gψ ;ðMMÞiϵqFðqÞ; ð15Þ

with

gψ ;ðMMÞi ¼ ACiði ¼ 1; 2; 3Þ; ð16Þ

and FðqÞ a form factor coming from the integrals of the
quark radial wave functions discussed in the Appendix,
where A in Eq. (16) is an unknown coefficient to be fitted to
the data, and Ci are the coefficients listed in Table I.
The former coefficients are for ψð3770Þ assumed a 13D1

state. The terms of the ΠðpÞ self-energy are evaluated as
follows, see Fig. 3. For DþD−, for example, we have

−iΠðpÞ ¼
Z

d4q
ð2πÞ4 ð−iÞV1ð−iÞV2

i
q2 −m2

Dþ þ iε

×
i

ðp − qÞ2 −m2
D− þ iε

FðqÞ2; ð17Þ

which gives us

ΠðpÞ ¼ ig2ψ ;DþD−

Z
d4q
ð2πÞ4 q

2
1

q2 −m2
Dþ þ iε

×
1

ðp − qÞ2 −m2
D− þ iε

FðqÞ2: ð18Þ

The q0 integration can be done analytically and then we get
in the rest frame of the ψð3770Þ ðp0 ¼ ffiffiffi

s
p Þ

FIG. 2. Contribution to the ψ self-energy for the vector ψ
propagator dressed with a meson-meson loop.
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ΠðpÞ ¼ g2ψ ;DþD−G̃ðp0Þ; ð19Þ

where G̃ðp0Þ has the form

G̃ðp0Þ ¼
Z

d3q
ð2πÞ3

1

2ω1ðqÞ
1

2ω2ðqÞ
q2

2ω1ðqÞ þ 2ω2ðqÞ
ðp0Þ2 − ðω1ðqÞ þ ω2ðqÞÞ2 þ iε

FðqÞ2

¼
Z

dq
ð2πÞ2

ω1ðqÞ þ ω2ðqÞ
ω1ðqÞω2ðqÞ

q4

ðp0Þ2 − ðω1ðqÞ þ ω2ðqÞÞ2 þ iε
FðqÞ2; ð20Þ

with ω1ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

Dþ

q
, ω2ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

D−

p
.

Let us note in passing that G̃ðp0Þ has a structure similar to the Gðp0Þ function used in the study of meson-meson
interaction [6] except for the extra factor q2 that makes G̃ðp0Þ more divergent in the absence of the form factor. However,
this form factor makes it convergent and we shall come back to it.
With the former expression for G̃ðpÞ we can already write the ψð3770Þ self-energy as:

Πðp0Þ ¼ jAj2
�
1

12
G̃ðp0ÞjD0D̄0 þ 1

12
G̃ðp0ÞjDþD− þ 1

24
G̃ðp0ÞjD0D̄�0 þ 1

24
G̃ðp0ÞjD�0D̄0

þ 1

24
G̃ðp0ÞjDþD�− þ 1

24
G̃ðp0ÞjD�þD̄− þ 231

360
G̃ðp0ÞjD�0D̄�0 þ 231

360
G̃ðp0ÞjD�þD�−

þ 1

12
G̃ðp0ÞjDþ

s D−
s
þ 1

24
G̃ðp0ÞjDþ

s D�−
s
þ 1

24
G̃ðp0ÞjD�þ

s D−
s
þ 231

360
G̃ðp0ÞjD�þ

s D�−
s

�
: ð21Þ

Rather than evaluating the form factor FðqÞ with quark
wave function we take an empirical attitude as in Ref. [15],
and let the data determine this form factor from the shape of
the eþe− → DþD− cross section. Once again we follow
Ref. [15] and write

σ ¼ −g2ψeþe−ImDðMinvÞ; ð22Þ

where Minv is the eþe− invariant mass,
ffiffiffi
s

p
, and gψeþe− , as

in Ref. [15], will also be determined from the strength of
the cross section.
It is also useful to separate σ into the contribution of the

different channels ðDþD−; D0D̄0Þ. Then we easily write:

σi ¼ −g2ψeþe−ImDiðMinvÞ; ð23Þ

where

ImDi ¼
ImΠiðpÞ

ðp2 −M2
R − ReΠðpÞÞ2 þ ðImΠðpÞÞ2 ; ð24Þ

where ΠiðpÞ is the contribution to ImΠðp2Þ from the
DþD− or D0D̄0 channel [see Eq. (21)]. Note that in the
denominator we have ΠðpÞ, meaning that all channels are
included here.

A. Meson-meson probabilities
in the ψð3770Þ wave function

Let us write for convenience, as in Ref. [15],

Π0ðpÞ ¼ ΠðpÞ − ReðΠðMψÞÞ; ð25Þ
which vanishes at

ffiffiffi
s

p ¼ Mψ , and with this choice we
can write

GðpÞ ¼ 1

p2 −M2
ψ − Π0ðpÞ : ð26Þ

TABLE I. Coefficients Ci for different components in the loop.

PP jC1j2 ¼ 1
12

DþD−, D0D̄0, Dþ
s D−

s

PV; VP jC2j2 ¼ 1
6
× 1

4
D0D̄�0, D�0D̄0, DþD̄�−, D�þD−, Dþ

s D−
s , Dþ

s D�−
s , D�þ

s D�−
s

VV jC3j2 ¼ 1
12
× 231

30
D�0D̄�0, D�þD�−, D�þ

s D�−
s

FIG. 3. The ψ propagator dressed with a DþD− loop as an
example.

Q. X. YU, W. H. LIANG, M. BAYAR, and E. OSET PHYS. REV. D 99, 076002 (2019)

076002-4



We can make an expansion around Mψ and have

GðpÞ¼ 1

p2−M2
ψ −ReðΠ0ðpÞÞ− iImΠðpÞ

¼ 1

p2−M2
ψ − ½ReðΠ0ðpÞÞ−ReðΠ0ðMψÞÞ�− iImΠðpÞ ;

ð27Þ
since ReΠ0ðMψ Þ ¼ 0 and hence

GðpÞ ≃ 1

p2 −M2
ψ − ∂ReΠ

∂p2 jM2
ψ
ðp2 −M2

ψÞ − iImΠðpÞ

¼ 1

ðp2 −M2
ψÞð1 − ∂ReΠ

∂p2 jM2
ψ
Þ − iImΠðpÞ

¼ Z
p2 −M2

ψ − iZImðpÞ ; ð28Þ

with

Z ¼ 1

1 − ∂ReΠðp2Þ
∂p2 jp2¼M2

ψ

≃ 1þ ∂ReΠ
∂p2

jp2¼M2
ψ
: ð29Þ

This is the typical wave function renormalization [20]
and Z is interpreted as the probability to still have the
original vector when it is dressed by the meson-meson
components. Conversely 1 − Z will be the meson-meson
probability of the dressed vector. If ∂ReΠ

∂p2 is reasonably

smaller than 1, one can make an expansion as in Eq. (29),
and furthermore we have

1 − Z ¼ −
∂ReΠ
∂p2

����
p2¼M2

ψ

; ð30Þ

such that − ∂ReΠ
∂p2 jp2¼M2

ψ
can be interpreted as the meson-

meson probability and in particular one can get the
contribution of each channel:

PðMMÞi ≃ −
∂ReΠiðp2Þ

∂p2

����
p2¼M2

ψ

; ð31Þ

where Πi is the contribution of ith channel to Π.
In the case that one has open channels the interpreta-

tion of PðMMÞi as a probability is not correct [21] and in
Sec. III B we shall see the meaning of Eq. (31).

III. RESULTS

In Ref. [15] a form factor was used

fΛðξÞ ¼ e−ξ=ð4Λ2Þeðm
2

D0
þm2

DþÞ=ð2Λ2Þ; ð32Þ
with ξ ¼ 4ðq2 þm2Þ, that is the equivalent to our
FðqÞ2, and Λ was fitted to data. We get similar results

using this form factor. In addition, we use two other form
factors:

FðqÞ2 ¼ 1þ ðRqonÞ2
1þ ðRqÞ2 ; ð33Þ

and

FðqÞ2 ¼ 1þ ðRqonÞ4
1þ ðRqÞ4 ; ð34Þ

with qon the following form for DD̄

qon ¼
λ1=2ðM2

ψ ; m2
D;m

2
D̄Þ

2Mψ
; ð35Þ

where λ is the usual Källén function, and the parameter R is
fitted to the data in both cases. We have thus four
parameters, as in Ref. [15], which in our case are Mψ ,
gψeþe− , A and R. Mψ is of course very close to the nominal
mass of the ψð3770Þ, gψeþe− determines the strength of the
cross section, A is related to the width of the resonance, and
R determines the fall down of the resonance shape above
the resonance peak. The parameters are fitted to the data of
the cross section for eþe− → DD̄ [12–14].
Given the fact that in the Appendix we found that the

form factor comes from an integral of the radial wave
function of the quarks, and these are the same, independent
of the different spin couplings, we assume this form factor
to be the same for the PV, VP, and VV cases.
In Fig. 4 we show the results for the eþe− → DþD−

cross section using the form factor of Eq. (34). The
parameters used can be seen in Table II. As we can see,
there is a good fit to the data, both above and below the
peak, reflecting the asymmetry of the distribution, which
does not have a Breit-Wigner form.

FIG. 4. Cross section of eþe− → DþD− fitted to the exper-
imental data (circle [12], triangle [13], star [14]) using the form
factor of Eq. (34).
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We should note that the description of the data is a result
of the parametrization, and in particular the fall down of the
distribution above the peak is related to the parameter R.
There is nothing fundamental in this interpretation of the
asymmetry. However, the data and particularly the fall
down above the threshold determine the range of the form
factor, and this is important to make the integral G̃ðpÞ

convergent, such that the probabilities that we obtain are a
consequence of the peculiar shape of the eþe− → DþD−

data. In this sense, the probabilities that we obtain are a
prediction based on the eþe− → DþD− data, while those in
Ref. [11] were based on a particular quark model.
It is also interesting to evaluate the eþe− → D0D̄0 cross

section and compare with the data; this is done in Fig. 5. We
can see that the agreement with the data is also very good,
Note that once the eþe− → DþD− is fitted, we have no
freedom for the eþe− → D0D̄0, so the latter one is a
prediction of the approach.
In Fig. 6 we show the result for the eþe− →

DþD− þD0D̄0. Obviously, since the individual cross
sections are well produced, so is the sum of the two.
Next we show the result of the calculations using the

form factor of Eq. (33). The parameters of the fit are shown
in Table III. The result for eþe− → DþD−, eþe− → D0D̄0,
and eþe− → DþD− þD0D̄0 are shown in Figs. 7–9. We
observe a good fit in the region above the peak, but not as
good as before below it, although still comparable with the
bulk of the data. Concerning our main goal, which is the
evaluation of the meson-meson probabilities, the fall down
of the cross section above the peak is acceptable. Actually,
it is interesting to note that the low part of the spectrum
could as well be filled by the contribution of the ψð2686Þ as
noted in Refs. [22,23]. This resonance is below the DD̄
threshold, but it has a very large width that allows it to
stretch above it.

FIG. 5. The comparison of our result with the experimental data
(circle [12], triangle [13], star [14]) for the cross section of
eþe− → D0D̄0 reaction, using the form factor of Eq. (34) and the
parameters in Table II.

FIG. 6. The comparison of our result with the experimental data
(circle [12], triangle [13], star [14]) for the cross section of
eþe− → DþD− þD0D̄0 reaction, using the form factor of
Eq. (34) and the parameters in Table II.

TABLE III. Fitting parameters for Fig. 7.

MR 3773 MeV
g2ψeþe− 1.55 × 10−6

R 0.0030 MeV−1

jAj2 2756

TABLE II. Fitting parameters for Fig. 4.

MR 3773 MeV
g2ψeþe− 1.40 × 10−6

R 0.0070 MeV−1

jAj2 1750

FIG. 7. Cross section of eþe− → DþD− fitted to the exper-
imental data (circle [12], triangle [13], star [14]) using the form
factor of Eq. (33).
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A. Evaluation of the vector and
meson-meson probabilities

In Table IV we show the probability of Eqs. (29) and (31)
using the form factor of Eq. (34). What we see is that the
probabilities of the DþD�− þ c:c or D0D�0 þ c:c are
practically zero. However, there is the unpleasant feature
that − ∂ΠDD̄∂p2 jp2¼M2

ψ
is complex, and − ∂ReΠDD̄∂p2 jp2¼M2

ψ
ðPðMMÞÞ

is negative. The complex value is unavoidable when one
has open channels, but that − ∂ReΠDD̄

∂p2 jp2¼M2
ψ
, which provides

the DD̄ probability as we have seen, is negative, is
unexpected and unacceptable (see, however, Sec. III B
for a more proper interpretation). Fortunately, the value
is very small, and could be admitted as an uncertainty
related to the approximation implicit in Eq. (28). As a
consequence of this negative number, the Z probability of

having the original vector in the ψð3770Þ wave function is
bigger than one, yet, by an amount of 9.3%, which tells us
the uncertainties that we have in this approach. It is
interesting to note that if we use the form factor of
Ref. [15] written in Eq. (32) we get similar results.
In view of this, we use a form factor more in agreement

with phenomenology, which is the one of Eq. (33). This
form factor induces a correction to the width

ΓðsÞ → Γ0

1þ ðRqonÞ2
1þ ðRq̄Þ2 ; ð36Þ

with

q̄ ¼ λ1=2ðs;m2
D;m

2
D̄Þ

2
ffiffiffi
s

p ; ð37Þ

where Γ0 is the width evaluated at
ffiffiffi
s

p ¼ Mψ . This factor is
the Blatt-Weisskopf barrier penetration factor [24], com-
monly used to write the width in usual Breit-Wigner
amplitudes. In view of this, we can give more credit to
the results that come from this factor. The results can be
seen in Table V.

FIG. 9. The comparison of our result with the experimental data
(circle [12], triangle [13], star [14]) for the cross section of
eþe− → DþD− þD0D̄0 reaction, using the form factor of
Eq. (33) and the parameters in Table III.

TABLE IV. Meson-meson probabilities in the ψð3770Þ wave
function with the form factor of Eq. (34).

Channels − ∂Π
∂p2 jp2¼M2

ψ
PðMMÞ Z

D0D̄0 −0.0555 − 0.0406i −0.0555 1.059
DþD− −0.0879 − 0.0444i −0.0879 1.096
D0D̄�0 þ c:c 0.0083 0.0083 0.992
DþD̄�− þ c:c 0.0074 0.0074 0.993
D�0D̄�0 0.0164 0.0164 0.984
D�þD�− 0.0156 0.0156 0.985
Dþ

s D−
s 0.0040 0.0040 0.996

Dþ
s D�−

s þ c:c 0.0014 0.0014 0.999
D�þ

s D�−
s 0.0054 0.0054 0.995

Total −0.0850 − 0.0846i −0.0850 1.093

TABLE V. Meson-meson probabilities in the ψð3770Þ wave
function with the form factor of Eq. (33) [Note that the sum of the
total PðMMÞ and Z is not exactly 1 because of the approximation
of Eq. (29)].

Channels − ∂Π
∂p2 jp2¼M2

ψ
PðMMÞ Z

D0D̄0 0.0019þ 0.1814i 0.0019 0.998
DþD− 0.0295þ 0.1862i 0.0295 0.971
D0D̄�0 þ c:c 0.0264þ 0.0003i 0.0264 0.974
DþD̄�− þ c:c 0.0244þ 0.0002i 0.0244 0.976
D�0D̄�0 0.0708þ 0.0004i 0.0708 0.934
D�þD�− 0.0681þ 0.0004i 0.0681 0.936
Dþ

s D−
s 0.0152þ 0.0001i 0.0152 0.985

Dþ
s D�−

s þ c:c 0.0065 0.0065 0.994
D�þ

s D�−
s 0.0268 0.0268 0.974

Total 0.2696þ 0.3690i 0.2696 0.787

FIG. 8. The comparison of our result with the experimental data
(circle [12], triangle [13], star [14]) for the cross section of
eþe− → D0D̄0 reaction, using the form factor of Eq. (33) and the
parameters in Table III.
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Now we can see that all the probabilities are positive and
the Z probability is smaller than one. Yet, the results that
one obtains indicate small meson-meson probabilities and a
total probability for Z to have still a vector component is
about 80%.
We can see that in Figs. 7, 8, evaluated with the form

factor of Eq. (33) the slope of the cross section above the
peak is smaller than in the corresponding Figs. 4 and 5,
evaluated with the form factor of Eq. (34). We stated
our preference for the form factor of Eq. (33), more in

agreement with phenomenology. In view of that we choose
a different set of parameters that make the slope above the
peak more similar in all cases, paying the price of not
having such good agreement at low energies. However, for
the meson-meson probabilities that we are concerned
about, the slope above the peak is what matters. The
parameters of such a set are shown in Table VI, and the
results are shown in Figs. 10–12 and Table VII. In this case
we find Z ∼ 0.854. This is a reasonable number, but in view
of the results in Table V with the former fit, we can settle
the value of Z within 0.80–0.85, which is a reasonable
range of uncertainty.
This result is very valuable and we consider it the most

important output of the work. There is a continuous debate
about the nature of the hadron resonances and it is long
since the ideal picture of mesons as pure qq̄ and baryons as
qqq has been abandoned. With the advent of hadrons in the
charm and bottom sectors, the evidence for more complex
structures is appalling [2,3]. Yet, in spite of this, an
elaborate study combining elements of QCD, large Nc
limits and phenomenology concludes that while low lying

TABLE VI. Fitting parameters for Fig. 10.

MR 3775 MeV
g2ψeþe− 1.25 × 10−6

R 0.0029 MeV−1

jAj2 1700

FIG. 10. Cross section of eþe− → DþD− fitted to the exper-
imental data (circle [12], triangle [13], star [14]) using the form
factor of Eq. (33).

FIG. 11. The comparison of our result with the experimental
data (circle [12], triangle [13], star [14]) for the cross section of
eþe− → D0D̄0 reaction, using the form factor of Eq. (33) and the
parameters in Table VI.

FIG. 12. The comparison of our result with the experimental
data (circle [12], triangle [13], star [14]) for the cross section of
eþe− → DþD− þD0D̄0 reaction, using the form factor of
Eq. (33) and the parameters in Table VI.

TABLE VII. Meson-meson probabilities in the ψð3770Þ wave
function with the form factor of Eq. (33).

Channels − ∂Π
∂p2 jp2¼M2

ψ
PðMMÞ Z

D0D̄0 0.0001þ 0.1150i 0.0019 0.998
DþD− 0.0168þ 0.1178i 0.0295 0.971
D0D̄�0 þ c:c 0.0172þ 0.0002i 0.0264 0.974
DþD̄�− þ c:c 0.0158þ 0.0001i 0.0244 0.976
D�0D̄�0 0.0458þ 0.0003i 0.0708 0.934
D�þD�− 0.0440þ 0.0002i 0.0681 0.936
Dþ

s D−
s 0.0098 0.0152 0.985

Dþ
s D�−

s þ c:c 0.0042 0.0065 0.994
D�þ

s D�−
s 0.0172 0.0268 0.974

Total 0.1709þ 0.2336i 0.1709 0.854

Q. X. YU, W. H. LIANG, M. BAYAR, and E. OSET PHYS. REV. D 99, 076002 (2019)

076002-8



scalar mesons, like the σ, f0ð980Þ, � � � are completely off
the qq̄ picture, the vector mesons are largely qq̄ states [10].
Our result comes in handy when some calculations could
make us lose confidence in this picture. Indeed, in
Ref. [11], where a calculation within a quark model was
done to assess the relevance of the meson-meson compo-
nents in the vector mesons, even the J=ψ was found to have
a Z probability of only 65%, implying that more massive ψ
vectors could have an even smaller Z probability. The result
of the present paper incorporating the features of the
ψð3770Þ shape in the eþe− → DD̄ reactions, demanded
the presence of a form factor that has a consequence the
small meson-meson probabilities and the large Z value.

B. Interpretation of ð− Þ∂Πiðp2Þ=∂p2
for open channels

Let us begin with a clear statement: the interpretation of
ð−Þ∂Πiðp2Þ=∂p2 as a probability when the ith channel
is an open channel does not hold, simply because the
wave function of the open channel is not normalizable.
Asymptotically it goes as eikr=r and

R
r2drjeikr=rj2 ¼ ∞.

Yet, there is a clear meaning to ð−Þ∂Πiðp2Þ=∂p2 which is
derived in Ref. [21] and we take the opportunity to discuss
it in the present context.
The first steps on the discussion of molecular proba-

bilities in certain states were given by Weinberg in his
celebrated work about the compositeness of the deuteron
[25], which has been reviewed and extended recently in
relation with the nature of many resonances as composite,
or dynamically generated, states [26–30] (see Ref. [31] for
a review on the subject). The problem with complex
ð−Þ∂Πi=∂p2 values to be interpreted as a probability has
always been present with no clear answer. Finite and real
values are obtained in a finite volume box and a discussion
of its meaning is given in Ref. [32] where a more complete
reference to works on the subject can be found.
We start with a simple derivation of the Weinberg

compositeness condition adapted to our case dealing with
relativistic mesons. Assume that we have a potential V in
momentum space which generates a bound state at energy
Eα. The scattering matrix has a pole at sα ¼ E2

α, hence

T ¼ V
1 − VG

¼ 1

V−1 − G
≃

g2

s − sα
; ð38Þ

with G the meson-meson loop function, with the last
equation valid close to the pole at sα. g2 by means of
L’Hôpital’s rule as

g2 ¼ lim
s→sα

s − sα
V−1 −G

¼ −
1
∂G
∂s
; ð39Þ

where we assume V to be energy independent (see
generalization for V energy dependent in [31]). Hence

−g2
∂G
∂s ¼ 1; ð40Þ

which is the expression for a composite state, stating
that −g2 ∂G

∂s is the probability to have this meson-meson
component in the bound state. The rule is generalized
to coupled channels [28,31] for dynamically generated
states as

X
i

ð−1Þg2i
∂Gi

∂s ¼ 1; ð41Þ

and each term represents the probability to have the
bound state in the corresponding channel. The derivation
of Ref. [28] is done for s-wave interaction, but this is
generalized to any partial wave in Ref. [33], and the G
function incorporates an extra q2l factor in the integrand, as
we have in Eq. (20) for l ¼ 1.
A further extension of Eq. (41) for the case of open

channels and resonant states is done in Refs. [21,27] and
Eq. (41) is proved to hold also in this case, but the
couplings and Gi have to be evaluated at the pole in the
second Riemann sheet. Since gi can be complex and so is
Gi for the open channels, the corresponding terms in
Eq. (41) are complex but the sum is 1 which means there
is an extra cancellation of the imaginary parts and then

X
i

ð−1ÞRe
�
g2i

∂Gi

∂s
�

¼ 1: ð42Þ

One might be now tempted to associate Reðg2i ∂G
∂sÞ to a

probability, but this cannot be done for open channels as we
showed at the beginning of the subsection. It is then
interesting to see the meaning of these terms. The answer
to this problem is subtle and is discussed in Ref. [21] (see
Section 5 of that work). The open channels can be taken
into account by means of a Hamiltonian H which is no
longer Hermitian and its eigenstates are not orthogonal.
One must introduce a biorthogonal basis of eigenstates of
H; jλni and of Hþ; jλ̄ni and one has

hλ̄njλmi ¼ δnm: ð43Þ
One also finds there that for the case at work H is not
Hermitian but is symmetric and then jλ̄ni ¼ jλ�ni. This has
as a consequence that in the derivations of the sum rule in
Refs. [28,33] one must substitute

hψ ijψ ii → hψ̄ ijψ ii ¼
Z

d3pðψ�
i ðpÞÞ�ψ iðpÞ

¼
Z

d3pψ2
i ðpÞ; ð44Þ

and one also finds that with an appropriate prescription for
the global phase of the wave function (which makes the
wave function real in the case of a bound state)

LINE SHAPE AND Dð�ÞD̄ð�Þ PROBABILITIES OF ψð3770Þ … PHYS. REV. D 99, 076002 (2019)

076002-9



hψ̄ ijψ ii ¼ −g2i
∂Gi

∂s : ð45Þ

Hence, the term Reðg2i ∂Gi∂s Þ in Eq. (42) has to be
interpreted as

Re
�
g2i

∂Gi

∂s
�
≃ Re

Z
d3pψ2

i ðpÞ: ð46Þ

Note that we get now the integral of ψ2
i ðpÞ rather than

jψ iðpÞj2 and even for open channels this magnitude is finite
since

ψ iðrÞ2 !r→∞ 1

r
e−ikRrekIr; ð47Þ

with kR, kI the real and imaginary parts of the complex
momentum at the pole and now ðe−ikRrÞ2 ¼ e−2ikRr is a
rapidly oscillating function that makes the contribution at
large r vanish (yet, the finiteness is better seen in momen-
tum space [21]).
Once the meaning of the terms of the sum rule are

clarified, it is clear that Eq. (46) provides a measure of the
strength of the wave function in the region of the interaction
before the mesons become free propagating particles. In the
evaluation of physical processes only the interaction region
would be relevant and hence Reðg2i ∂G

∂sÞ provides us with a
measure of the “weight” or “strength” of this component,
not a probability in the strict sense which would be infinite.
We have so far assumed that the states we obtain are fully

composite states from several coupled channels. In the real
world there can be some genuine component, or preexisting
component, like in the case we investigate, where the
genuine component would be a vector state and the meson-
meson components are those we evaluated. In this case the
sum rule has to be substituted by [21,27]

X
i

ð−1ÞRe
�
g2i

∂G
∂s

�
¼ 1 − Z; ð48Þ

where Z is the probability of the genuine component.
Another small point is that since we did not look for

poles of the states we evaluated G in the real axis instead of
GII in the second Riemann sheet where the sum rule holds.
For not so large width as we have here, GII ∼ G� and since
gi are real in our case Reðg2i GIIÞ ≃ Reðg2i GÞ and we do not
have to worry about this detail.
The former discussion has shown the meaning of the

Reðg2i ∂G
∂sÞ terms that we have calculated and this gives full

meaning to our calculations in the sense that the weight of
the vector component is very large and that of the meson-
meson component very small.

IV. SUMMARY AND DISCUSSION

We have performed an evaluation of the meson-meson
components in the ψð3770Þ wave function, considering
PP, PV, VP, and VV components. We found that the

determination of such probabilities was much tied to the
shape of the eþe− → DD̄ reaction, which we described in
terms of the ψð3770Þ self-energy due to the meson-meson
components. Indeed, the shape of the cross section for this
reaction determined the range of a form factor that was
determined in the evaluation of the meson-meson proba-
bilities of the ψð3770Þ wave function. Within uncertainties
we found that the Z probability of a vector component in
the ψð3770Þ is of the order of 80%–85% and the individual
meson-meson components are small. This finding is very
important, extracting from this phenomenological study the
same conclusion obtained from QCD and large Nc behav-
ior, plus meson-meson scattering data, that vector mesons
are largely qq̄ objects [10]. This is also in line with Z
evaluation for the ρ with a different method which gives
Z ∼ 0.75, even with such a large width for the decay to two
pions [33]. We also made a discussion that in the case of
open channels the concept of probability has to be
abandoned but the magnitudes evaluated still provide a
measure of the relevant weight of these components such
we can still conclude the dominant weight of the vector
component in the ψð3770Þ.
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APPENDIX: EVALUATION OF THE ψð3770Þ
COUPLING TO DD̄;DD̄�;D�D̄;D�D̄�

According to Ref. [5] the ψð3770Þ is a 13D1 state. This
means radial wave function in the ground state, spin 1, and
angular momentum of the two quarks L ¼ 2, coupling later
L ¼ 2 with S ¼ 1 to give J ¼ 1. We start with the cc̄ spin
wave function

jSM̃0i ¼ j1M̃0i ¼
X
m;m0

Cðs1; s2;S;m;m0; M̃0Þjs1;mijs2;m0i

¼
X
m;m0

C
�
1

2
;
1

2
;1;m;m0; M̃0

�����12 ;m
�����12 ;m0

�
;

ðA1Þ
where s1 and s2 correspond to the spin of c and c̄ in Fig. 1,
and m, m0 are their third components respectively, while S

Q. X. YU, W. H. LIANG, M. BAYAR, and E. OSET PHYS. REV. D 99, 076002 (2019)

076002-10



and M̃0 are the total spin and third component of cc̄. Then
after coupling the spin part to the orbital part of cc̄, we have

jJM̃i ¼ j1M̃i ¼
X
M0

3
;M̃0

CðL; S; J;M0
3; M̃

0; M̃ÞYL;M0
3
ðr̂ÞjS; M̃0i

¼
X
M0

3
;M̃0

Cð2; 1; 1;M0
3; M̃

0; M̃ÞY2;M0
3
ðr̂Þj1; M̃0i: ðA2Þ

We do the same to couple the spin and orbital angular
momentum of the qq̄ vacuum state 3P0 in Fig. 1, as done in
Refs. [34,35],

j1S3i¼
X
s

C
�
1

2
;
1

2
;1;s;S3− s

�����12 ;s
�����12 ;S3− s

�
; ðA3Þ

and we combine this state, j1S3i, with the L ¼ 1 state
Y1;M3

ðr̂Þ to give J ¼ 0,

j00i ¼
X
M3

Cð1; 1; 0;M3; S3ÞY1;M3
ðr̂Þj1; S3i; ðA4Þ

implyingM3 þ S3 ¼ 0, i.e.,M3 ¼ −S3, which allows us to
rewrite Eq. (A4) as follows

j00i ¼
X
S3

Cð1; 1; 0;−S3; S3ÞY1;−S3ðr̂Þj1; S3i

¼
X
S3

ð−1Þ1þS3
1ffiffiffi
3

p Y1;−S3ðq̂Þj1; S3i: ðA5Þ

In addition we have the spatial matrix element, where the
c, c̄ quark states are in their ground state. Then we have

MEðqÞ¼
Z

d3rφcðrÞφqðrÞφq̄ðrÞφc̄ðrÞeiq·rY1;−S3ðr̂ÞY2;M0
3
ðr̂Þ;

ðA6Þ

where q is the exchanged momentum between the two
mesons produced after the hadronization, and eiq·r can be
expanded as

eiq·r ¼ 4π
X
l

iljlðqrÞYlμðq̂ÞY�
lμðr̂Þ: ðA7Þ

The coupling rule for spherical harmonics permits an easy
way of combining three spherical harmonic functions as we
show in the following equation, where two of them come
from Eq. (A6) and the other one, Y�

l;μðr̂Þ, from Eq. (A7).
After integrating over the full solid angle, we arrive at [36]
Z

dΩY�
lμðr̂ÞY1;−S3ðr̂ÞY2;M0

3
ðr̂Þ

¼
�

15

4πð2lþ1Þ
�

1=2
Cð2;1; l;M0

3;−S3;μÞCð2;1; l;0;0;0Þ;

ðA8Þ

where for parity reasons 2þ 1þ l must be even, hence,
l ¼ 1, 3, but l ¼ 1 is required to have a P-wave coupling of
J=ψ to DD̄ at the end, such that we obtain (where we use

Cð2; 1; 1; 0; 0; 0Þ ¼ −
ffiffi
2
5

q
)

MEðqÞ¼−4πiY1;M0
3
−S3ðq̂Þ

ffiffiffiffiffiffi
2

4π

r
Cð2;1;1;M0

3;−S3;M0
3−S3Þ

×
Z

r2drφcðrÞφqðrÞφq̄ðrÞφc̄ðrÞj1ðqrÞ: ðA9Þ

Since j1ðqrÞ goes as qr for small values of qr, MEðqÞ
grows linearly q for small q, and for that reason we rewrite
MEðqÞ as

MEðqÞ¼−
4πi
3
qY1;M0

3
−S3ðq̂Þ

ffiffiffiffiffiffi
2

4π

r
Cð2;1;1;M0

3;−S3;M0
3−S3Þ

×
Z

r2dr
Y
i

φiðrÞ
3j1ðqrÞ

qr
r; ðA10Þ

where the factor 3j1ðqrÞqr goes to 1 as qr approaches 0 and is a
smooth function, such that the integral in Eq. (A10) is a
smooth function of q for small q, the typical form of the
form factors and the form that we will take for our empirical
form factors. We can write qY1;M0

3
−S3ðq̂Þ in Eq. (A10) asffiffiffiffi

3
4π

q
qM0

3
−S3 (in spherical basis), which accounts for the

vector coupling to two pseudoscalars.
At the same time, by coupling the vacuum state j00iwith

c, c̄ spins we can obtain the final angular momenta of the
two mesons produced, jJ1M2i and jJ2M2i, which is
accomplished by means of the Clebsch-Gordan coeffi-
cients,

jJ1M1i ¼
X
m

C
�
1

2
;
1

2
; J1;m; s;M1

����� 12 ; m
����� 12 ; s

�
;

ðA11Þ

jJ2M2i¼
X
m0

C
�
1

2
;
1

2
;J2;S3−s;m0;M2

�����12;S3−s

�����12 ;m0
�
;

ðA12Þ

where we obtain the constraints: mþs¼M1, S3−sþm0¼
M2, leading to m ¼ M1 − s, m0 ¼ M2 − S3 þ s. Further
constraints between S3 and M1, M2 can be derived with
the help of Eq. (A1), and S3 satisfies the relation, S3 ¼
M1 þM2 − M̃0.
Finally, we can write down the matrix element of the

transition from j1M̃0i to jJ1M1ijJ2M2i by combining
Eqs. (A1), (A2), (A3), (A5), (A11), and (A12),
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ME ¼ −
4πi
3

ffiffiffiffiffiffi
2

4π

r X
M̃0

X
s

X
S3

Cð2; 1; 1;M0
3;−S3;M0

3 − S3ÞCð2; 1; 1;M0
3; M̃

0; M̃ÞqY1;M0
3
−S3ðq̂Þ

× C
�
1

2
;
1

2
; 1;M1 − s;M2 − S3 þ s; M̃0

�
C
�
1

2
;
1

2
; 1; s; S3 − s; S3

�
ð−1Þ1þS3

1ffiffiffi
3

p

× C
�
1

2
;
1

2
; J1;M1 − s; s;M1

�
C
�
1

2
;
1

2
; J2; S3 − s;M2 − S3 þ s;M2

�
: ðA13Þ

Now we use S3 ¼ M1 þM2 − M̃0 and the above equation can be rewritten as,

ME ¼ −
4πi
3

ffiffiffiffiffiffi
2

4π

r X
s

X
M̃0

Cð2; 1; 1; M̃ − M̃0; M̃0 −M1 −M2; M̃ −M1 −M2Þ

× Cð2; 1; 1; M̃ − M̃0; M̃0; M̃ÞqY1;M̃−M1−M2
ðq̂Þð−1Þ1þM1þM2−M̃0 1ffiffiffi

3
p

× C
�
1

2
;
1

2
; 1;M1 − s; M̃0 −M1 þ s; M̃0

�
C
�
1

2
;
1

2
; 1; s;M1 þM2 − M̃0 − s;M1 þM2 − M̃0

�

× C
�
1

2
;
1

2
; J1;M1 − s; s;M1

�
C
�
1

2
;
1

2
; J2;M1 þM2 − M̃0 − s; M̃0 −M1 þ s;M2

�
; ðA14Þ

In Eq. (A14) there are four CG coefficients that depend on s. In order to get an expression with three CG coefficients to be
written in terms of Racah coefficients we proceed as follows. First, we need to permute some indices in the fourth CG
coefficient in Eq. (A14) as Ref. [36],

C
�
1

2
;
1

2
; 1; s;M1 þM2 − M̃0 − s;M1 þM2 − M̃0

�
¼ ð−1Þ1=2−s

ffiffiffi
3

2

r
C
�
1;
1

2
;
1

2
;M1 þM2 − M̃0;−s;M1 þM2 − M̃0 − s

�
;

ðA15Þ

and together with the last one in Eq. (A14), we can convert them into other two CG coefficients where only one CG
coefficient depends on s [36],

C
�
1;
1

2
;
1

2
;M1 þM2 − M̃0;−s;M1 þM2 − M̃0 − s

�
C
�
1

2
;
1

2
; J2;M1 þM2 − M̃0 − s; M̃0 −M1 þ s;M2

�

¼
X
j00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2j00 þ 1Þ

p
W

�
1;
1

2
; J2;

1

2
;
1

2
; j00

�
C
�
1

2
;
1

2
; j00;−s;−M1 þ M̃0 þ s;−M1 þ M̃0

�

× Cð1; j00; J2;M1 þM2 − M̃0;−M1 þ M̃0;M2Þ; ðA16Þ

whereW is a Racah coefficient [36]. Similarly, we need to permute indices of the third CG coefficient in Eq. (A14) and the
first CG coefficient in Eq. (A16) before we move on to the next combination,

C
�
1

2
;
1

2
; 1;M1 − s; M̃0 −M1 þ s; M̃0

�
¼ ð−1Þ1þ1=2−M1þM̃0þs

ffiffiffi
3

2

r
C
�
1;
1

2
;
1

2
; M̃0;M1 − M̃0 − s;M1 − s

�
; ðA17Þ

and

C
�
1

2
;
1

2
; j00;−s;−M1 þ M̃0 þ s;−M1 þ M̃0

�
¼ ½ð−1Þ1=2þ1=2−j00 �2C

�
1

2
;
1

2
; j00;M1 − M̃0 − s; s;M1 − M̃0

�
: ðA18Þ

We combine now the three CG coefficients from Eqs. (A17) and (A18) and the fifth CG coefficient in Eq. (A14) [36], and
since the phase does not depend on s, we can write
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X
s

C
�
1;
1

2
;
1

2
; M̃0;M1 − M̃0 − s;M1 − s

�
C
�
1

2
;
1

2
; J1;M1 − s; s;M1

�
× C

�
1

2
;
1

2
; j00;M1 − M̃0 − s; s;M1 − M̃0

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2j00 þ 1Þ

p
W

�
1;
1

2
; J1;

1

2
;
1

2
; j00

�
Cð1; j00; J1; M̃0;M1 − M̃0;M1Þ; ðA19Þ

such that Eq. (A14) can be rewritten as

ME ¼ −
4πi
3

qY1;M̃−M1−M2
ðq̂Þ

ffiffiffiffiffiffi
2

4π

r X
M̃0

X
j00

½
ffiffiffi
3

p
ð−1Þ1þM2ð2j00 þ 1Þ�

Y4
i¼1

Ci
Y2
j¼1

Wj; ðA20Þ

where
Q

4
i¼1 Ci

Q
2
j¼1Wj can be expressed explicitly as follows,

Y4
i¼1

Ci
Y2
j¼1

Wj ¼ Cð2; 1; 1; M̃ − M̃0; M̃0 −M1 −M2; M̃ −M1 −M2ÞCð2; 1; 1; M̃ − M̃0; M̃0; M̃Þ

× Cð1; j00; J2;M1 þM2 − M̃0;−M1 þ M̃0;M2ÞCð1; j00; J1; M̃0;M1 − M̃0;M1Þ

×W
�
1;
1

2
; J1;

1

2
;
1

2
; j00

�
W

�
1;
1

2
; J2;

1

2
;
1

2
; j00

�
: ðA21Þ

Next we begin evaluating different cases with J1 and J2
assigned to particular values, we start with the case where
J1 ¼ 0, J2 ¼ 0, which corresponds to the PP coupling,
(1) PP: J1 ¼ 0, J2 ¼ 0

It implies M1 ¼ 0, M2 ¼ 0, and Eq. (A16) leads
us to fact that j00 can only be 1 in this case. With
these particular quantum numbers we can easily
obtain the Racah coefficients,

W
�
1;
1

2
; 0;

1

2
;
1

2
; 1

�
¼ 1ffiffiffi

6
p ; ðA22Þ

and two of the CG coefficients

Cð1; 1; 0;−M̃0; M̃0; 0Þ ¼ ð−1Þ1þM̃0
ffiffiffi
1

3

r
ðA23Þ

Cð1; 1; 0; M̃0;−M̃0; 0Þ ¼ ð−1Þ1−M̃0
ffiffiffi
1

3

r
: ðA24Þ

Permuting the first two indices in the first two CG
coefficients of Eq. (A21) we obtain the following
equation for jMEj2 in this case����−4πi

3

����
2

q2Y1;M̃ðq̂ÞY�
1;M̃

ðq̂Þ 2

4π
½

ffiffiffi
3

p
×3�2

×

	X
M̃0

Cð1;2;1;M̃0;M̃− M̃0;M̃Þ2


2
�
1

3

�
2
�
1

6

�
2

;

ðA25Þ
further simplification can be done by replacing
Y1;M̃ðq̂ÞY�

1;M̃
ðq̂Þ with

1

4π

Z
dΩY1;M̃ðq̂ÞY�

1;M̃
ðq̂Þ ¼ 1

4π
; ðA26Þ

as we have to integrate over angles in
R
d3q of the

loop. Since
X
M̃0

Cð1; 2; 1; M̃0; M̃ − M̃0; M̃Þ2 ¼ 1; ðA27Þ

we next sum and average jMEj2 over M̃ and we
arrive at the final result for jMEj2 summed and
averaged over M̃ of Eq. (A25), which is

X̄
M̃

jMEj2 ¼ 1

12

���� 4πi3
����
2

q2
2

4π

1

4π
: ðA28Þ

(2) PV: J1 ¼ 1, J2 ¼ 0
In this case, we have M2 ¼ 0, and j00 can be

determined with the constraints in Eq. (A21), hence,
since 1þ j00 must give J2 ¼ 0, j00 ¼ 1. Similarly, we
can obtain the Racah coefficients in Eq. (A20) with
these specific quantum numbers,

W1

�
1;
1

2
; 1;

1

2
;
1

2
; 1

�
¼ 1

3
; ðA29Þ

W2

�
1;
1

2
; 0;

1

2
;
1

2
; 1

�
¼ 1ffiffiffi

6
p ; ðA30Þ

one of the CG coefficients in Eq. (A20),

Cð1;1;0;M1−M̃0;−M1þ M̃0;0Þ¼ ð−1Þ1−M1þM̃0
ffiffiffi
1

3

r
;

ðA31Þ

and the other three CG coefficients can be combined
together to give
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X
M̃0

Cð2; 1; 1; M̃ − M̃0; M̃0 −M1; M̃ −M1ÞCð2; 1; 1; M̃ − M̃0; M̃0; M̃ÞCð1; 1; 1; M̃0;M1 − M̃0;M1Þð−1Þ1−M1þM̃0

¼
X
M̃0

ð−1Þ1þM̃0
ffiffiffi
3

5

r
Cð1; 1; 2; M̃;−M̃0; M̃ − M̃0ÞCð2; 1; 1; M̃ − M̃0; M̃0 −M1; M̃ −M1Þ

× ð−1ÞCð1; 1; 1;−M̃0; M̃0 −M1;−M1Þð−1Þ1−M1þM̃0

¼ ð−1Þ1−M1

ffiffiffi
3

5

r ffiffiffiffiffi
15

p
Wð1; 1; 1; 1; 2; 1ÞCð1; 1; 1; M̃;−M1Þ; ðA32Þ

where

Wð1; 1; 1; 1; 2; 1Þ ¼ 1

6
: ðA33Þ

Then, we have a similar equation for jMEj2 in this case after multiplying all terms and squaring, we get

for
P

M̃

P
M1
jMEj2

����−4πi
3

����
2

q2Y1;M̃−M1
ðq̂ÞY�

1;M̃−M1
ðq̂Þ 2

4π
½

ffiffiffi
3

p
×3�2 1

3

	X
M1

X
M̃

C2ð1;1;1;M̃;M1−M̃;M1Þ


2
�
3

5

�
ð15Þ

�
1

6

�
2
�
1

3

��
1

3

�
2
�
1

6

�
;

ðA34Þ

and using the equivalent equation to Eq. (A26) for
the spherical harmonics, we have

X
M̃

X
M1

jMEj2 ¼ 1

24

���� 4πi3
����
2

q2
2

4π

1

4π
: ðA35Þ

(3) VP: J1 ¼ 0, J2 ¼ 1
We follow closely the previous case (ii) and obtain

the same result for jMEj2 in this scenario,

X
M̃

X
M2

jMEj2 ¼ 1

24

���� 4πi3
����
2

q2
2

4π

1

4π
: ðA36Þ

(4) VV: J1 ¼ 1, J2 ¼ 1
The calculations in this case is relatively compli-

cated since j00 now can be both 0 and 1 [see CG
coefficient in Eq. (A16)]. We thus separate these two
situations and present the case with j00 ¼ 0 first.
(a) j00 ¼ 0

As always, first we have the two Racah
coefficients of Eq. (A20), which are the same
in this case

W
�
1;
1

2
; 1;

1

2
;
1

2
; 0

�
¼ −

1ffiffiffi
6

p ; ðA37Þ

as for the two of the CG coefficients in Eq. (A20)
that contain j00, we have

Cð1; 0; 1;M1 þM2 − M̃0;−M1 þ M̃0;M2Þ ¼ 1;

ðA38Þ

Cð1; 0; 1; M̃0;M1 − M̃0;M1Þ ¼ 1; ðA39Þ

with the condition that M̃0 ¼ M1. Furthermore,
the other two CG coefficients in Eq. (A20) can
be rewritten as

X
M̃0

Cð2;1;1;M̃−M̃0;M̃0−M1−M2;M̃−M1−M2Þ

× Cð2;1;1;M̃−M̃0;M̃0;M̃ÞδM̃0;M1

¼Cð2;1;1;M̃−M1;−M2;M̃−M1−M2Þ
× Cð2;1;1;M̃−M1;M1;M̃Þ; ðA40Þ

the square of the Eq. (A40) gives us

Cð2; 1; 1; M̃ −M1;−M2; M̃ −M1 −M2Þ2
× Cð2; 1; 1; M̃ −M1;M1; M̃Þ2

¼ 3

5
Cð1; 1; 2;M2; M̃ −M1 −M2; M̃ −M1Þ2

× Cð2; 1; 1; M̃ −M1;M1; M̃Þ2; ðA41Þ

where we write the second term Cð2;1;1;M̃−M1;
M1;M̃Þ2 as Cð2;1;1;M̃−M1;M̃−ðM̃−M1Þ;M̃Þ2,
and then sum over M2, M̃ −M1, and M̃.
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We obtain the following values with M̃ −M1

and M̃ fixed,X
M2

Cð1; 1; 2;M2; M̃ −M1 −M2; M̃ −M1Þ2 ¼ 1;

ðA42Þ
and with M̃ fixed, we have

X
M̃−M1

Cð2;1;1;M̃−M1;M̃− ðM̃−M1Þ;M̃Þ2 ¼ 1;

ðA43Þ

and the sum over M̃ gives 3. We shall take the
factor 1

3
from the average at the end.

Finally, following the same steps used in the
previous cases, we obtain jMEj2 in this case,

X
M̃

X
M1

X
M2

jMEj2a ¼
3

20

����4πi3
����
2

q2
2

4π

1

4π
: ðA44Þ

(b) j00 ¼ 1
In this case, we have two of the CG coef-

ficients in Eq. (A21) that can be rewritten as

Cð1;j00;J2;M1þM2− M̃0;−M1þ M̃0;M2ÞCð1;j00;J1;M̃0;M1− M̃0;M1Þ
¼ Cð1;1;1;M1þM2− M̃0;−M1þ M̃0;M2ÞCð1;1;1;M̃0;M1−M̃0;M1Þ
¼ ð−1Þ−M1−M2Cð1;1;1;M2;M̃0−M1−M2;M̃0−M1ÞCð1;1;1;M1;−M̃0;M1− M̃0Þ
¼ ð−1Þ1þM̃0

Cð1;1;1;M1;−M̃0;M1− M̃0ÞCð1;1;1;−M̃0 þM1;M̃0−M1−M2;−M2Þ
¼
X
j000

ð−1Þ1þM̃0 ½3ð2j000 þ1Þ�1=2Wð1;1;1;1;1;j000ÞCð1;1;j000;−M̃0;M̃0−M1−M2ÞCð1;j000;1;M1;−M1−M2Þ; ðA45Þ

where we separate the CG coefficients and only one depends on M̃0, and that one can be combined together with the
other two CG coefficients of Eq. (A21) to give

X
M̃0

ð−1Þ1þM̃0
Cð2;1;1;M̃− M̃0;M̃0−M1−M2;M̃−M1−M2ÞCð2;1;1;M̃−M̃0;M̃0;M̃ÞCð1;1;j000;−M̃0;M̃0−M1−M2Þ

¼ Cð1;1;2;M̃;−M̃0;M̃−M̃0ÞCð2;1;1;M̃− M̃0;M̃0−M1−M2;M̃−M1−M2ÞCð1;1;j000;−M̃0;M̃0−M1−M2Þ
¼ ½5ð2j000 þ1Þ�1=2Wð1;1;1;1;2;j000ÞCð1;j000;1;M̃;−M1−M2Þ: ðA46Þ

In this way, we now have the following equation for Eq. (A21) in this case

X
j000

ffiffiffiffiffi
15

p

9
ð2j000 þ 1ÞWð1; 1; 1; 1; 1; j000ÞWð1; 1; 1; 1; 2; j000ÞCð1; j000; 1;M1;−M1 −M2ÞCð1; j000; 1; M̃;−M1 −M2Þ

¼
X
j000

ð−1Þ−M1−M̃
� ffiffiffiffiffi

15
p

3

�
Wð1; 1; 1; 1; 1; j000ÞWð1; 1; 1; 1; 2; j000Þ

× Cð1; 1; j000;M1;M2;M1 þM2ÞCð1; 1; j000; M̃;M1 þM2 − M̃;M1 þM2Þ; ðA47Þ

similarly, for these two CG coefficients in Eq. (A47) we will sum over M1, M̃, M1 þM2 when we square, which
leads us to

X
M1

Cð1; 1; j0001 ;M1;M2;M1 þM2ÞCð1; 1; j0002 ;M1;M2;M1 þM2Þ ¼ δj000
1
;j000
2
; ðA48Þ

where we keep M̃ andM1 þM2 fixed, and a similar thing can be done to the other CG coefficients when we square

X
M̃

Cð1; 1; j0001 ; M̃;M1 þM2 − M̃;M1 þM2ÞCð1; 1; j0002 ; M̃;M1 þM2 − M̃;M1 þM2Þ ¼ δj000
1
;j000
2
; ðA49Þ

and sum overM1 þM2 will give us a factor of 3, which is the same as we obtained in the last case. Then we have the
following equation when we square Eq. (A47)
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X
j000

�
3 ×

15

9

�
Wð1; 1; 1; 1; 1; j000Þ2Wð1; 1; 1; 1; 2; j000Þ2 ¼

X
j000

5Wð1; 1; 1; j000; 1; 1Þ2Wð2; 1; 1; j000; 1; 1Þ2 ¼ 1

81

426

80
;

ðA50Þ

where we sum over j000 for j000 ¼ 0, 1, 2 and all the
Racah coefficients used in Eq. (A50) are listed below.

Wð1;1;1;0;1;1Þ¼ 1

3
; Wð2;1;1;0;1;1Þ¼ 1

3
;

Wð1;1;1;1;1;1Þ¼ 1

6
; Wð2;1;1;1;1;1Þ¼−

1

6
;

Wð1;1;1;2;1;1Þ¼−
1

6
; Wð2;1;1;2;1;1Þ¼ 1

30
:

ðA51Þ

Consequently, we have jMEj2 in this case as

X
M̃

X
M1

X
M2

jMEj2b ¼ 27 ×
1

81

426

80

���� 4πi3
����
2

q2
2

4π

1

4π

¼ 213

120

���� 4πi3
����
2

q2
2

4π

1

4π
: ðA52Þ

Crossed terms are calculated to be 0 in this particular case,
and we then add up parts (a) and (b) taking into account the
factor ð1

3
Þ from the average over M̃. Then we arrive at

X
M̃

X
M1

X
M2

ðjMEj2a þ jMEj2bÞ ¼
231

360

���� 4πi3
����
2

q2
2

4π

1

4π
:

ðA53Þ

To sum it up, we have obtained all the scattering
amplitudes

P̄ P jtj2 with different types of interactions:
PP, PV, VP, and VV, we present here again for clarity

PP∶
1

12

���� 4πi3
����
2

q2
2

4π

1

4π
;

PV∶
1

24

���� 4πi3
����
2

q2
2

4π

1

4π
;

VP∶
1

24

���� 4πi3
����
2

q2
2

4π

1

4π
;

VV∶
231

360

���� 4πi3
����
2

q2
2

4π

1

4π
: ðA54Þ

On top of that, there is a constant common to all the decay
modes which would appear in the hadronization process.
Then we can omit j− 4πi

3
j2 1

4π
2
4π in Eq. (A54) and replace it

with a factor jAj2, which is fitted to the experimental data.
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