
 

Further study on the textures of neutrino mass matrix for maximal
atmospherical mixing angle and Dirac CP phase

Zhi-Cheng Liu, Chong-Xing Yue, and Zhen-hua Zhao*

Department of Physics, Liaoning Normal University, Dalian 116029, China

(Received 15 January 2019; published 29 April 2019)

In this paper, we derive in a novel approach the possible textures of neutrino mass matrix that can lead to
maximal atmospherical mixing angle (θ23 ¼ π=4) and Dirac CP phase (δ ¼ −π=2) in two phenomeno-
logically appealing scenarios: (1) one neutrino mass matrix element vanishing (2) one neutrino mass
vanishing. For the obtained textures, some neutrino mass sum rules that relate the neutrino masses and
mixing parameters emerge. With the help of these sum rules, the unknown absolute neutrino mass scale and
Majorana CP phases can be determined. Some discussions about the possible textures of neutrino mass
matrix that can lead to θ23 ¼ π=4, δ ¼ −π=2 and maximal Majorana CP phases (ρ, σ ¼ π=4 or 3π=4) as
well as the model realization and breakings of the obtained textures are also given.
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I. INTRODUCTION

Thanks to the various neutrino oscillation experiments, it
has been established that neutrinos have small but non-
vanishing masses and mix among different flavors [1]. On
the one hand, the smallness of neutrino masses mi (for
i ¼ 1, 2, 3) can be naturally explained by the seesaw
mechanism [2]. And the neutrino masses generated via this
mechanism are of Majorana nature in most cases1 for which
the mass matrix Mν is a complex symmetric one. On the
other hand, the neutrino mixing matrix is given by U ¼
U†

l Uν where Ul and Uν respectively result from diagonal-
ization of the charged lepton mass matrixMl andMν [4]. In
the commonly used basis of Ml being diagonal that is also
adopted here, U can be identified with the unitary matrix
(i.e., Uν) for diagonalizing Mν,

U†MνU� ¼ Diagðm1; m2; m3Þ: ð1Þ

In the standard way, it is parametrized as

U ¼ PlO23U13O12Pν; ð2Þ

where Pl ¼ Diagðeiϕe ; eiϕμ ; eiϕτÞ and Pν ¼ Diagðeiρ; eiσ; 1Þ
are two diagonal phase matrices, and

O23¼

0
B@
1 0 0

0 c23 s23
0 −s23 c23

1
CA; U13¼

0
B@

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

1
CA;

O12¼

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA; ð3Þ

with cij ¼ cos θij and sij ¼ sin θij for the mixing angles θij
(for ij ¼ 12, 13, 23). As for the phases, δ is (ρ and σ are) the
Dirac (Majorana) CP phase(s), while ϕe;μ;τ are unphysical
phases that can be removed by the redefinitions of charged
lepton fields. In addition, neutrino oscillations are also
governed by two independent neutrino mass squared
differences Δm2

ij ¼ m2
i −m2

j (for ij ¼ 21, 31).
So far, the neutrino oscillation experiments give us

the following results for the neutrino mass squared
differences [5]:

Δm2
21 ¼ ð7.50þ0.19

−0.17Þ × 10−5 eV2;

jΔm2
31j ¼ ð2.524þ0.039

−0.040Þ × 10−3 eV2: ð4Þ

Note that the sign of Δm2
31 has not yet been determined,

thereby allowing for two possible neutrino mass orderings:
m1 < m2 < m3 (the normal neutrino mass ordering, NO for
short) and m3 < m1 < m2 (the inverted neutrino mass
ordering, IO for short). On the other side, the mixing
parameters θ13, θ23, and δ take the values of
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1It is noteworthy that the neutrino masses resulting from
the seesaw mechanism can be of Dirac nature in some special
cases [3].
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sin2θ13 ¼ 0.02166� 0.00075; sin2θ23 ¼ 0.441� 0.024;

δ¼ 261°� 55°; ð5Þ

in the NO case, or

sin2θ13 ¼ 0.02179� 0.00076; sin2θ23 ¼ 0.587� 0.022;

δ¼ 277°� 43°; ð6Þ

in the IO case, while θ12 takes the value of sin2θ12 ¼
0.306� 0.012 in either mass ordering case [5].
However, the neutrino oscillation experiments are insen-

sitive to the absolute neutrino mass scale and Majorana CP
phases. Information about them can only be inferred from
nonoscillatory experiments: (1) The beta decay experi-
ments can probe the effective electron neutrino mass mβ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

mijUeij2
p

(with Uei being the ith element in the first
row of U) by measuring the end point of the spectrum of
electrons in beta decays. The current upper limit for it is
around 2 eV [6], while the future KATRIN experiment is
expected to achieve a sensitivity of 0.2 eV at 90% C.L. [7].
(2) The cosmological measurements can probe the sum of
neutrino masses Σ ¼ P

mi by virtue of its effects on
cosmic structure formation [8]. And the current upper limit
for it is 0.12 eV [9]. But it should be noted that the neutrino
mass limit obtained from the cosmological measurements is
strongly dependent on the cosmological model and obser-
vation data used. (3) The lepton number violating (LNV)
processes can even directly probe the magnitudes of
neutrino mass matrix elements, as an LNV process with
the charged leptons α and β (for α, β ¼ e, μ, τ) in the final
state is governed by jMαβj (with Mαβ being the αβ element
of Mν). At present, the neutrinoless double beta decay,
which is governed by jMeej [10], is the only feasible
process to probe LNV. The current upper limit for jMeej is
0.2–0.4 eV, where the large uncertainty is due to the
inconclusive nuclear physics calculations [11].
On the theoretical side, one of the most important goals

of neutrino physics research is to identify the flavor
structure ofMν and its origin [12]. Because of the particular
observed neutrino mixing pattern (some parameters of
which, as explained soon, are close to certain special
values), it is widely expected that Mν probably has a
special texture that may originate from some underlying
flavor theory (especially flavor symmetry [13]). The first
step to a convincing flavor theory is to reconstructMν with
the help of existing experimental results [14]. However,
since the absolute neutrino mass scale and Majorana CP
phases remain unknown, the existing experimental results
are not sufficient for reconstructingMν completely, leaving
us with a large variety of possible forms for it. Guided by
the principle of using as few parameters as possible to
explain the observed neutrino physics [15], a number of
approaches to restricting the form of Mν and reducing the
number of free parameters have been adopted in the

literature, among which the impositions of some vanishing
neutrino mass matrix element(s) [16] or one vanishing
neutrino mass [17] are two very popular ones. These two
scenarios are both well motivated from the theoretical point
of view and highly predictive from the phenomenological
point of view: (1) The vanishing of neutrino mass matrix
element(s) can naturally find an origin from the Abelian
flavor symmetries [18], while one neutrino mass neces-
sarily vanishes if only two right-handed neutrinos take
effect in the popular type-I seesaw mechanism (the so-
called minimal seesaw [17]). (2) The vanishing of neutrino
mass matrix element(s) would result in some testable
relations between the neutrino masses and mixing param-
eters [16], while the vanishing of one neutrino mass would
additionally lead one Majorana CP phase to be ineffective
[17]. Furthermore, the vanishing of a neutrino mass matrix
element (e.g., Mee) would render the associated LNV
process (e.g., the neutrinoless double beta decay) impotent.
If any of these interesting consequences turns out to be
favored by the future measurements, the corresponding
specific neutrino mass matrix texture will stand out and
shed some light on the underlying flavor theory. Therefore,
it makes a lot of sense to phenomenologically study the
possible neutrino mass matrix textures featuring vanishing
elements or mass eigenvalue.
It is interesting to note that the current neutrino

oscillation data are consistent with maximal atmospherical
mixing angle (θ23¼π=4) and Dirac CP phase (δ¼−π=22).
As mentioned above, these remarkable values may point
towards some special texture of Mν. In this connection, the
specific texture given by the μ-τ reflection symmetry [20]
serves as a unique example. This symmetry is defined as
follows:Mν keeps invariant under a combination of the μ-τ
interchange and CP conjugate operations

νe ↔ νce; νμ ↔ νcτ ; ντ ↔ νcμ; ð7Þ

and is characterized by

Meμ¼M�
eτ; Mμμ¼M�

ττ; Mee and Mμτ being real: ð8Þ

Such a texture leads to the following predictions for the
neutrino mixing parameters [21]

ϕe ¼
π

2
; ϕμ ¼ −ϕτ; θ23 ¼

π

4
;

δ ¼ � π

2
; ρ; σ ¼ 0 or

π

2
: ð9Þ

2It should be noted that the current measurement error for δ is
quite large. So we still need a precise measurement for it to see if
it is really close to −π=2. It is expected that this problem will be
cleared up over the next few years by the long baseline neutrino
oscillation experiments [19].
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However, the μ-τ reflection symmetry is over-restrictive in
the sense that its predictions for trivial Majorana CP phases
(i.e., ρ, σ ¼ 0 or π=2) are not promised by the experimental
results. Although this symmetry deserves particular atten-
tion due to its interesting properties, it is reasonable to have
an open mind for other possible values of ρ and σ. For this
consideration, in a previous work [22] we did an exercise to
derive the possible textures of neutrino mass matrix that can
lead to θ23 ¼ π=4 and δ ¼ −π=2 [23] where ρ and σ are
allowed to take values other than 0 and π=2.
In this work we attempt to derive the possible textures of

neutrino mass matrix that can lead to θ23 ¼ π=4 and δ ¼
−π=2 in two phenomenologically appealing scenarios:
(1) one neutrino mass matrix element vanishing and
(2) one neutrino mass vanishing. The rest part of this
paper is organized as follows. In Sec. II, we briefly
recapitulate our approach and some useful results devel-
oped in Sec. II and subsections 3.1–3.4 of Ref. [22] as a
basis for the study performed here. The studies on the
scenarios of one neutrino mass matrix element and one
neutrino mass vanishing are carried out in Secs. III and IV,
respectively. Some discussions about the possible textures
of neutrino mass matrix that can lead to θ23 ¼ π=4, δ ¼
−π=2 and maximal Majorana CP phases (i.e., ρ, σ ¼ π=4
or 3π=4) as well as the model realization and breakings of
the obtained textures are given in Sec. V. Finally, in Sec. VI
we summarize our main results.

II. THE APPROACH AND BASIS RESULTS

In order to avoid the uncertainties due to the unphysical
phases, we choose to work on M̄ν ¼ P†

l MνP�
l instead of

Mν. One can recover the results for Mν from those for M̄ν

by simply making the replacements M̄αβ ¼ Mαβe−iðϕαþϕβÞ

(with M̄αβ being the αβ element of M̄ν). By definition, M̄ν

can be diagonalized as

OT
12U

†
13O

T
23M̄νO23U�

13O12 ¼ Diagðm1e2iρ; m2e2iσ; m3Þ:
ð10Þ

In light of the purpose of this study, we take θ23 ¼ π=4 and
δ ¼ −π=2 in O23 and U13. To simplify the expressions in
the following discussions, we define the following three
matrices in order,

MX ¼ OT
23M̄νO23; MY ¼ U†

13MXU�
13;

MZ ¼ OT
12MYO12; ð11Þ

whose elements appear as

MX11¼M̄ee; MX12¼
M̄eμ−M̄eτffiffiffi

2
p ;

MX13¼
M̄eμþM̄eτffiffiffi

2
p ; MX22¼

M̄μμþM̄ττ

2
−M̄μτ;

MX23¼
M̄μμ−M̄ττ

2
; MX33¼

M̄μμþM̄ττ

2
þM̄μτ;

MY11¼c213MX11− isin2θ13MX13−s213MX33;

MY12¼c13MX12− is13MX23;

MY13¼cos2θ13MX13−
i
2
sin2θ13ðMX11þMX33Þ;

MY22¼MX22; MY23¼c13MX23− is13MX12;

MY33¼c213MX33− isin2θ13MX13−s213MX11;

MZ11¼c212MY11−sin2θ12MY12þs212MY22; MZ33¼MY33;

MZ12¼cos2θ12MY12þ
1

2
sin2θ12ðMY11−MY22Þ;

MZ13¼c12MY13−s12MY23;

MZ22¼s212MY11þsin2θ12MY12þc212MY22;

MZ23¼s12MY13þc12MY23; ð12Þ

with MX11 being the 11 element of MX and so on. By
comparing the two sides of Eq. (10), one gets the following
seven diagonalization conditions (which are referred to as
A‐G in order),

A∶ ReðMY13Þ ¼ 0

⇒ 2 cos 2θ13RX13 ¼ − sin 2θ13ðIX11 þ IX33Þ;
B∶ ImðMY13Þ ¼ 0

⇒ 2 cos 2θ13IX13 ¼ sin 2θ13ðRX11 þ RX33Þ;
C∶ ReðMY23Þ ¼ 0 ⇒ c13RX23 ¼ −s13IX12;

D∶ ImðMY23Þ ¼ 0 ⇒ c13IX23 ¼ s13RX12;

E∶ ReðMZ12Þ ¼ 0

⇒ 2 cos 2θ12RY12 ¼ − sin 2θ12ðRY11 − RY22Þ;
F∶ ImðMZ12Þ ¼ 0

⇒ 2 cos 2θ12IY12 ¼ − sin 2θ12ðIY11 − IY22Þ;
G∶ ImðMZ33Þ ¼ 0

⇒ sin 2θ13RX13 ¼ c213IX33 − s213IX11; ð13Þ

with RX13 ¼ ReðMX13Þ, IX11 ¼ ImðMX11Þ, and so on, and

MZ11¼m1e2iρ; MZ22¼m2e2iσ; ReðMZ33Þ¼m3: ð14Þ

Because we only have two parameters (i.e., θ12 and θ13)
at hand to diagonalize M̄ν by making the seven diagonal-
ization conditions hold, there exist five constraint equations
for R̄αβ ¼ ReðM̄αβÞ and Īαβ ¼ ImðM̄αβÞ: By relating the
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expressions for θ13 derived from diagonalization conditions
A–D, one obtains the following constraint equations,

AB∶ ðR̄eμþ R̄eτÞ
�
R̄eeþ R̄μτþ

R̄μμþ R̄ττ

2

�

¼−ðĪeμþ ĪeτÞ
�
Īeeþ Īμτþ

Īμμþ Īττ
2

�
;

AC∶ ðĪeμ− ĪeτÞðR̄μμ−R̄ττÞ
�
Īeeþ Īμτþ

Īμμþ Īττ
2

�

¼ðR̄eμþ R̄eτÞ
�
ðĪeμ− ĪeτÞ2−

1

2
ðR̄μμ− R̄ττÞ2

�
;

AD∶ ðĪμμ− ĪττÞðR̄eμ−R̄eτÞ
�
Īeeþ Īμτþ

Īμμþ Īττ
2

�

¼−ðR̄eμþ R̄eτÞ
�
ðR̄eμ−R̄eτÞ2−

1

2
ðĪμμ− ĪττÞ2

�
;

BC∶ ðĪeμ− ĪeτÞðR̄μμ−R̄ττÞ
�
R̄eeþ R̄μτþ

R̄μμþ R̄ττ

2

�

¼−ðĪeμþ ĪeτÞ
�
ðĪeμ− ĪeτÞ2−

1

2
ðR̄μμ−R̄ττÞ2

�
;

BD∶ ðĪμμ− ĪττÞðR̄eμ−R̄eτÞ
�
R̄eeþ R̄μτþ

R̄μμþ R̄ττ

2

�

¼ðĪeμþ ĪeτÞ
�
ðR̄eμ− R̄eτÞ2−

1

2
ðĪμμ− ĪττÞ2

�
;

CD∶ ðR̄μμ− R̄ττÞðR̄eμ− R̄eτÞ¼−ðĪμμ− ĪττÞðĪeμ− ĪeτÞ; ð15Þ
where the symbol AB (and so on) is used to indicate that the
referred constraint equation results from a combination of
diagonalization conditions A and B (and so on). It is easy to
see that only three of these six constraint equations are
independent ones. By relating the expressions for θ12
derived from diagonalization conditions E and F, one
arrives at the constraint equation

EF∶ RY12ðIY11 − IY22Þ ¼ IY12ðRY11 − RY22Þ; ð16Þ

with

RY12¼sgnðR̄eμ−R̄eτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðR̄eμ−R̄eτÞ2þ

1

4
ðĪμμ− ĪττÞ2

r
;

IY12¼sgnðĪeμ− ĪeτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðĪeμ− ĪeτÞ2þ

1

4
ðR̄μμ−R̄ττÞ2

r
;

IY11−IY22¼ Īee− Īμμ− Īττ;

RY11−RY22¼
R̄eeþR̄μτ

2
−
3

4
ðR̄μμþR̄ττÞþsgnðĪeμþ ĪeτÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðĪeμþ ĪeτÞ2þ

1

4

�
R̄eeþR̄μτþ

R̄μμþR̄ττ

2

�
2

s
:

ð17Þ

Finally, a combination of diagonalization conditions A and
G yields

AG∶ Īμτ− Īeeþ
Īμμþ Īττ

2

¼sgnðR̄eμþR̄eτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðR̄eμþR̄eτÞ2þ

�̄
Ieeþ Īμτþ

Īμμþ Īττ
2

�
2

s
:

ð18Þ

It should be noted that M̄ν might have such a special
texture that some diagonalization condition(s) can hold
automatically independent of the value of θ12 or θ13. (For
example, when one has IX13 ¼ RX11 þ RX33 ¼ 0, diago-
nalization condition B holds automatically, in which case
we do not need a particular θ13 to make such a diagonal-
ization condition hold). In total, there are four basic cases of
diagonalization condition(s) holding automatically [22]:
(1) Diagonalization conditions A and G simultaneously
hold automatically under the conditions of

R̄eμ ¼ −R̄eτ; Īee ¼ 0; −2Īμτ ¼ Īμμ þ Īττ; ð19Þ

which combined with the constraint equations in
Eqs. (15)–(18) result in a relation between the neutrino
masses and mixing parameters (the so-called neutrino mass
sum rule [24])

m1c212 sin 2ρþm2s212 sin 2σ ¼ 0: ð20Þ

(2) Diagonalization condition B holds automatically under
the conditions of

Īeμ ¼ −Īeτ; −2ðR̄ee þ R̄μτÞ ¼ R̄μμ þ R̄ττ; ð21Þ

which combined with the constraint equations in
Eqs. (15)–(18) result in the neutrino mass sum rule

m1c212 cos 2ρþm2s212 cos 2σ þm3 ¼ 0: ð22Þ

(3) Diagonalization conditions C and F simultaneously
hold automatically under the conditions of

Īee ¼ Īμμ þ Īττ; R̄μμ ¼ R̄ττ; Īeμ ¼ Īeτ; ð23Þ

which combined with the constraint equations in
Eqs. (15)–(18) result in the neutrino mass sum rule

m1 sin 2ρ −m2 sin 2σ ¼ 0: ð24Þ

(4) Diagonalization conditions D and E simultaneously
hold automatically under the conditions of
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R̄ee þ R̄μτ −
3

2
ðR̄μμ þ R̄ττÞ

¼ −sgnðĪeμ þ ĪeτÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðĪeμ þ ĪeτÞ2 þ

�
R̄ee þ R̄μτ þ

R̄μμ þ R̄ττ

2

�
2

s
;

Īμμ ¼ Īττ; R̄eμ ¼ R̄eτ; ð25Þ
which combined with the constraint equations in
Eqs. (15)–(18) result in the neutrino mass sum rule

m1 cos 2ρ −m2 cos 2σ ¼ 0: ð26Þ
As pointed out in Ref. [22], these cases can find amotivation
from the partial μ-τ symmetry [25,26]. In the previous work
[22], we have studied the various combinations of these
cases themselves. In this work, we study the various
combinations of these cases with two phenomenologically
appealing scenarios: (1) one neutrino mass matrix element
vanishing and (2) one neutrino mass vanishing.

III. ONE NEUTRINO MASS MATRIX
ELEMENT VANISHING

In this section, we perform a study on the possible
textures of neutrino mass matrix that can lead to θ23 ¼ π=4
and δ ¼ −π=2 in the scenario of one neutrino mass matrix
element vanishing. As we see shortly, the vanishing of a
neutrino mass matrix element gives two neutrino mass sum
rules. Therefore, we just need one more neutrino mass sum
rule arising from the requirement of some diagonalization
condition(s) holding automatically to completely determine
the three unknown physical parameters (i.e., the absolute
neutrino mass scale and two Majorana CP phases).
For later use, we give the expressions for M̄αβ in terms of

the neutrino masses and mixing parameters,

M̄ee ¼ m1e2iρc212c
2
13 þm2e2iσs212c

2
13 −m3s213;

M̄eμ ¼
1ffiffiffi
2

p ½m1e2iρc12ð−s12 þ ic12s13Þ

þm2e2iσs12ðc12 þ is12s13Þ þ im3s13�c13;

M̄eτ ¼
1ffiffiffi
2

p ½m1e2iρc12ðs12 þ ic12s13Þ

þm2e2iσs12ð−c12 þ is12s13Þ þ im3s13�c13;

M̄μμ ¼
1

2
½m1e2iρðs12 − ic12s13Þ2

þm2e2iσðc12 þ is12s13Þ2 þm3c213�;

M̄μτ ¼
1

2
½−m1e2iρðs212 þ c212s

2
13Þ

−m2e2iσðc212 þ s212s
2
13Þ þm3c213�;

M̄ττ ¼
1

2
½m1e2iρðs12 þ ic12s13Þ2

þm2e2iσðc12 − is12s13Þ2 þm3c213�; ð27Þ

which are reconstructed as

M̄ν ¼ O23U13O12Diagðm1e2iρ; m2e2iσ; m3ÞOT
12U

T
13O

T
23:

ð28Þ

In the calculations, θ23 ¼ π=4 and δ ¼ −π=2 have
been input.

A. M̄ee = 0

In the case of M̄ee ¼ 0, one has IX11 ¼ Īee ¼ 0, which
leads diagonalization conditions A(G) to hold automati-
cally. [Here and in the following we use the phrases A(G),
C(F), and D(E) to make it evident that diagonalization
conditions A and G, C and F, and D and E always
simultaneously hold automatically, respectively]. Hence
there are four new constraint equations [i.e., those in
Eq. (19) and R̄ee ¼ 0] in addition to those in Eqs. (15)–
(18). As a result, only three (i.e., EF and two of BC, BD,
and CD) of the constraint equations in Eqs. (15)–(18) are
still independent ones. So there are seven independent
constraint equations in total, more than those in Eqs. (15)–
(18) by two. It is thus natural to expect that there are two
more predictions for the neutrino masses and mixing
parameters in addition to θ23 ¼ π=4 and δ ¼ −π=2, which
are directly obtained as

m1c212 sin 2ρþm2s212 sin 2σ ¼ 0;

ðm1c212 cos 2ρþm2s212 cos 2σÞc213 −m3s213 ¼ 0; ð29Þ

from Eq. (27) by taking M̄ee ¼ 0. Not surprisingly, one of
them is the same as that in Eq. (20). In the following, we
study the various cases in which one more neutrino mass
sum rule arises from the requirement of some diagonaliza-
tion condition(s) in addition to A(G) also holding auto-
matically so that the three unknown physical parameters
can be completely determined.
In the case of diagonalization condition B holding

automatically in combination with M̄ee ¼ 0, there are
the following six new constraint equations [i.e., those in
Eqs. (19) and (21) and R̄ee ¼ 0] in addition to those in
Eqs. (15)–(18),

R̄eμ ¼ −R̄eτ; Īee ¼ 0; −2Īμτ ¼ Īμμ þ Īττ;

Īeμ ¼ −Īeτ; R̄ee ¼ 0; −2R̄μτ ¼ R̄μμ þ R̄ττ; ð30Þ

which can be recombined into

M̄eμ ¼−M̄eτ; −2M̄μτ ¼ M̄μμþ M̄ττ; M̄ee ¼ 0: ð31Þ

As a result, only two (i.e., CD and EF) of the constraint
equations in Eqs. (15)–(18) are still independent ones. So
there are three neutrino mass sum rules in total, which are
given by Eqs. (22) and (29). It is found that these sum rules
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have no chance of being in agreement with the realistic
results. [Note that the sum rule in Eq. (22) can only be
fulfilled in the IO case while the second one in Eq. (29) can
only be fulfilled in the NO case].
In the case of diagonalization conditions C(F) holding

automatically in combination with M̄ee ¼ 0, there are the
following seven new constraint equations [i.e., those in
Eqs. (19) and (23) and R̄ee ¼ 0] in addition to those in
Eqs. (15)–(18),

R̄eμ ¼ −R̄eτ; Īeμ ¼ Īeτ; R̄μμ ¼ R̄ττ; Īμμ ¼ −Īττ;

R̄ee ¼ Īee ¼ Īμτ ¼ 0; ð32Þ

which can be recombined into

M̄eμ ¼ −M̄�
eτ; M̄μμ ¼ M̄�

ττ;

M̄ee ¼ 0; M̄μτ being real: ð33Þ

As a result, only one (i.e., BD) of the constraint equations in
Eqs. (15)–(18) is still an independent one. So there are three
neutrino mass sum rules in total, which are given by
Eqs. (24) and (29). By solving these equations, one obtains
m1 ¼ 0.006 eV with ½ρ; σ� ¼ ½0; π=2� or 0.002 eV with
½ρ; σ� ¼ ½π=2; 0� in the NO case. For these two possible
results, the effective electron neutrino mass mβ takes a
value of 0.011 or 0.010 eV while the neutrino mass sum Σ
takes a value of 0.068 or 0.062 eV. On the other hand, M̄ν

and the magnitudes of its elements (e.g., M̄ee) that govern
the associated LNV processes (e.g., the neutrinoless double
beta decay) are given by

M̄ν

eV
≃

0
B@

0 −0.006 − 0.005i 0.006 − 0.005i

× 0.022þ 0.001i 0.028

× × 0.022 − 0.001i

1
CA;

jM̄νj
eV

≃

0
B@

0 0.008 0.008

× 0.022 0.028

× × 0.022

1
CA; ð34Þ

or

M̄ν

eV
≃

0
B@

0 0.004 − 0.005i −0.004 − 0.005i

× 0.027 − 0.001i 0.022

× × 0.027þ 0.001i

1
CA;

jM̄νj
eV

≃

0
B@

0 0.006 0.006

× 0.027 0.022

× × 0.027

1
CA: ð35Þ

From these results, one can in a more intuitive way
appreciate the texture of M̄ν.
In the case of diagonalization conditions D(E) holding

automatically in combination with M̄ee ¼ 0, there are the

following seven new constraint equations [i.e., those in
Eqs. (19) and (25) and R̄ee ¼ 0],

R̄μτ−
3

2
ðR̄μμþ R̄ττÞ

¼−sgnðĪeμþ ĪeτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðĪeμþ ĪeτÞ2þ

�
R̄μτþ

R̄μμþ R̄ττ

2

�
2

s
;

R̄ee¼ R̄eμ ¼ R̄eτ ¼ Īee ¼ 0; Īμμ ¼ Īττ ¼−Īμτ; ð36Þ

in addition to those in Eqs. (15)–(18). As a result, only one
(i.e., BC) of the constraint equations in Eqs. (15)–(18) is
still an independent one. So there are three neutrino mass
sum rules in total, which are given by Eqs. (26) and (29).
By solving these equations, one obtains m1 ¼ 0.004 eV
with ½ρ; σ� ¼ ½0.79π; 0.23π� in the NO case. For such a
result, mβ and Σ respectively take a value of 0.010 and
0.065 eV, while M̄ν and the magnitudes of its elements are
given by

M̄ν

eV
≃

0
B@

0 −0.001i −0.010i
× 0.026þ 0.003i 0.024 − 0.003i

× × 0.024þ 0.003i

1
CA;

jM̄νj
eV

≃

0
B@

0 0.001 0.010

× 0.026 0.024

× × 0.024

1
CA: ð37Þ

B. M̄eμ = 0 or M̄eτ = 0

In the case of M̄eμ ¼ 0 (M̄eτ ¼ 0), we simply get two
new constraint equations R̄eμ ¼ Īeμ ¼ 0 (R̄eτ ¼ Īeτ ¼ 0) in
addition to those in Eqs. (15)–(18). The resulting two
neutrino mass sum rules are directly obtained as

m1c212s13 cos 2ρ − ðþÞm1c12s12 sin 2ρþm2s212s13 cos 2σ

þ ð−Þm2c12s12 sin 2σ þm3s13 ¼ 0;

m1c12s12 cos 2ρþ ð−Þm1c212s13 sin 2ρ −m2c12s12 cos 2σ

þ ð−Þm2s212s13 sin 2σ ¼ 0; ð38Þ

from Eq. (27) by taking M̄eμ ¼ 0 (M̄eτ ¼ 0). In the
following, we study the various cases where one more
neutrino mass sum rule arises from the requirement of
some diagonalization condition(s) holding automatically so
that the three unknown physical parameters can be com-
pletely determined. As a result of M̄eμ ¼ 0 (M̄eτ ¼ 0), one
has RX12 ¼ −ðþÞRX13 and IX12 ¼ −ðþÞIX13, which leads
diagonalization conditions A(G) and D(E) and B and C(F)
to simultaneously hold automatically, respectively.
In the case of diagonalization conditions A(G) and D(E)

holding automatically in combination with M̄eμ ¼ 0, there
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are the following seven new constraint equations [i.e., those
in Eqs. (19) and (25) and Īeμ ¼ 0],

R̄ee þ R̄μτ −
3

2
ðR̄μμ þ R̄ττÞ

¼ −sgnðĪeτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ī2eτ þ

�
R̄ee þ R̄μτ þ

R̄μμ þ R̄ττ

2

�
2

s
;

R̄eμ ¼ R̄eτ ¼ Īee ¼ Īeμ ¼ 0; Īμμ ¼ Īττ ¼ −Īμτ; ð39Þ

in addition to those in Eqs. (15)–(18). As a result, only one
(i.e., BC) of the constraint equations in Eqs. (15)–(18) is
still an independent one. So there are three neutrino mass
sum rules in total, which are given by three independent
ones of Eqs. (20), (26), and (38). By solving these
equations, one obtains m1 ¼ 0.009 eV with ½ρ; σ� ¼
½0.41π; 0.65π� in the NO case or m3 ¼ 0.006 eV with
½ρ; σ� ¼ ½0.51π; 0.47π� in the IO case. For these two
possible results, mβ takes a value of 0.012 or 0.050 eV
while Σ takes a value of 0.072 or 0.11 eV. On the other
hand, M̄ν and the magnitudes of its elements are given by

M̄ν

eV
≃

0
B@

−0.008 0 0.009i

× 0.022 − 0.003i 0.029þ 0.003i

× × 0.020 − 0.003i

1
CA;

jM̄νj
eV

≃

0
B@

0.008 0 0.009

× 0.022 0.029

× × 0.020

1
CA; ð40Þ

or

M̄ν

eV
≃

0
B@

−0.049 0 −0.009i
× −0.022þ 0.003i 0.028 − 0.003i

× × −0.020þ 0.003i

1
CA;

jM̄νj
eV

≃

0
B@

0.049 0 0.009

× 0.022 0.028

× × 0.020

1
CA: ð41Þ

In the case of diagonalization conditions B and C(F)
holding automatically in combination with M̄eμ ¼ 0, there
are the following six new constraint equations [i.e., those in
Eqs. (21) and (23) and R̄eμ ¼ 0],

Īee ¼ Īμμ þ Īττ; R̄μμ ¼ R̄ττ ¼ −ðR̄ee þ R̄μτÞ;
R̄eμ ¼ Īeμ ¼ Īeτ ¼ 0; ð42Þ

in addition to those in Eqs. (15)–(18). As a result, only
two (i.e., AD and AG) of the constraint equations in
Eqs. (15)–(18) are still independent ones. So there are
three neutrino mass sum rules in total, which are given
by three independent ones of Eqs. (22), (24), and (38).

By solving these equations, one obtains m3 ¼ 0.0007 eV
with ½ρ; σ� ¼ ½0.27π; 0.22π� in the IO case. For such a
result, mβ and Σ respectively take a value of 0.049 and
0.10 eV, while M̄ν and the magnitudes of its elements are
given by

M̄ν

eV
≃

0
B@
−0.001þ0.048i 0 −0.010

× 0.003þ0.025i −0.002−0.025i

× × 0.003þ0.023i

1
CA;

jM̄νj
eV

≃

0
B@
0.048 0 0.010

× 0.025 0.025

× × 0.023

1
CA: ð43Þ

In the case of some diagonalization condition(s) holding
automatically in combination with M̄eτ ¼ 0, from the
above results in the case of the same diagonalization
condition(s) holding automatically in combination with
M̄eμ ¼ 0, the constraint equations and the resulting M̄ν can
be obtained by making the interchanges R̄eμ ↔ −R̄eτ,
Īeμ ↔ Īeτ, R̄μμ ↔ R̄ττ, and Īμμ ↔ −Īττ and a sign change
for Īee and Īμτ, while the predictions for the three unknown
physical parameters can be obtained by making the replace-
ments ρ → π − ρ and σ → π − σ. This reflects a symmetry
between the μ and τ flavors.

C. M̄μμ = 0 or M̄ττ = 0

In the case of M̄μμ ¼ 0 (M̄ττ ¼ 0), we simply get two
new constraint equations R̄μμ ¼ Īμμ ¼ 0 (R̄ττ ¼ Īττ ¼ 0) in
addition to those in Eqs. (15)–(18). The resulting two
neutrino mass sum rules are directly obtained as

m1ðs212−c212s
2
13Þcos2ρþð−Þ2m1c12s12s13 sin2ρ

þm2ðc212−s212s
2
13Þcos2σ−ðþÞ2m2c12s12s13 sin2σ

þm3c213¼0;

2m1c12s12s13cos2ρ−ðþÞm1ðs212−c212s
2
13Þsin2ρ

−2m2c12s12s13 cos2σ−ðþÞm2ðc212−s212s
2
13Þsin2σ¼0;

ð44Þ

from Eq. (27) by taking M̄μμ ¼ 0 (M̄ττ ¼ 0). In the
following, we study the various cases where one more
neutrino mass sum rule arises from the requirement of some
diagonalization condition(s) holding automatically so that
the three unknown physical parameters can be completely
determined.
In the case of diagonalization conditions A(G) holding

automatically in combination with M̄μμ ¼ 0, there are the
following five new constraint equations [i.e., those in
Eq. (19) and R̄μμ ¼ Īμμ ¼ 0],

R̄eμ ¼−R̄eτ; Īee ¼ R̄μμ ¼ Īμμ¼ 0; −2Īμτ ¼ Īττ; ð45Þ
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in addition to those in Eqs. (15)–(18). As a result, only three
(i.e., EF and two of BC, BD, and CD) of the constraint
equations in Eqs. (15)–(18) are still independent ones. So
there are totally three neutrino mass sum rules, which are
given by Eqs. (20) and (44). By solving these equations,
one obtains m3 ¼ 0.024 eV with ½ρ; σ� ¼ ½0.97π; 0.43π� in
the IO case. For such a result, mβ and Σ respectively take a
value of 0.055 and 0.13 eV, while M̄ν and the magnitudes
of its elements are given by

M̄ν

eV
≃

0
B@

0.021 −0.033þ 0.016i 0.033 − 0.007i

× 0 0.020 − 0.007i

× × 0.005þ 0.014i

1
CA;

jM̄νj
eV

≃

0
B@

0.021 0.037 0.034

× 0 0.021

× × 0.015

1
CA: ð46Þ

In the case of diagonalization condition B holding
automatically in combination with M̄μμ ¼ 0, there are
the following four new constraint equations [i.e., those
in Eq. (21) and R̄μμ ¼ Īμμ ¼ 0],

Īeμ¼−Īeτ; −2ðR̄eeþ R̄μτÞ¼ R̄ττ; R̄μμ¼ Īμμ¼0; ð47Þ

in addition to those in Eqs. (15)–(18). As a result, only four
(i.e., AG, EF, and two of AC, AD, and CD) of the constraint
equations in Eqs. (15)–(18) are still independent ones. So
there are three neutrino mass sum rules in total, which are
given by Eqs. (22) and (44). By solving these equations,
one obtains m3 ¼ 0.050 eV with ½ρ; σ� ¼ ½0.35π; 0.54π� in
the IO case. For such a result, mβ and Σ respectively take a
value of 0.070 and 0.19 eV, while M̄ν and the magnitudes
of its elements are given by

M̄ν

eV
≃

0
B@

−0.050þ 0.033i −0.012 − 0.024i 0.005þ 0.024i

× 0 0.055 − 0.003i

× × −0.010þ 0.004i

1
CA;

jM̄νj
eV

≃

0
B@

0.060 0.027 0.025

× 0 0.055

× × 0.011

1
CA: ð48Þ

In the case of diagonalization conditions C(F) holding
automatically in combination with M̄μμ ¼ 0, there are the
following five new constraint equations [i.e., those in
Eq. (23) and R̄μμ ¼ Īμμ ¼ 0],

Īee ¼ Īττ; R̄μμ ¼ Īμμ ¼ R̄ττ ¼ 0;

Īeμ ¼ Īeτ; ð49Þ

in addition to those in Eqs. (15)–(18). As a result, only three
(i.e., AG and two of AB, AD, and BD) of the constraint
equations in Eqs. (15)–(18) are still independent ones. So
there are three neutrino mass sum rules in total, which are
given by Eqs. (24) and (44). By solving these equations,
one obtains m3 ¼ 0.022 eV with ½ρ; σ� ¼ ½0.04π; 0.46π� in
the IO case. For such a result, mβ and Σ respectively take a
value of 0.055 and 0.13 eV, while M̄ν and the magnitudes
of its elements are given by

M̄ν

eV
≃

0
B@

0.019þ 0.014i −0.035þ 0.004i 0.032þ 0.004i

× 0 0.021 − 0.007i

× × 0.014i

1
CA;

jM̄νj
eV

≃

0
B@

0.024 0.035 0.032

× 0 0.022

× × 0.014

1
CA: ð50Þ

In the case of diagonalization conditions D(E) holding
automatically in combination with M̄μμ ¼ 0, there are five
new constraint equations [i.e., those in Eq. (25) and
R̄μμ ¼ Īμμ ¼ 0] in addition to those in Eqs. (15)–(18).
As a result, only three (i.e., AG and two of AB, AC, and
BC) of the constraint equations in Eqs. (15)–(18) are still
independent ones. So there are three neutrino mass sum
rules in total, which are given by Eqs. (26) and (44). It is
found that these sum rules have no chance to be in
agreement with the realistic results.
In the case of some diagonalization condition(s) holding

automatically in combination with M̄ττ ¼ 0, from the above
results in the case of the same diagonalization condition(s)

holding automatically in combination with M̄μμ ¼ 0, the
constraint equations and the resulting M̄ν can be obtained
by making the interchanges R̄eμ ↔ −R̄eτ, Īeμ ↔ Īeτ,
R̄μμ ↔ R̄ττ, and Īμμ ↔ −Īττ and a sign change for Īee
and Īμτ, while the predictions for the three unknown
physical parameters can be obtained by making the replace-
ments ρ → π − ρ and σ → π − σ. This reflects a symmetry
between the μ and τ flavors.

D. M̄μτ = 0

In the case of M̄μτ ¼ 0, we simply get two new constraint
equations R̄μτ ¼ Īμτ ¼ 0 in addition to those in
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Eqs. (15)–(18). The resulting two neutrino mass sum rules
are directly obtained as

m1cos2ρðs212þc212s
2
13Þþm2cos2σðc212þs212s

2
13Þ

−m3c213¼0;

m1sin2ρðs212þc212s
2
13Þþm2sin2σðc212þs212s

2
13Þ¼0; ð51Þ

from Eq. (27) by taking M̄μτ ¼ 0. In the following, we
study the various cases where one more neutrino mass sum
rule arises from the requirement of some diagonalization
condition(s) holding automatically so that the three
unknown physical parameters can be completely deter-
mined. As a result of M̄μτ ¼ 0, one has IY11 − IY22 ¼
IX11 − 2IX33, which leads diagonalization conditions A(G)
and C(F) to always simultaneously hold automatically.
In the case of diagonalization conditions A(G) and C(F)

holding automatically in combination with M̄μτ ¼ 0, there
are the following seven new constraint equations [i.e., those
in Eqs. (19) and (23) and R̄μτ ¼ 0] in addition to those in
Eqs. (15)–(18),

R̄eμ ¼ −R̄eτ; Īeμ ¼ Īeτ; R̄μμ ¼ R̄ττ; Īμμ ¼ −Īττ;

Īee ¼ R̄μτ ¼ Īμτ ¼ 0; ð52Þ

which can be recombined into

M̄eμ ¼ −M̄�
eτ; M̄μμ ¼ M̄�

ττ;

M̄μτ ¼ 0; M̄ee being real: ð53Þ

As a result, only one (i.e., BD) of the constraint equations in
Eqs. (15)–(18) is still an independent one. So there are three
neutrino mass sum rules in total, which are given by three
independent ones of Eqs. (20), (24), and (51). By solving
these equations, one obtains m1 ¼ 0.17 eV with ½ρ; σ� ¼
½0; 0� in the NO case or m3 ¼ 0.021 eV with ½ρ; σ� ¼
½π=2; 0� in the IO case. For these two possible results,
mβ takes a value of 0.17 or 0.054 eV while Σ takes a value
of 0.51 or 0.13 eV. Note that the result of m1 ¼ 0.17 eV is
strongly disfavored by the cosmological measurements for
the neutrino mass sum. On the other hand, M̄ν and the
magnitudes of its elements are given by

M̄ν

eV
≃

0
B@

0.158 0.035i 0.035i

× 0.165 0

× × 0.165

1
CA;

jM̄νj
eV

≃

0
B@

0.158 0.035 0.035

× 0.165 0

× × 0.165

1
CA; ð54Þ

or

M̄ν

eV
≃

0
B@

−0.021 0.035 −0.035
× 0.021þ 0.007i 0

× × 0.021 − 0.007i

1
CA;

jM̄νj
eV

≃

0
B@

0.021 0.035 0.035

× 0.022 0

× × 0.022

1
CA: ð55Þ

In the case of diagonalization condition B holding
automatically in combination with M̄μτ ¼ 0, there are four
new constraint equations [i.e., those in Eq. (21) and
R̄μτ ¼ Īμτ ¼ 0] in addition to those in Eqs. (15)–(18). As
a result, only four (i.e., AG, EF, and two of AC, AD, and
CD) of the constraint equations in Eqs. (15)–(18) are still
independent ones. So there are three neutrino mass sum
rules in total, which are given by Eqs. (22) and (51). It is
found that these sum rules have no chance to be in
agreement with the realistic results.
In the case of diagonalization conditions D(E) holding

automatically in combination with M̄μτ ¼ 0, there are five
new constraint equations [i.e., those in Eq. (25) and
R̄μτ ¼ Īμτ ¼ 0] in addition to those in Eqs. (15)–(18). As
a result, only three (i.e., AG and two of AB, AC, and BC) of
the constraint equations in Eqs. (15)–(18) are still inde-
pendent ones. So there are three neutrino mass sum rules in
total, which are given by Eqs. (26) and (51). It is found that
these sum rules have no chance to be in agreement with the
realistic results.

IV. ONE NEUTRINO MASS VANISHING

In this section, we perform a study on the possible
textures of neutrino mass matrix that can lead to θ23 ¼ π=4
and δ ¼ −π=2 in the scenario of one neutrino mass
vanishing. Given a vanishing neutrino mass, the neutrino
mass spectrum can be fixed with the help of measured
neutrino mass squared differences. On the other hand, there
is only one effective Majorana CP phase that is specified to
be σ. So we just need one neutrino mass sum rule arising
from the requirement of some diagonalization condition(s)
holding automatically to completely determine the neutrino
physical parameters.

A. m1 = 0

In the case of m1 ¼ 0, the vanishing of Reðm1e2iρÞ and
Imðm1e2iρÞ gives the following two new conditions,

H∶ sin 2θ12RY12 ¼ c212RY11 þ s212RY22;

I∶ sin 2θ12IY12 ¼ c212IY11 þ s212IY22; ð56Þ

in addition to those in Eq. (13). By relating the expressions
for θ12 derived from diagonalization conditions E and H
and F and I, we obtain the following two new constraint
equations in addition to those in Eqs. (15)–(18),
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EH∶RY11þRY22¼sgnðRY12Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRY12Þ2þðRY11−RY22Þ2

q
;

FI∶ IY11þIY22¼sgnðIY12Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðIY12Þ2þðIY11−IY22Þ2

q
;

ð57Þ

where the expressions for RY12, IY12, RY11 − RY22, and
IY11 − IY22 have been given in Eq. (17), while RY11 þ RY22
and IY11 þ IY22 are given by

RY11 þ RY22 ¼
R̄ee − 3R̄μτ

2
þ R̄μμ þ R̄ττ

4
þ sgnðĪeμ þ ĪeτÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðĪeμ þ ĪeτÞ2 þ

1

4

�
R̄ee þ R̄μτ þ

R̄μμ þ R̄ττ

2

�
2

s
;

IY11 þ IY22 ¼ Īee − 2Īμτ: ð58Þ

So there are seven independent constraint equations in total.
In the following, we study the various cases where one
neutrino mass sum rule arises from the requirement of some
diagonalization condition(s) holding automatically so that
the only unknown physical parameter σ can be determined.
Before proceeding, we make two observations: (1) It is easy
to see that diagonalization conditions E and H and F and I
always simultaneously hold automatically, respectively.
(2) When diagonalization conditions A(G) hold automati-
cally, one has IY11 ¼ 0, which leads diagonalization
conditions F and I to hold automatically too. So diagonal-
ization conditions A(G), C(F), and I always simultaneously
hold automatically.
In the case of diagonalization conditions A(G), C(F), and

I holding automatically, there are the following six new
constraint equations [i.e., those in Eqs. (19) and (23)] in
addition to those in Eqs. (15)–(18) and (57),

R̄eμ ¼ −R̄eτ; Īeμ ¼ Īeτ; R̄μμ ¼ R̄ττ;

Īμμ ¼ −Īττ; Īee ¼ Īμτ ¼ 0; ð59Þ

which can be recombined into

M̄eμ ¼ −M̄�
eτ; M̄μμ ¼ M̄�

ττ;

M̄ee and M̄μτ being real: ð60Þ

As a result, only two (i.e., BD and EH) of the constraint
equations in Eqs. (15)–(18) and (57) are still independent
ones. So there is one neutrino mass sum rule, which is
directly obtained as

σ ¼ 0 or
π

2
; ð61Þ

from Eqs. (20) and (24) by takingm1 ¼ 0. For such a result,
mβ and Σ respectively take a value of 0.009 and 0.059 eV.

On the other hand, M̄ν and the magnitudes of its elements
are given by

M̄ν

eV
≃

0
B@

0.002 0.003þ 0.005i −0.003þ 0.005i

× 0.028þ 0.001i 0.022

× × 0.028 − 0.001i

1
CA;

jM̄νj
eV

≃

0
B@

0.002 0.006 0.006

× 0.028 0.022

× × 0.028

1
CA; ð62Þ

for σ ¼ 0, or

M̄ν

eV
≃

0
B@

−0.004 −0.003þ 0.005i 0.003þ 0.005i

× 0.022 − 0.001i 0.028

× × 0.022þ 0.001i

1
CA;

jM̄νj
eV

≃

0
B@

0.004 0.006 0.006

× 0.022 0.028

× × 0.022

1
CA; ð63Þ

for σ ¼ π=2.
In the case of diagonalization condition B holding

automatically, there are two new constraint equations given
by Eq. (21) in addition to those in Eqs. (15)–(18) and (57).
As a result, only six (i.e., AG, EF, EH, FI, and two of AC,
AD, and CD) of the constraint equations in Eqs. (15)–(18)
and (57) are still independent ones. So there is one neutrino
mass sum rule, which is directly obtained as

m2s212 cos 2σ þm3 ¼ 0; ð64Þ

from Eq. (22) by taking m1 ¼ 0. Apparently, this sum rule
can never be fulfilled in the NO case.
In the case of diagonalization conditions D(E) and H

holding automatically, there are the following four new
constraint equations [i.e., those in Eq. (25) and RY11 ¼
RY22 ¼ 0],

R̄ee−2R̄μτ¼−sgnðĪeμþ ĪeτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðĪeμþ ĪeτÞ2þðR̄eeþ2R̄μτÞ2

q
;

Īμμ¼ Īττ; R̄eμ¼ R̄eτ; R̄μμþR̄ττ¼2R̄μτ; ð65Þ

in addition to those in Eqs. (15)–(18) and (57). As a result,
only four (i.e., equations AG, FI, and two of AB, AC, and
BC) of the constraint equations in Eqs. (15)–(18) and (57)
are still independent ones. So there is one neutrino mass
sum rule, which is directly obtained as

σ ¼ π

4
or

3π

4
; ð66Þ

from Eq. (26) by takingm1 ¼ 0. For such a result,mβ and Σ
respectively take a value of 0.009 and 0.059 eV. In the case
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of σ ¼ π=4, M̄ν and the magnitudes of its elements are
given by

M̄ν

eV
≃

0
B@
−0.001þ0.003i 0.008i 0.002i

× 0.024þ0.003i 0.025−0.003i

× × 0.025þ0.003i

1
CA;

jM̄νj
eV

≃

0
B@
0.003 0.008 0.002

× 0.024 0.025

× × 0.025

1
CA: ð67Þ

In the case of σ ¼ 3π=4, M̄ν can be obtained by making the
interchanges Īeμ ↔ Īeτ, R̄μμ ↔ R̄ττ, and Īμμ ↔ −Īττ and a
sign change for Īee and Īμτ in the M̄ν given by Eq. (67).

B. m3 = 0

In the case of m3 ¼ 0, the vanishing of Imðm1e2iρÞ and
Reðm3Þ gives the following two new conditions,

I∶ sin 2θ12IY12 ¼ c212IY11 þ s212IY22;

J∶ sin 2θ13IX13 ¼ s213RX11 − c213RX33; ð68Þ

in addition to those in Eq. (13). By relating the expressions
for θ13 and θ12 derived from diagonalization conditions B
and J and F and I, we obtain the following two new
constraint equations,

BJ∶ R̄ee−R̄μτ−
R̄μμþR̄ττ

2

¼sgnðĪeμþ ĪeτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðĪeμþ ĪeτÞ2þ

�
R̄eeþR̄μτþ

R̄μμþR̄ττ

2

�
2

s
;

FI∶ IY11þIY22

¼sgnðIY12Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðIY12Þ2þðIY11−IY22Þ2

q
; ð69Þ

in addition to those in Eqs. (15)–(18). So there are
seven independent constraint equations in total. In the
following, we study the various cases where one neutrino
mass sum rule arises from the requirement of some diag-
onalization condition(s) holding automatically so that the
only unknown physical parameter σ can be determined.
Before proceeding, we make two observations: (1) It is easy
to see that diagonalization conditions B and J and F and I
always simultaneously hold automatically, respectively.
(2) When diagonalization conditions A(G) hold automati-
cally, one has IY11 ¼ 0, which leads diagonalization con-
ditions F and I to hold automatically too. So diagonalization
conditions A(G), C(F), and I always simultaneously hold
automatically.
In the case of diagonalization conditions A(G), C(F), and

I holding automatically, there are six new constraint
equations given by Eq. (59) in addition to those in

Eqs. (15)–(18) and (69). As a result, only two (i.e., BD
and BJ) of the constraint equations in Eqs. (15)–(18) and
(69) are still independent ones. So there is one neutrino
mass sum rule, which is directly obtained from Eqs. (20)
and (24) by taking ρ ¼ 0 and is the same as that in Eq. (61).
For such a result, mβ and Σ respectively take a value of
0.049 and 0.10 eV. On the other hand, M̄ν and the
magnitudes of its elements are given by

M̄ν

eV
≃

0
B@

0.049 0.005i 0.005i

× 0.024 −0.025
× × 0.024

1
CA;

jM̄νj
eV

≃

0
B@

0.049 0.005 0.005

× 0.024 0.025

× × 0.024

1
CA; ð70Þ

for σ ¼ 0, or

M̄ν

eV
≃

0
B@

0.019 −0.032þ 0.002i 0.032þ 0.002i

× −0.010 − 0.007i 0.010

× × −0.010þ 0.007i

1
CA;

jM̄νj
eV

≃

0
B@

0.019 0.032 0.032

× 0.012 0.010

× × 0.012

1
CA; ð71Þ

for σ ¼ π=2.
In the case of diagonalization conditions B and J holding

automatically, there are the following three new constraint
equations [i.e., those in Eq. (21) and RX11 ¼ RX33 ¼ 0],

Īeμ ¼ −Īeτ; −2R̄μτ ¼ R̄μμ þ R̄ττ; R̄ee ¼ 0; ð72Þ

in addition to those in Eqs. (15)–(18) and (69). As a result,
only five (i.e., AG, EF, FI, and two of AC, AD, and CD) of
the constraint equations in Eqs. (15)–(18) and (69) are still
independent ones. So there is one neutrino mass sum rule,
which is directly obtained as

m1c212 þm2s212 cos 2σ ¼ 0; ð73Þ

from Eq. (22) by taking ρ ¼ m3 ¼ 0. Apparently, this sum
rule can never be fulfilled in the IO case.
In the case of diagonalization conditions D(E) holding

automatically, there are three new constraint equations
given by Eq. (25) in addition to those in Eqs. (15)–(18)
and (69). As a result, only five (i.e., AG, BJ, FI, and two
of AB, AC, and BC) of the constraint equations in
Eqs. (15)–(18) and (69) are still independent ones. So
there is one neutrino mass sum rule, which is directly
obtained as

m1 −m2 cos 2σ ¼ 0; ð74Þ

FURTHER STUDY ON THE TEXTURES OF NEUTRINO MASS … PHYS. REV. D 99, 075034 (2019)

075034-11



from Eq. (26) by taking ρ ¼ m3 ¼ 0. By solving this
equation, one obtains σ ¼ 0.03π or 0.97π. For such a result,
mβ and Σ respectively take a value of 0.049 and 0.10 eV. In
the case of σ ≃ 0.03π, M̄ν and the magnitudes of its
elements are given by

M̄ν

eV
≃

0
B@
0.048þ0.003i 0.008i 0.002i

× 0.024þ0.003i −0.025−0.003i

× × 0.025þ0.003i

1
CA;

jM̄νj
eV

≃

0
B@
0.048 0.008 0.002

× 0.024 0.025

× × 0.025

1
CA: ð75Þ

In the case of σ ≃ 0.97π, M̄ν can be obtained by making the
interchanges Īeμ ↔ Īeτ, R̄μμ ↔ R̄ττ, and Īμμ ↔ −Īττ and a
sign change for Īee and Īμτ in the M̄ν given by Eq. (75).

V. DISCUSSIONS

In this section, we give some discussions about the
possible textures of neutrino mass matrix that can lead to
θ23 ¼ π=4, δ ¼ −π=2 and maximal Majorana CP phases as
well as the model realization and breakings of the obtained
textures.

A. ρ, σ = π=4 or 3π=4

Motivated by the μ-τ reflection symmetry that predicts
θ23 ¼ π=4, δ ¼ −π=2 and trivial Majorana CP phases, we
make an attempt to derive the possible textures of neutrino
mass matrix that can lead to θ23 ¼ π=4, δ ¼ −π=2 and
maximal Majorana CP phases. In this scenario, the
vanishing of Reðm1e2iρÞ and Reðm2e2iσÞ gives the follow-
ing two new conditions,

H∶ sin 2θ12RY12 ¼ c212RY11 þ s212RY22;

K∶ sin 2θ12RY12 ¼ −s212RY11 − c212RY22; ð76Þ

in addition to those in Eq. (13). A combination of
diagonalization conditions E, H, and K results in
RY11 ¼ RY22 ¼ RY12 ¼ 0, which lead diagonalization con-
ditions D(E), H, and K to hold automatically. Hence there
are four new constraint equations given by Eq. (65) in
addition to those in Eqs. (15)–(18). As a result, only three
(i.e., AG and two of AB, AC, and BC) of the constraint
equations in Eqs. (15)–(18) are still independent ones. So
there are seven independent constraint equations in total. In
the following, we study the various cases where one
neutrino mass sum rule arises from the requirement of
some diagonalization condition(s) holding automatically so
that the only unknown physical parameter (the absolute
neutrino mass scale) can be determined.
In the case of diagonalization conditions A(G) [in

addition to D(E), H, and K] holding automatically, there

are the following seven new constraint equations [i.e., those
in Eqs. (19) and (65)],

R̄ee−2R̄μτ¼−sgnðĪeμþ ĪeτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðĪeμþ ĪeτÞ2þðR̄eeþ2R̄μτÞ2

q
;

Īμμ¼ Īττ¼−Īμτ; R̄eμ¼ R̄eτ¼ Īee¼0; R̄μμþR̄ττ¼2R̄μτ;

ð77Þ

in addition to those in Eqs. (15)–(18). As a result, only one
(i.e., BC) of the constraint equations in Eqs. (15)–(18) is
still an independent one. So there is one neutrino mass sum
rule, which is directly obtained as

m1c212 �m2s212 ¼ 0; ð78Þ

from Eq. (20) by taking ρ, σ ¼ π=4 or 3π=4. By solving this
equation, one obtains m1 ¼ 0.004 eV with ½ρ; σ� ¼
½π=4; 3π=4� or ½3π=4; π=4�. For such a result, mβ and Σ
respectively take a value of 0.010 and 0.064 eV. In the case
of ½ρ; σ� ¼ ½π=4; 3π=4�, M̄ν and the magnitudes of its
elements are given by

M̄ν

eV
≃

0
B@

−0.001 0.001i 0.010i

× 0.026 − 0.003i 0.025þ 0.003i

× × 0.024 − 0.003i

1
CA;

jM̄νj
eV

≃

0
B@

0.001 0.001 0.010

× 0.026 0.025

× × 0.024

1
CA: ð79Þ

In the case of ½ρ; σ� ¼ ½3π=4; π=4�, M̄ν can be obtained by
making the interchanges Īeμ ↔ Īeτ, R̄μμ ↔ R̄ττ, and Īμμ ↔
−Īττ and a sign change for Īμτ in the M̄ν given by Eq. (79).
In the case of diagonalization condition B [in addition to

D(E), H, and K] holding automatically, there are six new
constraint equations given by Eqs. (21) and (65) in addition
to those in Eqs. (15)–(18). As a result, only two (i.e., AC
and AG) of the constraint equations in Eqs. (15)–(18) are
still independent ones. So there is one neutrino mass sum
rule, which is directly obtained as

m3 ¼ 0; ð80Þ

from Eq. (22) by taking ρ, σ ¼ π=4 or 3π=4. However, as
discussed in Sec. IV, ρ would be fixed to 0 in the case of
m3 ¼ 0. So this sum rule has no chance to be in agreement
with the realistic results.
In the case of diagonalization conditions C(F) [in

addition to D(E), H, and K] holding automatically, there
are six new constraint equations given by Eqs. (23) and (65)
in addition to those in Eqs. (15)–(18). As a result, only
two (i.e., AB and AG) of the constraint equations in
Eqs. (15)–(18) are still independent ones. So there is
one neutrino mass sum rule, which is directly obtained as
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m1 �m2 ¼ 0; ð81Þ

from Eq. (24) by taking ρ, σ ¼ π=4 or 3π=4. Apparently,
this sum rule has no chance of being in agreement with the
realistic results.

B. Model realization

The approach adopted by us is a bottom-up one in the
sense that we start from the experimental hints for θ23 ≃
π=4 and δ ≃ −π=2 and then derive the possible textures of
neutrino mass matrix that can lead to maximal θ23 and δ. (In
a top-down approach one starts from a specific flavor
theory and then derives its phenomenological conse-
quences.) Although all the obtained textures are on an
equal footing in our approach, a particular texture gains a
more solid foundation if it can find an origin from some
flavor symmetry. From the model realization point of view,
the obtained textures can be classified into the following
three categories.
First of all, we note that some of the obtained textures

can find a connection with the μ-τ reflection symmetry. One
can see that the resulting neutrino mass sum rules in the
case of diagonalization conditions A(G) and C(F) holding
automatically in combination with M̄ee ¼ 0 (M̄μτ ¼ 0) are
the same as those in the case of μ-τ reflection symmetry
with Mee ¼ 0 (Mμτ ¼ 0) [27]. In fact, if one restores the
unphysical phases with the help of M̄αβ ¼ Mαβe−iðϕαþϕβÞ

and takes ϕe ¼ π=2 and ϕμ ¼ −ϕτ, the texture obtained in
the former case reproduces that in the latter case. For
example, under such a specification for the unphysical
phases, the texture of M̄ν in Eq. (33) gives the following
texture of Mν:

Meμ ¼ M�
eτ; Mμμ ¼ M�

ττ;

Mee ¼ 0; Mμτ being real: ð82Þ

(BD just gives an expression for the unphysical phase ϕμ in
terms of the neutrino mass matrix elements.) As a com-
parison, if we take ϕe ¼ 0 and ϕμ ¼ −ϕτ, Eq. (33) gives

Meμ ¼ −M�
eτ; Mμμ ¼ M�

ττ;

Mee ¼ 0; Mμτ being real: ð83Þ

These two textures give the same results for the physical
parameters. But the former one has the advantage of having
a connection with the μ-τ reflection symmetry. Of course,
one can choose any other specification for the unphysical
phases, which does not alter the results for the physical
parameters but may lead to a different texture. Similarly, the
texture obtained in the case of diagonalization conditions A
(G) and C(F) holding automatically in combination withm1

or m3 ¼ 0 can reproduce that from the μ-τ reflection
symmetry embedded in the minimal seesaw [28].

A texture belonging to the second category is one that
cannot be connected to a known flavor symmetry like the
μ-τ reflection symmetry but only possesses linear relations
among the neutrino mass matrix elements. It may be
realized with the help of some flavor symmetry. An
example is the texture obtained in the case of diagonaliza-
tion conditions A(G) and B holding automatically in
combination with M̄ee ¼ 0. If one restores the unphysical
phases and takes ϕμ ¼ ϕτ þ π, Eq. (31) gives

Meμ ¼Meτ; 2Mμτ ¼Mμμ þMττ; Mee ¼ 0: ð84Þ

(CD and EF just give the expressions for the unphysical
phases ϕe and ϕμ in terms of the neutrino mass matrix
elements.) The texture zeroMee ¼ 0 can be attributed to an
Abelian flavor symmetry [18] while the linear relations
Meμ ¼ Meτ and 2Mμτ ¼ Mμμ þMττ may find an origin
from some non-Abelian flavor symmetry [13].
A texture belonging to the third category is one that

possesses not only linear but also nonlinear relations
among the neutrino mass matrix elements. It can only be
partially realized with the help of some flavor symmetry.
Let us take the texture obtained in the case of diagonaliza-
tion conditions A(G) and D(E) holding automatically in
combination with M̄ee ¼ 0 as an example. If one restores
the unphysical phases and takes ϕe ¼ 0 and ϕμ ¼
−ϕτ ¼ π=2, Eq. (36) gives

Rμτþ
3

2
ðRμμþRττÞ

¼ sgnðReμ−ReτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðReμ−ReτÞ2þ

�
Rμτ−

RμμþRττ

2

�
2

s
;

Ree¼ Ieμ ¼ Ieτ ¼ Iee¼ 0; Iμμ¼ Iττ ¼ Iμτ; ð85Þ

with Rαβ ¼ ReðMαβÞ and Iαβ ¼ ImðMαβÞ, while BC gives

ðReμ þ ReτÞðRμμ − RττÞ
�
Rμτ −

Rμμ þ Rττ

2

�

¼ ðReμ − ReτÞ
�
ðReμ þ ReτÞ2 −

1

2
ðRμμ − RττÞ2

�
: ð86Þ

In this case, the imaginary part of Mν has a very simple
structure, which may be easily realized with the help of
some flavor symmetry. However, to our knowledge, flavor
symmetries are unable to give nonlinear relations like those
two for the real part ofMν [i.e., the first one in Eq. (85) and
that in Eq. (86)].

C. Breakings

In order to accommodate the deviations of θ23 and δ from
π=4 and −π=2, one has to consider the breakings of the
obtained textures. In the literature, at least four scenarios
for the breakings of flavor symmetries (neutrino mass
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matrix textures) have been considered: (1) The flavor
symmetries are usually introduced at an extremely high
energy scale (e.g., the seesaw scale). So the renormalization
group (RG) running effect should be taken into account
when one confronts the flavor symmetry models with the
low energy data [29], which may induce the breakings of
flavor symmetries. For example, in the RG running process
the significant hierarchy between the mass of muon and
that of tau can give rise to the breaking of μ-τ symmetry
[30]. (2) As in this work, most of the studies on the textures
of neutrino mass matrix have been performed in the basis of
charged lepton mass matrix Ml being diagonal. But in a
realistic model this may not be the case. (For example, in a
grand unified theory inspired model, Ml is associated with
the down-type quark mass matrix, which is generally
treated as a nondiagonal one [31].) In this situation, even
if the special texture of Mν is realized exactly, the neutrino
mixing receives corrections from the charged lepton sector
[32]. (3) The LSND experiment [33] and reactor antineu-
trino anomaly [34] indicate the existence of eV scale sterile
neutrinos mixing with the three active neutrinos. If this
turns out to be true, the sterile neutrino sector may provide a
source for the breakings of flavor symmetries in the active
neutrino sector [35]. (4) In concrete flavor symmetry
models, it is common that the special texture of Mν only
holds at the leading order but breaks to some extent at the
higher orders [13].
A comprehensive study about the breakings of all the

obtained textures in the above scenarios is model dependent
and beyond the scope of this paper. As an example, we give
a model-independent phenomenological study of the break-
ings of the texture given by the μ-τ reflection symmetry
with Mee ¼ 0 (Mμτ ¼ 0). (A discussion about the break-
ings of the texture given by the μ-τ reflection symmetry
embedded in the minimal seesaw can be found in
Ref. [28].) Corresponding to the four symmetry conditions
in Eq. (8) one by one, the following four dimensionless
parameters can be introduced to measure the breaking
strengths of μ-τ reflection symmetry [36],

ϵ1 ¼
Meμ −M�

eτ

Meμ þM�
eτ
; ϵ2 ¼

Mμμ −M�
ττ

Mμμ þM�
ττ
;

ϵ3 ¼
Iee
Ree

; ϵ4 ¼
Iμτ
Rμτ

; ð87Þ

whose magnitudes should be small enough (e.g., ≤0.1) in
order to keep the symmetry as an approximate one. Two
immediate comments are given as follows: (1) A model-
specific breaking is characterized by a given pattern of
these four symmetry-breaking parameters. For example, a
RG induced breaking of μ-τ reflection symmetry is
characterized by I1;2 ¼ ϵ3;4 ¼ 0 [for I1;2 ¼ Imðϵ1;2Þ] and
R2 ¼ 2R1 [for R1;2 ¼ Reðϵ1;2Þ] [36]. Correspondingly, the
implications of a model-specific breaking can be inferred
from the general model-independent results. (2) It has
been noted that ϵ3 and ϵ4 are respectively equivalent to an
I1 ≃ −ϵ3=2 and an I1 ≃ −ϵ4=2 plus an I2 ≃ −ϵ4 to a good
approximation, thereby allowing one to pay attention to ϵ1;2
[36]. But for the condition of Ree ¼ 0 (Rμτ ¼ 0), there is
not a well-defined dimensionless parameter that can be
used to measure its breaking strength, so we preserve it. In
the following, given a small value of R1;2 or I1;2, we study
the deviations of physical parameters

Δm1;3¼m1;3−mð0Þ
1;3; Δθ23¼ θ23−θð0Þ23 ; Δδ¼ δ−δð0Þ;

Δρ¼ ρ−ρð0Þ; Δσ¼ σ−σð0Þ; ð88Þ

from their values in the symmetry limit [which are labeled
by a superscript (0)].
In the case of the μ-τ reflection symmetry withMee ¼ 0,

the deviations of physical parameters induced by a R1;2 or
I1;2 of the benchmark value 0.1 are given in Table I.
The results outside (inside) the brackets are obtained

in the case of mð0Þ
1 ¼ 0.006 eV with ½ρð0Þ; σð0Þ� ¼ ½0; π=2�

(mð0Þ
1 ¼ 0.002 eV with ½ρð0Þ; σð0Þ� ¼ ½π=2; 0�). It is found

that Δm1=m
ð0Þ
1 is quite small, which can be understood in a

way as follows: The μ-τ reflection symmetry itself is unable
to give a prediction for the neutrino masses. It is Mee ¼ 0
that helps us fix the neutrino mass spectrum. So the

preservation of Mee ¼ 0 ensures a small Δm1=m
ð0Þ
1 . On

the other hand, a considerable Δθ23 (significant Δδ) may
arise from R2 (R1 and I2). Because of having distinct main
origins, a considerable Δθ23 does not necessarily signify a
significant Δδ, and vice versa. In magnitude, given small
values of R1;2 and I1;2, Δθ23 is not more than a few degrees
while Δδ can reach dozens of degrees. Furthermore, all the
deviations of CP phases induced by I2 can be significant,

TABLE I. In the case of the μ-τ reflection symmetry withMee ¼ 0, the deviations of physical parameters induced
by a R1;2 or I1;2 of the benchmark value 0.1.

Δm1=m
ð0Þ
1

Δθ23 Δδ Δρ Δσ

R1 ¼ 0.1 −0.04ð0.07Þ 0.00 (0.00) −0.29ð0.14Þ 0.09 (0.11) 0.02 (0.01)
I1 ¼ 0.1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
R2 ¼ 0.1 0.00 (0.00) 0.04 (0.06) −0.01ð−0.03Þ 0.01ð−0.03Þ 0.01ð−0.01Þ
I2 ¼ 0.1 −0.05ð0.08Þ 0.00 (0.00) 0.57ð−0.38Þ −0.33ð0.11Þ −0.26ð0.21Þ
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while all the deviations of physical parameters induced by
I1 are negligibly small.
In the case of the μ-τ reflection symmetry withMμτ ¼ 0,

the deviations of physical parameters induced by aR1;2 or I1;2
of some benchmark values are given in Table II. The results
outside (inside) the brackets are obtained in the case of

mð0Þ
1 ¼ 0.165 eV with ½ρð0Þ; σð0Þ� ¼ ½0; 0� (mð0Þ

3 ¼ 0.021 eV
with ½ρð0Þ; σð0Þ� ¼ ½π=2; 0�). Inmost cases, even a tinyR1;2 or
I1;2 (for which we specify 0.01 or 0.005 as the benchmark
value) can induce rather large deviations of physical param-
eters. For a similar reason (i.e., the preservation ofMμτ ¼ 0),

Δm1;3=m
ð0Þ
1;3 are quite small. In the case of mð0Þ

1 ¼ 0.165 eV
with ½ρð0Þ; σð0Þ� ¼ ½0; 0�,R1;2 can induce significantΔθ23 but
much smaller Δδ, Δρ, and Δσ, while I1;2 can induce
significant Δδ but negligibly small deviations of other

physical parameters. In the case of mð0Þ
3 ¼ 0.021 eV with

½ρð0Þ; σð0Þ� ¼ ½π=2; 0�, all of R1;2 and I1;2 can induce signifi-
cant deviations of CP phases. Unfortunately, such a case
cannot accommodate a considerableΔθ23: One could obtain
a sizable Δθ23 by increasing the value of R1 from the
benchmark value 0.01. But at the same time δ, ρ, and σ
would go far away from their values in the symmetry
limit.
Finally, we point out that the above results can be

understood in an analytical approximation way by expand-
ing the parameters around their values in the symmetry
limit [36]. At the first order of parameter deviations, Δm1;3
are vanishing while the deviations of other parameters are
linear functions of R1;2 and I1;2. Only up to the second
order of parameter deviations can Δm1;3 receive some
nonvanishing contributions, making its dependence on R1;2

and I1;2 be of a quadratic form.3 Provided that the parameter
deviations remain small enough, the results for another
value of R1;2 or I1;2 can be approximately obtained from
those in Tables I and II by invoking the quadratic (linear)
dependence of Δm1;3 (other parameters) on R1;2 and I1;2
[36]. When a given R1;2 or I1;2 changes its sign, Δm1;3

remain invariant while the deviations of other parameters
also undergo a sign change.

VI. SUMMARY

To summarize, the purpose of this work is to derive the
possible textures of neutrino mass matrix that can lead to
θ23 ¼ π=4 and δ ¼ −π=2 in two phenomenologically
appealing scenarios: (1) one neutrino mass matrix element
vanishing (2) one neutrino mass vanishing. In the former
scenario, there are two neutrino mass sum rules arising,
which can be directly read from Eq. (27). In the latter
scenario, one has m1 ¼ ρ ¼ 0 in the NO case or m3 ¼
ρ ¼ 0 in the IO case, leaving us with only one unknown
physical parameter σ to determine. Furthermore, we also
make an attempt to derive the possible textures of neutrino
mass matrix that can lead to θ23 ¼ π=4, δ ¼ −π=2 and
maximal Majorana CP phases, in which scenario there is

TABLE II. In the case of the μ-τ reflection symmetry withMμτ ¼ 0, the deviations of physical parameters induced
by a R1;2 or I1;2 of some benchmark values.

Δm1;3=m
ð0Þ
1;3

Δθ23 Δδ Δρ Δσ

R1 ¼ 0.1ð0.01Þ 0.00 (0.02) 0.10ð−0.01Þ 0.02ð−0.21Þ 0.00 (0.15) 0.00 (0.07)
I1 ¼ 0.005 0.02 (0.05) 0.00 (0.00) −0.22ð0.31Þ 0.00ð−0.22Þ 0.00ð−0.09Þ
R2 ¼ 0.01 −0.06 (0.01) 0.20 (0.00) −0.01ð−0.18Þ 0.05 (0.10) −0.02ð0.05Þ
I2 ¼ 0.01 0.02 (0.05) 0.00 (0.00) 0.22ð−0.31Þ 0.00 (0.22) 0.00 (0.09)

TABLE III. A summary of the results for the unknown physical
parameters in the various cases. In the second column, the phrase
A(G), B (and so on) is used to stand for the cases of diagonal-
ization conditions A(G) and B (and so on) holding automatically.

M̄ee ¼ 0 A(G), B ✗
A(G), C(F) m1 ¼ 0.006 eV, ρ ¼ 0, σ ¼ π=2

m1 ¼ 0.002 eV, ρ ¼ π=2, σ ¼ 0
A(G), D(E) m1¼0.004eV, ρ¼0.79π, σ¼0.23π

M̄eμ ¼ 0 A(G), D(E) m1¼0.009eV, ρ¼0.41π, σ¼0.65π
m3¼0.006eV, ρ¼0.51π, σ¼0.47π

B, C(F) m3¼0.0007eV, ρ¼0.27π, σ¼0.22π

M̄μμ ¼ 0 A(G) m3¼0.024eV, ρ¼0.97π, σ¼0.43π
B m3¼0.050eV, ρ¼0.35π, σ¼0.54π

C(F) m3¼0.022eV, ρ¼0.04π, σ¼0.46π
D(E) ✗

M̄μτ ¼ 0 A(G), C(F) m1 ¼ 0.165 eV, ρ ¼ 0, σ ¼ 0
m3 ¼ 0.021 eV, ρ ¼ π=2, σ ¼ 0

B ✗
D(E) ✗

m1 ¼ 0 A(G), C(F) σ ¼ 0 or π=2
B ✗

D(E) σ ¼ π=4 or 3π=4

m3 ¼ 0 A(G), C(F) σ ¼ 0 or π=2
B ✗

D(E) σ ¼ 0.03π or 0.97π

Maximal ρ=σ A(G), D(E) m1 ¼ 0.004 eV
B, D(E) ✗

C(F), D(E) ✗
3This explains why m1;3 are stable against the symmetry

breakings.
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only the absolute neutrino mass scale to be determined. In
these three scenarios, we study the various cases where one
more neutrino mass sum rule arises from the requirement of
some diagonalization condition(s) holding automatically so
that all the three unknown physical parameters (i.e., the
absolute neutrino mass scale and two Majorana CP phases)
can be determined. A summary of the results for the various
cases is given in Table III. [The results in the case of
M̄eτ ¼ 0 (M̄ττ ¼ 0) can be obtained from those in the case
of M̄eμ ¼ 0 (M̄μμ ¼ 0) by making the replacements ρ →
π − ρ and σ → π − σ.] These results are useful for inves-
tigating which, if any, specific texture of neutrino mass
matrix is realized by the nature.
We also give some discussions about the model reali-

zation of the obtained textures. It is found that the textures
obtained in the case of diagonalization conditions A(G) and
C(F) holding automatically in combination with M̄ee, M̄μτ,
m1, or m3 vanishing can reproduce those in the case of μ-τ
reflection symmetry with Mee, Mμτ, m1, or m3 being
vanishing, if one restores the unphysical phases with the
help of M̄αβ ¼ Mαβe−iðϕαþϕβÞ and takes ϕe ¼ π=2 and
ϕμ ¼ −ϕτ. This in some sense indicates that the approach
adopted by us is reasonable. Although the textures obtained

in other cases cannot be connected to a similar flavor
symmetry, they are on an equal footing in our approach and
deserve some attention from the phenomenological point of
view. Finally, we give some discussions about the break-
ings of the obtained textures so as to accommodate the
deviations of θ23 and δ from π=4 and −π=2. From the
example cases we have studied, it is found that small
deviations of the physical parameters from their values in
the symmetry limit can be accommodated by small break-
ings of the given textures. And the results obtained in the
symmetry limit would still be viable to some extent
provided that the given textures hold to a good approxi-
mation. Furthermore, because of having distinct main
origins, a considerable Δθ23 does not necessarily signify
a considerable Δδ, Δρ, or Δσ, and vice versa.
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