PHYSICAL REVIEW D 99, 075035 (2019)

Lepton mixing predictions from S, in the tridirect CP approach
to two right-handed neutrino models

Gui-Jun Ding,"" Stephen F. King,z‘T and Cai-Chang Li"*
llnterdisciplinary Center for Theoretical Study and Department of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China
2Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

® (Received 7 December 2018; published 30 April 2019)

We perform an exhaustive analysis of all possible breaking patterns arising from S; X Hcp in a new
tridirect CP approach to the minimal seesaw model with two right-handed neutrinos, and construct a
realistic flavor model along these lines. According to this approach, separate residual flavor and CP
symmetries persist in the charged lepton, “atmospheric” and “solar” right-handed neutrino sectors,
i.e., we have three symmetry sectors rather than the usual two of the semidirect CP approach (charged
leptons and neutrinos). Following the tridirect CP approach, we find 26 kinds of independent
phenomenologically interesting mixing patterns. Eight of them predict a normal ordering (NO) neutrino
mass spectrum and the other 18 predict an inverted ordering (IO) neutrino mass spectrum. For each
phenomenologically interesting mixing pattern, the corresponding predictions for the Pontecorvo-
Maki-Nakagawa-Sakata matrix, the lepton mixing parameters, the neutrino masses and the effective
mass in neutrinoless double beta decay are given in a model-independent way. One breaking pattern
with an NO spectrum and two breaking patterns with IO spectra correspond to form dominance. We find
that the lepton mixing matrices of three kinds of breaking patterns with NO spectra and one form
dominance breaking pattern with an IO spectrum preserve the first column of the tribimaximal mixing
matrix, i.e., yield a TM1 mixing matrix.

DOI: 10.1103/PhysRevD.99.075035

I. INTRODUCTION

The discovery of neutrino oscillations implied that neutrinos have masses and there is mixing in the lepton sector.
According to the neutrino oscillation experimental data, the 3¢ ranges of the leptonic mixing angles and neutrino mass-
squared differences are [1]

0.272 < sin?;, < 0.346, 6.80 x 107> eV? < Amj, < 8.02 x 107 eV?,

0.01981 < sin%0;3 < 0.02436, 0.418 < sin?f,; < 0.613, (NO),
{0.02006 < sin?0;3 < 0.02452, 0.435 < sin’0y; < 0.616, (10),
{2.399 x 1073 eV2 < Am}; <2.593 x 1072 eV?, (NO),

—2.562 x 1073 eV? < Am3, < -2.369 x 1073 eV2, (10), (1.
where the symbols “NO” and “IO” denote normal ordering and inverted ordering neutrino mass spectra, respectively. We do
not know the origin of neutrino mass and lepton mixing so far, although these results are consistent with some theories. The
leading candidate for a framework of neutrino mass and lepton mixing is the type I seesaw mechanism which involves
additional heavy right-handed Majorana neutrinos [2—4]. However the seesaw mechanism is very difficult to be tested
experimentally, because it introduces many additional parameters in the neutrino Yukawa couplings and the right-handed
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neutrino masses are typically of the grand unified theory
scale such that they are generally far beyond the reach of
the LHC. In order to obtain testable predictions, it is natural
to follow the idea of minimality (as discussed in e.g.,
Ref. [5]), i.e., focusing on the seesaw theories with smaller
numbers of parameters.

The most minimal version of the seesaw mechanism
involves two additional right-handed neutrinos [6,7]. In
order to increase the predictive power of the two right-
handed neutrino seesaw model, various schemes to reduce
the number of free parameters have been suggested, such as
postulating one [8] or two [7] texture zeros; however the
latter models with two texture zeros are now phenomeno-
logically excluded for NO [9-11]. In the charged lepton
diagonal basis, together with a diagonal right-handed
neutrino mass matrix, the idea of constrained sequential
dominance (CSD) has been proposed, involving a Dirac
mass matrix with one texture zero and a restricted form of
the Yukawa couplings [12]. The CSD(n) scheme [12-19]
assumes that the coupling of one right-handed neutrino
(called “atmospheric”) with v; is proportional to (0,1,1),
while the second right-handed neutrino (called “solar”) has
couplings to v; proportional to (1,n,n — 2) with positive
integer n, where v, = (v,,v,, v.)F denote the left-handed
neutrino fields. The CSD(n) models generally [12-19]
predict a TM1 mixing matrix and normal mass hierarchy
with a massless neutrino m; = 0 [20]. Predictions for
lepton mixing parameters and neutrino masses have
been made for the cases of n=1 [12], n =2 [13], n=3
[14-16], n = 4 [17,18] and n > 5 [19]. It turns out that the
CSD(3) model also called the littlest seesaw (LLS) model
can successfully accommodate the experimental data on
neutrino masses and mixing angles [14—16]. The LS model
can yield the baryon asymmetry of the Universe via
leptogenesis [21-23]. The LS structure can also be incor-
porated into grand unified models [21,24,25]. In practice
the LS model can be achieved by introducing S4 family
symmetry, which is spontaneously broken by flavon fields
with particular vacuum alignments governed by remnant
subgroups of S [15,16]. Furthermore, from the breaking of
As flavor symmetry to different residual subgroups in the
charged lepton, atmospheric neutrino and solar neutrino
sectors, we can obtain the viable golden LS model which
predicts the GR1 lepton mixing pattern [26]. Here the GR1
mixing matrix preserves the first column of the golden ratio
mixing matrix.

The leptonic CP violation is one of the most urgent
questions in neutrino oscillation physics. The indication
of CP violation in the neutrino sector has been reported by
the T2K [27] and NOvA collaborations [28], and the Dirac
CP phase 6cp will be intensively probed experimentally in
the forthcoming years. In order to address this question
theoretically, non-Abelian discrete flavor symmetry com-
bined with generalized CP symmetry has been widely
exploited to explain the lepton mixing angles and to predict

CP-violating phases [29-60]. Both flavor symmetry G,
and CP symmetry H-p are imposed at high energy scales,
and the full symmetry is G; x Hep. In the successful
semidirect CP approach, the original symmetry Gy x Hcp
is spontaneously broken down to G, and G, x H%, in the
charged lepton sector and the neutrino sector at lower
energies, respectively.

Recently we extended the above semidirect CP
approach to propose a so-called tridirect CP approach
[61] based on the two right-handed neutrino seesaw
mechanism, and a new variant of the LS model was found.
In the tridirect CP approach, the common residual
symmetry of the neutrino sector is split into two branches:
the residual symmetries G, ¥ HE and G, x H
associated with the “atmospheric” and “solar” right-handed
neutrino sectors respectively. An Abelian subgroup G is
assumed to be preserved by the charged lepton mass matrix
and it allows for the distinction of three generations of
charged leptons. It is the combination of these three
residual symmetries that provides a new way of fixing
the lepton mixing parameters and neutrino masses in the
tridirect CP approach.

In the present work, we shall extend the analysis of the
tridirect CP approach for two right-handed neutrino
models considerably, beyond the few examples studied
in Ref. [61], to an exhaustive model-independent analysis
of all possible phenomenologically viable lepton flavor
mixing patterns which arise from the breaking of the parent
symmetry S; % Hcp. The lepton mixing matrix is not
restricted to TM1 mixing anymore and the mass ordering
of the neutrino masses can be either NO or I0. We shall
find eight independent phenomenologically interesting
mixing patterns for the case of NO neutrino masses and
18 independent phenomenologically interesting mixing
patterns for the case of I0. The eight breaking patterns
for NO are labeled as M| ~ Ng and the other 18 for 10 are
labeled as 7 ~ Z 4. For each possible breaking pattern, we
numerically analyze the predictions of the mixing param-
eters, the three neutrino masses and the effective mass in
neutrinoless double beta decay. We find that all four
breaking patterns N'|, N>, N3 and Z5 give rise to TM1
mixing. For the cases of s, Z, and Zs, the two columns of
the Dirac neutrino mass matrix are orthogonal to each other
and consequently have the texture of form dominance
[62-64] is reproduced. Furthermore, we implement the
case of Ny with x = —4 and 5 = £37/4 in an explicit
model based on S; % Hcp, and the required vacuum
alignment needed to achieve the remnant symmetries is
dynamically realized. In this model, the absolute value of
the first column of the Pontecorvo-Maki-Nakagawa-Sakata

. . T
(PMNS) matrix is fixed to be (2\/35, \/%3 \/%> .
The paper is organized as follows. In Sec. II, we recall

the framework of the tridirect CP approach to two right-
handed neutrino models, and we present the generic
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procedures of how to derive the lepton flavor mixing and
neutrino masses from remnant symmetries in the tridirect
CP approach in a model-independent way. In Sec. III, we
perform a model-independent analysis of five kinds of
phenomenologically viable breaking patterns achievable
from the underlying symmetry Sy % Hcp in the tridirect
CP approach with NO neutrino masses. In Sec. IV, a
general analysis of five kinds of breaking patterns with 10
neutrino masses is presented. In Sec. V, we present a new
version of the LS model based on S; x Hcp from the
tridirect CP approach. The vacuum alignment, the LO
structure and the next-to-leading-order (NLO) corrections
of the model are discussed. Section VI is devoted to our
conclusion. The group theory of S, and all of its Abelian
subgroups are presented in Appendix A. In Appendix B,
we study the breaking patterns Ny~ Ny in a model-
independent way. The analysis of the remaining 13 kinds of
breaking patterns with IO is given in Appendix C.

II. THE TRIDIRECT CP APPROACH

In the scenario with a discrete flavor group G, and
generalized CP symmetry Hcp, Gy and Hcp should be
compatible with each other, and they fulfill the following
consistency condition [29,30,65,66]:

Xepr(@)Xe=pe(d). 9.9 €Gy. X €Hep,  (2.1)
where p,(g) is the representation matrix of the element g
in the irreducible representation r of G, and X, is the
generalized CP transformation matrix of Hp. Moreover,
the physically well-defined generalized CP transformations
should be class-inverting automorphisms of G, [65]. It
requires that the elements g~ and ¢ in Eq. (2.1) belong to
the same conjugacy class of G;. The automorphism in
Eq. (2.1) thus implies that the mathematical structure of the
group comprising G, and CP is in general a semidirect
product Gy x Hep [29].

In the present work, we shall perform a comprehensive
study of lepton mixing patterns which can be obtained from
the flavor group S4 and CP symmetry in the tridirect CP
approach [61]. In the following, we shall first review how
the tridirect CP approach allows us to predict the lepton
mixing and neutrino masses in terms of few parameters. In
the tridirect CP approach, the assumed family and CP
symmetry G x Hep at high energy scales is spontane-
ously broken down to an Abelian subgroup G; which is
capable of distinguishing the three generations in the
charged lepton sector, and it is broken to G, < HYp
and Gy, x H% in the atmospheric and solar neutrino
sectors respectlvely. A sketch of the tridirect CP approach
for two right-handed neutrino models is illustrated in Fig. 1.
In the right-handed neutrino diagonal basis, the effective
Lagrangian is given by

G

thm x H1t111 Gbol “ Hsol

FIG. 1. A sketch of the tridirect CP approach for two right-
handed neutrino models, where the high-energy family and
CP symmetry Gy x H¢p is spontaneously broken down to
Gym ¥ HE} in the sector of one of the right-handed neutrinos,
and G, x HS) in the sector of the other right-handed neutrino,
with the charged lepton sector having a different residual flavor
symmetry G,.

L= “ViLPEC = YamLDamNam — ysolL¢solN§ol
1 i 1
- E xatméatmNgtmNgtm xsol§§01N501N501 + H'C'v

(2.2)

where we use the two-component notation for the fermion
fields. The notation L stands for the left-handed lepton
doublets and E° = (e¢,u¢,7¢)T are the right-handed
charged leptons, the flavons &, and &, are standard
model singlets, and the flavons ¢;, ¢4, and ¢, can be
either Higgs fields or combinations of the electroweak
Higgs doublet together with flavons. All four coupling
constants y,um, Vsols Xarm and x,,; would be constrained to be
real if we impose CP symmetry.

Without loss of generality, we assume that the three
generations of left-handed leptons doublets transform as
a faithful three-dimensional representation 3 under G. The
residual symmetry G; in the charged lepton sector requires
that the Hermitian combination m;ml must be invariant
under the action of G, i.e.,

P;(gl)m;-mzﬂs(gz) =mm, g €G, (23)
where the charged lepton mass matrix m; is defined using
the convention [°m;l. The diagonalization matrix of the

Hermitian combination mjml is defined as U; with
UTmlm,U, = diag(mZ, m;, m%). From Eq. (2.3), we find
that the unitary matrix U ; can be derived from

(2.4)

Ulps(9)U; = p3*()),

where pd “€(g;) is a diagonal matrix whose entries are three

eigenvalues of p3(g;). In the atmospheric neutrino sector
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and the solar neutrino sector, as the residual symmetries
contain both flavor symmetry and CP symmetry, the
following restricted consistency conditions should be
satisfied:

XEmpL (™) (XE™) ! = pil ™).

g™ g € Gy, XEM e HER, (2.52)
X (g (XPD) ™ = pe(gi™),
g9 €Gy. X' e HE.  (2.5b)

The consistency conditions indicate that the mathematical
structure of the residual flavor and CP symmetries is a
semidirect product for i # j and it reduces to a direct
product for the case of i = j. The consistency equations in
Egs. (2.5a) and (2.5b) can be used to find the residual CP
symmetry consistent with the residual flavor symmetries
of the atmospheric neutrino and solar neutrino sectors,
respectively. In the atmospheric and solar neutrino sectors,
the residual symmetries imply that the vacuum alignments
of flavons ¢,,, and ¢, should be invariant under the
symmetries G, X H&p and G, X H?}) respectively, i.e.,

pr(gatm)<¢atm> = <¢atm>’

xpm <¢atm>* = <¢atm>’ (263)

Xf'()] <¢sol>* - <¢s01>’ (26b)

pr(9801)<¢sol> - <¢sol>’
where (¢,m) and (¢g,) denote the vacuum alignments of
flavons ¢, and ¢, respectively. After electroweak and
flavor symmetry breaking, the flavons ¢;, dam> Psol> Eatm
and &, acquire nonvanishing vacuum expectation values
(VEVs). From the Lagrangian in Eq. (2.2), one can read out
the neutrino Dirac mass matrix and the heavy Majorana
mass matrix,

mp = (yatha <¢atm>’ ysolUs<¢sol> )’

e — (xatm<fatm> 0 )
N 0 xsol<§sol> ’

where U, and U, are two constant matrices and they are
constituted by the Clebsch-Gordan (CG) coefficients which
appear in the contractions y, ., Lehym N and ygo Lo NS,
respectively. For the sake of convenience in the following,
we shall parametrize the combinations U, (ym) = Vam?yp,
and U (¢so1) = so1vp,, Where vy, and vy, are three-
dimensional column vectors and they denote the directions
of the vacuum alignment, and v, and v, are the overall
scales of corresponding flavons. The light effective
Majorana neutrino mass matrix is given by the seesaw
formula m, = —mpmy'm}; then we find that m,, takes the
form

(2.7)

_ y%tm Ua <¢atm> <¢atm>TU¢7; _ & Us <¢sol> <¢sol>TUZ

v Xatm <§atm> Xsol <§sol> ’
(2.8)

— Ll T [} T
= e'%a {mavatmvatm + mge r’vsolvsol} ’

where the overall phase g, is given by ¢, = arg (=yim vy, /
(xatm<§atm>))’ my, = |y§tmvg/)u/(xatm<§atm>>|’ ms = |y§ol7j§)>\/
(xsol <§s01>)| and n = arg (_yzolvix/(xsol<§sol>)) — Pq- The
overall phase ¢, can be absorbed into the lepton field and it
will always be omitted in the following. For convenience
the notation r = m,/m, will be used throughout this paper.
If the roles of Gy, x HEP and Gy, % Hg’}, are switched,
the two columns of the Dirac mass matrix mp will be
exchanged. Thus the same neutrino mass matrix would
be obtained if one interchanges v, With Y1, Xam With X,
and <§atm> with <§sol>‘

In the following we shall give the detailed procedures for
analyzing the phenomenological predictions of the tridirect
CP approach in a model-independent way, and we shall
present the generic expressions of the lepton mixing matrix
and neutrino masses. One can easily check that the neutrino
mass matrix m, of Eq. (2.8) satisfies

myvgx = (0, 0, O)T’ (29)

with

Vtix = Vatm X Vsol» (210)
where v,,, X vy, denotes the cross product of v,,,, and v.
The normalized vector of wg, is defined as og,=

Vsix/ vngﬁx. Equation (2.9) implies that ¥, is an eigen-
vector of m, with zero eigenvalue. As a result, the first
(third) column of U, is determined to be v, for an NO (10)
mass spectrum, where U, is the diagonalization matrix of
m, with Ul'm,U, = diag(0, m,, m3) for the NO case and
Ul'm,U, = diag(m;, m,,0) for the 10 case. In order to
diagonalize the above neutrino mass matrix, we first
perform a unitary transformation U,,, where the unitary
matrix U,; can take the following form':

A Ak Al
U { (Dgix» Dl 0l;)  for NO, 2.11)
vl — A Al A :
(Djm DLy, D) for 10,
with
A vatm A/ A A
Dy = — D) = Dy X Dy (2.12)

9
¥
VatmVatm

'In general the unitary matrix U, is not unique. In the case
vzolvatm # 0, U,; can multiply a unitary rotation from the right-
hand side in the (23) and (12) planes for NO and IO respectively.
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Then the neutrino mass matrix becomes

0
y for NO,
Z

m; = UZlvavl = (213)

0
0
0
y
b4 for 10,
0

0

Z

w
0
0
0

Z
w
0
where the expressions of the parameters y, z and w are

Y= |y|ei¢'v = ma”Ztmvmm + emms (ﬁZtmvsol)27

= |Z|€i¢: = emms \/(i}atm X vsol)T (i;atm X vsol)(i’ztmvsol)’
w= |‘/V|el¢H = e”’mS (i)atm X /v&Ol)I (i)atm X vSOl)‘ (2'14)
The neutrino mass matrix m, in Eq. (2.13) can be
diagonalized through the standard procedure, as shown
in Refs. [32,61],

diag(0, m,, m3) for NO,

: (2.15)
diag(m,, m,,0) for IO,

UZZmL UU2 = {

where the unitary matrix U,, can be written as

1 0 0

0 cos@eWtr)/2  ginPeiv+o)/2 for NO,
0 —sin@e!VHP)/2 cos@eil-vto)/2
cos@e'V+r)/2  sin@elvto)/2

—sin@e!¥tP)/2 cosPei-vto)/2 (| for IO.

0 0 1
(2.16)
We find that the light neutrino masses are
1 wl? = Iy?
2 _ 2 1yl2 2 4 9l,2
it = |IoP + o 2P =ML =DE
1 wl? = Iyl?
2 2 y)2 2 4 272 2.17
=g [bP P+ 2+ LB )

with my =0, my, = m;, my = m,;, for the NO case and
m; = my;, my = my,, my = 0 for the IO case. The rotation
angle 0 is determined by

22l /Iy + [P + 21yl [w| cos(ep, + 6, — 245)

ms [y + [l + 2]yl [wlcos(p, + ¢, - 265)

Thus the lepton mixing matrix is determined to be

075035-5

sin 20 = ,
\/(IWI2 = yP)? + 4Lz (y1* + [wl? + 2yl [wl cos(y + b, — 2¢,)]
2 _y[2
c08 26 = P — b . (2.18)
\/(IWI2 = yP)? + 4Lz (y1* + [wl? + 2yl [wl cos(y + b, — 2¢,)]
It is obvious that sin 20 is always non-negative. The expressions of the phases y, p and ¢ are given by
. _ _|y| Sin(¢y - ¢z) + |W| Sin(¢w - ¢z)

siny = ,

VP + Wl + 20y Iw] cos(y + b, = 2.)

_ |y| COS(¢y - ¢z> + |W| COS(¢W - ¢z)

cosy = ,

VP + w2 4+ 21y Iw] cos(@y + ¢, = 29.)
inp - _ (M=) sing. + Dliwisin@ + 4~ )

ma\JIy P+ w2 + 2lylwl cos(py + ¢, — 245.)

cosp = B IEP) cosg + ylwlcos(d, + b~ )

ma /Iy + P+ 20y w] cos(py + g, — 26.)
o (3= fzP)sing. + Iyllwlsing, + 4, = 4)

ms [y + w2 + 2lylwl cos(py + ¢, — 245.)
2 _ 1,2 _

ooy (M2 = [2P)cos g+ lIwlcos(ep, + ¢ = ) 219
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Upnns = PiUUL U, (2.20)
where P, is a generic permutation matrix since the charged
lepton masses are not constrained in this approach, and it
can take the following six possible forms:

If two mixing matrices are related by the exchange of
the second and third rows, we shall only consider one of
them. The reason is that the atmospheric mixing angle 6,3
becomes 7/2 — 6,3, the Dirac CP phase §cp becomes
7+ ocp and the other mixing parameters are unchanged
after the second and third rows of a PMNS matrix are

100 100 010 permuted. We notice that if both NO and IO neutrino mass
Ps=|010], Pm=[001], Pys=[100], spectra can I?e achieved for aresi.duaI symmetry, the lepton
mixing matrix of 10 can be obtained from the correspond-
001 010 001 ing one of NO by multiplying P53, from the right side, and
010 001 001 the expressions of the parameters y, z and w in m,, are
Pa=|001]|, Pyp=|100], Poy=|010 identical in the NO and 10 cases.
In the present work, we will adopt the standard para-
100 010 100 metrization of the lepton mixing matrix [67],
(2.21)
|
C12€13 S12€13 s13e0cr
. . B
U= | =s12¢23 = C12513523€°%  C1C03 = 512513523 13853 | diag(l, e, 1), (2.22)
§12523 = C12813€23€"77  —=C1p803 = $12813¢03€°F  c303
where ¢;; = cos 0;;, s;; = sin0;;, 5¢p is the Dirac CP violation phase and /3 is the Majorana CP phase. There is a second

Majorana phase if the lightest neutrino is not massless. As regards the CP violation, two weak basis invariants Jp [68] and
I, [69-73] associated with the CP phases d-p and S respectively can be defined,

1
JCP = %(U”U:{; TS U;l) = gsin 2912 sin 2913 sin 2923 COS 913 sin 5CP’

o { S(U3,U3) = §sin®6,,8in%20, 5 sin(f + 25¢p)
l (U3, U1?) = Lcos*03sin?20 , sin g for 10.

[

4

Given a set of residual symmetries {G;, G,y X HER,
Gy ¥ HELY, the explicit forms of Uj, (¢ym) and (o)
can be straightforwardly determined. Using the general
formulas of Eqgs. (2.4), (2.11), (2.16), (2.17), and (2.20), we
can extract the predictions for the lepton mixing matrix and
neutrino masses.

III. MIXING PATTERNS DERIVED FROM S,
WITH NO NEUTRINO MASSES

In this section, we shall consider all possible residual
subgroups arising from the breaking of S, flavor symmetry
and CP, and the resulting predictions for lepton mixing
parameters and neutrino masses are studied. The group
theory of S4 and all the CG coefficients in our basis are
reported in Appendix A. S; has 20 nontrivial Abelian
subgroups which contain nine Z, subgroups, four Zj
subgroups, three Z, subgroups, and four K, =~ Z, x Z,
subgroups. In our basis given in Appendix A, the gener-
alized CP transformation compatible with the S, flavor
symmetry is of the same form as the flavor symmetry
transformation [31], i.e.,

for NO,

(3.1)

X = pe(9), gE Sy,

where g can be any of the 24 group elements of S,.

As discussed in Sec. II, the flavor symmetry S, is broken
to the Abelian subgroup G; which is capable of distinguish-
ing the three generations in the charged lepton sector. Then
G, can be taken to be any one of the 11 subgroups Z5, Z,
and K, of S,;. The vacuum alignments of ¢,,, and ¢,
preserve different residual symmetries G, X H¥3 and
Gy X HYY, tespectively. The residual flavor symmetries
G.m and G, can be any one of the 20 Abelian subgroups
of S,. After including residual CP symmetry, we find that
there are altogether 4400 kinds of possible breaking
patterns. But these breaking patterns are not all independent
from each other. If a pair of residual flavor symmetries
{G},Gyn.G.,} is conjugated to the pair of groups
{G}, Gam» Gsoi } under an element of Sy, i.e.,

G? - l’lGlh_l,
G;Ol - tholh_l,

thm = hGatmh_1 s
hes,

075035-6
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then these two breaking patterns will lead to the same
predictions for mixing parameters [32,35,37]. As a result, it
is sufficient to analyze the independent residual flavor
symmetries not related by group conjugation and the
compatible remnant CP. From Appendix A, we find that
all the Z; subgroups of S, are conjugate to each other, all

the Z, subgroups are related to each other under group

. . (S.TST?) .
conjugation, K, is a normal subgroup of Sy, and the

other three K, subgroups are conjugate to each other. As a
consequence, it is sufficient to only consider four types of
residual symmetries in the charged lepton sector, i.e.,

G, =271, 71U, KT and KSY), while both Gy
and G, can be any one of these 20 subgroups of S;. In
the present work, we assume that the three generations of
left-handed lepton doublets are assigned to transform as an
S, triplet 3. For G, being the above four kinds of subgroups,

up to permutations and phases of the column vectors, the

diagonalization matrix of the Hermitian combination m;ml

can be fixed to be

1 0 0
u=(01 0], forG =2,
0 0 1
2m —2w 2w
Ull<—(\/§+1)a)2 (1—\/§)a)2 20° |,
2v3 V3-1 V3+1 2
for G, = ZI5Y,
o 1 o
1 1
Vs oo
U=|-%& & -4 for G, = K5V, (3.3)
"% B

The residual CP symmetries in the atmospheric neutrino
sector and the solar neutrino sector have to be compatible
with the residual flavor symmetries, and the restricted
consistency conditions in Egs. (2.5a) and (2.5b) must be
fulfilled. For the residual flavor symmetries G, and G
being the 20 subgroups of Sy, the corresponding residual
CP transformations consistent with these subgroups are
listed in Table I. In this work, we assume that the flavon
fields o, and ¢, are assigned to transform as Sy triplets 3
and 3/, respectively. In our working basis, the S, singlet
contraction rules for 3® 3 > 1 and 3® 3 —» 1’ imply
(L¢atm)l = L1¢atm1 + L2¢atm3 + L3¢atm2 and (L¢sol)1’ -
Ly¢sor, + Lohsor, + L3hsor,- As a consequence, we can
read out the matrices U, and U, as follows:

(3.4)

- O O
S = O

1
U,=U,= |0
0

In other words, the column vectors v,,, and vy, defined
above Eq. (2.8) are vy, = Pi3(Pum)/ vy, and vy =
Pi3(hso1) /vy, Hence the column vectors vy, and vy,
can be obtained by exchanging the second and third
elements of the columns () /vy, and (pso) /v, , TESPECc-
tively. The most general VEVs of the flavons ¢,,, and ¢,
which preserve the possible residual symmetries in Table [
are summarized in Table II. For some residual flavor
groups, not all the compatible residual CP transformations
in Table I are explicitly listed in Table II; this is because the
invariant vacuum alignments for the shown residual CP
symmetry and those not shown only differ by an overall
factor of i. The contribution of the overall factor of i can be
absorbed into the couplings x,,, and x,,. Following the
procedures presented in Sec. II, we can straightforwardly
obtain the expressions of the mixing parameters (three
mixing angles, one Dirac CP phase and one Majorana CP
phase) and the neutrino masses for each possible residual
symmetry {le Gatm A H%t’g’ Gsol A HSC(‘)fl’ :

In order to single out all independent viable breaking
patterns from all possible breaking patterns in the tridirect
CP approach, we will first find all possible independent
pairs of {G}, Gy ¥ H¥M, Gy x HS,} which are not
related by group conjugation given in Eq. (3.2). In order
to quantitatively assess how well a residual symmetry can
describe the experimental data on mixing parameters and
neutrino masses [1], we define a y? function to estimate the
goodness of fit of a chosen set of values of the input
parameters,

(3.5)

5

Pi(x,n,mg,,r) — O0;\?2
2 i a i
¢ Z( O; )

i=1

where the input parameters m,, r = m,/m, and 5 are
defined in Eq. (2.8), the parameter x parametrizes the
vacuum of the flavon ¢, O; denote the global best-fit
values of the observable quantities including the mixing
angles sin”6;; and the mass splittings Am3, and Am3,
(Am3; = Am3, for NO and Am3, = Am3, for 10), and o;
refer to the 1o deviations of the corresponding quantities.
The values of O; and o; are taken from the global data
analysis [1]. P; € {sin® 0},, sin* 0,3, sin” O3, Am3,, Am3,}
are the theoretical predictions for the five physical observ-
able quantities as functions of x, u, m,, r. Here the
contribution of the Dirac phase dcp is not included in
the y? function. The reason is that the value of §.p is less
constrained at present. For each set of the input parameters
x, n, m, and r, we can extract the predictions for P; and the
corresponding y*. We have carried out the > minimization.
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TABLE 1. The possible residual flavor subgroups and the compatible residual CP transformations.

Gam (Gisol) Xom (Xso1) Gam (Gsol) Xom (Xso1)

zIsv {SU,T,STS,TST*>U,U,ST,TS,T>STU} z5ru {SU,T? ST?S,T>STU, U, ST?, T*S, TST*U}
ZIsrU (1,8, TST2U. T>STU, TST*, T>ST, U, SU} z5 {L.T.7*,U.TU.T*U}

zsT {S,8TS,T?,U,STU, T>SU} zrs {8,T,ST?S,U,TSU,ST*U}

z3rs {1,8TS,ST*S, U, STSU, ST*>SU} Z3 {1,8,TST*U,T>*STU,TST?,T*>ST., U, SU}
ZIs7 {SU, T>STU, T?,ST*S, U, TST*U, ST?, T*S} Z1sT {SU,TST*U,T,STS, U, T*>STU, ST, TS}
zy {1,U,S,SU} zrv {U,T,STS, T>STU}

75V {1,8U.8,U} v {U, T2, ST*S, TST?U}

Z57sU {U.STS.T.T2STU} Z57°sU {U, ST?S, T?, TST*U}

KSTST) all elements of S, K {1.8.U,SU.TST2, T*ST, TST*U. T*STU}
KISTTU) g 12 ST TSTAU, SU, ST2, 128, TASTUY k(ST {U.T.STS.T>STU,SU, ST, TS, TST*U}

TABLE II. The possible residual symmetries and the corresponding constraints on the vacuum configurations of the flavon fields ¢,
and ¢, which transform as 3 and 3’ respectlvely The parameter x is a generic real number. The VEVs of ¢,,,, invariant under the actions
of the four K, subgroups are (0,0, 0). The VEVs of ¢, invariant under the three Z, subgroups and the normal subgroup K, (S.1

also (0,0, 0)7. Comparing with Table I, for some residual flavor subgroups we only show the invariant vacuum alignments for part of the
CP transformations consistent with them. The reason is that the invariant VEVs for the remaining compatible CP transformations can be
obtained by multiplying the above given VEVs by an overall factor of i, and the contribution of the overall factor of i can be
compensated by shifting the signs of the couplings x,., and x.

VEVS of ¢m
Gam Xatm <¢atm>/ Vg, Gam Xatm <¢atm>/ Vg,
V£ {1,TST?U, S, T*STU} (1,1, )7 ZIsT {SU, T? ST*S, T>STU} (1,0?, )"
ZsT {SU.T, TST*U,STS} (1,0, 0" 7y {1,U} 0,1,-1)7
zr {U,T} 0, -, 0*)" zsv {1,8U} (2,-1,-1)7
v {U, 1%} (0, —?, )" Z5TsU {1, T2STU} (2, —w, —a*)"
Z5TsU {12, TST*U} 2, -0?, —w)" z7 {1,1.7%} (1,0,0)7
z3T {S,STS, T?} (1,-2w?, —2w)" ZIs {S,T,ST%S} (1, 2w, —2a?)"
z3rs {1,8TS, ST*S} (1,-2,-2)" zIsv {SU,T,STS,TST*U} (1, w, )T
75 {SU,T?, ST*S, T>STU} (1,0?, )" ZIsTU {1,8,TST*U,T*STU} (1,1, D)7
VEVs of ¢
Gl Xl (bsor)/ vy, Gyl Xsol (Dsor) /v,
ZU {1, U} (1,x,x)T U {U,T} (1, xw, xa*)"
2 {8,SU} (14 2ix, 1 —ix, 1 — ix)” 2 {STS, T2STU} (1 + 2ix, w(1 — ix), 0*(1 — ix))”
75U {1,8U} (1,x,2=x)T 712U {U, T*} (1, xa?, xw)T
2 {S,U} (1,14 ix, 1 —ix)T 2 {ST?S,TST*U} (1 + 2ix,0*(1 — ix),w(1 — ix))T
ZgTSU {U.STS} (Bt 1 4ix, 1 —ix)" 575 {U,ST2S} (=205 1 4 ix, 1 - ix)
{T, T*STU} (1, 2x + D, (1 = 2x)0?)" {T?, TST?*U} (1,(2x + Da?, (1 = 2x)w)"
75 {1,U,8,5U} (1,1, 1)7 71T (U, T%, TST?U, ST2S} (1, 0%, )"
ZrsT {U.T.T2STU, STS} (1, w,0?)" 7z {LUT,TU,T*T*U} (1.0.0)
z3T {U,S,STU, (1,-2w?, —2w)" zIs {U,S,TSU, T, (1, 2w, —20*)"
STS,T*SU,T?} ST*U, ST*S}
Z§Ts {1,U,STS.STSU, (1,-2,-2)7 kY {1,U.8,SU} (1,1, D)7
ST?S,ST*SU}
KUy 12, TST?U, ST2S)} (1, 0%, )" KT (T, T2STU, STS} (1w, )"
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TABLE III. The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the effective Majorana mass m,,
in neutrinoless double beta decay for all viable residual symmetries, where the parameters x, i, m, and r = m,/m, are treated as free
parameters. The residual CP transformation associated with atmospheric neutrinos can be read out from Table II. We only show one
representative residual CP transformation of the solar neutrino sector since the other residual CP transformations can be obtained by
multiplying the residual flavor symmetry G, with the given CP transformation from the left-hand side.

NO for x, n, m, and r = m,/m, being free parameters

(G}, Gom: Goo1) Xeol  Xiin  SIN?0;3 sin?0 sin’0y  Scp/m Pp/m my (meV) my (meV) m,, (meV)

Ny (2F,7Y,78Y) 1 0383 00224 0318 058 -038 0335 8597 50.249 3.100

U 0383 00224 0318 0580 -0.38 0910 8597 50.249 3.725
Ny (28,757, 78Y) 1 038 00224 0318 0580 -038 0754 8596 50.249 3.798

U 0383 00224 0318 0580 —038 0996  8.596 50.249 3.604
Ny (28,75, 73Y) U 4321 00225 0318 0538 —0447 0444  8.603 50.242 3.064
Ny (25,2557, 2Y) 1 5081 00225 0337 0563 -0407 0284  8.601 50.244 2.950
Ns (KSY.ZIv zIUy  y 20461 00225 0256 0582 0 -0265 8597 50.249 3.026
Ne  (ZIV, 70, 75V) U 8698 00226 0345 0554 —0419 0202  8.605 50.239 2.638
Ny (KSTST) z0 78Uy 1 12254 00224 0328 0513  —0482 0502  8.600 50.245 3.099

U 11621 00224 0327 0514 0 0 8.601 50.244 3.877
Ng (K$TST) z0 71Uy U 5768 00228 0298 0537 —0451 0365  8.539 50.326 2.615

10 for x, 5, m, and r = m;/m, being free parameters

(G1, Gym» Gsor) Xeol o Sin?0p3 sin?@, sin?6y  Scp/n p/x  my (meV) m, (meV) m,, (meV)

T, (28,757, 7Y) 1 17640 00226 0310 05  —0.928 0306 49377  50.120  43.792
7,  (ZF.Z8V.7Z1) U 17640 00226 0310 05  —0.682 0843 49377  50.120  21.168
I, (KSYV.ZIST ZVy 1 17.640 00226 0310 0.5  —0.495 0.102 49377  50.120  47.946

S 17.640 0.0226 0310 05  —0.495 0.102 49377  50.120  47.946
7, (KSY,ZIv.ZIVy U 20419 00227 0256 0582 0 1 49377 50120  23.384
s (ZD.z8V.Z8Y) U 18008 00227 0318 05  —05 0743 49377 50120  24.840
Ty (20,7357, 7Y) 1 17640 00226 0310 0.5 0913  —0.389 49377  50.120  41.048
7, (28, 2Y, 71V U 17640 00226 0310 0.5 0975  —0.175 49377  50.120 46918
Iy (28,2Y, 757 U 17640 00226 0310 05  —0.761 0759 49377  50.119  24.569
Ty (Z0.78V.Z5TSUy U 17.640 0.0226 0310 05  —0954 0249 49377  50.120 45347
Ty (Z1%Y,75,71V) U 17640 00226 0310 05  —0.00465 —0.102 49377  50.120  47.946

STS 17.640 00226 0310 05  —0.00465 —0.102 49377  50.120  47.946
Ty (ZISV,z5,ZFV) U 17.640 00226 0310 05  —0.128  —0.548 49377  50.120  34.480

ST2S 17.640 0.0226 0310 0.5  —0372 0548 49377  50.120  34.480
T, (ZISU.ZY,ZIV) U 17.640 00226 0310 05  —0772 0729 49377  50.120  25.920
Ty (20U, 71U, 7Y) 1 17640 00226 0310 0.5 0.834  —0.636 49377  50.120  30.323
T (KT 20 78U) 1 17640 00226 0310 05  —0.104 —0448 49377  50.120 38.772

U 2046 00225 0310 0607 -0.604 —0448 49377  50.120 38778
Tis (KSTT) 20 710) U 17.640 00226 0310 05  —0.666 —0.636 49377 50120 30323
T (KU, ZISTP 7IU)  STS 17.640 0.0226 0310 0.5  —0872 0548 49377  50.120  34.480
Ty, (K$Y.ZIV.zV) s 28676 00225 0310 0477 0915  —0.548 49377  50.120  34.486
Tis (KSU),ZIV ZIPU)  ST2S 9241 00227 0310 0523 —0.743 0510 49377  50.120  36.178

After performing the y? analysis for all possible breaking
patterns in the tridirect CP approach, we find eight
independent interesting mixing patterns with NO and 18
interesting mixing patterns with 10. All the viable cases
and the corresponding predictions for mixing parameters
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and neutrino masses are summarized in Table III. Then
we proceed to study the eight NO viable cases (five
cases in this section and three cases in Appendix B) one
by one.

W) (G1, Gam» Gsol) = (Z3T’ Zg»ng)’ Xam = {1, U}
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(1) Xsol - {I’SU}

For this breaking pattern, the charged lepton mass
matrix m;m, is diagonal such that the unitary
transformation U, is the identity matrix, as shown
in Eq. (3.3). From Table I, we find that there are four
possible residual CP transformations which are
compatible with the residual family symmetry ZY
in the atmospheric neutrino sector. For the residual
CP transformations X,,,, = {1, U}, the VEV align-
ment of the flavon ¢, is

<¢atm> = Uy, (0, 1, —I)T, (36)

where v, is a real parameter with dimensions of
mass. For the other two residual CP transformations
Xam = {S, SU}, the alignment of the flavon ¢, is

(fam) = iy, (0,1, =1)7, (3.7)

which differs from the vacuum configuration of
Eq. (3.6) by an overall factor of i. We see from
Eq. (2.8) that this overall factor of i can be absorbed
into the sign of the coupling constant x,,,,. Hence the
two alignments in Egs. (3.6) and (3.7) will give rise
to the same light neutrino mass matrix, and it is
sufficient to consider one of them. For other residual
symmetries discussed in the following, if two align-
ments of ¢,,,, differ by an overall factor of 7 only one
of them will be studied as well. Without loss of
generality, here we shall choose the atmospheric
vacuum in Eq. (3.6), i.e., the residual CP is X, =
{1, U} in the atmospheric neutrino sector.

First we consider the solar residual CP trans-
formations Xy, = {1,SU}; then the VEV of the
flavon field ¢, reads as

(poot) = vy (1, x,2 = x)T, (3.8)

where x is a dimensionless real number and v, is a
real parameter with dimensions of mass. Conse-
quently the Dirac neutrino mass matrix m and the
heavy right-handed neutrino Majorana mass matrix
my take the following forms:

0 Ysol Uqﬁl‘
mp = —YamUy, (2 - x)ysol Vg, 1>
Yam Vg, XYs01 Vg,
X, ; 0
my = ( dtm(édtm) >’ (39)
0 Xsol <€sol>

where the couplings y,, and y,, are real since the
theory is invariant under CP. Using the seesaw
formula, we can obtain the low-energy effective
light neutrino mass matrix
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0O 0 O
m,=m,| 0 1 -1
0 -1 1
1 2—-x X
+me| 2—x (x=2)2 (2-x)x |,
x  (2-x)x x?

(3.10)

where an overall unphysical phase has been omitted
and it will be neglected for the other cases in the
following, and the parameters m,, m, and 5 are
defined in Eq. (2.8). We find that the above neutrino
mass matrix m, fulfills

2 0
m,| -1 ]=10]. (3.11)
0

It implies that the column vector (2, —1,—1)7 is an
eigenvector of m, with zero eigenvalue. Sub-
sequently we follow the procedure given in Sec. II
to perform a unitary transformation U,

m, = UTm, U, (3.12)
with
21
i 5 0
= = 1 1 _ 1
UI/] UTB NV V2 s (313)
1 1 1
Ve V3 V2

where Urg is the well-known tribimaximal (TB)
mixing matrix. The neutrino mass matrix m,, is block
diagonal, and its entries are given by

7= V6(x — 1)mye™,
w=2(m, + (x = 1)>mye™). (3.14)

y = 3mge™,

Furthermore, m,, can be diagonalized by the unitary
matrix U,, given in Eq. (2.16), i.e.,

Ufzm'DUﬂ = diag(O,mz,m3). (315)

The expressions of m,, m3 and U ,, can be straight-
forwardly obtained by inserting the parameters y, z
and w into Egs. (2.17)—(2.19). As a result, we can
read out the lepton mixing matrix as
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2 cosd e sinf
3 V3 V3
Upmns = _\/Lé c%ﬂ + e’i‘i’/z_inﬁ e"‘V\;i3_n6' _ C?/Sie P,
_ 1 cosf_ e sind cosé + e sin@

V6 V3 V2 V2 V3

(3.16)
with

P, = diag(1, e'WH0)/2 eilzvtal/2) - (3.17)

In the following, the Majorana phase matrix P, will
be omitted for simplicity. We see that the neutrino
mixing matrix is the so-called TM1 mixing pattern
in which the first column of the tribimaximal mixing
is preserved. The three lepton mixing angles for this
mixing matrix are

sin%6 2cos20
1 26 p— 1 29 = ———
ST 37 SITY12 54 cos20’

sin2923 _ 1 3 \/Esin 20 cos yr

3.18
2 5 + cos 260 ( )

Eliminating the free parameter @, a sum rule between
the solar mixing angle 6, and the reactor mixing
angle 5 is found,

2
c08%0,,c08%0,3 = 3 (3.19)

Plugging in the best-fit value of sin® ;5 = 0.02241 [1],
we find that the solar mixing angle is

sin? 0, ~ 0.318, (3.20)

which is within the 3¢ region [1]. For the lepton
mixing matrix in Eq. (3.16), the two CP invariants are
given by

sin 26 sin y

6v6

1
Jep = I, = %sinZZH sin(p — o).

(3.21)

The so-called TM1 mixing matrix indicates the
following sum rule among the Dirac CP phase dcp
and mixing angles:

(3 = 5c0s26,3) cot20,3
4sin@31/3¢c0s20;5 —1°

It is easy to check that 8,3 = 7/4 leads to cos .p = 0
which corresponds to maximal CP violation §qp =
+7/2. The neutrino masses m, and ms depend on all
four input parameters x, 17, m, and m, while the mixing
parameters and mass ratio m3/m3 only depend on x,
and r = mgy/m,. In the case where #, m, and r are

cosScp = (3.22)
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free parameters, we find that the experimental data on
the mixing angles and the neutrino masses can be
achieved for some special x.

In order to show concrete examples, some bench-
mark values of the parameters x and # are considered
and the numerical results for the mixing parameters
and neutrino masses are listed in Table I'V. The solar
flavon alignment ¢, for these representative values
of x takes a relatively simple form; consequently we
expect that it should not be difficult to be realized
dynamically in an explicit model. We show the
predictions for the effective Majorana mass m,, in
neutrinoless double beta decay in the last column
of Table IV, where the effective mass m,, is defined
as [67],

Moo = |m U% + myU?%, + myU2,). (3.23)

From Table IV, we can see that the measured values of
the lepton mixing angles and the mass splittings Am3,
and Am3, can be accommodated for certain choices of
x, n, m, and r. For the benchmark value x = —1, the
solar flavon alignment is (¢s) = (1,—1,3)"v,,,
which is exactly the littlest seesaw model with
CSD(3) originally proposed in Ref. [15]. The solar
vacuum (p) = (1,-3,1)"w, for x =3 corre-
sponds to another version of the littlest seesaw model
[16]. Moreover, the value x = 4 leads to the vacuum
(pso1) = (1,4, -2)" v, , and the CSD(4) scenario [17]
is reproduced. From Table IV, we see that a smaller y>
than the original LS model [ 15-17,74] can be achieved
for the values x = —1/2 and n = +x/2, and the
corresponding vacuum alignment () (2, —1,5)
seems simple and it should be easy to realize in a
concrete model.

Furthermore, we perform a comprehensive numeri-
cal analysis. The three input parameters x, r and # are
randomly scanned over x € [-20, 20], r € [0, 20] and
n € |-, x]. We only keep the points for which the
resulting mixing angles sin®6;; and the mass ratio
m3/m3 are in the experimentally preferred 3o regions
[1]. The parameter m, can be fixed by requiring that
the individual squared mass differences Am3, and
Am3, are reproduced. Then the predictions for the
CP-violating phases 6-p and f and the neutrino
masses as well as m,, can be extracted. In the end
we find that the allowed regions of the parameters
x, ||, and r are [-2.072,—-0.287] U [2.463, 4.683],
[0.4147,0.8617x], and [0.0400, 0.166], respectively.
As regards the predictions for the mixing angles, we
find that any values of sin? #,5 and sin® 6,5 in their 3¢
ranges can be achieved. The the solar mixing angle
is in a narrow region 0.317 < sin%6;, < 0.319,
which arises from the TM1 sum rule in Eq. (3.19).
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TABLE IV. The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the effective Majorana mass m,,
for the breaking pattern N, with (G, Gy, Geo1) = (25, ZY, Z5V) and X,; = {1, SU}. Here we choose many benchmark values for the
parameters x and 7. Notice that the lightest neutrino mass is vanishing m; = 0.

(psot) /vy,  x n m, (meV) r 2 sin?@3 sin?0, sin’0y; Scp/m B/m my (meV) ms (meV) m,, (meV)
(1.3,-1)7 3 £Z 26843 0.0998 19.625 0.0222 0318 0488 F0.516 F0.403 8586  50.263 2.680
(1.-1,3)7 -1 £Z 26798 0.101 10.716 0.0225 0318 0513 +0.482 F0401 8.628  50.212 2.694
(1,4,-2)7 4 +£4 35249 0.0565 14.196 0.0241 0317 0.575 F0.398 F0.474 8316  50.609 1.990
+£32 36720 0.0532 3.841 0.0227 0318 0610 F0338 F0.554 8560  50.297 1.954
(1,=2,4)7 -2 +£% 35242 0.0566 68.409 0.0243 0317 0425 =+0.601 F0473 8339  50.581 1.995
1LI,-HT 7 +3 31121 00734 6567 0.0231 0318 0.541 F0.444 F0.447 8462  50.425 2.285
+4 33.006 0.0674 9.388 0.0210 0319 0589 F0.366 F0.544 8.806  49.994 2.223
(L8, =37 8 +3r 24618 0.121 45788 0.0209 0319 0456 F0.564 F0.385 8841  49.949 2.990
(LR, -Hr 10 43 30566 0.0777 4.332 0.0218 0318 0.548 F0.432 F0.474 8.689  50.139 2.375
(1.—3.5)7 -3 +£% 22359 0.145 2475 0.0220 0318 0.599 =+0.354 F0316 8.672  50.158 3.242
(1,-3.9)7 =3 £3 31101 0.0737 35893 0.0233 0317 0460 =+0.555 F0.445 8493  50.386 2.293
(1,-2.97 -2 43 24560 0.123 13.654 0.0212 0319 0.545 +0.435 F0.383 8.888  49.890 3.009
(1,-3. 97 —% £32 30550 0.0780 38.724 0.0220 0318 0453 +0.567 F0.472 8716  50.105 2.383
(1,=3.1H7 =3 +£3 24578 0.120 2.837 0.0222 0318 0551 +0429 F0.367 8.668  50.164 2.948
(L,=3. )7 =3 +£3 30265 0.0802 46.446 0.0213 0319 0450 =+0.573 F0.486 8.824  49.971 2.428
(L,=3. 7 -3 +z2 22215 0.142 11.399 0.0232 0317 0.606 =+0.347 F0.297 8312  50.614 3.156
(1,—$H7 -4 £3 24587 0.118 2595 0.0228 0318 0554 +0.425 F0.357 8532  50.335 2911
(1,=8.257 —& +£3r 30090 0.0816 53.229 0.0208 0.319 0448 +0.577 F0.494 8887  49.891 2.456
(1,-1,H7 -1 +£3 30772 0.0762 35.632 0.0225 0318 0455 =+£0.562 F0.461 8.627  50.213 2.346
(1,=2. )7 =2 +£3 24592 0.117 4998 0.0231 0318 0556 +0.422 F0.351 8441 50452 2.886

The predicted ranges of the Dirac CP phase |5¢p| and
Majorana CP phase |f| are [0.2997x,0.6247] and

n € [—r, x]. We will not explicitly mention this point
in the following.

[0.2737,0.6087], respectively. These predictions (i) X = {S,U}

may be tested at future long-baseline experiments,
as discussed in Ref. [74]. The allowed ranges of the
mixing parameters for other breaking patterns are
also obtained by randomly varying the parameters
x, r and # in the ranges x € [-20, 20], r € [0, 20] and

From Table II, we find that the VEV of ¢ is
proportional to (1,1 + ix,1—ix)”. Inserting the
vacuum configuration of the flavons ¢, and ¢,
into Eq. (2.8), we can obtain the light effective
Majorana neutrino mass matrix as follows:
|

0 0 O 1 1—ix 1 +ix
my,=m,| 0 1 —1|+men| 1-ix (1-ix)> 1+x* |. (3.24)
0 -1 1 I+ix  14+x2  (1+ix)?
|
In the following, we will not give the expression of m, for = 3m e 7z =ivV6xmee™, w=2(m,—x*me™).

each possible case, since it is just Eq. (2.8) with the

appropriate VEVs replaced. It is easy to check that the

(3.25)

column vector (2,—1,—1)7 is an eigenvector of m, with

zero eigenvalue. In order to diagonalize the light neutrino ~ The neutrino mass matrix m, can be exactly diagonalized
mass matrix m, in the above equation, we first performa by U,, shown in Eq. (2.16). It is easy to check that the
unitary transformation U,;, where U, is taken to be = PMNS matrix takes the same form as Eq. (3.16), and it is
the TB mixing matrix Urg. Then the neutrino mass  also a TM1 mixing matrix. Therefore the expressions of
matrix mj is of block diagonal form with nonzero  the mixing angles and CP invariants are still given by

elements y, z and w,

Egs. (3.18) and (3.21), respectively. However, the explicit

075035-12



LEPTON MIXING PREDICTIONS FROM S, IN THE ...

PHYS. REV. D 99, 075035 (2019)

TABLE V. The predictions for the lepton mixing angles, CP viol

ation phases, neutrino masses and the effective Majorana mass m,,

for the breaking pattern Ny with (G, Gy, Gyo) = (21,29, Z5Y) and X = {S, U}. Here we choose many benchmark values for the

parameters x and 7. Notice that the lightest neutrino mass is vani

shing m; = 0.

(Pso1) /v, x n m, (meV) r Jai sin? 03 sin? 0y, sin’ 0y Scp/n B/m my (meV) m3 (meV) m,, (meV)
(1,1 +4i,1F 4i)T +4 0 47.378 0.0320 15.257 0.0228 0.318 0.5 F0.5 0 8.562 50.295 1.515
(1,14 %, 1F %)T :I:% 0 43.643 0.0383 20.623 0.0211 0.319 0.5 F0.5 0 8.734 50.083 1.670
(1, 1+ %, 1F %)T :I:?1 :I:%” 19.427 0.187 7.914 0.0230 0.318 0.603 =£0.352 F0.888 8.361 50.554 3.626
(1,1 i%, 1 F %)T ig i%" 19.634 0.187 2.177 0.0223 0.318 0.602 =40.350 F0.881 8.619 50.222 3.675
:I:%” 19.242 0.192  2.540 0.0228 0.318 0.583 +0.382 ¥0.909 8.455 50.434 3.694
+32 19.030 0.195 6.400 0.023 0.318 0.570 +0.403 F0.926 8.362 50.552 3.702
6
ZF%” 19.049 0.194 56.898 0.0229 0.318 0.430 =+0.597 +0.926  8.355 50.561 3.696
(1,14 %, 1F %)T j:% T 18.720 0.201 21.977 0.0231 0.318 0.5 +0.5 1 8.335 50.586 3.754
i% 19.777 0.187 6.184 0.0218 0.318 0.602 =40.348 F0.876 8.792 50.011 3.705
+4 19391 0.192 0.557 0.0223 0.318 0.583 +0.381 F0.905 8.634 50.204 3.726
5
+32 19.184 0.195 0.917 0.0226 0.318 0.570 +0.402 F0.923 8.546 50.317 3.736
6
:F%” 19.204 0.194 51.371 0.0225 0.318 0.431 =£0.598 +£0.923 8.537 50.328 3.729

dependence of the parameters y, z and w on m,, my, 1, x
differs from that of the above case with X,,; = {1, SU}.
Hence distinct predictions for mixing parameters are
reached. We can check that the neutrino mass matrix
m, in Eq. (3.24) has the following symmetry properties:

mu(_x? r, 77) = Prlr32mu(x’ r, W)PISZ,

my(=x,r,—n) = mi(x,r,n). (3.26)
The former implies that the reactor and solar mixing
angles are invariant, the atmospheric angle changes from
0,5 to ©/2 — 6,5 and the Dirac phase changes from §.p to
7+ 6cp under the transformation x — —x. The latter
implies that all the lepton mixing angles are kept intact
and the signs of all CP violation phases are reversed by
changing x — —x and n — —». Once the values of x and 5
are fixed, the light neutrino mass matrix m, only depends
on two free parameters m, and m; whose values can be
determined by the neutrino mass squared differences
Am3, and Am3,. Then we can extract the predictions
for the three lepton mixing angles and CP violation
phases dcp and . The best-fit values of the mixing
parameters and neutrino masses for some benchmark
values of x and 5 are shown in Table V. The most
interesting points are 7 =0 and z which predict a
maximal atmospheric mixing angle, maximal Dirac phase
and trivial Majorana phase. The reason is because the
general neutrino mass m, shown in Eq. (3.24) has an
accidental ur reflection symmetry in the cases of n =0
and z [75]. Realistic values of the mixing angles and mass
ratio m3/m3 can be obtained for x = £4, £7/2, +7/6 in
the case of # =0 or z. In order to describe the exper-
imental data at the 3¢ level [1], the three input parameters
are constrained to be |x| € [1.045, 1.346] U [2.952,4.754],
|n] € [0,0.112z] U [0.674x, z] and r € [0.0250,0.0519] U

[0.169,0.214]. For this mixing pattern, the solar angle 6,
is predicted to be in the range of [0.317, 0.319] and the
other two mixing angles 053 and 6,3 can take any values
within their 3¢ ranges. Furthermore, the absolute values
of the two CP phases dcp and S are predicted to lie in the
regions [0.2987,0.623z] and [0,0.251z] U [0.830x, x],
respectively.

(NZ) (Gl’ Gatmv Gsol) = (Z3T’ ZgT’ ZgU)’
STS,T?}

(1) Xsol = {I’SU}

The unitary transformation U, is an identity
matrix up to a permutation of columns because
the residual symmetry G; = Z} is diagonal in our
working basis. The possible residual CP transfor-
mations X, and the corresponding VEVs of the
flavon field ¢, are the same as those of case N.
Here the VEVs of the flavon ¢,,, are proportional to
(1, 20?, —2w)7, ie.,

Xam = {S’

(Pam) = vy, (1, 20, 20)7, (3.27)
where v, is areal number with dimensions of mass.
For X,; = {1, SU}, the alignment of ¢ is given in
Eq. (3.8). The light neutrino mass matrix m, can be
easily obtained from Eq. (2.8). After performing a
TB transformation Urg, the light neutrino mass
matrix m, will have the block-diagonal form m]
in Eq. (2.13) for the NO case, and the nonzero
elements y, z and w in m,, take the following forms:

y = 3(m, + mge™),
7 =3V2im, +V6(x — 1)mge™,

w=—6m, +2(x —1)>mge™. (3.28)
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TABLE VI. The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the effective Majorana mass m,,
for the breaking pattern N, with (G, Gy, Geor) = (2%, Z57, Z5Y) and X, = {1, SU}. Here we choose many benchmark values for the
parameters x and 7. Notice that the lightest neutrino mass is vanishing m; = 0.

bso)/ Vg, x n m, (meV) r o sin? @3 sin? 0y, sin?60,3 Scp/n f/m my (meV) ms (meV) m,, (meV)
1,4,-2)7 4 =3 4030 0369 8810 0.0222 0318 0519 -0473 -0.640 8581  50.270 3.158
1,5,-3)" 5 —% 4120 0226 38945 0.0223 0318 0452 -0.567 —0.715 8726  50.093 3.742
1,-2.4)7 -2 ¥ 4050 0365 22417 0.0227 0318 0482 -0.525 0.642 8570  50.285 3.182
1,-3,5" -3 Z 4132 0224 3930 0.0226 0318 0549 -0432 0717 8720  50.100 3.755
=577 =5 3 3955 0.20 4755 0.0224 0318 0.601 —0352 0765 8.781  50.025 3.835
-6,8)7 -6 3 3832 0.0935 3.674 0.0224 0318 0.607 —0342 0778 8502  50.374 3.737
1,1,-3)7 I -4 3862 0531 3408 00225 0318 0572 -0.397 -0.577 8783  50.022 2.512
-3 3574 0600 5012 0.0228 0318 0603 -0.350 —0.564 8.430  50.466 2.024
(LY, =pr -2 4011 0190 43.619 0.0221 0318 0446 -0.576 —0.733 8434  50.462 3.690
(=217 -7 2 4022 0189 4322 00224 0318 0.554 -0424 0.734 8430  50.466 3.702
(1= - 3z 3889 0106 2511 0.0224 0318 0.604 —0.347 0772 8630  50.210 3.782
(1,-3.1H7 -3 4 3858 0474 48.139 0.0230 0318 0437 -0.587 0.596 8499  50.377 2.609
(1= 97 10 2z 4056 0200 2.635 0.0224 0318 0.553 -0426 0.729 8519  50.352 3.718
(1,-1.)7 -1 32 4137 0409 32.646 0.0231 0318 0476 —0.532 0.623 8.884  49.895 3.175
3835 0454 49278 0.0228 0318 0440 -0.583 0.604 8380  50.529 2.633
(1,=5.1)7 -9 3 3979 0326 27.092 0.0224 0318 0488 -0.517 0.660 8309  50.618 3.195
(1, =427 122 4196 0246 10.766 0.0227 0318 0545 —0437 0.707 8.896  49.879 3.787
(1,=3.2Hr -3 2 4074 0205 2306 0.0225 0318 0552 -0428 0.726 8565  50.291 3.727
(1,-3 1)1 8 4z 3877 0491 49.170 0.0231 0318 0435 -0.591 0.590 8.600  50.245 2.591
(1,-2.27 -2 3 4118 0399 29.007 0.0230 0.318 0477 -0.531 0.627 8.817  49.980 3.176
43823 0443 51.042 0.0228 0318 0442 0581 0.609 8313  50.614 2.648
(1,-4.2hr 1L 3z 3992 0334 25304 0.0225 0318 0486 -0.519 0.656 8358  50.558 3.192

This implies that the first column of Urg is an notice that the vacuum (¢y) o (2,7,-3)7 for

eigenvector of m, with zero eigenvalue. Hence the
lepton mixing matrix is the TM1 mixing pattern. In
order to achieve the Dirac CP phase .p around
—n/2 which is preferred by the present data [1], we
take U; = P3;. Then the PMNS matrix can be
obtained by exchanging the second and third rows of
the mixing matrix in Eq. (3.16). Comparing with the
expressions of the three mixing angles in Eq. (3.18),
sin> @,; becomes 1 —sin?6#,; and the other two
mixing angles are kept intact. The overall sign of
the Jarlskog invariant Jp in Eq. (3.21) is reversed
while the Majorana invariant /, is invariant. The sum
rules among mixing angles and Dirac CP phase in
Egs. (3.19) and (3.22) are fulfilled as well.
Similar to previous cases, we perform a y°
analysis for the neutrino mass matrix, and the
numerical results for some benchmark values of x
and # are reported in Table VI. We can see that the
measured values of the mixing angles and the
neutrino masses can be well accommodated and
the Dirac CP phase dcp is approximately maximal
for all the typical values of x and #. Furthermore, we

(i)

075035-14

x=17/2, n=—4x/5 is relatively simple and it
can describe the experimental data quite well.
Similar to the LS model [15-17,74], we expect that
this alignment might provide an interesting oppor-
tunity for model building. Requiring all three mixing
angles and the mass ratio m3/m3 to lie in their 3¢
ranges, we find that the allowed regions of the para-
meters x, 7, and r are [—9.433,—1.314] U [3.189,
7.120], [-0.8547, —0.614x] U [0.5557,0.831x], and
[0.0485, 0.756], respectively. The possible values
of §cp lie in the interval [—0.6237z, —0.2967], and
the allowed range of the Majorana phase is
[-0.7737,—0.5277] U [0.5587,0.8107z]. We see that
this breaking pattern can accommodate a nearly
maximal Dirac CP phase. The other mixing angles
except 6y, can take any values within their 3¢
ranges. The solar mixing angle sin’ 8, is close to
0.318 and this is generally true for TM1 mixing, as
shown in Egs. (3.19) and (3.20).
Xsol - {S ’ U}

The explicit forms of the vacua of ¢, and ¢y,
invariant under the assumed residual symmetries
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TABLE VIL

The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the effective Majorana mass m,,

for the breaking pattern N, with (G, Gy, Gso1) = (21,237, Z3Y) and X, = {S, U}. Here we choose many benchmark values for the
parameters x and 7. Notice that the lightest neutrino mass is vanishing m; = 0.

sol)/ U X n  m, (me r Xmi SN~ 03 SN~ 0y SN~ Up3 Ocp/ T T m, (IMe ms (INe m,, (IMe
b (meV) min SIN* 013 sin? 6y sin® 0y & (meV) mj3 (meV) (meV)
(L1+3%,1-3)7 3 7 35677 1044 16323 00218 0318 05 -05 0 8526 50343 1.560
(L1=Z 1427 -1 _z 1534 1111 2981 00215 0319 0590 0367 0745 8535 50330  2.806
(1,1 =3i,1+3i)T -3 z 1.474 1491 44990 0.0234 0.317 0.444 0.576 —-0.848 8.674 50.157 3.498
-% 1.479 1484 4.378 0.0233 0.317 0.556 0.423 0.849 8.699 50.126 3.501
z 1.461 1.503 36.885 0.0224 0.318 0.453 0.565 —-0.874  8.568 50.288 3.537
-£ 1.464 1.498 20928 0.0223 0.318 0.547 0.434 0.874 8.587 50.262 3.538
(1,1 —4i, 1 +4i)T —4 —37” 1.600 0.853 4.993 0.0217 0.319 0.61 0.333 0.667 8.557 50.303 2.322
—%" 1.596 0.859 4.271 0.0228 0.318 0.612 0.336 0.651  8.585 50.265 2.278
can be found from Table II, ie., (Pym) N3 (G Gam. Goot) = (28,25, 23Y), Xym = {1.S,

(1,207, —2w)" and () o« (1,1 +ix, 1 —ix)T.
Similar to previous cases, we can perform a TB
transformation to obtain the block-diagonal neutrino
mass matrix #2,. The nonvanishing elements y, z and
w of m), are given by

y = 3(mg + mye),
7 = V6i(\3m, + xme'),

w = =2(3m, + x*me™). (3.29)

We can further introduce the unitary transformation
U,, to diagonalize the neutrino mass matrix m,, as
generally shown in Egs. (2.15) and (2.16). As a
consequence, the lepton mixing matrix is also the
TMI1 pattern, and the sum rules in Eqgs. (3.19) and
(3.22) are satisfied as well. However, the depend-
ence of the mixing parameters on the input param-
eters m,, my, n and x are different, consequently the
above two mixing patterns of N, with X, =
{1,8U} and X, = {S, U} lead to different predic-
tions. In Table VII, we present the results of our y?
analysis for some simple values of x and #. We find
that accordance with experimental data can be
achieved for certain values of m, and r. In the
case of 7 = m, both the atmospheric mixing 6,5 and
the Dirac CP phase J-p are maximal, while the
Majorana CP phase f is trivial. We notice that
realistic values of mixing angles and m3/m3 can be
obtained for x = 3/2, =3 in the case of # = 0 or z. If
we require that sin”6;; and m3/m3 lie in their 3¢
regions [1], we find that the allowed regions of the
parameters x, 7, and r are [—12.192,-2.744] U
[1.350,1.534], [-=,0.326x] U [0.8047,z], and
[0.0330, 1.750], respectively. The predictions for
the CP phases are |6cp|€[0.2957,0.6247] and
p € [-n,—0.749z] U [-0.2487, x].

TST*U,T>STU}, X0 = {S, U}

For the concerned residual flavor symmetry G, = Z5Y
in the solar neutrino sector, the residual CP transformation
X,o1 can only be X,,; = {S, U} in order to achieve agree-
ment with experimental data. In this case the charged lepton
diagonalization matrix U, is also the identity matrix, and
the vacuum expectation values of the flavon fields ¢,,, and
¢y Tead as

(Gam) = vy, (LD {sor) = vy, (1.1 +ix, 1 = ix)".

(3.30)

We find that the column vector (2,—1,—1)7 is an eigen-
vector of m, with zero eigenvalue. This neutrino mass
matrix m, can be simplified to a block-diagonal form by
performing a Urg transformation. Then we can obtain the
three nonzero elements y, z and w:

w=—=2x>m,e.

(3.31)

y=3(m, +mee™), z=ivV6xmge™,

The neutrino mass matrix m) can be diagonalized by
performing the unitary transformation U ,. Thus the lepton
mixing matrix is the TM1 pattern shown in Eq. (3.16). The
expressions of the lepton mixing angles are the same as
those in Eq. (3.18) and the two CP invariants J-p and /; are
still given by Eq. (3.21). The sum rules in Egs. (3.19) and
(3.22) are satisfied as well. Furthermore, we find that the
neutrino mass matrix m, has the following symmetry
properties:

m,(—x,r,n) = Plym,(x,r,n)P 3,

my(—x, r,—n) = mj(x,r,n). (3.32)
These identities indicate that the mixing angles 6,
and 6,3 remain invariant, 6,3 becomes 7z/2 — 6,3 and the
Dirac phase changes from 6cp to 7+ 6cp under the

075035-15
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TABLE VIIL

The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the effective Majorana mass m,,

for the breaking pattern N3 with (G}, Gy, Gsot) = (2,25, Z5Y) and Xy, = {S, U}. Here we choose many benchmark values for the
parameters x and 7. Notice that the lightest neutrino mass is vanishing m; = 0.

(Pso1) /v, x n m,(meV) r  yi.o sin?6 sin? 0, sin? 0,3 Scp/n B/m my (meV) my (meV) m,, (meV)
(1,1 +4i,1 F4)7 +4 7 3.080 047320478 0.0209 0319 0.5 +0.5 0 8.562  50.296 1.624
+32 3115 0.46510.932 0.0239 0317 0.532 +0.457 F0.252 8.618  50.223 2.328
F3Z 3107 0466 34.132 0.0239 0317 0.468 +0.543 £0.252 8.598  50.248 2.321
+4 3106 0467 7.318 0.0229 0318 0.527 +0.464 F0.201 8.609  50.235 2.113
F4 3100 0468 26.561 0.0229 0318 0.474 +0.536 £0.201 8592  50.255 2.107
+3 3100 0468 7.928 0.0223 0318 0.523 +0.469 F0.168 8.599  50.246 1.980
F3Z3.095 0469 24.266 0.0223 0318 0.478 +0.531 £0.168 8.585  50.264 1.975
(L1+£5i,1F5)7 +£5 £2  3.055 0310 12.152 0.0207 0319 0.536 +0.447 F0.503 8.630  50.210 3.198
FIZ  3.047 031138352 0.0207 0319 0.464 +0.553 £0.503 8.606  50.238 3.190
+2  3.045 0309 12.182 0.024 0317 0.531 +0.459 F0.670 8.556  50.303 3.609
FI  3.038 031034.705 0.024 0317 0.469 +0.541 £0.670 8.537  50.328 3.603
+2 3052 0309 5409 0.0228 0318 0.534 +0.453 F0.603 8.594  50.252 3.462
FZ 3045 0310 30.253 0.0228 0.318 0.466 +0.547 +0.603 8.574  50.280 3.455
(L1+3i 1 F20)"7 +% £% 3.067 0.378 10.006 0.021 0319 0.535 +0.450 F0.335 8.602  50.243 2.682
FZ 3059 037935123 0.021 0319 0.465 +0.550 £0.335 8.580  50.271 2.675
+3¥ 3074 0376 4.416 0.0226 0.318 0.538 +£0.447 F0.403 8.602  50.243 2.931
F3Z 3066 0378 32.040 0.0226 0.318 0.462 +0.553 £0.403 8578  50.274 2.923
(Lixi1FdnT£4 0 3.032 0258 15.565 0.0229 0318 0.5  +0.5 1 8.578  50.274 3.816
+2 3.045 0.258 10.643 0.0213 0319 0.523 +0.467 F0.752 8.636  50.202 3.642
FI 3040 0.25827.523 0.0213 0319 0477 £0.533 £0.752 8.621  50.220 3.637
+2  3.042 0258 9.429 0.0219 0318 0.519 +0.473 F0.802 8.619  50.222 3.705
FI  3.038 0.25823.435 0.0219 0318 0.481 +0.527 +0.802 8.607  50.237 3.701
+2Z  3.040 0258 9.667 0.0222 0318 0.516 +0.477 F0.835 8.608  50.235 3.739
FLI 3036 0258 21.569 0.0222 0318 0.484 +0.523 £0.835 8.598  50.248 3.736

transformation x — —x. Moreover, by changing x to —x
and 7 to — simultaneously, all the lepton mixing angles are
unchanged and the signs of all CP violation phases are
reversed. Detailed numerical analyses show that accor-
dance with experimental data can be achieved for certain
values of x, m,, r and 7, and the corresponding benchmark
numerical results are listed in Table VIII. We find that
acceptable values of the mixing angles and m3/m3 can be
obtained for x = £4, n = 7 and x = £11/2, n = 0. If all
three mixing angles and m3/m3 are restricted to their 3¢
regions [1], the viable ranges of the input parameters |x| and
rare [3.641, 5.911] and [0.213, 0.568] respectively while
any value of 7 € [-x, z] is viable. Then the atmospheric
mixing angle sin’#,; and the Dirac CP phase dqp are
predicted to be 0.458 < sin’6,; <0.542 and |5p| € [0.4437,
0.557x], respectively. The Majorana CP phase f can take
any value between —z and z.

In summary, we find that all three of the above breaking
patterns A;, A/, and N3 predict a TM1 lepton mixing
matrix and the experimental data [1] can be described very
well. All three breaking patterns predict a normal mass

hierarchy with m; = 0 and the sum rules in Egs. (3.19) and
(3.22). In fact these two sum rules are common to all TM1
mixing matrices. The prospects for testing the two sum
rules in future neutrino facilities have been discussed [76].
Under the assumption of TM1 mixing, the structure of the
Dirac mass matrix has been analyzed in Refs. [77,78] in the
framework of a two right-handed neutrino seesaw model,
generally with more parameters are involved than in the
tridirect CP models.

W) (Gr. Gum: Goar) = (25. 23, ZY)), Xy = {SU.
ST?S,T?, T*STU}, X = {1,U}

This breaking pattern has been studied in great detail
by us [61]. Hence we shall not repeat the analysis here.
When all three lepton mixing angles and the neutrino mass
ratio m3/m? are restricted to their 3o regions [1], we find
that the parameters x, |n| and r should be in the ranges of
[—6.238, —3.365], [0.347x, z] and [0.154, 0.607], respec-
tively. Moreover, we show the results of the y? analysis for
some benchmark values of x and # in Table IX. The case of
x=-=7/2, n=x in Table IX has been realized in a
concrete model [61]. In Sec. V of the present work, we
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TABLE IX. The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the effective Majorana mass m,,
for the breaking pattern Ny with (G}, Gy, Geot) = (21, Z557°, ZY) and X = {1, U}. Here we choose many benchmark values for the
parameters x and 7. Notice that the lightest neutrino mass is vanishing m; = 0.

x n  m, (meV) r X sin@,; sin?6,, sin’6,;  Scp/m p/r my (meV) ms (meV) m,, (meV)
%T” 3.708 0.423 48.401 0.0227 0.336 0.441 —-0.587 —-0.264 8.566 50.289 2.825
— %’ 3.723 0.421 5168 0.0226 0.336 0.560 —-0.412 0.264 8.603 50.242 2.840
—4 %" 3.674 0.430 51.698 0.0205 0.338 0.451 -0.576 -0.211 8.535 50.331 2.569
— %" 3.686 0.428 16.028 0.0204 0.338 0.549 —-0.424 0.211 8.565 50.291 2.581
3?” 3.723 0.266 67.144 0.021 0.345 0.424 —-0.621 -0.422 8.594 50.252 3.545
- 35—” 3.745 0.264 11.786 0.0211 0.345 0.577 -0.379 0.422 8.643 50.193 3.565
6 25—” 3.720 0.181 69.680 0.024 0.349 0.428 —-0.606 —0.627 8.441 50.452 3.980
— 25—” 3.738 0.180 17.443 0.0241 0.349 0.572 —-0.394 0.627 8.479 50.404 3.997
—% b4 3.716 0.557 17.524 0.0227 0.331 0.5 -0.5 0 8.611 50.232 1.647
0 %" 3.708 0.332 58.776 0.0216 0.341 0.429 —-0.609 —-0.352 8.567 50.289 3.271
T2 —23—” 3.727 0.330 7.352  0.0216 0.341 0.571 —0.391 0.352 8.611 50.232 3.289

shall construct a model to realize the breaking pattern
with  x=—-4 and 5= 43z/4. The -corresponding
best-fit values of the input parameters, mixing angles,
CP phases and neutrino masses are showed in bold font
in Table IX.

(NS)(GhGatm’Gsol) = (Kz(l&U) ’ZgU’ZgU)’ Xam = {U’ T}’
Xol = {U’ T}

In this case, the unitary transformation U, is the TB
mixing matrix Urg. From Table II, we find that the vacuum
alignments of the flavons ¢, ~ 3 and ¢, ~ 3’ are dictated
by the residual symmetry to be

T

= vy, (0, —w, @*)", 2x)T.

(@am) (Psot) = Vg, (1 wx, @

(3.33)

It is easy to check that the two column vectors {(¢,,) and
(¢hso1) are orthogonal to each other, i.€., {Pym)  (Pso1) = O.
This scenario is referred to as form dominance in the
literature [62—64]. We can straightforwardly obtain the light
neutrino mass matrix by using Eq. (2.8). In this case, (@)
and (¢.) are proportional to two columns of U, which is

the diagonalization matrix of m,,

2x 0 1

U =| James V8 \/laf:—z,cz diag(1, 1, e7%),
2((1”12%) % \ﬁ%ﬁ
(3.34)
with
Ulm,U, = diag(0,2m,, (1 +2x*)m,).  (3.35)

It implies that the three neutrino masses are 0, 2m, and
(1 +2x?)m; which are independent of the phase 7.
Including the contribution U; = Utg from the charged
lepton sector, we find that the lepton mixing matrix is
given by

V3 i
2¢/142x2 2 6(1+227)

_ _ 1-4x _ i 2-+x . _in
v= 2/30+22) 2 \fe(1+27) diag(1,1,e72).
_ 142x i x—1
6(1+22) V2 \f3(142:2)
(3.36)

The three lepton mixing angles read as

: 3x° . 2x2 4+ 1
s = gy Sl =5a

2)2

ey, — T2 3.37

SI~0h3 3(x2 i 2) s ( )

which are expressed in terms of one real parameter x.
Furthermore, we can derive the following sum rules among
the mixing angles:

1
Sin291200S2613 = Z s
sin2923 _ 6— 7Sin2913 + 2sin 9213 2(3 — 4Sin2913)
9cos“03
6 —sin26,; & 21/6sin 6,5

5 , (3.38)

where the first sum rule in Eq. (3.38) has already appeared
in the literature [37], and the sign “+£” in the second sum
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rule depends on the value of x. For the best-fitting value
of the reactor angle sin?#;; = 0.02241 [1], the solar
mixing angle is determined to be sin?#,, = 0.256 and
the atmospheric mixing angle is sin?#,; = 0.746 or
sin® @,; = 0.582. We see that the latter value of sin® 6y,
is compatible with the preferred values from the global data
analysis [1]. The value of sin® @, is rather close to its 3¢
lower limit 0.275. As a result, we suggest that this mixing
pattern is a good leading-order approximation since accor-
dance with experimental data should be easily achieved
after subleading contributions are taken into account in a
concrete model. Furthermore, we find that the two CP
rephasing invariants Jcp and [, are

(24 x)?siny

Jep=0. I, =- .
cp ! 24(1 + 2x%)

(3.39)

Hence the Dirac CP phase is trivial for any value of x. From
the expressions of mixing angles in Eq. (3.37) and the
Majorana invariant in Eq. (3.39), we find that the Majorana
CP phase f is determined to be
p=n+m. (3.40)
It implies that a trivial Majorana CP phase is obtained for
n =0 or n. For n = +x/2, the Majorana CP phase is
maximal. As an example, we take the representative value
x =—1/8. Thus the VEV of the flavon field ¢, is
proportional to (1, —w/8, —w?/8)" and the PMNS matrix is

| 8 V22 =2
U=—=| 4 —V22i 5v2 |diag(l,1,¢73).
N VDI 5V3 |ding(1.1.e7)
V2 -2V/11i -6
(3.41)
The three mixing angles are determined to be
sin%6,; = 1. 0.0227
13 ==Y ,
sin%@,, = . 0.256
12 = 3= U290,
25
in?0y; = — ~0.581. 3.42
SIN“073 43 ( )

Wee see that the reactor and atmospheric mixing angles are
compatible with the preferred values from the global fit [1]
at the 30 level. Furthermore, in the case of x = —1/8 the
two neutrino mass squared differences only depend on the
values of m, and r, as shown in Fig. 2. We find that
the best-fit values of the two neutrino mass squared
differences Am3, and Am3, can be reproduced.

In order to increase the readability of the paper,
the remaining three viable cases N, N7 and N are
moved to Appendix B. The reason is that the

14
- ' 2 -

L Am3, ]

L 5 4

13 Amg, _
So12b e -
11 -
10-|||||||E|||| ||||||||||||-
4.0 4.2 4.4 4.6 4.8 5.0

my(meV)

FIG. 2. Contour plot of Am%l and Am%2 in the r — m, plane for
the residual symmetry A5 with the benchmark value x = —1/8.
The 30 lower (upper) bounds of the neutrino mass squared
differences are labeled with thin (thick) solid curves, and the
dashed contour lines represent the corresponding best-fit values.

diagonalization matrix of the charged lepton mass matrix
and the phenomenologically interesting alignments of the
flavon ¢, may be not simple enough to be realized in a
concrete model.

IV. MIXING PATTERNS DERIVED FROM S,
WITH 10 NEUTRINO MASSES

From Table III, we see that the breaking of S, and CP
symmetries in the tridirect CP approach can lead to 18
viable mixing patterns with IO neutrino masses. In the
following, we proceed to study five viable cases among
them and present their predictions for the lepton mixing
angles, CP-violating phases and neutrino masses. The other
viable breaking patterns are shown in Appendix C. The last
two of the five breaking patterns in this section will lead to
the form dominance texture.

(1) (G1:Gum» Gso) = (25,257, 25)), Xaum={S.STS. T?},
Xsol = {1 ’ U}

The diagonalization matrix of the charged lepton mass
matrix mle, is a unity matrix because of the residual
symmetry G; = Z%. The given residual symmetries fix the
vacuum of the flavon fields ¢,,, and ¢, to be

(bam) = vg,(1. =207, 220)". (o) = v, (1. x.x)",
(4.1)

where x is real. The light neutrino mass matrix can be
simplified to a block-diagonal form m! by performing a
unitary transformation U,;, where the unitary matrix U, is
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0 —i x2=2x+4 iV6x
Tx2=2x+4 \/%CZ—TH
_ —iw’—ix V3x(2w?+x) 202 +x
Un = V2@ -214) /(P 2xtA) (T —2x14) (1P —2114) (4.2)
—ix—2iw _ V3x(x+20) —x—2w
V2(x2=2x+4) V(P2=2x14) (T2 -2x+4)  /2(7x2-2x+4)
As shown in Eq. (2.13), m! can be parametrized by three parameters y, z and w with
q v P y P y
o 2((x=4)m, + x*(x = 1)2mge™)
v x> =2x+4 ’
. V2(7x% = 2x + 4)((x = 4)m, + x(x — 1)m,e™)
x> —2x+4 ’
2 _ in
e (7Tx* = 2x + 4)(m, + mge™) . (4.3)

X2 —2x+4

The neutrino mass matrix m,, can be exactly diagonalized by a second unitary transformation U,, in Eq. (2.16). Then the
lightest neutrino mass m; is vanishing and the other two neutrino masses m; , can be obtained from Eq. (2.17). The lepton

mixing matrix is determined to be

X244 [ x—x+4 N

Tx*=2x+4 sin ¢ Tx*=2x+4 cos & Tx?—2x+4
U= __icosf _ \/3xe " sinf V3xcosO _ ieVsind X2—2x+4 P (4 4)

= - .
V2 10xt4 \/1—2xtd V2 2(7-2x+4) |
icos@ _ /3xe ™ sind ie sinf V/3xcosf x2-2x+4
7
R e e Y e SRV ET T

with

eilPtw)/2 0 0

For the IO neutrino masses, P, will always be defined
as in Eq. (4.5) and it will be omitted for simplicity in
the following. We see that the residual symmetry fixes
the third column of the mixing matrix to be
(V12x,Vx* =2x +4,V/x* =2x +4)7 up to normaliza-
tion. From the lepton mixing matrix given in Eq. (4.4),
we can extract the expressions of the mixing angles and CP
invariants as follows:

sin?03 = o sin6;, = cos?0
B4 ox+742° 2= ’
. 1 V3x(x? = 2x + 4) sin 20 cos yr
S 923 = -, Jcp:— s
2 2V/2(7x% = 2x + 4)3/?
= (x? = 2x + 4)?sin*20 sin(p — o) (4.6)

4(7x? = 2x + 4)?

|

Notice that the atmospheric mixing angle 6,5 is exactly
maximal and the reactor mixing angle 6,5 only depends
on the parameter x. Imposing the experimentally favored
30 region of the reactor mixing angle 0.02068 <
sin? 0,5 < 0.02463 [1], we find that the parameter x is
constrained to be in the narrow ranges [—0.134, —0.122] U
[0.115,0.126].

Subsequently we shall perform a comprehensive numeri-
cal analysis. The input parameters x, r and # are treated as
random numbers in the intervals [-20,20], [0, 20] and
[—7, 7] respectively; then we calculate the values of the
mixing parameters and mass ratio m?/m3. Imposing the
experimentally preferred 3¢ regions of the three mixing
angles and Am3,/|Am3,| [1], we find that the allowed
regions of the parameters x, || and r are [—0.134,
—0.122] U [0.115,0.126], [0.97967,0.99167x] and [8.630,
8.713], respectively. The mixing angles 63 and 6, can
take any values in their 3¢ intervals [1]. The Dirac CP
phase 6-p and the absolute value of the Majorana CP phase
B are predicted to be in the ranges [—-0.9447z, —0.9137] U
[-0.08737, —0.05637z] U [0.03267, 0.05037z] U [0.9507,
0.967z] and [0.1787,0.1937] U [0.294x,0.321x], respec-
tively. Notice that the Dirac CP phase is around O or z;
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consequently this breaking pattern would be ruled out if the signal of maximal d.p is confirmed by future neutrino
facilities.
As an illustrative example, we choose the solar alignment parameter x = —1/8 which gives a relatively simple vacuum

T
of ¢h¢;. Accordingly the third column of the PMNS mixing matrix is (\/9Z \ /%, A /%) ~ (0.147,0.699, 0.699)" which

is compatible with experimental data. The results of the y° analysis are

n = —0.983x, m, =5.721 meV, r = 8.673, 72 =20.595, sin?@,3 = 0.0215,
sin?6,, = 0.310, sin?6,; = 0.5, Scp = —0.07157, B = —0.304x,
m; = 49.377 meV, m, = 50.120 meV, mz =0 meV, m,, = 43.904 meV. (4.7)

(1.2) (Gl’Gatvasol) = (Z_Z;’ZgU’ZgU)’ Xatm = {I’SU}7 Xsol = {U’ T}

The combination m'Im; is enforced to be diagonal by the residual symmetry G; = ZI. The vacuum of the flavon ¢,y is
proportional to (2,—1,—1)7 for this breaking pattern. Here only the residual CP symmetry X,,; = {U, T} can give a
phenomenologically viable mixing pattern, and the VEV of ¢, is (¢hso1) = v, (1, x@, x*)T. From the alignments (),
{(¢so1) and Eq. (2.8), we can obtain the general form of the light neutrino mass matrix m,. Similar to the previous case, we
first perform a unitary transformation U,; on m, with

0 [ )30t __ivBx
2
Hx"—4x+2 11x%—4x42

U — “2xa—1 _ V3x(2xw+1) 2xw+1 (4 8)
1 V2(4x2-2x41) V24220 1)(112=4x+2) /112 —4xt2 | '
a1 ﬁx(Zanerl) —2x*—1

V2062 =2x0+1) 20422 1)(112=4x42) /112 —4x+2
Then the resulting neutrino mass matrix m,, is block diagonal and the nonzero elements y, z and w are

4(x = 1)%m, + x*(1 — 4x)*m e™

y:

8x% —4dx +2 '
VI —4x 4 2(4(x — 1)m, + x(4x — 1)m,e™)
©T 8x2 —4x + 2 ’
1122 — 4x +2) (4 in
W:—( X x;_ )( ma+mse ) (49)
8x*—4x+2

In general m,, can be diagonalized by the unitary matrix U,, given in Eq. (2.16) for the 1O case, and the lightest neutrino is
massless m3 = 0. Thus we can read out the PMNS mixing matrix as

_ 8x2—4x+2 —iy o 8x2—4x+42 V3x
V 112—4x+2¢ sin¢ 11°—4x12 €08 0 |1 —dx 12
U— __cosf + V/3xe™ sin 6 —esing __ V/3xcosf 4x22—2x+1 (4 10)
V2 \/2(1124x42) V2 V2(11:2—4x+2) Hx?=4x+2 | :

cosf | V/3xe™™ sin e¥sinf _ _ \/3xcos® 4x2—2x+1
V2 /211 —4x42) V2 2(1—axg2) VA2

which leads to the following expressions for the mixing angles and the CP invariants:

sin’0 _ sin’6;, = cos*0 sin’@ !
P2 —4x 42 2 ’ S
x(4x° —2x + 1)smn 20 sy x°—=2x + 1)*smn“20sm(p — o
V3x(4x% =2 1) sin 20 si 4x* -2 1)2sin?26 si
Jcp: N Il —_ - . (411)

2(11x% — 4x +2)3/? (11x% — 4x + 2)?
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Note that the atmospheric mixing angle 6,5 is exactly 45°.
The precisely measured value of the reactor mixing
angle 6,5 at the 30 level leads to the admissible intervals

€[-0.153,-0.138] U [0.108,0.118]. Furthermore, a com-
prehensive numerical analysis is performed. In order to be
compatible with experimental data, we find that the allowed
regions of the parameter x, |y| and r are [-0.153,
—0.138]U[0.108,0.118], [0.99657, z] and [5.666, 5.817],
respectively. The predictions for the two CP phases are
Scp € [-0.777x, —0.2237] U [0.1457, 0.2397z] U [0.761x,
0.855x] and || € [0.6367, z]. The mixing angles 6,53 and
01, can take any values in their 30 ranges. For the
benchmark values x = —1/7 and 5 = 7, the third column

T
of the mixing matrix is (1/1%,1/%,,/%) in the

experimentally favored range. The y? analysis gives the
following best-fitting values:

m, = 12453 meV,  r=>5707, 43, =26.114,
sin20;; = 0.0219,  sin0;, = 0.278,
sin20y; = 0.5, Scp=—0.51. p=n.
my =49374 meV,  my =50.117 meV,
=0 meV, my, = 21.261 meV. (4.12)

The Dirac phase -p is predicted to be exactly maximal
while the Majorana phase f takes a CP-conserving
value. The reason is that the neutrino mass matrix in
this case fulfills the pz reflection symmetry m

‘: =
vin=n
Pls,m;|,_. P13, for n =z Note that the phase n =z is
easy to dynamically realize in an explicit model; see
Ref. [61] for an example.
sU

(Z3) (G Gum: Guat) = (K™ ZIT 2), Xy = {SU,

T2,ST?S, T*STU}

(142x)e™" sin @

(1) Xsol = {1’ U}

In this case, the atmospheric and solar alignments
invariant under the actions of the residual sym-
metries are

<¢atm> = v¢a(1,a)2,a))T, <¢sol> = U(ﬁs(l’xv-x)Ty

(4.13)

where x is a real parameter. The diagonalization
matrix of the above neutrino mass matrix can be
written as U, = U, U,, with

2+x _ i \/§x
V32+2x4+53) /2420452
@’ —(2-w)x X—?
V30212x45:7)  \2t2etsa? |
® o—(2-0?)x w—x

V3 \/3(2+2x+5x2) \/2+2x+5x2

i~

=

I
SES

(4.14)

and U, is shown in Eq. (2.16) for the 1O case. After
performing the unitary transformation U,;, we
obtain a block-diagonal neutrino mass matrix m),
with nonzero elements

y=3m, += (1 —x)*mye™,

3
(x = 1)V2 + 2x + 5x*mye™,

(2 + 2x + 5x%)mge™. (4.15)

L»Jlr—tb.)lr—a

Including the contribution of the charged lepton

sector U; = Urg determined by Gy, = K‘(lS-U)’ we

find that the lepton mixing matrix takes the follow-
ing form:

(1+2x) cos

i(1-x)
vV 24+2x+45x2 vV 24+2x+5x2

\/2+2x+5x2

o __cosf (x=1)e~" sin ¢ eV sinf i(1+2x)
U= V2T \/2(2+2x+527) \/2(2+2x+5x2) V2 2(242x454%) (4.16)

cos @ (x—=1)e™¥ sin@ __ eVsing i(142x)

V202+208522)  \/2(242x45:2) V2 20242x45:)
Then we can read out the expressions of the mixing angles and CP invariants as
—1)? 1
Sin2913 = % s Sin2912 = 00529, Sin2923 = E s

Jop = (x =1)(2x + 1)?sin 20 siny ;o (2x + 1)*sin*20sin(p — o) (4.17)

4(2 + 2x + 5x2)3/?

4(2 + 2x + 5x%)?

The atmospheric mixing angle 0,5 is exactly maximal. Requiring that the three mixing angles lie in their 3o ranges [1], we

find that the admissible ranges of the input parameters x,

and r are [0.638,0.662] U [1.615, 1.699], [0.9657, 0.9757] and

[0.441,0.480] U [1.594, 1.630], respectively. The two CP phases are predicted to be 0.4877 < |5cp| < 0.5037 and
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0.09627 < |f] < 0.108z. Similar to previous cases, we also
give a benchmark example which could be easily achieved
in a model. The alignment parameter is x = 2/3, and thus
the vacuum of ¢y, is (1,3,3)"v,, . The fixed column of
the PMNS matrix takes the form (#5 , % , %)T ~
(0.141,0.7,0.7)". The best-fit values of the mixing param-
eters and neutrino masses for this example are

n = —0.969r, m, = 16.794 meV,
r=1579, 3. =33640,  sin’0,; =002,
sin0;, = 0.310, sin6,; = 0.5,
Scp = —0.497x, = 0.0964xr,
my = 49.377 meV, m, = 50.120 meV,
mz =0 meV, m,, = 48.137 meV. (4.18)

We see that 65 is rather close to its 3¢ lower limit 0.2068
[1]. Hence this mixing pattern could be considered as a
good leading-order approximation since accordance with
experimental data can be easily achieved after subleading
contributions are taken into account in a model.

(11) Xsol = {S’SU}

For this kind of residual symmetry, the solar
flavon alignment is (g ) o (14 2ix, 1 —ix, 1 —ix),
and the neutrino mass matrix can be easily read off
from Eq. (2.8). We choose the first unitary trans-
formation U, as

ix—1 —i—x

S

V3122 /3(107)

* iwx—1 —iw—x
Un=1v V3(1+2) B0+ |- (4.19)

w iw*x—1 —iw®—x

V3 L\ 3(14x2) \3(140)

Then the nonvanishing elements of the neutrino
mass matrix m,, are given by

7= =3ixV 1+ x*mge™,

w = 3(1 + x*)mye™. (4.20)

y = 3m, — 3x*>m e,

We can further diagonalize m,, by the unitary matrix
U,,. The lepton mixing matrix is determined to be of
the form

e~V sing o x
1+x2 V142
icos@ | xe”™sin@ xcosf  _ ie%sind 1
U=V "\ Vaied) | V2 Vo) | (4.21)
icos@ _ xe"¥sin® _ieVsing 1
V2 /2(140) V2(14+22) V2 V2(1+22)
Then the lepton mixing angles and CP invariants are
sin’f,; = x—2 sin’@,, = cos’0 sin’6,; = !
B=1 2 12 ) 3 =5
Jop= % sin 26 cos yr _sin®26sin(p - o) ‘ (4.22)

4(1 4 x2)32°

The atmospheric mixing angle is maximal as well. We find |x| € [0.145,0.159],

4(1 + x2)?

1| € [0.02457,0.03457] and r €

[0.945,0.954] in order to accommodate the experimental data at the 3o level [1]. The absolute values of the
CP-violating phases 6¢p and f are predicted to lie in the regions [0.4887,0.5037] and [0.0971x,0.1107] respectively.
For the benchmark value of x = 1/4v/3, the third column of the mixing matrix is (1/7,2v/6/7,2v/6/7)" ~
(0.143,0.700,0.700)7, and the results of the y* analysis are
n = 0.0307x, m, = 16.798 meV, r = 0.955, 2 =29.075,
sin%@,, = 0.310, sin%f,; = 0.5, bcp = —0.497x, p =0.0973x,
m; = 49.377 meV, my = 50.120 meV, m,, = 48.108 meV. (4.23)

sin?0;3 = 0.0204,

m3 =0 meV,

suU
(Z2) (G1, Gums Guot) = (K§™ 21V Z8Y), Xy = {U. T}, X0 = {U. T}
In this case, the residual CP symmetries are the same as those of the case N 5. Therefore we can straightforwardly read
out the lepton mixing matrix from Eq. (3.36) by exchanging the first and the third columns,
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_3x i V3
6(1+22%) 2 2¢/14222
_ _24x _i 1—4x . _in
U= 61122 2 3 a0 diag(e™2,1,1),
_oox=1 i 142x
3(1+42x2) V2 6(112:2)
(4.24)
which leads to mixing angles expressed by
§in6,; = > g 122
ST P s
1 —4x)?
0y, = =) 425
sin“63 3(1 + 82 (4.25)

The three mixing angles only depend on the parameter x.
Then the two sum rules among the three mixing angles
can be obtained. We find that the two sum rules here are
the same as the sum rules in Eq. (3.38). Moreover, the
CP-violating phases dcp and f are determined to be

sin§¢p = 0, p=n+n. (4.26)
This implies that the Dirac CP phase takes CP-conserving
values. The Majorana CP phase f differs from 5 by z. For
the benchmark value x =4, the alignment of the solar
flavon ¢, is proportional to (1, 4w, 4w?)" and the PMNS
matrix is

. 8 V22i V2
U=—=| 4 —V22i -5V2 |diag(e 2 1.1).
N VIi 53 |ding(et.1.1)
V2 =2V1li 6
(4.27)
The three mixing angles are then
sin?6,; = 1. 0.0227 sin®@,, = LS 0.256
13 =41 =Y , 12 = 3= 0290,
25
in?0y; = — ~0.581. 4.28
SIm~0h3 43 ( )

We find that the solar mixing angle 6, is rather close to its
30 lower bound [1]. Hence this mixing pattern can be
regarded as a good leading-order approximation.

(IS) (le Gatm’ Gsol) = (Z%T’ ZgU’ ZgU)’ Xatm = {1’ SU}’
Xsol = {U’ S}

The residual symmetry fixes the vacuum alignments of
¢atm and ¢sol to be

<¢atrn> = Uy, (2, -1, _l)T,

<¢sol> = ’Uqbs(lv I+ix,1- ix)T, (429)

which are orthogonal to each other. Hence the neutrino
Yukawa coupling is has the texture of form dominance
[62—64]. The column vectors (¢,m) and (pg,) in Eq. (4.29)
constitute two columns of the neutrino diagonalization
matrix U,

ivV2x

2 1
\/; V34252

3(3+2x2)
I I T 342ix . _iy
Uy B Ve \/3+2x2 \/6(34—2)(2) dlag(l’ € 1>’
_ 1 1—ix 2ix—3
V6 \f3t22  \/6(3+2x)
(4.30)
with
Ul'm,U, = diag(6m,, m,(3 +2x%),0).  (4.31)

The residual flavor symmetry G, = Z enforces the unitary
transformation, and U, is an identity matrix up to the
permutations of columns. Consequently the lepton mixing
matrix coincides with U, and it is the TM1 mixing pattern.
Then the lepton mixing angles and CP invariants are
determined to be

) 2x? . 3 ) 1
51n2913 = m, S11'12912 = m, Sln2923 = Ea
X 2siny
Jop=——2 =S 432
P94 6x? 94 6x2 (4.32)

We note that the atmospheric mixing angle 6,3 is maximal
and the other two mixing angles depend on a single real
parameter x. The following sum rule between the reactor
mixing angle and the solar mixing angle is satisfied:

cos? 0, cos’ b3 = 3 (4.33)

Form the weak-basis invariants J-p and I, in Eq. (4.32), we
find that the CP phases 6cp and f are

sind¢cp = —sign(x),

p=-n. (4.34)
Hence the Dirac phase is maximally CP violating with
Scp = £x/2, and the Majorana phase S is equal to the
opposite of 7. We take the alignment parameter x = 1/3 as
an example. Then the solar vacuum (¢, ) is proportional to
the column vector (1,1+i/3,1—i/3)7, and the PMNS
matrix is of constant value,

g
Ne)

N
ES

= | -1 3+ 942i : _in
v & Vo Vi diag(1,1,e72),  (4.35)
L 3=i _9-2i
V6 V29 174
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which leads to the following expressions for the mixing
angles and Jcp:

2 27
S0 = 0=~ 0.0230,  sin’f); = -~ 0318,

— 0
N

sin2923 = 5 y 5CP = —5 . (436)
This mixing pattern can accommodate the experimental
results very well [1]. From Table III, we see that there
are still 13 other kinds of breaking patterns with IO
and their phenomenological predictions for the lepton
mixing parameters and neutrino masses are discussed in

Appendix C.

V. MODEL CONSTRUCTION

In Secs. III and IV, Appendixes B and C, we have
performed a model-independent analysis for the lepton
mixing patterns which can be derived from S; < Hcp in
the tridirect CP approach. Inspired by the above model-
independent analysis, in this section we shall construct a
supersymmetric model with the flavor symmetry S4 and a
CP symmetry, and the symmetry-breaking pattern N, is
realized due to the nonvanishing vacuum expectation
values of some flavons. The phenomenological predic-
tions of N\, have been studied in detail in Ref. [61], and
some numerical benchmark examples are listed in
Table IX. The reasons why we construct a model to
realize the breaking pattern A/, are as follows. First the
TMI mixing matrix predicted in the cases of A, 3 has
been widely discussed in the literature. Second the
vacuum alignments of ¢,,, and ¢, are quite simple,
ie., (Pum) x (1,0, @)" and ¢ o« (1,x,x)7. Third the
minimum of y? in NV, is rather small for certain values of x
and #, as shown in Table IX. In particular the exper-
imentally measured lepton mixing angles and neutrino
masses can be described very well for the case of x = —4
and n = +37/4. We formulate our model in the frame-
work of the seesaw mechanism with two right-handed
neutrinos. The three generations of left-handed lepton
doublets L are embedded into an S, triplet representation
3, while the right-handed charged leptons e¢, ;¢ and 7 are

all singlets 1 under the family symmetry S,. The two right-
handed neutrinos vy, and v¢; are assumed to transform as
1 and 1’ respectively. In order to ensure the needed
vacuum alignment, to forbid unwanted couplings and to
reproduce the observed charged lepton mass hierarchies,
the auxiliary symmetry Zs x Zg x Z{ is imposed. The
shaping symmetry Zg disentangles the charged lepton
sector from the neutrino sector, Zs x Zg further distin-
guishes the atmospheric neutrino sector from the solar
neutrino sector, and the entire auxiliary symmetry imposes
different powers of flavon fields for the electron, muon
and tauon terms such that the observed charged lepton
mass hierarchies are reproduced. In this model, the
original symmetry S, < Hp is spontaneously broken to
78, ZIST x Xy and ZY x X in the charged lepton,
atmospheric neutrino and solar neutrino sectors respec-
tively, where the residual CP transformations are X, =
SU and X, = U. As a consequence, the desired vacua
<¢atm> x (lvwz’w)T and <¢sol> x (1’ —4, _4>T can be
achieved. Furthermore, we note that other flavon fields
besides @aims Psols Earm and &gy are usually needed in order
to realize the desired remnant symmetry. The relevant
flavon fields, driving fields and their transform properties
under the imposed flavor symmetry S, x Zs x Zg x Zg are
collected in Table X.

A. Vacuum alignment

We adopt the now standard F-term alignment mecha-
nism [79] to generate the appropriate vacuum alignments of
the flavor-symmetry-breaking flavons. The leading-order
(LO) driving superpotential w, which is invariant under the
imposed S, X Zs x Zg x Z; takes the following form:

Wg = wh 4 wim 4 sl (5.1)

where w!,, wi™ and w$! are used to realize the LO vacuum
alignments of the flavons in the charged lepton sector, the
atmospheric neutrino sector and the solar neutrino sector,
respectively. They can be expressed as

TABLE X. The lepton, Higgs and flavon superfields and their transformation properties under the flavor symmetry Sy x Zs x Zg x Zi,

where w5 = e27i/°

and wg = e™/*. In addition, we assume a standard U(1) & symmetry under which all lepton fields carry a unit charge

and the driving fields indicated with the superscript “0” have charge +2 while the Higgs and flavon fields are uncharged.

L e p 1 Vim Vi Hua m 1 &0 a & no x5 A by & #) d0 0 p° 0 20 9" A" K
s, 3 1.1 1 1 1 1 2 31 3 1 2 3% 3%y 3%y 3% 3 1 3 3y 2 2 2 3 3 3 1
Zs ot o} ot 1 1 1 1 w5 o5 1 o5 1 o) 02 1 0} s of 0} 0} 0 0 05 0of 1 1 0 o}
Zg a)g a)g wg 1 a)g wg 1 wg wg a)g -1 an 1 1 1 1 1 1 a)g a)g T 1 1 1 1 1 1 1
Zy wg o} o) of o3 1 I 1 1 of @2 1 0 of w3 of 0] o} 1 1 of of of of 0f o] of o}
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wh = g1 & (nm)y + 98 ()1 + 95() (1) 3 )y + 94(@) (b3 )y

wi™ = hi($a(pada)3)s-

Wit = F1(0°(sx )21 + F2(6 (waw)a) 1 + 3 (ngns)2)1 + Fa( Qraw)2)r + s (naxs) s + Fe (P (@,95)3 1

+ Mw(¢0¢s)1 +f7(§00()(sl//s)3’)1 + MA(A(S)AS)I +f8(A‘(\')()(x¢x)3’)l +f9K‘(\')()(S(0x)1 +f10K9(¢S¢S)1’

where the subscript (- --), denotes a contraction of the S,
indices into the irreducible representation r. All of the
couplings g; (i = 1,...,4), hy, f; (i =1, ...,10) and mass
parameters M, M in Eq. (5.2) are real because the theory
is invariant under the generalized CP symmetry. In the
supersymmetry limit, the vacuum alignment is achieved
through the vanishing F terms of the driving fields. In the
charged lepton sector, the F-term conditions obtained from
the driving fields & and ¢? are given by

awii 2

el = 2g1m,m, + 92(¢7 + 2¢1,¢1,) =0,
i

8W£1 2

W = g3(n, b1, — i, ¢1,) + 294(4711 - ¢i,¢1,) =0,
1y

awfi )

990 = g3(m, 1, — i, #1,) +294(97, — &1, 1) =0,
b

awfi )

W = g3(n, b1, — i, 91,) + 294(4’13 — ¢, ¢,) =0. (5.3)
I3

We find that these equations are satisfied by the alignment

<771> = (07 I)T”mv

with

<¢1> - (07 13 O)Tvqb[’
93
1} . U 9 5-4
& 204 m ( )
where v, is undetermined. In the atmospheric neutrino
sector, the vacuum is determined by the F-term conditions
associated with the driving field ¢?

awatm

64;) = 2h1< ?zl _¢a2¢a3) =0,

8watm

8¢% - 2hl( 312 - ¢a1¢a3) =0,

8Watm

a¢((l) = 2hl( t2l3 - ¢a1¢a2) - 07 (5.5)

which lead to the following vacuum alignment of ¢,:

(o) = (LLa* @) vy, (5.6)

Then we turn to the vacuum of the solar neutrino sector.
The F-flatness conditions of the driving fields p° and ¢° are
given by

(5.2)

|

%WT? = f12x5 15, T 25,) = 0,

aavfgl = f12x x5, +23,) =0,

%}’; = 2y, +y3,) =0,

aavff; = f2Qw, vy, +v75,) =0. (5.7)
A solution to the above equations is
(s) = v, (1,0,0)7, (ws) =0, (1,-2,-2)T.  (5.8)

The vacuum of the doublet flavon # originates from the
F term of 7°,

ows!
87’]0 = f3'7?1 +f4<)(sll//s2 +)(szl//sl +XS3WS3) =0,
1
ows!
ol =~ fams, + falts,Ws, +X0,Ws, + 25,05,) = 0. (5.9)
2
An extremum solution is given by,
2
(ny) = v, (1,17, with 12 = %%v%. (5.10)

Furthermore, the F terms of the driving field ° are of
the form

ows!
o Fs(s s, +10,2s,) + 2f6(03, — 9,0,,) =0,
1
8Wf1°1 )
8){0 = fS (ns])(sl + ’/ISZXSZ) + 2f6(§0s2 - (psl(p53) =0,
2
awsol
a;;é = [s(nss, + Ns,) + 2f6(05, = 05, 05,) =0,
3
(5.11)
which generate the alignment
(ps) = v, (1,-1,-1)T,  with v} = —i;fvmv%.
6
(5.12)
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Similarly we can read out the F-flatness condition of the
driving field ¢°,

ows!
g%
%v;;gl =M, @5, + [1(2105, Ay, — 26 Ay, — X5, Ay) =0,
aLZO]
B

= M(p(ps] +f7(2)(s1A51 _)(szAs3 _XS3A52) = 0’

= M(/)(ﬂxz + f7(2){S3AS3 _)(s| A.\'z _)(A‘ZAA‘]) =0.

(5.13)

Considering the vacuum configurations of y, and ¢, given
in Egs. (5.8) and (5.12), we see that the vacuum expectation
values of A, are

M v
with v, :—ﬁ. (5.14)
T%xs

(A,) = va,(1,2,2)7,
In order to realize the desired solar alignment (¢;) o
(1,-4, —4)T, we consider the F terms of the driving
field A°,

aWZOI
90
ows!
a—A(z) = MAAS3 +f8(2)(s2¢sz _Zs3¢sl _Zs]¢s3) =0,
ows)!
90

= MAASI +f8(2)(x]¢xl _Z‘\‘Zqﬁsg _Z‘\‘3¢S2) =0,

= MAASZ +f8(2)(s3¢s3 _)(slqbsz _)(szd)sl) =0,

(5.15)
J

which uniquely determine the vacuum of the solar flavon
¢, to be

Mpvp
— L. (5.16
2sr, 010

<¢&> = U(/)b\‘(l, _4’ _4)T’ with Ud’\- =

Analogously the flatness condition of the driving field x°
gives rise to

aWSOI
81:6 = f9<§0s])(s] + D, X s, + (ps3)(s2)
+f10(95, +2¢5,5,) = 0. (5.17)
It is easy to solve this equation and obtain
Sovy vy,
2= A 5.18
T S 519

Now we have obtained the vacuum alignments of all
flavons ., v, x5, @5, A, and ¢ in the solar neutrino sector
by adopting the standard F-term alignment mechanism.
In other words, the needed vacuum alignment (¢,)
(1,-4,-4)T is realized. Next we shall fix the overall
phases of all VEVs of flavons in the atmospheric and
solar neutrino sectors. From the alignments of flavons &,
Ngs Xs» Wes @ and ¢, shown above, we find that the VEVs of
these fields are invariant under the subgroup ZY'. In order to
obtain the phase with n = & %’, we introduce the S, singlet
fields in Table XI. Then the driving superpotential which is
used to obtain the phases of all the VEVs of flavons in the
neutrino sector is

has
wWhE = M2EY + %, 8993 + M3 + 0993 + M3EY + x308Q3Qy + MALY + x,09Q5Q6 + Mo QIQ,
+ xsQ)E + Mo, QIQ, + xcQIE2 + Mo QQ5 + x7Q(nyn); + xsQ (rsws)1 + Mg, Q39

+ 200 (0,17, )1 + M, Q2Q5 + x10Q2(Purs)y + Mo, 206 + X112 (b )

(5.19)

where the couplings x; and mass parameters M? and M o, are all real. The F-term conditions from the above superpotential

are
TABLE XI. The transformation rules of the singlet flavon and driving superfields which are used to determine the phases of the flavon
VEVs.

Q Q) Q3 Q Qs Q¢ Q} Q 3 Q] Qf Qg (234
S 1 1 1 1 1 1 1 1 1 1 1 r 1
Zs 1 1 ws w? w? w? 1 1 w? ws w? w3 1
Zg -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1
Z 1 -1 w} f w} w3 1 -1 f w} wg w} 1
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awphase awphase
d — M2 2 d _ 2 2
= M5+ x,Q7 =0, = M5+ x,Q5 =0,
az:(l) 1 1= aa:(z) 2 28
8W5hase awphaqe
:M%+X3Q3Q4 :0, *M2+X4Q5Q6 —0
fole gy
8wpha§e awphase
=Mg Q| +x52=0 = Mg Q, + x¢82 =0,
aQ(l) Q=] 555 69(2) Q=2 6511
awphase P! phase
78:2(3) = Mq,Q; + 2x7v%3_ + xgv,, vy, e = Mg, Q4 + 5x9v,, v, =0,
awzhase awphase
=My Q =0, d_ — Mg Q¢ +5 , =0. 5.20
90 Q;8%5 + X100y, Vg, 900 Q826 1+ 2X1104 Vg, (5.20)
|
From the above equations and the relations among the Un Vi 2 (5.23)

VEVs of flavons in the solar neutrino sector, we can
achieve the phases of the VEVs of all the flavons in the
solar and atmospheric neutrino sectors. Since the expres-
sions of the flavon VEVs are a little redundant and they are
not used in the following discussion, we will not show them
here. In order to obtain the phase n = + %”, the only valid
Ve,

4’(1 Ve gs
fields & and &, respectively. The expression of this ratio is

ratio is 2% , where v and v, are the VEVs of the flavon

(33) 34x4x10%11 fsM o, M,
16V2fef7fsMo, Mo M3
xlX%ﬁng%M%Mng)SMézMQ;Mgz4
((f3xs + 4f4x7)x2X3X%x9f3f%f§f?oM%Mél)
(5.21)

U;x /U'}:“ —
2
U¢a fo

ST

Since all the couplings x;, f; and mass parameters M in

Stx

Eq. (5.21) are real, we see that the phases of the ratio ”“ .

</’a gs
are et (i=0,1,...,7). In the present work we shall
concentrate on the solution with

(5.22)

which would happen one in four times by chance. In order
to obtain the observed hierarchy among the charged lepton
masses, we assume

Yz ¢ Y
wp =" (L¢1)1T H;+ ﬁ(L(’h(ﬁl) J1#H +

yez ((Ln)s(higr)3)1e°Hy + -5

+A3

2 (L(¢ieh1)3)114°Hy +
<<Lm>3f<¢z¢l>y>1e Hy+25 (L¢1) (e Ha +25 (Lo (did)2)re H
+ 25 (L)s (i) re Ha +23 (L) y (@) )re Hr

A A

where /4 is the Cabibbo angle with 4 ~ 0.23. Moreover, the
VEV:s of flavons in the neutrino sector are expected to be of
the same order of magnitude and we will take them to be of
the same order as the VEVs of flavons in the charged lepton
sector, i.e.,

Yoo (Vo Ve Vo U Ve Ve Voo VA P9
A A AA A AN A AN AT
(5.24)

where v, (i =1, ...,6) are the VEVs of flavons Q;. Now
we will briefly touch on the subleading corrections to the
driving superpotential given above. We first start with the
corrections to the driving superpotential wﬁl which contains
the driving fields & and ¢?. We find that its NLO
corrections are suppressed by 1/A? with respect to the
renormalizable terms in Eq. (5.2). The subleading contri-
butions to the driving superpotential w¥™ and w! involve
three flavon fields. The correspondmg corrections to the

leading-order terms in w¥™ and ws"l are of relative order 4.

B. The structure of the model

The lowest-dimensional Yukawa operators of the charged
lepton mass terms, which are invariant under the imposed
flavor symmetry S, X Zs x Zg x Zg, can be written as

5 (Lapy)1 () g€ Hd+ Z((Lapy)y(mim)2)1eHy

A3

(5.25)
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where all couplings are real due to the generalized CP
symmetry. With the VEVs of 57, and ¢, in Eq. (5.4), we find
that the charged lepton mass matrix is diagonal with the
three charged lepton masses being

3

v
me = ‘(yeé - 2ye3 - 2ye47jl1,/v¢, +yezvr2],/1}(2/),)A;¢3[ Vg,
v,V v
my, = Yy ’7[!\21151 Va, m; = yr% Va, (526)

where v; = (H,). Note that in order to obtain the mass
hierarchies of the charged leptons m,:m,:m, ~*:2%:1,
the auxiliary symmetry Zg is imposed, where 1 ~0.23 is
the Cabibbo angle. The auxiliary symmetry Zg imposes
different powers of #; and ¢, to couple with the electron,
muon and tau lepton mass terms. From Eq. (5.25), we find
that the electron, muon and tau masses arise at order
((@;)/A)?, ((@;)/A)? and (®;)/A respectively, where @,
refers to either 77; or ¢;. If we assume that (®;) /A is of order
42, then the mass hierarchy of the charged leptons can be
reproduced. Moreover, the subleading operators related to
e¢, u¢ and 7¢ comprise four flavons and consequently are
suppressed by 1/A* Such corrections for the charged
lepton masses and lepton mixing parameters can be
neglected.

Now we come to the neutrino sector. The light neutrino
masses are given by the famous type-I seesaw mechanism
with two right-handed neutrinos. The most general LO
superpotential for the neutrino masses is

sol

y y
wy, = = (L¢a)1Hngtm + XS (L¢s)l’HuUc

+ xul/gtml/gtmé:a + Xsl/go11/§(,1§w (527)
where the four coupling constants y,, y,, x, and x, are real
because the theory is required to be invariant under the
generalized CP transformation. From the vacuum align-
ments of the flavons ¢, and ¢,, we can read out the Dirac
and Majorana mass matrices as follows:

4v3
V13

1
Upmns = —=
V74
V13

—iv/26cos 6
2v/6icos@ —/37e ¥ sin@ 2v/6ie sinf + /37 cosd | P,,
2v/6icos O +/3Te ¥ sin®  2v/6ie™ sin@ — /37 cos O

YaVp, VsV, 0
4 Uy Xa vfa
a)ydv(/)a - ysvd)x X’ MN: O X0 ’
s 55
@y vy, —4YVp,
(5.28)

where v, = (H,) and the expressions of the VEVs v; , v¢ ,
vy, Vg, are shown in Sec. VA. After applying the seesaw
formula, the effective light neutrino mass matrix can be
written as

1 0 ©*
2 2,72
m - Yl o @ 1
g A? XqVg, )
W 1 0)
1 -4 -4
Yivy
| -4 16 16 . (5.29)
XSUS&X
-4 16 16

In Sec. VA, we have taken the solution where the phase of
. qub Vg,

the ratio 45—+
U(/’a 1/'4:J

neutrino mass matrix in Eq. (5.29), we see that this neutrino
mass matrix is of the same form as the general mass matrix

in breaking pattern N\, [61] but with

is £3% Up to the overall phase of the

2.2
Yaly, Vi

2,2 o

. y‘\‘/[] v 3xi

x=-4, m,= . omgein = |20 P
Xgve, A

x,ve A2
(5.30)

for the case of x,x, > 0. In the following, we will briefly
touch on the subleading corrections to the superpotential
given in Secs. VA and V B. Furthermore,we find that the
next-to-leading-order operators of w, are suppressed by
1/A? with respect to the LO contributions and therefore can
be neglected.

From the standard procedure shown in Sec. II, we find
that the above model predicts the following LO lepton
mixing matrix:

—iv/26€" sin 0
(5.31)

where the diagonal phase P, is given in Eq. (3.17). All the parameters 6, y, o and p only depend on one input parameter

r = mg/m,. In the case of n = —%, the three mixing angles and the two CP invariants can be expressed in terms of r as
13 15(781r% +3v2r =17 48C

SW%:—O— (r+“fr)> sin20,, = 1 — a :
74 13C, 15(78172 + 3v/2r - 7) + 61C,
1 7406 3v/3(=308r% +25v/2r -2 2(1 — 19672

§in6,3 — ~ + V6r C Jep = \/—( r2 4+ 25V2r )’ Il:u, (5.32)
2 15(7817% +3v2r=17) +61C, 37C, 37C,
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where the parameter C, is defined as

C = \/<1089r2 —25V2r4+9)* = 2190472, (5.33)

A sum rule between the reactor mixing angle and the solar
mixing angle is easy to obtain
48

cos? 0, cos? @3 = —

1 (5.34)

Inserting the experimentally preferred 3¢ range 0.01981 <
sin? ;3 < 0.02436 [1], we obtain the prediction for the
solar mixing angle

0.3352 < sin? 0, < 0.3365. (5.35)

Furthermore, we find that the two nonzero neutrino masses
are determined to be

QN

m} = —% (108912 — 25v2r +9 - C,),

ISHS)

m} = —2(1089r% — 25V2r + 94 C,). (5.36)

t\>|§ t\)|§

The neutrino masses m3 and m3 are dependent on the free
parameters m, and r. As described above, all lepton mixing
parameters and the mass ratio m,/m5; depend only on the
ratio r = m,/m,. We plot the results of the mixing
parameters and mass ratio m,/ms with respect to the input
parameter r in Fig. 3. At the best-fit point » = 0.421, we see
that the mixing angles 6,3, 0,3 and the mass ratio m,/mjs lie
within their 1o ranges, while 6}, lies just outside its lo
|

0.3362 < sin%0;, < 0.3364,
—0.418 < écp/m < —0.406,
8.240 meV < m, < 8.950 meV,

Therefore this model is very predictive and it should be
easily falsified. The next-generation reactor neutrino 0s-
cillation experiments JUNO [80] and RENO-50 [81] are
expected to reduce the error of ;, to about 0.1° or around
0.3%. The oscillation parameters 6;,, 6,3 and d-p will be
precisely measured by the future long-baseline experiments
DUNE [82-84], T2HK [85], T2HKK [86]. Hence this
breaking pattern can be checked by future neutrino facili-
ties. Furthermore, we expect that a more ambitious facility
such as the Neutrino Factory [8§7-89] could provide more
stringent tests of our approach. We see that the light
neutrino mass matrix in Eq. (5.29) has the following
symmetry property:

mv(mm r, _7]> = P{32m;(ma’ r, ’7)P132- (538)

0.02254 < sin?6,5 < 0.02280,
0.263 < f/x < 0.264,
49.265 meV < m3 < 51.235 meV.

1.0 LI

0.6 0.8

0||||||||||

0 0.2 0.4 1.0

r

FIG. 3. The predicted values of our model with n = —3z/4 for
the mixing parameters and mass ratio m,/ms as a function of r.
Horizontal bands show the experimentally determined 1o and 36
ranges [1] for each parameter. The black vertical line denotes the
best-fit value ry,; = 0.421 for r for which the y? function reaches a
global minimum.

range and within its 3¢ range. The Dirac CP phase dcp
and the Majorana CP phase f are predicted to be dcp =~
—0.4127 and f ~ 0.264x, respectively. If we require that
all three lepton mixing angles and two mass squared
differences lie in their corresponding experimentally pre-
ferred 3¢ intervals [1], then we find that the lepton mixing
parameters and the neutrino masses are predicted to be in
rather narrow regions,

0.556 < sin%6,; < 0.564,
2.690 meV < m,, <2.985 meV,
(5.37)

|

Therefore the atmospheric mixing angle changes from 6,5

to /2 — 0y3, the Dirac CP phase changes from &.p to

7 — Ocp, the Majorana CP phase will become the opposite

and the other observable quantities remain unchanged

under the transformation # — —n. The predictions for
__ 3z

n==; can be easily obtained from the results of ;7:—34—”.

Hence we shall not show the predictions for n = 37”.

VI. CONCLUSION

In the present paper, guided by the principles of
symmetry and minimality, we have analyzed the possible
symmetry-breaking patterns of Sy X Hcp in the tridirect
CP approach [61] based on the two right-handed
neutrino seesaw mechanism. In the tridirect CP approach,
the high-energy flavor and generalized CP symmetry
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S4 X Hcp is spontaneously broken down to an Abelian
subgroup G; (non Z, subgroups) in the charged lepton
sector, t0 Gy, X HEP in one right-handed neutrino sector
and to Gy, x H% in the other right-handed neutrino sector,
as illustrated in Fig. 1. In this work, we assumed that the
flavon field ¢,,, which couples to the right-handed N,
and the left-handed lepton doublets L is assigned to
transform as an S, triplet 3, and the flavon ¢, which
couples to the right-handed N, and the left-handed lepton
doublets L transforms as the three-dimensional represen-
tation 3’ under S,. Then the two columns of the neutrino
Dirac mass matrix are determined by the vacuum align-
ments of ¢, and ¢, respectively. Furthermore, we have
given the basic procedure of predicting lepton flavor
mixing and neutrino mass from residual symmetries in
the tridirect CP approach in a model-independent way and
we found that the first (third) column of the PMNS matrix
is fixed by the diagonalization matrix U; of the charged
lepton mass matrix and the vacuum alignments of ¢,,, and
¢, for the NO (IO) spectrum. Notice that the alignments of
¢am and ¢, are enforced by the residual symmetries
Gum X HEP and Gy % HSC"}, respectively in the tridirect
CP approach. The results of this paper only depend on the
structure of the flavor symmetry and the assumed sym-
metry-breaking patterns, and they are independent of how
the required residual symmetries are dynamically realized.
In concrete models, the desired vacuum of ¢,, and ¢
could be achieved in the context of supersymmetry or extra
dimensions.

After considering all possible breaking patterns arising
from S, flavor symmetry combined with the corresponding
generalized CP symmetry in a model-independent way, we
found eight phenomenologically interesting mixing pat-
terns with NO spectra labeled as N ~Ng and 18
phenomenologically interesting mixing patterns with 10
spectra labeled as 7| ~ 7 g; please see Table III. For each
phenomenologically interesting mixing pattern, we have
analyzed the corresponding predictions for the PMNS
matrix, the lepton mixing parameters, the neutrino masses
and the effective mass in neutrinoless double beta decay in
a model-independent way in the tridirect CP approach.
There is one form dominance breaking pattern with an NO
spectrum (N's) and two form dominance breaking patterns
with 1O spectra (Z, and Z5). We found that three kinds of
breaking patterns with NO spectra (M| ~AN3) and one
form dominance breaking pattern with an IO spectrum
(Z5) yield the TM1 mixing matrix. For each of these four
kinds of breaking patterns with the TM1 mixing matrix,
two sum rules among the mixing angles and Dirac CP
phase corresponding to TM1 mixing were obtained.
Furthermore, we performed a numerical analysis for each
breaking pattern that is able to give a successful description
of the lepton mixing parameters and the neutrino masses in
terms of four real input parameters x, 7, m, and r. In the
breaking patterns with NO spectra, we also gave the y?

results for some benchmark values of x and #, where the
parameter x comes from the VEV of the flavon ¢,. The
simple values of x and 5 are very useful in model building.
Once the values of x and r were fixed, we obtained a highly
predictive theory of neutrino mass and lepton mixing, in
which all lepton mixing parameters and the neutrino masses
are determined by only two real input parameters m, and r.
In the breaking pattern N\, for the benchmark value x =
—1 which leads to (¢s1) = (1,—1,3)" v, , it is exactly the
littlest seesaw model with CSD(3) which was originally
proposed in Ref. [15]. The solar vacuum (¢y,;) =
(1,-3, I)Tvqu for x =3 corresponds to another version
of the littlest seesaw model [16]. Moreover, for the vacuum
(bsor) = (1,4, -2)"v,, with x =4, the CSD(4) scenario
[17] is reproduced. Furthermore, we showed the best-fit
values of the neutrino masses and the mixing parameters for
a simple value of x for each of the 18 breaking patterns with
10 spectra.

Guided by the above model-independent analysis, we
constructed a successful flavor model involving two right-
handed neutrinos based on S, and generalized CP sym-
metry to realize the breaking pattern A4 with x = —4 and
n= :I:%, in which the original symmetry S4 < Hcp is
spontaneously broken down to Z% in the charged lepton
sector, to ZIST x X, in the atmospheric neutrino sector
and to ZY x X in the solar neutrino sector, where the
residual CP transformations X,,,, = SU and X,,; = U. In
this model, the first column of the PMNS matrix is fixed to

T
be (2 \/35, \/;E \/%) . This model has not appeared so far

in the literature. We found that this model is a powerful
model for predicting lepton mixing parameters and neu-
trino masses. In particular, all the lepton mixing parameters
and the neutrino masses are restricted to rather narrow
regions in this model as in Eq. (5.37).

In summary, we have performed an exhaustive analysis
of all possible breaking patterns arising from S4 x Hcpina
new tridirect CP approach to the minimal seesaw model
with two right-handed neutrinos and have constructed a
realistic flavor model along these lines. According to this
approach, separate residual flavor and CP symmetries
persist in the charged lepton, “atmospheric” and “solar”
right-handed neutrino sectors, resulting in three symmetry
sectors rather than the usual two of the semidirect CP
approach. Following the tridirect CP approach, we have
found 26 kinds of independent phenomenologically inter-
esting mixing patterns. Eight of them predict an NO
neutrino mass spectrum and the other 18 predict an 10
neutrino mass spectrum. For each phenomenologically
interesting mixing pattern, the corresponding predictions
for the PMNS matrix, the lepton mixing parameters, the
neutrino masses and the effective mass in neutrinoless
double beta decay were given in a model-independent way.
One breaking pattern with an NO spectrum and two
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breaking patterns with IO spectra correspond to form
dominance. We have found that the lepton mixing matrices
of three kinds of breaking patterns with NO spectra and one
form of the dominance breaking pattern with an 10
spectrum preserve the first column of the TB mixing
matrix, corresponding to the TM1 mixing matrix.

ACKNOWLEDGMENTS

G.-J. D. acknowledges the support of the National Natural
Science Foundation of China under Grants No. 11522546
and No. 11835013. S.FE. K. acknowledges the STFC
Consolidated Grant No. ST/L000296/1 and the European
Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreements
Elusives ITN No. 674896 and InvisiblesPlus RISE
No. 690575. C.-C.L. is supported by National Natural
Science Foundation of China under Grant No. 11847228,
China  Postdoctoral ~ Science  Foundation  Grants
No. 2017M620258 and No. 2018T110617, CPSF-CAS

No. 2017LHO0003, the Fundamental Research Funds for
the Central Universities under Grant No. WK2030040090,
the Anhui Province Natural Science Foundation Grant
No. 1908085QA24 and the CAS Center for Excellence in
Particle Physics (CCEPP).

APPENDIX A: GROUP THEORY OF S,

S, is the permutation group of four objects, and it has 24
elements. In the present work, we shall adopt the same
convention as in Ref. [31]. The S, group can be generated
by three generators S, 7 and U with the multiplication rules

S?=T3=U?=(ST)’ = (SU)* = (TU)* = (STU)* = 1.
(A1)
S, group has 20 Abelian subgroups which contain nine Z,

subgroups, four Z; subgroups, three Z, subgroups and four
K, = Z, x Z, subgroups. These Abelian subgroups can be

Joint Foundation for Excellent Postdoctoral Fellows  expressed in terms of the generators S, 7 and U as follows.
|
(1) Z, subgroups:
Zs"SV = {1,s725U%,  ZV ={1.TU}, 73"V = {1,STSU},
7V ={1ruy, Z¥={1uy,  Z8V={1,8U},

z5 ={1.5},

Z5ST = {1,128T},

ZI8T* = {1,TST?}. (A2)

The former six Z, subgroups are conjugate to each other, and the latter three subgroups are related to each other by

group conjugation as well.
(2) Z; subgroups:

z5" = {1,8T., T*S},

zZl = {1,T.7%},

Z31S = {1,8TS, ST*S}, ZS = {1,TS,ST°}, (A3)
which are related to each other under group conjugation.
(3) Z4 subgroups:
ZZSTZU ={1,TST?U,S,T*STU}, ZiTZU ={1,ST*U,TST>, T>SU}, ZISU={1,TSU,T>ST,STU}. (A4)
All the above Z, subgroups are conjugate to each other.
(4) K, subgroups:
K\STST) = 78 x ZIST = (1,5, TST?, T?ST},
KV =78 x 2V = {1,8,U.SU},
K\ISTAIRU) 2 71T o 7°U = {1 TST2, T2U, ST2SU},
K\TSTIU) = 71T o 71U — (1 T2ST, TU, STSU}, (AS)
where KES'TSTZ) is a normal subgroup of S, and the other three K, subgroups are conjugate to each other.
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S, has five irreducible representations which contain two singlet irreducible representations 1 and 1’, one two-
dimensional representation 2 and two three-dimensional irreducible representations 3 and 3'. In this work, we choose the
same basis as that of Ref. [31], i.e., the representation matrix of the generator 7 is diagonal. The representation matrices for
the three generators are listed in Table XII. Moreover, the Kronecker products of two irreducible representations of the Sy
group are

1® R =R, el =1, '®2=2, 1®3=73, 1®3 =3,
2@2=101&2, 2®3=203 =373,
3I3=3QQ3=10203073, 33¥=102063073, (A6)
where R stands for any irreducible representation of Sj.
We now list the CG coefficients for our basis. All the CG coefficients can be written in the form Ry ® R,, where R and
R, are two irreducible representations of S,. We shall use a; to denote the elements of the first representation and f; stands

for the elements of the second representation of the tensor product. For the product of the singlet 1 with a doublet or a
triplet, we have

1'®2 11®3=3 1'®3 =3
(Xﬂl aﬂl
2~ (:‘f/; ) 3~ | ap, 3~ | aps
2 aps aps

The CG coefficients for the products involving the doublet representation 2 are found to be

2R2=101¢2 2®3=303F 23 =303
1~a1, +ap a1 fr + afs a1 fr — arf3
1~ f, — arfpy 3~ | afs + ap 3~ afs—ap
a1 py + ap afy — axfs

ap a1 fr — a1 fr + arf

2~ (a B ) I~ | afs —apy I~ | a5+ anf
7 apy — ap apy + ap

Finally, for the products among the triplet representations 3 and 3’, we have

33=3Q3=1020303 I¥I=1026030%

1~af) + apfs + azp

2~ (azﬁz +aifs + a3 )
azfs + iy + af

o f3 — azfy
3~ aifr —mp
af — a1 s

2001 — wfs — azf
I~ | 20565 — a1y — arfpy
200, — a3 — a1 f3

U~ a1y + oofps + asfps

2. < afy + a3 + asfy )
—(a3fs + i fpy + arfpy)

2011 — mpfs — azf
3~ | 2033 — a1 — mfy
2000y — azfr — a1 B3

opfs — azf
I~ | afr—apy
a3y — a1 fs
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TABLE XII. The representation matrices of the generators S, 7" and U for the five irreducible representations of S,

in the chosen basis, where @ = ¢27/3,
S T U
1,1 1 1 +1

10 w0 01

: (01) (002) (10)
-1 2 2 1 0 0 1 00
(2 -1 2) (0 »? 0> ;(001)
“\2 2 - 0 0 o 01 0

APPENDIX B: OTHER MIXING PATTERNS WITH NO

(Nﬁ) (Gh Gdtm7Gsol) (ZTSU Zg’ZSU>’ atm — {1 T T2} Xsol - {U S}

Here the diagonalization matrix of the charged lepton mass matrix U, is given in Eq. (3.3). Here only residual CP
transformations X, = {U, S} can accommodate the present experimental data on lepton mixing. In this kind of breaking
pattern the VEVs of the flavon fields ¢, and ¢, are

>
“w
W=

<¢atm> = U(/)“(lv()?o)T’ <¢sol> = ’U{/,l\_(l, 1+ ixv 1 - ix)T' (Bl)

We can straightforwardly read out the resulting neutrino matrix from Eq. (2.8). The neutrino mass matrix m, has an
eigenvalue of 0, and the corresponding eigenvector is (0,1 + ix, —1 + ix)T. It is convenient to first perform a unitary
transformation U,; with

0 ; 2(x2+1) 1—/3x
5°-2V/3x+3 NEENTE
U, — ix+1 (i—x)(v/3x-1) ix+1 (BZ)
vl V20241 V234D (52 -2V3x43) V522233 |
—1+ix (i+x)(v/3x=1) 1—ix

V202 +1) \/2(x2+1)(5x2—2\/§x+3) V/5x2-2\/3x+3

Then the neutrino mass matrix m,, is a block-diagonal matrix and it can be diagonalized by a unitary matrix U,, in the (2,3)
sector. The nonzero parameters y, z and w in the m] are given by

_2(x* + 1) (m, + 3xPmge™)

5x% —2/3x +3
_ VA0 = VB, + B e Ime)
5x2 —2/3x +3
(\/_x—l) mg, + (4x* = 44/3x3 + 15x% — 61/3x + 9)m, e”7 (B3)
5x*=2y/3x+3

Then the lepton mixing matrix is determined to be

2 2 Lo
\/E(x+\/§) _ 10x ;l\/§x+6 cos 9 _ 10x ;‘\/§x+6el'l/ sin 9
/x2+1 x“+1 x-+1

1 5x2-2/3x+3  (x+V/3)cosd —iw o (vV/3+x)e sin
U= L = —V6e ™V sinf 6cosl +—F—— |. B4
Ve 33 e V6e™¥ sin V6cosO + o (B4)

2_ _ L7
5x %ﬁwﬁ (x+v/3)cos @ + \/_e iy sin @ —\/ECOS 0+ (v/3+x)e sing
x \/: 41

One can straightforwardly extract the lepton mixing angles and CP phases as follows:
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(5x% = 24/3x + 3) sin% @

. 20 — ,
St 6(x*+1)
- (5x% —2v/3x +3) cos’ @
sin® 0, = ; ,
6(x2 + 1) — (5x% —=21/3x + 3) sin? 6
- 1 (v3x 4+ 3)Vx? + 1sin20 cosy
Sin 923 == . ’
2 V2(6(x* + 1) = (5x* = 24/3x + 3) sin®6)
P (5v/3x% 4+ 9x% — 3v/3x + 9) sin 20 siny
r 72V2(x2 + 1)32 ’
. (5x% = 24/3x + 3)22 sin’ 3«9 sin(p — o) . (BS)
144(x* + 1)
A sum rule between the solar mixing angle 0, and the reactor mixing angle 5 is satisfied,
1 14+43x
20 03=-+— . B6
c0s%6,,c08°0,3 6+3(1+x2) (B6)

For a fixed value of x, the mixing angles 6,5 and 0, are strongly correlated with each other. On the other hand, the 30 ranges
of 0,3 and 0, [1] will restrict the possible value of the input parameter x (0.310 < x < 0.925). Furthermore, we can derive
the following sum rule among the Dirac CP phase 6-p and mixing angles:

05 260,3((9 + 2v/3x + 7x?) sin? @15 — 3 + 24/3x — 5x?)
2sin 6,3 sin 2923\/(\/§ + x)2(3(1 + x2) cos 20,5 + 2x(x — \/3))

cosbcp = (B7)

We note that a maximal 8,5 leads to a maximal Dirac CP phase §-p. It is easy to check that the neutrino mass matrix m,,
has the symmetry property

my,(x,r,=n) = Plym;(x,r,n)P3. (B8)

It implies that the atmospheric angle changes from 6,; to z/2 — 6,3, the Dirac phase §-p becomes 7 — S¢p, the
Majorana CP phase f will become negative and the other output parameters are kept intact under a change of the sign of the
parameter #. For fixed values of x and #, all the mixing angles, CP phases and neutrino masses are fully determined by m,,
and . As an example, we shall give the predictions for x = % and n = —4?”. For this case, the fixed column of the PMNS

matrix is #ﬁ (3\/5 +1, \/ 16 — 3v/3, \/ 16 — 3\/5)7. Furthermore, we shall perform a conventional y? analysis, and the
best-fit values of the input and output parameters are

m, = 11.910 meV, r=1372, 22 = 8.753, sin® 6,3 = 0.0227,
sin® @, = 0.345, sin? @3 = 0.557, Scp/m = —0.415, p/x=0.215,
my =0, m, = 8.606 meV, ms; = 50.238 meV, m,, = 2.720 meV. (B9)

By comprehensively scanning over the parameter space of x, # and r, if we require the three mixing angles and mass ratio
m3/m3 to be in their 3¢ regions [1], we find that all three input parameters are restricted to the narrow intervals
0.311 <x <0.381,0.7307 < || < mand 1.270 < r < 1.487. Furthermore, 6,, is found to lie in a narrow interval around its
3¢ upper bound 0.334 < sin® ;, < 0.350, and 6,5 can only take values in the range [0.425, 0.575]. The predictions for the

two CP phases 6cp and f are —0.6117 < 6cp < —0.3897 and —0.2817 < f < 0.2817, respectively.
(N9 (Gr. G Goor) = (K5 28, Z5Y), Xy = {1.T. 7%}
(i) X ={1,SU} i
The original symmetry S4 < Hcp is broken into KES’TST) in the charged lepton sector; consequently the
diagonalization matrix of the Hermitian combination of the charged lepton mass matrix m}m ; is given in Eq. (3.3).

The atmospheric alignment is determined to be along the direction (1,0,0)7. Two types of residual CP
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transformations X, = {1, SU} and X,, = {S, U} are compatible with the residual flavor Gy, = Z3V, and the
vacuum alignments (¢,,,) invariant under the residual flavor and CP symmetries are proportional to (1,x,2 — x)”
and (1,1 + ix, 1 —ix)7, respectively. The neutrino mass matrix can be obtained by applying the general formula
Eq. (2.8). It is easy to check that the column vector (0, x,x — 2)7 is an eigenvector of the neutrino mass matrix and
the corresponding eigenvalue is 0. Before diagonalizing the neutrino mass matrix m,, it is useful to perform a unitary
transformation U, and this unitary transformation will make m,, a block-diagonal matrix. Here the unitary matrix
U,, takes the following form:

0 _[x2=2x42 _ V2
x2—2x+4 /x2_2x+4
_ X x=2 2—x
Uyl B \/2(x2—2x+2) \/(x2—2x+2) (x2—2x+4) \/2 22x+4) : (B 10)

x—2 _

V202 =2x+2) V(P2=2x42) (2 —2x+4) \/2(x2—2x+4)

Then the nonzero parameters y, z and w of m,, are given by

(¢ = 2x+2)(m, + 9mge™)

x?—=2x+4 '
V26 = 2x +2)(m, — 3(x — 1)?mge™)
T x*—-2x+4 '
2(my + (x = 1)*mge™)
= : . Bl1
v Z-2x+4 (B

Then we need to put m,, into diagonal form with real non-negative masses, which can be done exactly by using the
standard procedure shown in Sec. II, i.e., UL,m,U,, = diag(0, m,, m;). Hence the lepton mixing matrix is
determined to be

_xP=2x+4 _ X244 iy
/7)( s \V3P2xt2) cos ¢ \ 3idoan g€ sind
_ cos @ e~V si x—1)e¥sind  jcos
U= x> —2x+4 (x=1) ie”"sind (x=1) __icosf ) (B]Z)

6(x*—2x+2) \/3 2_2x42) V2 \/3(x2—2x+2> V2

x2-2x+4 (x=1)cos@ _ je~¥sin@ (x—1)e™ sin g icosf
2
607-2v+2)  \/3(2-2c12) V2 V3-2x42) V2

The lepton mixing angles and CP invariants can be read out as

(x? = 2x + 4)sin’0

. 20 _ )
M T TR T 1 2)
, 2(x—1)?
20, =1 — )
E 3(x? = 2x +2) — (x? = 2x + 4)sin’0
0. — | V6(x — 1)Vx> = 2x + 2sin 20 siny
BT2T2B(F —2x+2) - (x% — 2x + 4)sin%0)’
J _ («? = 3x2 + 6x —4)sin26 cosyr
< 6V6(x> —2x+2)7
I = (x? — 2x + 4)2sin*20 sin(p — o) ‘ (B13)

36(x2 — 2x + 2)2

As a consequence, the sum rules among the Dirac CP phase 6-p and the mixing angles are as follows:
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TABLE XIII. The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the effective Majorana mass m,,

for the breaking pattern (G;, Gym, Geol) = (KES‘TSTZ), Z%, Z5Y) and X, = {1, SU}. Here we choose many benchmark values for the

T
parameters x and 7. The fixed column of the PMNS mixing matrix is (3 \/41, \/42, \/%) for both x = 10 and x = —8. Notice that the

lightest neutrino mass is vanishing m; = 0.

(sor) /vy, x 1 my, (meV) r 22 sin?0p3 sin?0, sin?0y Scp/n P/x my (meV) ms (meV) m,, (meV)
(1,10, —S)T 10 O 8.682 0.0350 22.926 0.0207 0.328 0.5 0.5 1 8.618 50.223 3.806
Z 8684 0.0350 23.417 0.0205 0.328 0.506  0.491 -0.833  8.621 50.220 3.713
—% 8.680 0.0350 27.567 0.0205 0.328 0.494 0.509 0.833 8.618 50.224 3.711
(1,-8, 10)T -8 0 8.682 0.035 22.926 0.0207 0.328 0.5 -0.5 1 8.618 50.223 3.806
Z 8680 0.0350 27.567 0.0205 0.328 0.494 -0.509 -0.833  8.618 50.224 3.711
- 8.684 0.0350 23.417 0.0205 0.328 0.506 —-0.491 0.833 8.621 50.220 3.713

2(1 —x)?
3(x?=2x+2)°
cot 20,5 (3x(x —2) — (5x% — 10x + 8) cos 26;3)
4sin6151/(1 = x)2(2 + 2x — x +3(x2 = 2x + 2) cos 20,3)

c0s%0,,c08%0,5 =

cosSep = (B14)

For a given value of x, the possible range of sin” 8, can be obtained from the above correlations by varying ;5 over
its 30 range and we also can obtain the prediction for cos d.p from the 3o ranges of the mixing angles 6,3 and 6,5. For
fixed x and #, all mixing parameters and neutrino masses depend on two input parameters m,, and r. The results of the
x* analysis for some benchmark values of x and 7 are reported in Table XIII. From Table XIII we find that the results
for n = 0 are viable for both x = —8 and 10. Furthermore, a maximal atmospheric mixing angle, maximal Dirac CP
phase and trivial Majorana CP phase are obtained for # = 0.

The admissible ranges of x, r and # can be obtained from the requirement that the three mixing angles and mass
ratio m3/m?3 are in the experimentally preferred 3¢ ranges [1]. When all three mixing angles and the mass ratio
m3/m3 lie in their 36 ranges, we find that the allowed regions of the input parameters x, 7 and r are in the intervals
[-8.094,—6.351] U [8.351,10.094|, [—x, =] and [0.0324, 0.0550], respectively. Furthermore, the mixing angles
sin® @, and sin? @5 are predicted to be in the ranges [0.326, 0.330] and [0.486, 0.514], respectively. The Dirac CP
phase &¢p is found to lie in the rather narrow region around its maximal value, i.e., |6cp| € [0.4817,0.5197]. While
the Majorana CP phase f can take any value from —z to z.

(11) Xsol = {U’ S}

Analogous to previous cases, it is easy to obtain the light neutrino mass matrix m, from Eq. (2.8). Subsequently a
unitary transformation U, is performed on the light neutrino fields, and then m], = U, m,U,; becomes a block-
diagonal matrix. The unitary transformation matrix U,; can take the following form:

0 _i(P+1) )
V) (243) Vot
ix+1 —i+x __ —itx
Ui = V20241) /(@) (243) V2@ |- (B15)
i(i4x) _ itx i+x

V202 +1) VEHDE3) /23 43)

The parameters y, z and w in the neutrino mass matrix m,, are

(x? +1)(m, + 9mge™) 2(x? 4+ 1)(=my, + 3x*mge™) " 2(m, + x*mge™)
x~+3

. , B16
x> +3 x> +3 (B16)

Then the block-diagonal neutrino mass matrix m, can be diagonalized by a unitary rotation matrix U,, for the

NO case given in Eq. (2.16). From the expressions of the matrices U, in Eq. (3.3), U,; and U,,, we find that the
lepton mixing matrix is
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V2x _ _ ] XP43 iy
—3(x2+1> ( 2“) cos @ 3 sin @
o x+V/3 x(x+1/3) cos 0 (x—=v/3)e ¥ sinf  (v/3—x) cos O x(x+v/3)e™ sin @
U= N VAT )+ V2(2+3) V2(2+3) + V3021 (2+3) (B17)
=3 x(x—+/3) cos 0 _ (x+V3)e ¥ sin@  (x+/3) cos @ x(x—+/3)e" sin O
V(A1) /32 1)(2+3) V2(243) V20243) B30+ (243)
The expressions for the lepton mixing angles are as follows:
2 02 2
: +3)sin* 6 . 2x
sin? @ :(x—’ sin?@, =1 — ,
1 3(x2+1) 12 2x% + (x> 4+ 3) cos? 0
- 1 V3x  8/3x%sin?0 — v6x(x* = 3)Vx% + 1sin20 cosyr
Sin“ 03 =~ —— 5 5 3 5 . (B18)
2 xX*+3 2(x* 4+ 3)(2x* + (x* + 3) cos* )
These give a sum rule between the mixing angles 6, and 6,3 with
2x?
2 2 —
COS 912 COS 013 = m (B19)

On the one hand, for a fixed value of x, the possible values of 8, will always be limited to a narrow range by varying
the mixing angle 85 over its 30 range. On the other hand, from the 3¢ ranges of the mixing angles 6,5 and 6,,, we
find that x < —4.997 or x > 5.392 should be satisfied. From the PMNS matrix, we find that the two CP rephasing
invariants J-p and I, are predicted to be

x(x* = 3) sin 20 siny / (x* + 3)%sin*20sin(p — o)

Jep = , = B20
Ve +1)32 : 36(x* +1)? (520

We can derive the following sum rule among the Dirac CP phase d-p and mixing angles:
08 5o — 2c0s? 013(2v/3x — 305 20,3) + x*(3 — 5cos 20,3 cos 2923 (B21)

45in 0,5 sin 20,31/x%(3 — x> + 3(1 + x2) cos 260,3)

For a given value of x, the possible range of cos d-p can be obtained from the above sum rule by varying 0,5 and 053
over their 3¢ regions. Detailed numerical analyses show that all three mixing angles and the mass ratio m3/m? can
simultaneously lie in their respective 36 ranges for input parameters |x|, # and r lying in the ranges [7.347, 9.104],
[—7, ] and [0.0324, 0.0549], respectively. Then 6, is found to lie in the narrow interval 0.326 < sin” 8, < 0.330,
the atmospheric mixing angle is constrained to lie in the interval 0.485 < sin? 6,3 < 0.515 and |5¢p| is predicted to be
in the range [0, 0.0190z] U [0.9817, z]. Any value between —z and = is permitted for the Majorana CP phase /3. Here
we find that the Dirac CP phase is approximately trivial. Hence this breaking pattern would be ruled out if the signal
of maximal d.p is confirmed by future neutrino facilities. In Table XIV we present the predictions for the mixing
angles, CP-violating phases, light neutrino masses and the effective mass in neutrinoless double beta decay for some
benchmark values of the parameters x and #. We find that the results of 7 = 0 are viable. This is useful in model
building. However, # = 0 leads to a trivial Dirac CP phase and Majorana CP phase. The reason is that the parameters
v, zand win Eq. (B16) are all real. From the expressions of the parameters y, p and ¢ given in Eq. (2.19), we find that
the three parameters can only take values of O or z. Then up to the diagonal phase matrix P, with entries +1 or £, it
is easy to check that the PMNS matrix in Eq. (B17) is a real matrix. This mixing matrix gives a trivial Dirac CP phase
and Majorana CP phase.

(NS) (Gh Gatm’ Gsol) (Kz(ts 5T Zg’ erU)’ Xatm = {1’ U}’ Xsol = {U’ T}

For this breaking pattern, only the residual CP transformation X,,; = {U, T} is viable, and the VEV of the flavon ¢ is
proportional to (1, wx, @’x)7. It is easy to check that the neutrino mass matrix has an eigenvalue of 0 with the eigenvector
(x,1,1)T. The neutrino mass matrix m, can be block diagonalized by the unitary matrix U,;, where U, is
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TABLE XIV. The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the effective Majorana mass m,,
for the breaking pattern (G, Gy, Geol) = (K (S.TST?)

parameters x and 5. The first column of PMNS matrix are fixed to be ( \/13% ‘/\/;ﬁ—s %—) and (267\/411 , 32‘/\%—]1 ,32‘/3%1) " for x = +8 and

x = %9 respectively. Notice that the lightest neutrino mass is vanishing m; = 0.

,ZY,75Y) and X, = {U, S}. Here we choose many benchmark values for the

(Pso1) /v, x n m, (meV) r yai sin? 03 sin? @y sin’ 0y Scp/m P/ my (meV) my (meV) m,, (meV)

(1,1 +8i,1-8)T 8 = 8.639  0.0445 27.361 0.0208 0.330 0489 0 1 8.582 50.268 1.727
+7 8.662 0.0443 18.077 0.0234 0.328 0.502 F0.0178 +0.501 8.594 50.253 3.108
i%” 8.658 0.0443 18.400 0.0221 0.329 0.496 =F0.0158 =+0.667 8.595 50.251 2.516
i%” 8.652 0.0444 21.067 0.0215 0.329 0.493 Fx0.0131 =+0.751 8.592 50.256 2.224
:t%” 8.657 0.0443 22.196 0.0243 0.327 0.506 F0.0166 +0.401 8.585 50.264 3.421
i%ﬂ 8.661 0.0443 17.255 0.0226 0.328 0.498 =F0.0172 +0.601 8.596 50.249 2.758
i%” 8.648 0.0444 22.923 0.0213 0.329 0.492 Fx0.0109 =+0.800 8.589 50.259 2.065
j:%” 8.645 0.0444 24.117 0.0211 0.329 0.491 =F0.00932 +0.834 8.587 50.262 1.970

(1,149,1-9)" 9 0 8.686  0.035 18.468 0.0207 0.328 0.513 0 0 8.623 50.218 3.807
+£ 8.686 0.035 21.429 0.0205 0.328 0.512 F0.00861 +0.167 8.623 50.217 3.713
(1,1 -8i,1 +8)T -8 = 8.644  0.0444 19.680 0.0208 0.330 0.511 1 1 8.587 50.262 1.729

+7 8659 0.0443 19.667 0.0234 0.328 0.498 +0.982 +0.501 8.591 50.257 3.107
:i:%” 8.659  0.0443 15.344 0.0221 0.329 0.504 +£0.984 £0.667 8.597 50.249 2.517
i%” 8.654 0.0444 16.091 0.0215 0.329 0.507 £0.987 £0.751 8.595 50.252 2.225
j:%” 8.652  0.0443 26.655 0.0243 0.327 0.494 +£0.983 £0.401 8.580 50.271 3.419
:t%” 8.661 0.0443 15.973 0.0226 0.328 0.502 +0.983 £0.601 8.596 50.250 2.758
i%” 8.651 0.0444 17.004 0.0213 0.329 0.508 +£0.989 £0.800 8.593 50.254 2.066
j:%” 8.649 0.0444 17.671 0.0211 0.329 0.509 +0.991 +0.834 8.591 50.256 1.971

(1,1-9i,1+9)T -9 0 8.676  0.035 28.194 0.0207 0.328 0.487 1 0 8.613 50.230 3.804
+ 8.677  0.035 30.042 0.0205 0.328 0.488 +0.991 £0.167 8.614 50.228 3.710

e ]

__x 0 -2
\/ 242 24-x?
1 -1 x
Uyl = /22 V2 2024+x%) | (B22)
1 1

Then the three nonzero parameters y, z and w of m,, are

3 ) 1 ) 1 )
y=2m, — Exzmse’”, z=-3 ix\/3(2 + x*)mge™, =5 (2 + xH)mge™. (B23)

The neutrino mass matrix 7, can be diagonalized by the unitary matrix U,, which is shown in Eq. (2.16). Then the lepton
mixing matrix is determined to be

__ 2+4x _ V2(x—1)e"¥ sing V2(1=x) cos @
V32422 V3(2+2) 3(2+x2)
_ 1—x icos | (24x)e¥sin@  (24x)cosO e sing
v= V3(2+22) v T Vezrd) o) V2| (B24)

1—x zcos 6 + (2+x)e™sin@  (2+4x)cos® | jel¥ sind
V3(2+2%) V6(2+2) /6241 V2
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TABLE XV. The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the effective Majorana mass m,,

for the breaking pattern Ay with (G;, Gy, Gso1) = (KSS’TSTZ), ZY,71V) and Xy, = {U, T}. Here we choose many benchmark values

for the parameters x and 7. The TM1 mixing matrix is reproduced in the case of x = 4, and the first column of the PMNS matrix are fixed

T T
to be <3\/— 3T 3\/—) , (\/2727 \/1717 \/77) and (3\/ﬁ 3\/IT 3\/F) for x =7/2, 15/4 and 19/5 respectively. Notice that the

lightest neutrino mass is vanishing m; = 0.

(sot)/ vy, x n m, (meV) r 22 sin?03 sin? 0y, sin?0y; Scp/m B/m my (meV) ms (meV) m,, (meV)
(140.407)7 4 +£% 26798 00335 10716 0.0225 0318 0513 F0482 £0401 8628 50212  2.694
(1,%&),%@2)T % j:% 26.502 0.0444 30.264 0.0210 0.277 0.517 =F0.478 +0.397 8.922 49.846 2.453
:t%” 24,191 0.0503 19.851 0.0235 0.275 0.577 =F0.405 +0.313  8.278 50.656 2.534
(1, 17560 %mz)T 14*5 +% 26.661 0.0384 13.801 0.0218 0.299 0.515 =F0.480 +0.399 8.766 50.044 2.582
(1, ?w %wZ)T 15—9 j:% 26.690 0.0374 12.276 0.0220 0.303 0.514 =F0.481 +0.399 8.737 50.079 2.606

One can straightforwardly extract the lepton mixing angles and the two CP rephasing invariants J-p and I, as follows:

2(1 — x)*cos6 2(1 — x)?sin’@

. 29 — , . 29 — ,
ML = TR0 ) 2 = 3 ) 2 2(1 — x)Pcos?0
- 1 V3(24 x)V2 + x?sin 20 siny
S 623 = - 5 5 5 y
2 2(3(24x*) = 2(1 — x)*cos*0)
1—x)%(2 in 2 1 — x)*sin?20 si —
Jop = (1 =x)*(2+x)sin 6(:051//’ I - (1 — x)*sin*20 sin(p — o) (B25)

6V3(2 + x7)3/? 9(2 +x%)?

We see that the three mixing angles and Dirac CP phase only depend on two free parameters € and y. Then the mixing
parameters are strongly correlated such that the following sum rules among the mixing angles and Dirac CP phase are found
to be satisfied:

(2 +x)?
32+ x%)°

[3+ 6x — (5 + 2x + 2x?) cos 20, 3] cot 20,3
25in0131/3(2 + x)2(2 4 xH)cos?0y5 — (2 + x)*

c0s%0,,c08°0,5 = coSScp = (B26)

The former correlation implies that the solar mixing angle 6, is restricted by the observed value of 65 for a given x. From
the sum rule among J.p and the mixing angles, we find that a maximal atmospheric mixing angle 6,; = 45° leads to a
maximal Dirac CP phase, i.e., cos d.p = 0. For a fixed value of x, the possible values of .p is determined by the 3¢ ranges
of the mixing angles 65 and 6,5.

In order to see how well the lepton mixing angles can be described by this breaking pattern and its prediction for the CP
phases, we perform a y? analysis defined in Eq. (3.5) for some benchmark values of x and 7. The results are listed in
Table XV. Furthermore, we find that the mixing pattern with x = 4 is equivalent to the breaking pattern N'; with X, =
{1,SU} and x = —1. In order to obtain all possible values of the mixing angles and CP phases, we consider the input
parameters x, 7 and r as free parameters and require that all three mixing angles and the mass ratio m3/mj3 lie in their 36
ranges. Then we find that the allowed values of the input parameters x, || and r are [3.472, 4.481], [0.2537,0.412x] and
[0.0240, 0.0516], respectively. Moreover, any value of 6, within its 3¢ range can be achieved and 6,3 is restricted to the
range 0.450 < sin? 6,3 < 0.588. The absolute values of the Dirac CP phase and Majorana CP phase are predicted to be in
the ranges [0.3937,0.5797] and [0.2987,0.5127], respectively.

APPENDIX C: OTHER MIXING PATTERNS WITH 10

In this Appendix, we shall list the other possible choices for the residual symmetries G;, Gy, Gy and the resulting
predictions for the lepton mixing parameters and neutrino masses.

(1.6) (leGatm’Gsol) - (Zg’ZgSTZ’Zg)7 atm {SU ST2S T2 T2STU} Xsol - {1 U}

Here the residual symmetries in the charged lepton sector, atmospheric neutrino sector and solar neutrino sector are the
same as in the A/, case which is discussed in Sec. III. Then the light neutrino mass matrix m, takes the same form as in
Ref. [61]. From the discussion below Eq. (2.21), the PMNS matrix of this case can be directly obtained from the PMNS
matrix in Ny:
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X2fx+l P X dxt ] iy V6x
STz 00s0 205 e sing N
1 . : - W oo 2
_ P 7N _ _iV3xcosé _ iV3xeV sing 2(x*+x+1)
v= \/§ ¢ sin@ V/ 5x2+2x+2 cosd \/5x2+2x+2 5x242x+2
e~V gin @ — —1Y3xeos0 g iV3xel sing 2+t 1)
2
V533 42x42 V5a2+2x42 5x%42x+2
The lepton mixing angles and CP rephasing invariants can be read off as
. 3x° : . . 1
s1n2913 = m, sm2912 = sm20, Sll’l2923 = 5 s
V3x(x? +x + 1) sin 20 siny (x? + x + 1)?sin*20sin(p — o)
Jep = - . L=- : (C1)

2(5x% + 2x +2)3/? (5x% +2x +2)?

As in the case Z;, 6,3 is maximal and ;3 only depends on the real parameter x. For the 3¢ interval
0.02068 < sin? 03 < 0.02463, we have x € [—0.123,-0.113] U [0.127,0.140]. In order to know how well the predicted
mixing patterns agree with the experimental data, we shall perform a y? analysis for x = % The numerical results are

n=0993z,  m,=19.180 meV,  r=2890, ;2. =32054,  sin’0; = 0.0201,
sin?0y, = 0310,  sin?0y; = 0.5,  Scp = —0.876m, = 0.510x,
m, =49.377 meV,  my =50.120 meV,  m;=0meV,  m,, = 36250 meV. (C2)

T
For x = % the absolute value of the third column of the PMNS matrix is fixed to be ( A /12—9, \/%, \ /%) . Due to the

requirement that the three mixing angles and mass ratio m% / m% lie in their 3¢ ranges [1], the input parameters || and r are
restricted to the ranges [0.99137,0.9957z] and [2.862, 2.915], respectively. Then the values of §cp lie in the range
[—0.9047, —0.8427] U [-0.1587, —0.09627] U [0.06667,0.1067] U [0.8947,0.9337], and the allowed range of the absolute
value of the Majorana phase is [0.3757z,0.406z] U [0.4927,0.5467x]. The other mixing angles can take any values in their
36 ranges.

(Z7) (G, G, Gol) = (ZBT’ Zg’ZgU)’ Xam = {L. U}, X ={U.T}

Here only the residual CP transformation X,,; = {U, T} can give phenomenologically viable predictions. Then the VEV
alignments of the flavons ¢,,, and ¢, are

<¢atm> = Uy, (O’ 1, _I)T’ <¢sol> - v¢s(l,xw,xw2)r. (C3)

The light neutrino mass matrix can be block diagonalized by the unitary matrix U,;, where the unitary matrix U, takes the
following form:

0 Vi s
V2422 V242
1 _ X 1
Ul/l = \/E \/2(2+x2) \/2+7 . (C4)
1 _ X _ 1
V2 V2(2+2) 2422

The three nonzero elements y, z and w are determined to be

3 . ] . 1 ,
y =2m, —Exzmse’”, z :éx\/3(2+x2)mse”7, w :§(2+x2)mse”7. (C5)

Then the neutrino mass matrix m,, can be diagonalized by using the unitary transformation matrix U,, which is given in
Eq. (2.16). As a consequence, the PMNS matrix is
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2¢~¥ sin@ 2cos 6 _Vax
V242 V2427 V2422
1 WSing iy 0 Vi
— | —cosf —r =2 eV sin 0 — X5 —
v \/§ V2422 242 2+4x? (C6)
cos O — xe™¥ sin@ —e¥ gin @ — Xcosf  _ V2
V247 247 2442
Its predictions for the three mixing angles and the two CP rephasing invariants are
: 29 x2 : 29 29 : 29 1
sin =—7, sin = cos-0, sin ==,
BTy 12 3 =5
_ xsin2@siny ~ sin®20sin(p — o) (©7)
cP = 202+ x2)32° 1= (2 +x2)?

It predicts a maximal atmospheric mixing angle 6,3. The viable range of x can be obtained by varying 6,5 over its 3o range,
i.e., |x| € [0.206,0.225]. In order to see how well the lepton mixing angles can be described by this breaking pattern and its
predictions for the CP phases, we shall perform a numerical analysis. When the experimentally allowed regions at the 36
confidence level of the mixing parameters and mass ratio m?7/m3 are considered, the viable ranges of the input parameters
|n| and r are [0.0138x,0.02017] and [1.803, 1.831], respectively. Then the Dirac CP phase and the absolute value of the
Majorana CP phase are limited to the narrow ranges [0.0151z,0.0357x] U [0.9647,0.9857z] and [0.1667,0.1897],
respectively.

Furthermore we perform a comprehensive numerical analysis for x = £2/9 which give relatively simple VEVs of ¢,;.
From the PMNS matrix in Eq. (C6), we find that the fixed column of the PMNS matrix for x = +£2/9 is

( %,\/%,\/ILR)T ~ (0.155,0.699,0.699)7. It agrees with all measurements to date [1]. The usual y? analysis results
for x = £2/9 are
n = 0.0162x, m, = 25.829 meV, r = 1.810, 22 =22.509, sin?6,3 = 0.0241,
sin?@,, = 0.310, sin%0,; = 0.5, dcp = 0.0264r, p =0.181x,

m; = 49.377 meV, my = 50.120 meV, ms; = 0 meV, m,, = 46.753 meV. (C8)

(IS) (le Gams Gsol) = (Z3T’ ZgﬁngSU)s Xom = {1’ U}’ Xt = {U’ STS}
For this combination of residual flavor symmetries, only the residual CP transformations X, = {U, STS} are viable.
The vacuum alignments of the flavons ¢, and ¢, can be read from Table II,

\/§x—1

T
5 ,l—f—ix,l—ix) . (C9)

(am) = 09, (0.1.1). () = ¢(

Before diagonalizing the neutrino mass matrix, we first perform a unitary transformation, where the unitary transformation
matrix U, takes the following form:

0 1—3x 2V2
V3223249 \/3:2=2/3x49
_ I 2 1—\/§x
Un = V2 32239 Ver—43ar 18 (C10)

1 2 1-/3x
V2 V3:2-2V3x49  \/6:x2—41/3x+18

The expressions of the parameters y, z and w are

. 9-2v3 3x? . 1 4
y =2m, — 2x*me™, 7= —ix}\| %msem, W=y (9 — 2v/3x 4 3x2)m,e™. (C11)
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The unitary transformation U, , diagonalizing the neutrino mass matrix mz,, is of the form given in Eq. (2.16) for the IO case.
Then the lepton mixing matrix is determined to be of the form

(v3x=1)e™¥ sin @ (v/3x—1) cos O 2,2
V9-213x4322 V9-21/3x+32 V9-213x+322
U— L cosd 2¢~¥sin@ 2cosé __eVsinf 1-v3x (C12)
V2 V2 Vovamse Voeavase V2 V209-2150430)
__cosd 2¢=" sin @ 2cosé eV sin0 1-v3x

V2 o2 Bxi3 AV9-2vBx3 V2 \/2(9-23x432%)

The mixing parameters extracted from the above PMNS matrix are

8 1
N 913 m, N 912 = cos-0, N 923 = 5,
Jop = — V2(1 —/3x)?sin 20 sinlll, I, (1 —/3x)*sin%20sin(p — o) ‘ (C13)

2(9 — 2¢/3x + 3x2)*/2 4(9 —2+/3x + 3x2)°

Inserting the 36 ranges of the third column of the PMNS matrix, we find that the parameter x should vary in the interval
[—10.660, —9.699] U [10.854, 11.815]. As an example, we take x = —6+/3. Then the fixed column of the PMNS matrix is
ﬁ(é 19,19)7 ~ (0.147,0.699,0.699)” which is not beyond the 3¢ confidence level [1]. Furthermore, we perform a

conventional y? analysis and the numerical results are

n = 0.00227r, m, = 45.595 meV, r = 0.00645, )(fnm = 19.755, sin?6,; = 0.0217,
sinf, = 0310,  sin0y; =05,  Scp =02107, B =0.716x,
my; = 49.377 meV, my = 50.120 meV, ms; = 0 meV, m,, = 26.550 meV. (C14)

In the case that all three input parameters x, 7 and r are free parameters, we find that the three mixing angles and mass ratio
m}/m3 can lie in their 36 ranges at the same time only when x, |§| and r are restricted to the ranges
[-10.660, —9.699] U [10.854,11.815], [0.00121x,0.002957z] and [0.00530, 0.00738], respectively. We find that any
values of 0y, and 6,3 within their 30 ranges can be achieved, and the two CP phases are predicted to be dc-p €
[-0.8277,—0.681x] U [—0.3197, —0.1737z] U [0.1537,0.2747x] U [0.7267,0.8477] and |f| € [0.677x,0.8257].

(29) (Gl’Gatm7Gsol) = <Z3T’Z§U’Z§TSU)’ Xatm = {1’ SU}’ Xsol = {U’ STS}

In this case, only the residual CP symmetry X, = {U, STS} is viable. From Table II, we can read out the VEVs of the
flavons ¢, and ¢, invariant under the residual symmetry. This neutrino mass matrix can become a block-diagonal matrix
when we perform a unitary transformation U,; with

0 _ i(x(19x4+6v/3)+9) 2\2ix
V392 4+2v3x+3)(19246V3x49)  1/3(9x2+2v/3x+3)
U, — x(4i++/3)+3 2x((v/3+4i)x+3) x(4i+v/3)+3 (C15)
VI V201902 46V3x49)  4/3(9042v3x43) (1902 16V3x49)  1/6(9x74+2/3x+3)
x(—4i+v/3)43 2x((=V3+4i)x=3) x(4i—V3)+3

V20192 46V3x+9) /3092 42v3x+3)(19024+6v3x+9) /692 +2v/3x+3)

The parameters y, z and w take the following forms:
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6(x? + 2+/3x 4 3)m, + 2(16x* 4 8v/3x> 4 27x% + 6+/3x + 9)m e
1922 + 6V3x +9

i\/2(9x2 +2v/3x +3)(12(x + V/3)m, + (=12x> 4 v/3x% — 6x + 3/3)m,e)

’

Z - 9
2(19x + 6v3x + 9)
—48(9x2 + 2v/3x + 3)m, — 3(27x* — 124/3x% + 6x% — 4/3x + 3)me™ (C16)
w= .
4(19x% + 61/3x +9)
The neutrino mass matrix m,, can be diagonalized by the unitary matrix U,,. Then the PMNS matrix is
19x246V3x+9 iy o _ [ 192246V3x49 2v2x
V302 12v3x43)¢ ¥sind 302 +2v3x13) 08 0 /39 +2/3x+3)
U — cosd _ 2xe sin 6 2xcos @ eV sin @ 19x2+6v/3x49 (C17)
V2 3000 12V3x43) /392 +2V3x+3) V2 6(9x2+2v/3x+3)
_cosf _ 2xe~" sin 0 2xcosf _ e¥sing 19x24+6v/3x49
V2 30242V3x43)  \3(0°+2v3x43) V2 6(9x7+2v/3x+3)
The three lepton mixing angles are predicted to be
8x? 1
sin%6,; = , sin%6,, = cos26, sinZ6,; = —,
P94 6v3x+ 272 2 )
x(19x2 + 61/3x +9) sin 20 sinyr (19x% + 61/3x + 9)%sin*20 sin(o — p)
Jer = 2 2 I = 5 5 . (C18)
3v6(9x +2v/3x + 3) 36(9x2 4 2v/3x + 3)

The atmospheric mixing angle is maximal and the reactor mixing angle only depends on the input parameter x. Inserting the
30 ranges of the third column of the PMNS matrix, we find that the parameter x should vary in the interval
[—0.157,—0.144] U [0.173,0.192]. As an example, we take x = v/3/10. Then the third column of the PMNS matrix is
31% (4, V379, \/ﬁ)T ~ (0.144,0.700,0.700)" which agrees with all measurements to date [1]. The y? analysis results are

n=0997,  m,=12428 meV,  r=2760, ;1. =26533,  sin’0; = 0.0207,
sin20,, = 0310,  sin20y; =05,  S¢p = —0954z,  J = 0.246x,
m; = 49.377 meV, m, = 50.120 meV, mz =0 meV, m,, = 45.510 meV. (C19)

After calculation and analysis, we find that only when the input parameters || and r lie in the ranges [0.99547,0.9976x] and
[2.450,2.472] U [2.755,2.763] respectively can the three mixing angles and mass ratio m3/m3 be in their 3¢ ranges.
Then the two CP phases 6cp and f are predicted to be 5¢cp € [-0.9667, —0.9427] U [—0.05837, —0.03437] U
[0.01507,0.02607] U [0.9747x,0.9857] and |f| € [0.1157,0.127x] U [0.2407, 0.2607].
(I]()) (GZ’ Gatmv Gsol) = (ZZSU’ Zg’ ZgU)’ Xatm = {17 S? TSTZU, T2STU}
(1) Xsol = {U’ T}
The remnant symmetries determine that the alignments of ¢, and ¢, are along the directions (1,1,1)” and
(1, xw, xa)z)T, respectively. The general form of the neutrino mass matrix can be obtained from Eq. (2.8). This
neutrino mass matrix can be diagonalized into a block-diagonal form by performing a unitary transformation U,; on
m,, where the unitary matrix U,; takes the following form:

1 24x _ iv/3x
V3 \Ber25?) /2420450
1 1—(w+iV3)x wx—1
— | % 2
Un V3 /32+2xc450) /24214522 (€20)
1 (3’ +1)x 1—w’x
V3 /3242450 /24214522
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Then the neutrino mass matrix m, is a block-diagonal matrix with elements

1—x)?2 . -1 . 242 5x2 .
y=3m, + ( 3x) mgel, 7= : 3 V2 + 2x + 5x2mge™, w= %mse’”. (C21)

The diagonalization matrix of m,, can be written in the form of U, in Eq. (2.16) for the 10 case. Then the PMNS
matrix is determined to be

__i(142x)e" " sin @ __i(142x)cos g 1—x
V 242x+5x2 \ 242x+5x% \/ 242x+5x7
. cos _ (1=x)e"Vising i(x=1)cosf ¥ sing —1-2x
U= 2 V2042045x)  (20242045%) V2 202420450 | (€22)
cos 6 + i(1=x)e~¥ sin (1-x)icos® ¢ sing 1+2x

5

2 V20242x045x)  \/2(242x+5:2) V2 2(242x454%)

Its predictions for the mixing angles and CP invariants are

1-x)? 1
sin?6,; = 2—1(—2xi)5x2 sin%6;, = cos’0, sin%6,; = 5
X — + 2x)~sin 260 cos y + 2x)"sin“20sm(p — o
1)(1 + 2x)? sin 20 1 + 2x)*sin?20 si
Jer = 132 ; I =-  he R (C23)
4(2 +2x + 5x2)Y/ 4(2 + 2x + 5x%)

The atmospheric mixing angle 6,5 is predicted to be maximal. We find that the correct value of ;5 can be obtained
when x is restricted to the range [0.638,0.662] U [1.615, 1.699]. If we require that all three mixing angles and the
mass ratio m?/m lie in their 36 ranges, the two CP phases §¢p and || are determined to take values in the intervals
[, —0.9877z] U [-0.01287,0.003367] U [0.997x, ] and [0.09647, 0.111x], respectively. Furthermore, we find that
the viable ranges of || and r are [0.9657,0.9767] and [0.442,0.478] U [1.595, 1.647].

For illustration, we shall give the y? results for the typical value x = 2/3. The vacuum alignment of the flavon ¢,
is proportional to the column vector (1, % , % @?)T and the third column of the PMNS matrix is (ﬁ . 175-15)" - The z/?
analysis results are

n =—-0.9697x, m, = 16.794 meV, r=1.579, 22 = 33.640, sin?0,3 = 0.02,
sin?6,, = 0.310, sin’0,; = 0.5, dcp = —0.997x, p = 0.0964r,
my = 49.377 meV, my = 50.120 meV, m3 = 0 meV, m,, = 48.137 meV. (C24)
We see that 6,5 is rather close to its 3¢ lower limit 0.2068 [1]. Hence this example should be considered as a good
leading-order approximation. The reason is that if subleading contributions are taken into account, accordance with
experimental data is easily achieved.
(i) Xy = {STS,T>STU}

For the residual CP transformations X, = {ST'S, T>STU} in the solar neutrino sector, the vacuum alignment of
¢y 1s fixed to be

(Psor) = vy, (1 +2ix, (1 — ix), 0*(1 — ix))T. (C25)

After performing a U, transformation, m; can be a block-diagonal matrix, where the unitary matrix U, takes the
form

1 1—ix —x—i
V1422 VARES
1 P T
- ] e-ixo i —x®
Un="5l" Viee Viee |- (C26)
1 D —ixw  —xe’—iw
1+x2 1422
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The nonzero elements y, z and w of the block-diagonal m,, are

y = 3m, — 3x*mye™, 7= =3ix\V/ 1+ xX*mge™, w = 3(1 + x*)mye™. (C27)

Then the neutrino mass matrix m,, can be diagonalized by the unitary matrix U,, which is given in Eq. (2.16). As a
consequence, the PMINS matrix can take the following form:

_ \2e ¥ sing V2cos0 V2x

14+-x? V142 VaRES
1 =iy o 3 .
U= cos @) — ¢ sin @ —e sin@ — xcosd 1

cos 6 + xe~¥ sin@ —e sin + xcosf 1

V 1+x2 VAR= 1422

The lepton mixing parameters are predicted to be

. x? , . 1
Sln29]3 = m, Sln29|2 = COSZG, Sln2923 = 5 s
x sin 26 sinyr sin*2@sin(p — o)
_ , _ _Sim26sinp — o) €29
cp 4(1 4 x2)3/2 1 4(1 -+ x2)2 ( )

This mixing pattern gives a maximal #,5. The reactor mixing angle 8,3 only depends on the parameter x which
comes from the vacuum alignment of the flavon ¢,. In order to obtain a value of 8,3 allowed by experimental
data, the input parameter |x| must be restricted to the range [0.145, 0.159]. In order to accommodate the
experimentally favored 3¢ ranges [1] of the mixing angles and mass ratio m? /m3, we find that the allowed regions
of the parameters |57| and r are [0.02417,0.03467] and [0.945, 0.954], respectively. Any values of 03 and 6,3 in
their 30 ranges can be obtained. The two CP phases are predicted to be &¢cp € [—7,—0.9887] U
[-0.01207,0.002417z] U [0.997x, z] and |p| € [0.09737,0.111z]. Detailed numerical analyses show that accor-

dance with experimental data can be achieved for x = 4\1/5 and the best-fit values of the mixing parameters and

neutrino masses are

n = —0.03087, m, = 16.797 meV, r =0.955, 22 = 29.075, sin’0,5 = 0.0204,
sin’0,, = 0.307, sin6,3 = 0.5, Scp = —0.00289x, p=-0.0973x,
my = 49.377 meV, ny = 50.120 meV, msy = 0 meV, m,, = 48.108 meV. (C30)

Furthermore, the fixed column of the PMNS matrix is %(1 2\/6, 2\/6)T in the case of x =
(Z11) (G}, Gy, Gyot) = (ZF5V, 25, Z5°V), Xy = {1, S, TST?U, T>STU}
(i) Xy = {U.T%}
In this case, both X, = {U, T?} and X,,) = {ST?S, TST?>U} are compatible with the residual flavor symmetry.
For the former residual CP symmetry, the invariant vacuum of ¢, is

1
43

<¢sol> = 1]4,»\(],)(0)2, xa))T- (C31)

First, we perform a unitary transformation U,; on the neutrino mass matrix m,,, where U, takes the following form:

I 2+x iv/3x
V3 \Btantsd)  y2t2cse?
1 1-(3w?+1)x @ r—1
Uj = V3 \/3(2+2x+5x2) \/2+2x+5x2 (C32)
1 1—(0+iV3)x 1-wx
V3 \B42e5x) /24204502
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Then the neutrino mass matrix m,, is a block-diagonal matrix and the parameters y, z and w which are introduced in
Eq. (2.13) are

1 —x)? ) -1 . 242 5x2 )
y:3ma+( 3x) mgel, z:x3 V2 + 2x + 5x2mge™, w:$mse”7. (C33)

The neutrino mass matrix 7, can be diagonalized by the unitary matrix U,, which is shown in Eq. (2.16). Then the
lepton mixing matrix takes the following form:

ivV2(x—1)e™¥ sin @ iv2(x—1) cos 0 V2(2x+1)
V/ 5x%42x42 V522 +2x42 V/5x2+2x42
1 i(2x+1)e™ sin 6 i(2x+1)cos® - _
U — cos 6 — i(2x+1)e™ sin __i(2x+1)cosd eV sin @ x—1 . (C34)
V2 V5x+ 2042 V542042 V52 42x+2
; =iy o3 ; N . _
cosf + i(2x+1)e ¥ sinf i(2x+1)cosf eV sin O l—x
V5212542 V5242542 V5224242

The predictions for the lepton mixing angles and CP invariants are

1+ 2x)? 1
Sil’l2913 = % s sin2912 = 0052(9, sin2923 = E N
Jop = — (1=x)2(1 +2x) SiHZQCOSl//’ I = (1 — x)*sin*20sin(p — o) (C35)

4(2 + 2x + 5x2)3/? 4(2 + 2x + 5x%)?

The atmospheric mixing angle 0,5 is maximal and 6,5 only depends on x. Inserting the 36 range of 85, we find that
the parameter x should vary in the interval [—0.629, —0.618] U [-0.398, —0.390]. Let us give a relatively simple

example which is easier to present in an explicit model, i.e., with x = —2/5. Then the vacuum alignment of the
flavon field ¢y, is proportional to the column vector (1, —£@?, —%w)" and the third column of the PMNS matrix is
(ﬁ,%,f—o)? The »? analysis results for this example are

n=-099%r,  m,=23399 meV, r=2260, 4. =33.640,  sin%0;5 = 0.02,
sin20, = 0310,  sin?0y = 0.5,  Scp = —0.8727, = 0.5487,
m; =49.377 meV,  m, =50.120 meV,  m; =0meV,  m,, = 34.550 meV. (C36)

Furthermore, we think it is necessary to give the predictions for the three mixing angles and two CP phases.
We obtain the viable ranges of the mixing angles and CP phases by scanning the input parameters x, r and 5 in
their ranges. Then we find that the mixing angles €3 and €, can take any values in their 3¢ ranges, while
the absolute values of the two CP phases are restricted to |5cp| € [0.09567,0.1617] U [0.8397,0.9047]
and |B| € [0.526x,0.574x]. Moreover, in order to obtain viable ranges of the mixing parameters and the mass
ratio m?/m3, the input parameters || and r should take values in the ranges [0.9951z,0.99667z] and
[1.661,1.691] U [2.274,2.282], respectively.
(v) Xe = {ST?S,TST?*U}
For this kind of residual symmetries, the vacuum alignment of the flavon field ¢ is

(Psot) = vy, (1 + 2ix, 0*(1 = ix), (1 — ix))T. (C37)

We first perform a unitary transformation U,; with

1 ix—1 i+x
Val4l /x4
1 P 5 .
o 1 he-o xXw~+iw
Ui =2 = o |- (C38)
1 ixo’—w iw* +xw

Va2l A/x241
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Then the light neutrino mass matrix becomes block diagonal with the nonzero parameters y, z and w,

y = 3m, — 3x*mye™, z==3ix\/1+ x*mge™, w = 3(1 + x*)mye™. (C39)

Following the procedures presented in Sec. I, we know that the neutrino mass matrix m,, can be diagonalized by the
unitary matrix U,,. Then the PMNS matrix is given by

_ V2xe"¥sinf V2xcos @ V2
Va2t Val41 Va4l
1 . =iy o 0 . . 0
_ O + ¢€sin iy 0 — —cos X
U 7 icosf + 2y e¥sin o) = | (C40)
. =iy o 9 R . Y]
eSO TSNS Ve
One can straightforwardly extract the lepton mixing angles and CP phases as follows:
02 ! 02 2 ‘2 !
s 913 = m, sin 912 = COS 9, s 923 = E,
2 o 4 2.2 .
sin 26 cos sin-20 sin(p —
JCP:_x 223/7 1:_x gpz 6) (C41)
4(1 + x2)3/ 4(1 +x?)

6,3 is predicted to be maximal and 6,5 only depends on the input parameter x which comes from the general VEV
invariant under the action of the residual symmetry Z{ZU x H%, with a 3’ representation. When we take into account
the current 3¢ bounds of 8,5, we find that the parameter |x| is constrained to be in the range [6.293, 6.882].

In order to give the predictions for the mixing parameters, we could focus on the admissible values of x, r and 7 in
their ranges given Z ;. The admissible ranges of x, r and # can be obtained from the requirement that the three mixing
angles and mass ratio m3/m3 lie in their experimentally preferred 3o ranges, ie., |x| € [6.293,6.882], || €
[0.00347,0.00497] and r € [0.0105, 0.0120]. Then the possible ranges of the absolute values of the two CP phases
Scp and p are [0.5987,0.6617] and [0.5277,0.574x], respectively. This mixing pattern gives no predictions for the
mixing angles 0}, and 6, 5. Here we shall give an example (x = 41/3) to show how well the lepton mixing angles can
be described by this mixing pattern and the predictions for the CP phases. In this example, the fixed column which
only depends on the VEVs of ¢, and ¢, is determined to be %(l, 216, 2\/6)T. Then the best-fit point and the
predictions for various observable quantities obtained at the best-fit point are

n=000408z,  m, =23396meV, r=00103,  y2. =29.075,  sin’6;; = 0.0204,
sin20), = 0310,  sin?0y =05,  Scp = —-03727, = 0.5487,
m; =49.377 meV,  m, =50.120 meV,  m; =0meV,  m,, = 34.539 meV. (C42)

@12) (Gl’ Gams Gsol) = (ZZSU’Zg’ ZgU)’ Xam = {1’ U}’ Xgol = {U’ T}

Similar to the previous cases, we can obtain the neutrino mass matrix 7, from the vacuum alignments of ¢,,, and
(o1 invariant under the residual symmetry. Then we apply the unitary transformation U, to make m,, = Ul,m, U, a
block-diagonal matrix, where the unitary matrix U, is

_ iv3 x+2 __x
\/2x2+2x+5 \/(x2+2)(2x2+2x+5) /x242
wx—1 iV3+x(wx—1) 1
= - . 4
U \/2x2+2x+5 \/(x2+2)(2x2+2x+5) \x242 (C 3)
1-0’x —iV3—x(1-w’x) 1

Vadizs  JR)eeaats) e

The parameters y, z and w of m,, are given by
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(x +2)%m, —3(x = 1)>mge™

y= 2x2 4+ 2x+5 ’
i3+ 2)(—(x +2)m, 4 (x — 1)(2x + 1)mge™)
N 2x2 +2x+5 ’
24 2)(=3 2 1)2 in
2x°+2x+5

The neutrino mass matrix m, can be diagonalized by the unitary transformation matrix U,,. Then the following
PMNS matrix can be obtained:

(22 +2045) —jy s (242545 2 (x—1
—\/7( xx:'++;+ Je=¥ gin O \/7( xx;;f)cosﬁ ——‘/.(Z )
VX2

1 x—1)e™ sin x—1) cos P 2
7 V3cosf — ¢ 1)x2+2 o 1x)2+29+\/§e””sm6' VEEESE | (C45)

—/3cos6 — (x=1)e™"sinf  (x—1)cosd \/gei‘/’ sin @ 2x2 42545
212 e x*+2

The lepton mixing angles and CP phases can be read off as

U=

. 1—1x)? . . 1
sin®63 = 3((27+)32) sin6,, = cos?6, sin0,; = X
(2x3 4 3x — 5) sin 20 siny (2x? 4 2x + 5)%sin*20sin(p — o)
124/3(x* 4 2)3/2 36(x* +2)

We see that this breaking pattern predicts a maximal 6,3. The reactor mixing angle 6,3 only depends on the input
parameter x, while the solar mixing angle 8, and two CP phases depend on the input parameters x, # and r. Varying

the mixing angle 6,5 over its 36 range [1], we obtain the allowed region of x, i.e., x € [0.584,0.616] U [1.516, 1.575].

As an example, we take x = 2. Then the VEV alignment of the flavon ¢ is proportional to (1,2 w,2®?)” and the

T
third column of the PMNS matrix is fixed to be (\/% /35 4/ %) . The »? results are given by

n=0004087,  m, =30.164 meV,  r=1153, ;2. =17.644,  sin?0,5 = 0.0226,
sin?0,, = 0.310,  sin20,; = 0.5,  5cp = —02287, B =—0.729x,
m; =49.377 meV,  m,=50.120 meV,  m;=0meV,  m, =25931 meV. (C47)

Requiring that the three mixing angles lie in their experimentally preferred 36 ranges, the allowed regions of ||
and r are [0.0027x,0.00657] and [0.335,0.354] U [1.127, 1.181], respectively. Any values of 03 and 6, in their
allowed 3o ranges can be taken in this mixing pattern. The two CP phases are determined to take values in the
intervals

Scp € [~0.835,-0.695] U [=0.305, —0.165] U [0.0871, 0.140] U [0.860,0.913],

8] € [0.465,0.507] U [0.680,0.800]. (C48)

(IIS) (le Gam» Gsol) = <Z£SU’ZgU’Zg)’ Xam = {U’ T}7 Xl = {1’ U}
For this breaking pattern, we can read out the neutrino mass matrix m,, from Eq. (2.8), and the unitary matrix U, is
of the following form:
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0 2 x
2402 /2447
UI./l —_— E 2<2+x2) /2+x2 (C49)
_ o ’x ?
V2 2(2+x2) 242
The parameters y, z and w in m;, are
3, i N . 1 ,
y =2m, —5x mge, z=—ox 3(2 4 x*)mge™, 25(2—&—)6 Yymge™. (C50)

Taking into account the diagonalization matrix of the charged lepton mass matrix in Eq. (3.3), we find that the lepton
mixing matrix is fixed to be

VAI=)e ¥ sing VA1) cos0 2t
V242 2+ V3(2+2)
_ (2+x)e™¥sind _ cosq (24+x)cosO | ¥ sing x—1
US| e TV e TR Ve | ol

(
(2+x)e™¥sinf _ cos@ cost | e¥sind 1—x
(

_ (v
Vo) V2 V) V2 32+

The lepton mixing parameters are predicted to be

. 2 +x)? ) _ 1
sin*g; = ﬁ sin’6,, = cos’6, sin’6,; = X
Jop = — (1—x)?(2+ x)sin20 siny/’ I = (1 — x)*sin®20 iirzl(p -0) (©52)
61/3(2 + x2)3/? 9(2 + x?)

These predict a maximal atmospheric mixing angle and the experimentally allowed 3¢ range of 6,5 requires that the
input parameter x lies in the range [—2.870, —2.776] U [—1.489, —1.450]. For a certain value of x = — X, accordance
with experimental data can be achieved, and the corresponding y? results are

n = 0.00223r, m, = 45.926 meV, r=20.119, ya = 19.755, sin?6,; = 0.0217,
sin?6,, = 0.310, sin?6,; = 0.5, bcp = —0.787r, p=0.721xn,
m; = 49.337 meV, m, = 50.120 meV, m3 = 0 meV, m,, = 26.358 meV. (C53)

In the case x = — 1%, the third column of the PMNS matrix is predicted to be —— 3 \/— (4,19,19)7. If we require that the

three mixing angles and mass ratio m3 /m3 lie in their 3¢ regions [1], we find that the other two input parameters ||
and r lie in the rather narrow regions [0.0017x,0.0037z] and [0.114,0.121] U [0.367,0.381], respectively. Then
the two CP phases are predicted to be in the ranges &¢p € [—0.8427,—0.7257] U [—0.2757, —0.1587] U
[0.1247,0.2117] U [0.7897,0.8767] and |f| € [0.6087,0.674x] U [0.6837,0.772x], respectively.

(Z13) (Gr. Gums Guot) = (KT, 28, 28Y), Xy = {1, 7. T}

(V) Xgo1 = {1’ SU}

This residual symmetry has been discussed in the case of N'; of NO. Consequently the predictions for the neutrino
mass matrix and lepton flavor mixing can be read off from those of \;. For X, = {1, SU}, the lepton mixing matrix
takes the following form:
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(vi)

x _x2-2x+4 _ x> —2x+4 eV si V2(x—1)
V3022512 €080 Tooania)e Sind S—2ei2)

(x=1)cos® e~V sing (x=1)e"sing | cos x?—2x+4
U=| 77 7—=- —r— a5 |. C54
3(x2—2x+2) V2 3(2-2rt2) V2 6(x*—2x+2) (C54)
(x—1) cos O e~V sin 0 (x=1)e¥sinf _ cosd X2—2x+4
3(x2—2x+2) V2 3(x2—2x+2) V2 6(x*—2x+2)

Moreover, the expressions of the neutrino masses m; and m, coincide with m, and m; of the N5 case, respectively.
For the mixing matrix in Eq. (C54), we can extract the mixing angles and CP invariants as follows:

W=y Wm0 st = ),
o (1 —x)(x* = 2x + 4) sin 20 siny L= (x? = 2x + 4)%sin®20 sin(p — o) (C55)

61/6(x> — 2x +2)3/? ' 36(x% — 2x +2)?

We find that the atmospheric mixing angle 6,5 is exactly 45°. The experimentally allowed region of x depends on the

30 range of 0;3. We find that the viable range of x is [0.804,0. 821} [1 179, 1. 196]. Here we shall give the
predictions for x = 4 . First, the third column of the PMNS matrix is ——= (1 V19, v/19)". Second, the results of the y>

analysis are

n = —-0.99%r, m, = 60.715 meV, r=0.323, 2. =38.315, sin?6,; = 0.0256,
Sin2012 = 0310, Sin2023 = 05, 6CP = 08957[, ﬂ = —045177:,
m; = 49.377 meV, m, = 50.120 meV, mz =0 meV, m,, = 38.556 meV. (C56)

We note that the best-fit value of sin® 6,5 is rather close to its 3¢ upper limit 0.02463. Hence we think that this
breaking pattern with x :% is a good leading-order approximation. Furthermore we perform a comprehensive
numerical analysis. When the three mixing angles and mass ratio m?/m3 are restricted to their 3¢ ranges, the input
parameters |57| and r have to lie in the ranges [0.99297, 0.99507] and [0.322, 0.325], respectively. Limiting the input
parameters leads to |5¢p| € [0.07987,0.1287] U [0.8727,0.9207] and || € [0.4307, 0.4697]. The mixing angles 6,
and 6,5 can take any values in their 3¢ ranges.

Xsol = {S7 U}
For this case, we can read out the lepton mixing matrix from Eq. (B17) as,

x’43 X243 iy o V2x
3(x211) cosf - 3(;811)6 ¥ sin @ sy
B x(x++/3) cos 6 (x—V3)e ¥ sinf  (v3—x)cosf | x(x+v/3)e¥ sinf x+/3
U= V302+1)(:2+3) V2(2+3) V22 +3) + V3EHD)(E243) A/6(2+1) (C57)
x(x=v3)cos®  (x+v3)eWsing®  (x+v3)cosd | x(x—v/3)e sing x—/3
V30212 43) V22 +3) V20243)  ABEHDE23) V603 H)
Then the predictions for the three mixing angles and two CP invariants are
2 2
Sin2013 = 3(17_):—)62), Sin2912 = sin29, Sll’lzazg = 2 + 3\_/'—_)62 s
x(x* = 3) sin 20 siny x% + 3)%sin?20sin(p — &
JCP — ( )2 7 , 11 — _( ) 5 2( ) (C58)
6v/6(x2 4 1)3/ 36(x2 4 1)

We see that the third column of the PMNS matrix only depends on the parameter x which dictates the vacuum
alignment of the flavon ¢, . Since both mixing angles 8,3 and 6,5 depend on only one input parameter x, we can
obtain the following sum rule:
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| tand I 2tan6
sin® 035 = > = an2 13 /2 —tan?6,, zii%, (C59)

where the “+” sign in = is satisfied for x > 0 and “—" is satisfied for x < 0. Given the experimental 3¢ range of 0,3,
we have 0.602 < sin” 0,3 < 0.612 or 0.388 < sin? 6,3 < 0.398. The latter range has been removed by the 3¢ range of
6,3. The experimental data on the third column of the PMNS matrix at the 3¢ level can be accommodated when the
parameter x € [0.179,0.196]. The requirement that the three mixing angles and mass ratio m?/mj3 lie in their 36
ranges requires that the other two input parameters || and r lie in the ranges [0.99297x,0.9950z] and [0.3226,
0.3248], respectively. Then the mixing angle 6,5 and two CP phases are predicted to be 0.602 < sin” 6,3 < 0.612,
0.5807 < |6cp| <0.6287 and 0.4317 < || < 0.4697. The other two mixing angles can take any values in their 3o
ranges.

Now let us give the numerical results of a relatively simple example with x = #g In this example, the third column of the

PMNS matrix is \/%—2(1,5,4)T which agrees with all measurements to date [1]. When we perform a e analysis, the

predictions for the various observable quantities are

n=-09%x,  m,=60743meV, r=0323, 2. =573,  sin%0; =0.0238,
sin?0, = 0310,  sin6y; = 0.610,  Sop = —0.604x,  f = —0.449z,
m; = 49.377 meV, m, = 50.120 meV, ms; =0 meV, m,, = 38.688 meV. (C60)

(IIS) (Gl’ Gatm’ GSOI) = (KS‘S"TST-)7Z§J’ ZgU)7 Xatm = {1’ U}v XSO] = {Ua T}

The vacuum alignment of the flavons ¢,, and ¢, are given in Table II, and the neutrino mass matrix can be fixed. We
perform the first unitary transformation U,; on the light neutrino fields

0 -2 __«x
\/ 2+x? V242
— L x __ 1
Un = V2 2024 Vo | (Co1)
1 X _ 1
V2 204 Vol

Then the neutrino mass matrix m,, = U!,m,U,, is a block-diagonal matrix with nonzero elements

3 , [ . 1 .
y =2m, — zxzmse‘”, 7= —éx\ /3(2 + x*)mye™, w=3 (2 + x?)mge™. (C62)
Subsequently we find that the PMNS mixing matrix is of the following form:
_ V2(1-x)e¥ sing _ V2(1-x) cos & 24x
3(2+x2) V3(2+2) V3(2+2)
i icosf | (2at+b)e™¥sin@  (24+x)cosd _ je sin@ 1—x
U= V2 V/6(2+22) V6(2+x7) V2 V302402 (C63)
__icos@ + (24x)e¥sing  (24x)cosd | e sing 1—x
V2 Vo) (/62427 V2o 3040
Then we can extract the expressions for the lepton mixing angles and CP invariants as follows:
. 2+ x)? _ . 1
sin,3 = 3(<27+x)2), sin’f, = cos’6, sin6,; = 3
Jop=— (1 =x)(2 + x)sin26 cosy ’ 5= (1 —x)*sin?20 iirzl(p - 0) (C64)
6v/3(2 + x?)3/2 9(2 + x?)
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We see that the atmospheric mixing angle is maximal. Inserting the 3¢ range of 6,3, we find that the parameter x should
vary in the interval [-2.870, —2.776] U [—1.489, —1.450]. The mixing angle 6, and the mass ratio m?/m3 depend on the
three input parameters x, 7 and r. Hence if we require 8, and m?/m3 to lie in their 3¢ ranges, we can obtain that
the restrictions on |5| and r are || € [0.0017z,0.0037x] and r € [0.114,0.121] U [0.367,0.381]. Then the allowed values
of the two CP phases would generically be constrained to the regions |5¢p| € [0.2257,0.342z] U [0.6247,0.711x] and
|B| € [0.6087,0.6737z] U [0.6837,0.772x]. As an example easily achievable in a model, we consider the case of x = —3/2.
Then the vacuum alignment of the flavon ¢, is proportional to the column vector (1, — %a) - %a)z)T, and the fixed column

of the PMNS matrix is \/% (1,5,5). The best-fit values of the mixing parameters read

n = —0.00301z, m, = 40.128 meV, r=0.362, Zrznin = 38.746, sin’6;; = 0.0196,
Sin2912 = 0310, Sin2923 = 05, 6cp = —066871', ﬂ = —06407[,
m, = 49377 meV,  my —=50.120 meV,  ms—0meV,  m,, —30.231 meV. (C65)

We see that the best-fit value of €5 is a bit smaller than its 3¢ lower limit 0.02068 [1], and it should be a good leading-order

approximation to the present data.

(T 16) (G Gns Gsot) = (K5 ZIST> Z1U) X = {SU, ST?S, T, T>STU}, X = {STS. T>STU}

The neutrino mass matrix can be determined as in previous cases, and we choose the unitary matrix U,; to be

1 ix—1 i+x
V3 L\ 3(1+2)  V3(14+2)
* ix—w i+wx
Ug= V3 \/3(1+x2) \/3(1+x2) : (C66)
W ix—w? i+w’x
V3 \3(142) V31422

The block-diagonal neutrino mass matrix m,, is parametrized by y, z and w with

y = 3m, — 3x*m,e™, 7= =3ix\/1 + x*mye™, w = 3(1 + x*)m,e™. (C67)

Subsequently m,, is diagonalized by U,, in Eq. (2.16). As a consequence, the PMNS matrix is given by

_ V2xe™¥sinf _ V2xcosf V2
vV 1+x? 14x2 V142
1 ~ sin 0 v
_ 0 4 €¥sin cos@ __ iy 2] X
U 7 cos 6 + e ire e' sin Jie | (C68)
_ 0 e~ sinf cos 6 W gin O X
cos 6 + e i + e sin S
We can extract the following results for the lepton mixing angles and CP invariants:
02 1 02 2 ) 1
sin 913 = m, N 912 = COS 9, Sin 923 = E,
Jop = — x?sin 292si;1 ZI’ . _ x*sin’20 singpQ— ) (C69)
4(1 + x?)3¥/ 4(1 4 x?)

We see that 0,5 is maximal. In order to obtain a viable 6,3, the absolute value of the input parameter x must lie in the range
[6.293, 6.882]. Freely varying the three mixing angles and the mass ratio m?/m3 in their 3¢ ranges, we find that the other
input parameters || and r are limited to the ranges [0.00337, 0.00497x] and [0.0104, 0.0124], respectively. Moreover, we
find that the values of the CP phases |6cp| and |B| are in the intervals [0.839z,0.9057] U [0.09557,0.1627] and
[0.5267,0.574x], respectively. We consider the benchmark value of x = —7 for illustration. In this example, the third
column of the PMNS matrix is determined to be (Sl—ﬁ%%)T The best-fit values of the model parameters and mixing
parameters are
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n = 0.004087x, m, = 23.399 meV, r = 0.0100, 22 = 33.640, sin6;5 = 0.02,
sin?6,, = 0.310, sin6,; = 0.5, Scp = —0.872r, B =0.548x,
my; = 49.377 meV, m, = 50.120 meV, mz =0 meV, m,, = 34.550 meV. (C70)

s.U
(1.17) (le Gatmv Gsol) = (Kfl )’ Zng Zg)’ Xatrn = {U’ T}v Xsol = {S7 SU}
The light neutrino mass matrix can be straightforwardly obtained from Eq. (2.8) and the alignments of ¢,,, and ¢,. We
choose the unitary transformation U, as

2ix>+x+i _ 42 +1 1—ix
V3221322 +1) V322D @2 +1)  /3322+1)
i(1-20%) X’ +wx+i 232 —/3x—a? (2ix+1)
Un= V322HDE2 ) \BRETDEH) /332 +1) (C71)
i(1-20) x>+’ x+i 224/ 3x—w @?(2ix+1)
V322HDE2 ) \BREEDE ) \/332+1)
The three parameters y, z and w in m,, are given by
3x2 4+ 1)(m, — 3m,e™
_ ( a s
N 2x2 +1 ’
(B + 1) ((<2ix? + x — i)m, + 3x(4x? + 1)m,e™)
(232 +1)/(3x% + 1) (4 + 1) ’
(2% + ix + 1)*m, + 3x*(4x* + 1)>m,e™) (72)
w=- .
(2x2 +1)(4x* +1)
Following the procedures listed in Sec. II, we find that the lepton mixing matrix is
~\ A eos -\ ersing e
X+
_ 1 xcosf 4041 =iy o xe' sin @ 4x2+1 1
U= V2 | verea Ve sind V@232 +1) \/2x2+10059 N (C73)
4241 _ e ¥sing 0 4241 i o 4241
*y/ a1 cos 0 e\/z;zlil \/C;sz Xy EernGerne . sl /3a
It is straightforward to extract the mixing angles and the two CP rephasing invariants as follows:
. 2 -x2 . 2 . 2 . 2 1
S 9]3 = m, s 912 = sSin 9, S 923 = m,
Jop = xV1 + 4x%sin 20 siny 1= (2x% + 1)%sin260sin(p — o) _ (Cc74)

4(1 +3x2)3/2 | 4(3x% +1)?
We see that both the atmospheric mixing angle and the reactor mixing angle only depend on one input parameter x which
decides the vacuum alignment of the flavon ¢,. Then a sum rule between the mixing angle 0,53 and 6,5 is obtained

1
Sin2 623 = E - tan2 913. (C75)

This sum rule has also been obtained in Ref. [37]. It implies that the atmospheric mixing angle is in the first octant, i.e.,
0,3 < 45° For the fitted 30 range of 6,3, the atmospheric mixing angle is constrained to be in the interval
0.475 < sin? @53 < 0.479. This can be tested in future neutrino oscillation experiments. Inserting the 3¢ range of 6,3,
we find that the viable region of |x| is [0.148, 0.163]. Detailed numerical analyses show that accordance with experimental
data can be achieved for certain values of x, m,, r and 5. As an example, the fixed column of the PMNS matrix is

(ﬁi,%,ﬁ)T for x = ‘l/—sg The best-fit values of all parameters are
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n = 0.0969r, m, = 34.963 meV, r = 0.633, )(rznin = 35.201, sin6,5 = 0.0208,
sin20y, = 0310,  sin26y; = 0479,  S¢p = —0.184x,  f = —0.5467,
my; = 49.377 meV, m, = 50.120 meV, mz =0 meV, m,, = 34.625 meV. (C76)

Furthermore, it is necessary to give the allowed ranges of all mixing parameters. Freely varying the input parameters we find
that sin? #,5 can take any value between 0.475 and 0.479. The other two mixing angles are restricted to their 3¢ ranges. The
two CP phases are predicted to be |5¢cp| € [0.1527,0.2197z] U [0.881x,0.9497x] and |f| € [0.5227,0.5757]. The require-
ment that the mixing angles and mass ratio lie in their 36 ranges also requires that the input parameters || and r take values
in the ranges [0.08887,0.106x] and [0.626, 0.638], respectively.

(IIS) (le Gatm’ Gsol) = (KElSA'U)’ ZgU’ Zgzu)’ Xatm = {U7 T}’ Xsol = {STZS’ TSTZU}

In this case, we take the unitary matrix U,; to be

2ix+x+i _ 4x2+1 1—ix
V3221322 +1) V322D @2 +1) /30322 +1)
i(1-2w%)x*+ox+i 2x2—\/3x—w? w(2ix+1)

Un= V322HDEAH) VBRI H) /333240 | (C77)
i(1-2w) x>+’ x+i 2x2 4/ 3x—w @*(2ix+1)

V32EDEA ) VBN H) /332 +1)

The neutrino mass matrix m,, is block diagonal with nonzero elements

(3x% + 1)(m, + 3x*m e™)
232 +1
(2x —i)(3x* + 1)((1 = ix)m, + 3x(ix> + x + i)m,e™)
(2x% + 1)\/(3x> + 1) (4x> + 1)
(i —2x)((x + 1)>m, + 3(x* — ix + 1)>me™)

"= Qx+i)2 + 1) ' (€78)

9’

7 =

’

We can diagonalize m!, with U,, in Eq. (2.16), and consequently we find that the lepton mixing matrix is given by

2 2 . .
20247 41) 0s O _ /22 H)e“” sin 6 V2x

321 © 3x%+1 /3211
1 2 iy 2 . 2
4x”+1 _ e Wsing cos@ 4x"+1 W o 4x+1
v= V2 M @) cos 6 V24l /2241 M @Frnea© sin ¢ 3+ |- (€79)

xcosf 4241 —iy o xe' sin @ 4x2+1 1
+ e " sin 0 - cos @
VR )Ga+1) | V28T Verr)ee+) YV ar N

Then the lepton mixing parameters read

2
1
sinZ0,; = x_’ sin%0,, = sin%0, sin?0y; =1 ———————,
BT 432 12 3 2(1 + 2x?)
S xV'1 + 4x? sin 20 sinyr ;o (2x% + 1)2sin?20 sin(p — o) (C80)
o 401432232 ' 40322 +1)2 '

Both the atmospheric mixing angle and the reactor mixing angle depend on only one input parameter x which comes
from the vacuum alignment invariant under the action of the residual symmetry in the solar neutrino sector. As a

consequence, the following sum rule between the reactor mixing angle and the atmospheric mixing angle is found to be
satisfied:

1
sin? 0,3 = §+tan2 015 (C81)
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We note that 0,3 is constrained to lie in the second octant. Inserting the experimentally preferred 3¢ range of 63, the
atmospheric mixing angle is predicted to be 0.521 < sin® 6,5 < 0.525. It is remarkable that a good fit to the experimental
data can always be achieved for any |x|. When these two mixing angles are required to lie in their 3¢ ranges, the input
parameter x is restricted to the range [0.148, 0.163]. Similar to the example in Z,;, we also give the example with

X = \1/_55 The y? analysis results are

n=009137, m,=34659 meV, r=0.644,
sin20,, = 0.310,  sin?0y; = 0.521,  Scp = —0.7487,
m; =49.377 meV,  m, = 50.120 meV,

22 =17.329,
p =0.513x,
m,, = 36.089 meV.

sin?@,3 = 0.0208,

m3 = 0 meV, (C82)
The input parameters x, r and 5 are treated as random numbers, and the mixing angles and mass ratio are required to lie
in their 3¢ ranges. We find that the allowed regions of the parameters || and r are [0.09057,0.1087z] and [0.6328,
0.6448], respectively. The allowed ranges of the two CP phases are determined to be |5¢p| € [0,0.06197z] U

[0.7107,0.777x] and |p| € [0.4857x,0.5367].
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