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Low-energy supersymmetric models such as the minimal supersymmetric standard model (MSSM),
next-to-minimal supersymmetric standard model (NMSSM), and MSSM with vectorlike fermion are
consistent with perturbative unification. While the nonminimal extensions naturally explain Higgs mass
and dark matter in the low-energy region, it is unclear how seriously they are constrained in the ultraviolet
region. Our study shows the following. First, in the case of embedding the MSSM into SU(5) the fit to
standard model fermion masses requires a singlet S, which leads to unviable embedding of the NMSSM
into SU(5) because such S feeds singlet N a mass of order unification scale as well. Second, a similar result
holds in the case of embedding the NMSSM into SO(10), where S is replaced by some Higgs fields
responsible for SO(10) breaking. Third, on the contrary, for the embedding of the MSSM with
16-dimensional vectorlike fermions into SO(10), the Higgs field responsible for the vectorlike mass of
order tera-electron-volts scale can evade those problems the singlet N encounters because of an
intermediate mass scale in the 126-dimensional Higgs field.

DOI: 10.1103/PhysRevD.99.075033

I. INTRODUCTION

At the frontiers of new physics, beyond the standard
model (SM) natural or tera electron volt–scale supersym-
metry (SUSY) offers us a grand unification (GUT) of SM
gauge coupling constants [1–4]. Such natural SUSY hosts a
lot of SUSY particles, which can be directly detected at the
particle collider LHC or dark matter direct detection
facilities such as Xenon-1T. Meanwhile, embedding these
tera electron volt–scale SUSY models into the ultraviolet
completions—SUSY GUT—may solve the long-standing
issues such as the SM flavor puzzle and neutrino masses.
Nowadays, experimental data seem to oppose the min-

imal supersymmetric standard model (MSSM) from either
the bottom or top viewpoint. In the former one, the
125 GeV Higgs mass [5,6] requires either a large mixing
effect or soft masses of order 10 TeV for the stop scalars
[7–9]. When the mixing effects among generations are
significant, the constraints from flavor violation tend to
require the SUSY mass order far above the weak scale.
Moreover, the direct detection limits of dark matter [10,11]
impose rather strong pressure on the scenario of neutralino
dark matter. In the latter perspective, the minimal SUSY
SU(5) referring to the MSSM is significantly constrained

by the proton decay [12]. It requires the color-triplet Higgs
mass of order GUT scale, which together with unification
leads to the MSSMmass spectrum at least of order 100 TeV
[13–15].
Therefore, it is of great interest to explore the MSSM

with rational extensions that can resurrect the natural SUSY
once again. Along this direction, there are at least two
simple examples: the next-to-minimal supersymmetric
standard model (NMSSM) [16] and the MSSM with
vectorlike (VL) fermions (VMSSM) [17], which are con-
sistent with unification [18,19]. While these extensions
provide natural explanations of Higgs mass and dark matter
in the low-energy region, it is unclear what the statuses of
them are in the ultraviolet energy region. This is the main
focus of this study.
In this paper, we discuss the embeddings of the MSSM,

NMSSM and VMSSM into realistic GUT [20–22]. In each
case, both the SUSY SU(5) [23–25] and SUSY SO(10) [26]
representations will be explored. In these SUSY GUTs, we
discuss the GUT-scale superpotential

W ¼ WY þWSB; ð1Þ

with the following features:
(i) WY and WSB are both renormalizable.
(ii) All of vacuum expectation values (vevs) are dynami-

cally generated from WSB.
(iii) All of SM matters and extended matters obtain their

masses via the Higgs mechanism in WY .
Since WY is fixed by the SM and the extra matters such

as the singlet N or VL fermions at the tera-electron-volt
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scale, it is crucial to find suitable content of WSB that
achieves the breaking of gauge group GGUT → GSM. In
Sec. II, we explore the embedding of the MSSM into
realistic SUSY GUTs, and useful conventions and notation
will be introduced. The analysis on the MSSM is of great
use to guide us towards the embeddings of the NMSSM and
VMSSM. Sections III and IV are devoted to studying the
embeddings of the NMSSM and VMSSM into realistic
SUSY GUTs, respectively. Finally, we conclude in Sec. V.

II. BENCHMARK MODEL: MSSM

In the minimal SU(5), SM fermions of each generation
are assigned as 1 for right-hand neutrino NR, 5̄ (ψ) for L
and down quark d, and 10 (Φ) for Q, up quark u and e,
respectively, whereas in the SO(10) representation, the SM
fermions of each generation are embedded into a 16-
dimensional representation, which decomposes as 16 ¼
1þ 5̄þ 10 under the SU(5).

A. SU(5)

The Yukawa superpotential WY in Eq. (1) contains two
parts,

WSUð5Þ
Y ¼ WSUð5Þ

Yf
þWSUð5Þ

Yν
; ð2Þ

which refer to SM fermions without neutrinos and neu-
trinos, respectively.
According to the product 5̄ × 10 ¼ 5þ 45 and

10 × 10 ¼ 5̄s þ 4̄5a þ 5̄0s, where subscripts s and a refer
to symmetric and antisymmetric, respectively. With the
Higgs representations composed of 5, 5̄, and 4̄5 [27],

WSUð5Þ
Yf

is given by

WSUð5Þ
Yf

¼ Yij
d ψaið5̄ÞH̄bð5̄ÞΦab

j ð10Þ
þ Yij

45ψaið5̄ÞH̄a
bcð4̄5ÞΦbc

j ð10Þ
þ Yij

u ϵabcdeΦab
i ð10ÞHeð5ÞΦcd

j ð10Þ ð3Þ

where a, b, c, etc., denote the SU(5) indices, i and j are the
generation indices, and Yu;d;45 are Yukawa matrices. Note
that Φab is an antisymmetric field and Ha

bc ¼ −Ha
cb.

The reason to include 4̄5 is clear in the SM fermion mass
matrices as derived from Eq. (3),

Mu ¼ Yij
u υ5u;

Md ¼ Yij
d υ

5̄
d þ Yij

45υ
4̄5
d ;

Me ¼ Yij
d υ

5̄
d − 3Yij

45υ
4̄5
d : ð4Þ

where υ5u and υ5̄d is the vev of the Higgs doublet Hu and Hd

in 5 and 5̄, respectively, and υ45 is the vev of doublet σd in
4̄5, which is defined as hHb5

a i ¼ υ45ð1; 1; 1;−3Þdiag for

a; b ¼ 1–4. Without the 4̄5,Md ¼ Me at the GUT scale for
all of three generations. While such a mass relation is viable
for the third generation, it should be avoided for the first
two generations. Adding 4̄5 can tune the incorrect mass
relations to the desired ones,

md ≃ 3me; ms ≃mμ=3; mb ≃mτ: ð5Þ

The GUT-scale mass relations in Eq. (5) strongly
constrain the Yukawa matrices Yu;d;45. For example, some
specific choices of Yu;d;45 in the Georgi-Jarlskog scheme
[27] lead to a stable b quark. To solve the SM flavor issue,
we choose the Fritzsch scheme [28], in which Yu;d;45 take
the forms

Yij
u υu ¼

0
B@

0 Au 0

Au 0 Bu

0 Bu Cu

1
CA;

Yij
d υd ¼

0
B@

0 Ad 0

Ad 0 Bd

0 Bd Cd

1
CA;

Yij
45υ45 ¼

0
B@

0 0 0

0 0 Dd

0 Dd 0

1
CA; ð6Þ

where there are small mass hierarchies Cf ≫ Bf ≫ Af

with f ¼ fu; d; eg in Eq. (6) so as to address the SM flavor
mass hierarchies. Substituting Eq. (6) into Eq. (5) implies
that there is a fine-tuning between Bd and Dd,

Dd ¼
�
1� 2

ffiffiffi
3

p

3

�
Bd: ð7Þ

With this fine-tuning solution, the diagonalizations of
matrices in Eq. (6) yield the Cabibbo–Kobayashi–
Maskawa (CKM) matrix

jVCKMj ≃

0
B@

0.974 0.227 0.004

0.227 0.970 0.042

0.008 0.042 0.999

1
CA; ð8Þ

which is in good agreement with experimental data.
For WYν

responsible neutrino masses, we take a simple
form,

WSUð5Þ
Yν

¼ Yij
NNRið1Þψajð5̄ÞHað5Þ

þ Yij
S Sð1Þ · NRið1ÞNRjð1Þ þ H:c:; ð9Þ

where S is a singlet of GSM ¼ SUð3Þc × SUð2ÞL ×Uð1ÞY ,
with hSi of order GUT scale. In Eq. (9), one finds the
neutrino Dirac mass Mν ¼ Yij

Nυ
5
u and the right-handed
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neutrino massMNR
¼ Yij

S hSi, which results in the left-hand
neutrino masses in terms of the type-I [29–32] seesaw
mechanism,

mν ¼ MT
νM−1

NR
Mν ¼ YT

NY
−1
S YN

υ5u
hSi : ð10Þ

Given υ5u ∼ 102 GeV, hSi ∼ 1015 − 1016 GeV, and Yukawa
couplings of order unity, the neutrino mass is of order
approximately 10−2 − 10−3 eV. Similar to Yu;d;e, YS and
YN in Eq. (9) are also constrained by the fit to neutrino
mixings as described by the Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) matrix UPMNS ¼ U−1

e U−1
ν , where Uν and

Ue are defined to diagonalize mass matrices mν and Me,
respectively.
Now that we have established a benchmark solution1 to

the input parameters at the GUT scale that can explain the
SM flavor issue and neutrino masses, we turn to the
structure of WSB: 1) To obtain light neutrino masses, hSi
of order GUT scale is required. 2). To break the SU(5), we
introduce 75ðZÞ. With a 75, we can add a 50 and 5̄0 to

achieve the doublet-triplet splitting [33] for 5 and 5̄. 3). To
gain nonzero vev υ4̄5d , we include another 75ðZ0Þ with a vev
of the GUT scale. The reason for this is that neither 1 nor 24
with a large vev is favored by the product Hð5Þ × H̄ð5̄Þ ¼
1þ 24. 4), Because of the singlet S, there is an unsafe
operator,

Wunsafe ¼ SHð5ÞH̄ð5̄Þ; ð11Þ
which must be eliminated.
Shown in Table I is the Z2 × Z0

2 parity, which can
eliminate the unsafe operator in Eq. (11). Under this parity,
WSB reads as

WSUð5Þ
SB ¼ MZ

2
Z2 þMZ0

2
Z02 þMS

2
S2 þMS0

2
S02 þ λZ

3
Z3 þ λS

3
S3 þ λ1SZ2 þ λ2SZ02 þ λ3ZZ02 þ λ4SS02

þ H̄ð4̄5ÞðM45 þ λ5SÞHð45Þ þ λ6S0H̄ð5̄0ÞHð50Þ þ λ7ZH̄ð5̄ÞHð50Þ þ λ8Z0Hð5ÞH̄ð5̄0Þ þ λ9ZHð45ÞH̄ð5̄Þ þ H:c:

ð12Þ

According to the F terms in Eq. (12), the nonzero singlet
vevs hð1; 1; 1ÞZi ¼ Z, hð1; 1; 1ÞZ0 i ¼ Z0, hð1; 1; 1ÞSi ¼ S
and hð1; 1; 1ÞS0 i ¼ S0 are given by

S
MZ

¼ −
1

2λ4
η3 ¼ −

1

2λ2

�
−2λ3

Z
MZ

þ η1

�
;

Z0

MZ
¼ 1ffiffiffiffiffi

λS
p

�
−Z
MZ

�1
2

�
1þ λZ þ λ1

λ2

�
−2λ3

Z
MZ

þ η1

��1
2

Z
MZ

¼ −b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p

2a
; ð13Þ

where

a ¼ λ1 þ
λ23
λ22

λS −
λ2λZ
λS

þ 2
λ1λ3
λS

b ¼ −
λ3
λ2

−
λ3λS
λ22

η −
λ2
λS

−
λ1
λS

η

c ¼ 1

2λ2
η1η2 þ

λS
4λ22

η21 þ λ4

�
S0

MZ

�
2

ð14Þ

and η1 ¼ MZ0=MZ, η2 ¼ MS=MZ, η3 ¼ MS0=MZ.
A few comments are in order regarding the parity

assignments. First, the Z2 parity eliminates the unsafe
operator in Eq. (11). Second, without Z0

2, a large μ term
for the doublets in 5 and 5̄ would be induced by the
mixings with 45 and 4̄5. Instead, imposing Z0

2 forbids the
operator Z0Hð5ÞH̄ð4̄5Þ, which then keeps the doublets in
5 and 5̄ light. Finally, due to the last line in Eq. (12),
which is consistent with Z2 × Z0

2, the effective operator
H̄ð5̄ÞHð45ÞZ02=MZ is produced after integrating Z. Thus,
the effective superpotential for the doublets in 45 and 4̄5 at
the leading order is given by

Weff ∼ ðM45 þ λ5hSiÞσuσd þ λ3HdσuZ02=MZ; ð15Þ

where corrections due to those mixings among singlets of
Z, Z0, and S have been neglected. From Eq. (15), we obtain
the vev

σd ∼ λ3
Z02

ðM45 þ λ4hSiÞMZ
υd: ð16Þ

Given λ3 ∼ 0.1 and υd ∼ 10 GeV, we have σd ∼ 100 MeV.
A rational Yukawa texture such as Y45 ∼ ð0.01; 0.1; 1Þ for

TABLE I. Z2 × Z0
2 parity assignments in the case of embedding

the MSSM into SU(5), which are consistent with the super-
potentials in Eqs. (2) and (12).

Field NR ψ Φ 5 5̄ 4̄5 1ðSÞ 1ðS0Þ 75ðZÞ 75ðZ0Þ 45 50 5̄0

Z2 þ þ − þ − − þ þ þ − − − −
Z0
2 þ þ þ þ þ þ þ − þ − þ þ −

1It is of special interest to examine whether there is a viable
solution to the input parameters in the case in which all mass
matrices such as Mu;d;e;NR

are assigned the Fritzsch form.
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the three generations then reproduces the mass relations
in Eq. (5).

B. SO(10)

Unlike the case of SU(5), the input parameters in the
SO(10) that control the SM fermions masses Mu;d;e and
neutrino masses mν are tied to each other. The main reason
for this is that the MSSM matters of each generation are
contained in a single 16ðϕÞ. Here, we give a brief review of
the embedding of the MSSM into SO(10).
According to the product 16 × 16 ¼ 10s þ 120a þ 126s,

the Higgs representation responsible for SM fermion
masses can be composed of 10, 120, and ¯126. By following
previous discussions on SU(5) [34,35], the simplest choice
is to introduce 10 and ¯126 [36], with Yukawa superpotential
given by

WSOð10Þ
Y ¼ ϕið16Þ½Yij

10Hð10Þ þ Yij
126H̄ð ¯126Þ�ϕjð16Þ;

ð17Þ

where matrices Y10 and Y126 are both symmetric. From
Eq. (17), we have

Mu ¼ Yij
10υ

10
u þ Yij

126υ
¯126

u ;

Md ¼ Yij
10υ

10
d þ Yij

126υ
¯126

d ;

Me ¼ Yij
10υ

10
d − 3Yij

126υ
¯126

d ð18Þ

for SM quarks and electrons and

MNR
¼ Yij

126υ
¯126

s

Mν ¼ Yij
10υ

10
u − 3Yij

126υ
¯126

d ;

ML ¼ Yij
126υ

¯126
L ð19Þ

for neutrinos, where υ10u;d refer to the doublet vevs in Hð10Þ
and υ ¯126

s;u;d;L denote the singlet (s), doublet (u, d), and triplet
(L) vevs in H̄ð ¯126Þ, respectively. Therefore, the neutrino
mass arises from both type-I [29–32] and type-II [37–39]
contributions,

mν ¼ ML −MT
νM−1

NR
Mν: ð20Þ

Benchmark solutions to the input parameters in
Eqs. (18) and (19) have been extensively studied
[36,40–43], which demonstrates that the fit to SM flavor
masses and mixings is viable. But the construction of WSB
responsible for the breaking of SOð10Þ → GSM is chal-
lenging [44–47], since some of the triplet fields in 126 and
¯126 obtain mass of order υ ¯126

s ∼ 1013 GeV, which spoils
the perturbative unification. Attempts to solve this issue
involve adding 54 [48] to WSB or adding 120 [49] to WY
in Eq. (17).

We employ the solution of modifyingWSB [48], in which
the Higgs fields are composed of 210ðYÞ,Hð126Þ, H̄ð ¯126Þ,
and 54ðXÞ, and WSB takes the form2

WSOð10Þ
SB ¼ MY

2
Y2 þMX

2
X2 þM126Hð126ÞH̄ð ¯126Þ

þ λ1Y3 þ λ2YHð126ÞH̄ð ¯126Þ
þ Y½λ3Hð126ÞHð10Þ þ λ4H̄ð ¯126ÞHð10Þ�
þ X½λ8X2 þ λ10Y2 þ λ11H2ð126Þ
þ λ12H̄2ð ¯126Þ þ λ13H2ð10Þ� þ H:c: ð21Þ

Here, a few comments aboutWSB are in order: 1). Under
the notation of SUð4Þ × SUð2ÞL × SUð2ÞR, the SM singlet
vevs Y1 ¼ hð1; 1; 1ÞYi, Y2 ¼ hð15; 1; 1ÞYi, and Y3 ¼
hð15; 1; 3ÞYi in Y and X ¼ hð1; 1; 1ÞXi in X are responsible
for the breaking SOð10Þ → GSM × Uð1ÞB−L. 2). The SM
singlet vevs υ126s ¼ hð10; 1; 3Þ126i and υ ¯126

s ¼ hð10; 1; 3Þ ¯126i
result in the breaking of GSM ×Uð1ÞB−L → GSM.
In the limit υ126s ¼ υ ¯126

s ≪ Yi; X the vevs are given
by [48]

Y1

Y2

¼ 1

2
ffiffiffi
3

p η2;

MY

Y2

¼ −
λ1
5

ffiffiffi
2

p ð3þ η2Þ;
X
Y2

¼ λ1
λ10

ffiffiffiffiffi
30

p ð−2þ η2Þ;

M126

Y2

¼ −
λ2
120

ð6
ffiffiffi
2

p
þ 12ηþ

ffiffiffi
2

p
η2Þ;

MX

Y2

¼ −1
20

ffiffiffi
2

p
λ1λ10

½ð5λ310 þ 2λ21λ8Þη2 þ 20λ310 − 4λ21λ8�

ð22Þ
with η ¼ Y3=Y2.

III. NMSSM

With the embedding of the MSSM into realistic SUSY
GUTs as a benchmark, in this section, we analyze the
NMSSM. According to the starting points in the Intro-
duction, a viable embedding should satisfy two constraints:

(i) The mass of N should be of order tera-electron-
volt scale.

(ii) The vev of N should be of order tera-electron-
volt scale.

Both of them may be spoiled by a few dangerous mixings
between N and Higgs fields that contain a singlet vev of
order GUT scale. The key point is whether there is suitable
symmetry to avoid such mixings.

2We follow the notation in Ref. [50] for Yukawa coupling
constants.
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A. SU(5)

In this situation, WY in Eq. (2) should be extended to
include NHuHd þ κ

3
N3 þ H:c: in the NNSSM, which

means that3

δWY ¼ λNHð5ÞH̄ð5̄Þ þ κ

3
N3: ð23Þ

Equation (23) does not affect the fit to SM flavor masses
and mixings in Sec. II A. Nevertheless, compared to the
MSSM, WSB is allowed to contain superpotential terms

Wunsafe ¼ NZ2 þ NZ02 þ NS2 þ N2S: ð24Þ
These new terms in Eq. (24) yield corrections to the F terms
of Z, Z0, and S such as FS ¼ FMSSM

S þ 2λNSN, which can
be adjusted to the case of the MSSM by, e.g., hNi ¼ 0.
Even so, the singlet vevs hZi, hZ0i, and hSi still lead to
either large N mass or large mixing.
To avoid all of the mixing terms in Eq. (24), we need to

impose new parity. The first observation is that an odd N
under a Z2 parity as shown in Table I excludes the first three
terms in Eq. (24). But the last term therein still remains.4

A similar result holds for ZN or an Abelian symmetry.

B. SO(10)

Similar to the embedding of the NMSSM into SU(5),WY
in Eq. (17) is modified by

δWY ¼ λNH2ð10Þ þ κ

3
N3: ð26Þ

Instead of Eq. (24), WSB in Eq. (21) is allowed by gauge
invariance to contain

Wunsafe ¼ NY2 þ NHð126ÞH̄ð ¯126Þ þ NX2 þ XH2ð10Þ;
ð27Þ

in which N mixes with the SM singlets of Y, 126, ¯126, and
X. Thus, all of Yukawa couplings in Eq. (27) have to be
extremely small.
What kind of parity allows Yukawa superpotential in

Eq. (26) but eliminates that in Eq. (27) simultaneously? The
first observation is that a Z2 parity does not work, since

Eq. (27) would imply that N is an odd field, which
contradicts with the Yukawa superpotential in Eq. (26).
Similar results hold for any ZN parity. Because the rational
assignment nY ¼ 0 as required by successful symmetry
breaking implies that n10 ¼ n126 ¼ n ¯126 ¼ N=2 in order
to allow the Yukawa superpotential in Eq. (26).
Accordingly, nN ¼ 0 from N10ðHÞ10ðHÞ, which implies
that some of the terms in Eq. (27) are still allowed. To
conclude, in our setup, embedding the NMSSM into the
minimal SO(10) is not viable.

IV. VMSSM

Let us proceed to discuss the embedding of the VMSSM
into SUSY SU(5) and SO(10). The VL fermions with mass
of order TeV scale can be composed of 5 with 5̄, 10 with 1̄0
in the SU(5), or 16 with 1̄6 in the SO(10) [18,19].
A realistic embedding should satisfy the following
constraints:

(i) The vev of the Higgs field ρ responsible for the VL
fermion masses should be of order tera-electron-
volt scale.

(ii) The VL fermions are prevented from directly cou-
pling to the Higgs fields which trigger high-scale
gauge symmetry breaking.

Violating the first constraint is likely to occur because
either ρ ¼ f1; 24; 75g or ρ ¼ f1; 45; 210g may directly
couple to S,S0Z, Z0 in the case of SU(5) or X, and Y in the
case of SO(10), which tends to yield hρi of GUT scale. In
contrast, hρi of order tera-electron-volt scale can be only
realized by the effective operator such as

WeffðρÞ ¼
Mρ

2
ρ2 þ ρ · A · B � � �

Mn
U

; ð28Þ

where A, B, � � �, refer to Hð5Þ, H̄ð5̄Þ, S, S0, Z, and Z0 in the
SU(5) or Hð126Þ, H̄ð ¯126Þ, X, and Y in the SO(10), with
MU denoting the GUT scale.

A. SU(5)

For the VL fermions of 5ðΣÞ and 5̄ðΣ̄Þ, WY in Eq. (2) is
extended by

δWY ¼ ρΣ̄ð5̄ÞΣð5Þ þ H:c:; ð29Þ
where ρ ¼ f1; 24g of SU(5). The reason for adding ρ is that
either singlet vev S or S0 in Sec. II A is too large to provide a
VL mass of order tera-electron-volts.

TABLE II. Z2 parity assignments for embedding the NMSSM
into SU(5), which is consistent with the superpotential in
Eq. (29). Yet, This parity is unable to exclude all the unsafe
structures in Eq. (31).

Field NR ψ Φ Σ Σ̄ 5 5̄ 4̄5 ρ 1ðSÞ 1ðS0Þ 75ðZÞ 75ðZ0Þ 45 50 5̄0

Z2 þ þ − þ − þ − − − þ þ þ − − − −

3Operator NHð5ÞH̄ð5̄Þ contributes to Yukawa interaction
NHcH̄c beyond the MSSM, with Hc and H̄c being the color-
triplet Higgs fields. However, it does not affect proton decay at
all, as the singlet N mass is always far larger than proton mass.

4An economic solution to keeping light N is adding another
singlet S0 ¼ 1 that is even under the Z2. With such an S0, theWSB
is further extended by

δWSBðS0Þ ¼
1

2
MS0S02 þmSS0SS0 þ N2S0; ð25Þ

from which FS0 ¼ MS0S0 þmSS0Sþ N2, and hS0i ¼ −hSi if
MS0 ¼ mSS0 . The two different contributions to the N mass
cancel each other, leaving us a light N. Unfortunately, neither
Abelian or ZN parity can ensure MS0 ¼ mSS0 .

TOWARDS REALISTIC SUSY GRAND UNIFICATION … PHYS. REV. D 99, 075033 (2019)

075033-5



In this case, the unsafe superpotential at least includes

Wunsafe ⊃ SΣΣ̄; ð30Þ
which can be excluded by imposing the Z2 parity assign-
ments as shown in Table II. Wunsafe in Eq. (30) can also
contain the following terms depending on ρ:

Wunsafe ¼
�
ρZ2 þ ρZ02 þ SρZ0 þ ρ2S; ρ ¼ 24

ρZ2 þ ρZ02 þ ρ2Sþ ρS2; ρ ¼ 1.
ð31Þ

Besides the unsafe operators in Eq. (31), there are also no
suitable Feynman graphs to generate the desired effective
operator with correct mass order in Eq. (28). In principle,
the form of effective operator in Eq. (28) can be divided as
follows:

(i) It is of type ρAB � � � =M2
U, with A and B referring to

S, Z, or Z0. In this situation, one obtains hρi ∼ GUT
scale, given all of A;B; � � �, are of order GUT scale.

(ii) It looks like ρAB � � �Hð5Þ=MU or ρAB � � � H̄ð5̄Þ=
MU, which contains only a doublet vev. Such an
operator contributes to hρi ∼ TeV for theMρ ∼ GUT
scale. Unfortunately, there is no suitable inter-
mediator.

(iii) It is of the form ρAB � � �Hð5ÞH̄ð5̄Þ � � � =M2
U or

ρAB � � � H̄ð5̄ÞHð45Þ � � � =M2
U, where there are at

least two doublet vevs. In this case, hρi is less than
Oð1Þ eV.

In summary, since there is no appropriate vev scale,
the embedding of the VMSSM into SU(5) is not viable.
Similar result can be found for VL 10 and 1̄0, where ρ ¼
f1; 24; 75g of SU(5).

B. SO(10)

As shown in Ref. [19], the nonminimal extension
through the 16-dimensional VL fermions remains consis-
tent with the SO(10) unification. In this model, WY is
modified by

δWY ¼ ρΔð16ÞΔ̄ð1̄6Þ; ð32Þ
where ρ ¼ f1; 45; 210g of SO(10). Similar to Sec. IVA, the
main challenge to the embedding is the generation of
singlet vev hρi ∼ TeV scale for a ρ mass of GUT scale.
What differs from the discussions in Sec. IVA is the
existence of the intermediate mass scales υ126s and υ ¯126

s in
the SO(10), which is critical to solving the problem.

We first consider ρ ¼ 210. We add Higgs fields 54ðVÞ
and 54ðUÞ toWSB, with the Z2 parity assignments as shown
in Table III. The Z2 parity excludes the unsafe operator

Wunsafe ¼ YΔð16ÞΔ̄ð1̄6Þ ð33Þ
and simultaneously allows Yukawa interactions

δWSB ¼ Mρ

2
ρ2 þMV

2
V2 þMU

2
U2

þ λ010ρUY þ λ0010ρVY

þ λ08UVX þ λ008U
2X þ λ0008 V

2X: ð34Þ

In terms of Eqs. (34) and (21), the effective operator for ρ is
given by

Weff ≃
Mρ

2
ρ2 þ ρðλ010U þ λ0010VÞ

�
Hð126ÞH̄ð ¯126Þ

MY
þ � � �

�

þ ρ
λ010UH3ð126ÞH̄ð ¯126Þ

MYMXMV
þ ρ

λ0010VH
3ð126ÞH̄ð ¯126Þ

MYMXMU

þOðρ3Þ: ð35Þ
For calculating an effective superpotential in the infrared
region from those in the ultraviolet region, integrating out
heavy chiral superfields in the Feynman graphs is equiv-
alent to solving the nonlinear equations of F terms related
to these heavy chiral superfields. The leading-order terms
with coefficient λ010U þ λ0010V ¼ δFY in Eq. (35) are
obtained after integrating out superfield Y for λ1 and λ10
less than unity. Similarly, the next-leading-order operators
therein are induced by further integrating out X, referring to
which the Feynman graph is shown in Fig. 1. Note that we
have used the mass term in Eq. (35) representing those
quadratic terms and neglected the higher-order terms.
Apart from the F-term contributions in Eq. (35), the

potential for the singlet component in ρ also contains soft
SUSY-breaking terms such as Aρρ

3 þ H:c: The scale of Aρ

depends on the details of SUSY breaking. It can be
neglected in gauge mediation but be of order approximately
1 TeV in the other scenarios. In the latter case, it is easily to
verify that the F-term contribution still dominates over

TABLE III. Z2 parity assignments in the VMSSM model with
ρ ¼ 210, which are consistent with the superpotentials in
Eqs. (17), (21), (32), and (34) and simultaneously avoid the
unsafe operator in Eq. (33).

Field ϕ Δ Δ̄ 10 ¯126 ρ X 126 54ðVÞ 54ðUÞ Y

Z2 þ þ − þ þ − − þ − − þ FIG. 1. Super-Feynman graph for the generation of the higher-
dimensional effective operator in the case of ρ ¼ 210.
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those soft terms. In what follows, we simply ignore those
soft terms for the estimate of hρi.
The leading-order contribution in Eq. (35) has to be

eliminated if one wants to obtain singlet vev hρi ∼ TeV
scale. Alternatively, the coefficient δFY must be suppressed
without much fine-tuning. There is a dynamical realization
for this purpose. From Eq. (34), one finds that the SUSY
vacuum described by the vevs in Eq. (22) remains only if
the constraints

0 ¼ λ08UV þ λ008U
2 þ λ0008 V

2;

0 ¼ λ010U þ λ0010V;

0 ¼ MVV þ X

2
ffiffiffiffiffi
15

p ðλ08U þ 2λ0008 VÞ;

0 ¼ MUU þ X

2
ffiffiffiffiffi
15

p ðλ08V þ 2λ008UÞ ð36Þ

are satisfied. Given GUT-scale mass parameters MU, MV ,
hUi, and hVi, there are indeed rational solutions to Eq. (36),
under which the leading-order operator in Eq. (35) vanishes
due to δFY ¼ 0 [the second formula in Eq. (36)]. Therefore,
the next-leading-order contribution in Eq. (35) dominates
the effective superpotential for ρ below GUT scale as long
as MU ≠ MV ,

Weff ∼Mρρ
2 þ ρ

VH3ð126ÞH̄ð ¯126Þ
M3

U
; ð37Þ

which contributes to a nonzero vev:

hρi ∼ hVi
Mρ

ðυ126s Þ4
M3

U
: ð38Þ

Given singlet vev υ126s ≃ υ ¯126
s ∼ 1013 GeV fixed by the fit to

SM flavor masses [48] and Mρ ∼MU ∼ hVi ∼ 1016 GeV,
we have hρi ∼ 1–10 TeV.
The analysis for ρ ¼ 210 can shed light on other cases

such as ρ ¼ f1; 45g. For ρ ¼ 1, we can naively choose Z2

odd fields U ¼ V ¼ 210 in Fig. 1. However, an unsafe
operator VðUÞΔð16ÞΔ̄ð1̄6Þ appears again. For ρ ¼ 45, one
may choose U ¼ 45 and V ¼ 45 or 54, which is unfavored
by an operator similar to ρ ¼ 1.

V. CONCLUSION

According to the observed Higgs mass at the LHC and
the dark matter direct detection limits, the conventional
MSSM—the simplest natural SUSY that is consistent with
unification—is under more pressure than ever. Such stress
can be greatly relaxed in the extended MSSM models such
as the NMSSM and VMSSM, which retain the unification
and are still simple. In this paper, following the assump-
tions that WY is fixed by the SM matter content and its tera
electron volt–scale extension and that they receive their
masses from WSB through the Higgs mechanism, we have
studied the embeddings of these three models into
SUSY GUTs.
First of all, we discussed the MSSM, in which the

realistic SU(5) and SO(10) realizations serve as benchmark
solutions to the SM flavor issue and neutrino masses. Then,
we utilized the benchmark MSSM as guidance for the
embedding of the NMSSM and VMSSM. We found that
the embedding of the NMSSM is not viable due to a large
amount of mixings between the singlet N and the Higgs
fields responsible for the GUT symmetry breaking. But the
problem can be evaded in the VMSSM because the Higgs
field ρ that provides 16-dimensional VL mass of order tera-
electron-volt scale can avoid the same problems the singlet
N encounters due to the intermediate mass scale in the 126-
dimensional Higgs.
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