
 

Gravitational searches for Lorentz violation with ultracold neutrons

C. A. Escobar1,* and A. Martín-Ruiz2,3,†
1Instituto de Física, Universidad Nacional Autónoma de México,
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We investigate the consequences of Lorentz violation (as expressed within the gravity sector of the
Standard-Model Extension) for gravitational quantum states of ultracold neutrons (UCNs). Since our main
aim is to compare our theoretical results with the recent high-sensitivity GRANIT experiment, we frame
this work according to the laboratory conditions under which it was carried out. This offers the possibility
of testing Lorentz invariance by experiments using UCNs. Thus we consider the nonrelativistic
Hamiltonian describing the quantum mechanics of an unpolarized neutron’s beam in presence of a
weak-gravity field, and the latter is described by a post-Newtonian expansion of the metric up to orderOð2Þ
and linear in the Lorentz-violating coefficients s̄μν. Using a semiclassical wave packet, which is appropriate
to describe an intense beam of UCNs, we derive the effective Hamiltonian describing the neutron’s motion
along the axis of free fall and then we compute the Lorentz-violating shifts on the energy levels. The
comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for a
particular combination of the Lorentz-violating coefficients.
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I. INTRODUCTION

Deviations from Lorentz symmetry are predicted to
occur in models of quantum gravity [1]. The major
difficulty behind a direct test of quantum gravity effects
is the lack of experimentally accessible phenomena at
the energy scale in which they operate (∼1019 GeV).
Nevertheless, low-energy experiments provide an alterna-
tive route for an indirect test of quantum gravity. If
violations of Lorentz symmetry are detected at low-
energies, they will validate that a quantum theory of gravity
should exist and may serve as a guiding principle for a
fundamental theory. Within the context of effective field
theories, a general Lorentz-violating (LV) framework,
which includes the standard model of particle physics
and general relativity, has been developed. This is known
as the Standard-Model Extension (SME) [2,3]. The SME
provides an approach within which to analyze the results of
experiments testing Lorentz violation. Therefore, currently

there is a large experimental effort to find upper bounds on
LV coefficients for the different sectors of the SME.
Alternative scenarios with Lorentz violation have also been
discussed in Refs. [4,5].
Here, we consider the physics of ultracold neutrons

(UCNs) as a possible candidate to test Lorentz symmetry
within the minimal-gravity SME sector (mgSME). To be
precise, we examine the effects of the mgSME on the
quantum free-fall of UCNs. In general, in the mgSME there
are 20 coefficients for Lorentz violation organized into a
scalar u, two-tensor sμν, and four-tensor tμναβ, which are
directly contracted with the Ricci scalar R, the tracefree
Ricci tensor RT

μν and the Weyl conformal tensor Cμναβ,
respectively. Moreover, to avoid inconsistencies with the
Bianchi identity [6], in curved space-times, Lorentz vio-
lation must arise spontaneously, and the dominant effects of
the weak-field gravity are controlled by the vacuum
expectation values s̄μν of the sμν-coefficients. To date,
gravitational searches for Lorentz violation have included
studies of gravitational waves [7], cosmic rays [8], gra-
vimetry [9] and lunar laser ranging [10].
Motivated by the recent high-sensitivity GRANIT

experiment [11], and following the idea of our previous
work [12], in this paper we aim to use the good precision
achieved in such an experiment to set bounds on the LV
coefficients of the mgSME. For a detailed description of the
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GRANIT experiment see Ref. [11]. In short, they show that
an intense beam of UCNs moving in Earth’s gravity field
does not bounce smoothly but at certain well-defined
quantized heights, as predicted by quantum theory. In
principle, both the fermion- and the gravity-sector of the
SME affect the quantum mechanics of a freely falling
neutron. Nevertheless, since current constraints on the LV
coefficients cμν of the neutron sector are at the level of 10−8

to 10−29 [13], we can neglect them and focus our attention
on the LV coefficients of the mgSME only. To be precise,
our main goal is the calculation of the LV shifts on the
energy levels of UCNs which, upon comparison with the
maximal experimental precision achieved in the GRANIT
experiment, will lead to an upper bound for the s̄μν-
coefficients of the mgSME. To this end, we frame this
work according to the laboratory conditions under which
experiments were carried out. The program we shall follow
in this paper is the following.
To begin with, we consider the effective field theory

which describes a single fermion in a curved spacetime
background defined by the minimal-gravity SME sector.
Since LV effects are expected to be small, we take the
modified Einstein field equations in a post-Newtonian
expansion of the metric up to order Oð2Þ and linear in
the s̄μν-coefficients. The matter-gravity coupling part of the
action produces the corresponding Dirac Hamiltonian.
Next, we work out the nonrelativistic expansion of the
Hamiltonian and consider only the spin-independent terms,
which are the ones relevant to describe the dynamics of an
unpolarized beam of slow neutrons. Moreover, since the
neutron’s motion in the plane perpendicular to the axis of
free fall (e.g., the z-axis) is governed by classical laws, we
use a Gaussian wave packet to derive an effective
Hamiltonian which describes the effects of the mgSME
on the UCNs. This program leads to a z- and p̂z-dependent
effective potential which encodes the LV effects on the
energy levels of the UCNs. Finally, using the formalism of
nondegenerate perturbation theory we compute the LV
energy shifts, which are the ones we compare with the
results reported by the GRANIT experiment.
We begin in Sec. II by reviewing the formulation of

the minimal gravity SME sector and we present the
nonrelativistic Hamiltonian (including matter-gravity cou-
plings) which describes spin-independent effects for a
fermion in a LV weak gravitational field. Next, using a
semiclassical wave packet, in Sec. III we derive the
effective Hamiltonian which describes the neutron’s motion
along the axis of free fall. The main calculations in the
derivation of the effective LV potential are relegated to the
Appendix. Comparing the LV energy shifts and the exper-
imental precision achieved in the GRANIT experiment, we
set an upper bound for a combination of the LV coefficients
in Sec. IV. Finally in Sec. V, we summarize the main results
of the paper. Throughout this work, we take the spacetime
metric signature to be (−;þ;þ;þ).

II. THE MODEL

Our main concern in this work is the description of the
quantum mechanics of a single fermion in a Lorentz-
violating weak gravitational field described by the mgSME.
To this end, we summarize the action for the model,
describe the post-Newtonian analysis of the linearized field
equations for the pure gravity sector of the SME, and
present the nonrelativistic Hamiltonian.

A. Lorentz-violating gravity

The effective action of the minimal-gravity SME sector
(with vanishing torsion) locally coupled to a fermion field
ψ can be written as [14]

S ¼ SEH þ SLV þ Sψ : ð1Þ

The first term corresponds to the Einstein-Hilbert action of
general relativity, which is given by

SEH ¼ 1

2κ

Z
eðR − 2ΛÞd4x; ð2Þ

where R is the Ricci scalar, Λ is the cosmological constant,
e the determinant of the vierbein and κ ¼ 8πGc−4. Since
the focus of this work is the post-Newtonian limit of (1), in
which the effects of Λ are known to be negligible, we set
Λ ¼ 0 in the rest of the work.
The second term in Eq. (1) contains the leading Lorentz-

violating gravitational couplings. It can be written as

SLV ¼ 1

2κ

Z
eð−uRþ sμνRT

μν þ tμναβCμναβÞd4x; ð3Þ

where RT
μν is the trace-free Ricci tensor and Cμναβ is the

Weyl conformal tensor. The LV coefficients sμν and tμναβ

inherit the symmetries of the Ricci tensor and Riemann
curvature tensor, respectively. A total of 20 independent
coefficients control the possible deviations of Lorentz
symmetry. Since the u-coefficient is only a rescaling factor,
it is unobservable and then it is discarded for this work [14].
Because of a tensor identity, the 10 coefficients tμναβ vanish
from the linearized equations [14,15], and since we are
ultimately focusing on the linearized theory, we can
disregard them, thus leaving back the 9 coefficients sμν

in this limit. From now on, we will focus only on the sμν

coefficients.
Finally, the action Sψ for a single fermion ψ of massm is

Sψ ¼
Z

e

�
1

2
ieμaψ̄γaD

↔

μψ −mψ̄ψ

�
d4x: ð4Þ

In the present context, we consider the fermion action to be
Lorentz symmetric. This is motivated by the fact that the
cμν-coefficients for the neutron sector of the SME, which
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are the ones relevant in the free fall of UCNs [12],
have been strongly bounded by experiments, and thus
we can focus our attention to the LV coefficients of the
mgSME only.

B. Post-Newtonian expansion

The first step toward the analysis of the leading post-
Newtonian corrections to general relativity induced by
Lorentz violation is the linearization of the field equations.
To avoid inconsistencies with the Bianchi identities of
pseudo-Riemannian geometry [6], it is generally assumed
that Lorentz violation must arise spontaneously in such a
way that the LV coefficients are treated as dynamical fields
that acquire nonzero vacuum expectation values. This
means that the LV coefficients can be written as

sμν ¼ s̄μν þ s̃μν; ð5Þ
where s̄μν and s̃μν denote the vacuum expectation
values and the fluctuations of the LV coefficients, respec-
tively. Note that the fluctuations could include massless
Nambu-Goldstone modes and massive modes [16,17].
Moreover, the vacuum values are taken as constants in a
special observer coordinate system. Now, we can employ
the usual linearization program of the field equations.
In linearized gravity the metric is expanded as

gμν ¼ ημν þ hμν; ð6Þ
where ημν is the Minkowski metric and hμν is the metric
fluctuation. For a detailed derivation of the field equations
as well as the linearized theory see Ref. [14]. Here we just
present the final results. Since the LV coefficients are small,
for present purposes it suffices to work at linear order in the
vacuum values s̄, so in what follows nonlinear terms at
Oðh2Þ, Oðhs̃Þ and Oðs̄2Þ, are disregarded. The resulting
linearized field equations are

Gμν ¼ κðTMÞμν þ s̄κλRκμνλ − s̄κμRκν − s̄κνRκμ þ
1

2
s̄μνR

þ ημνs̄κλRκλ; ð7Þ
where Rμναβ is the Riemann curvature tensor, Gμν is the
Einstein tensor, Rμν is the Ricci tensor, and R is the Ricci
scalar. All theses tensors are understood as linearized in the
metric fluctuation hμν.
Following standard techniques, we expand the linearized

field equations (7) in a post-Newtonian series. As usual, the
development of this approximation for the metric fluc-
tuation requires the introduction of certain potentials for the
perfect fluid. For the purposes of this work, and due to the
smallness of the LV coefficients, it suffices to work at
second order Oð2Þ ¼ v ≈Gm=r, where m is the typical
body mass and r is the typical system distance. For the
pure-gravity sector of the minimal SME, the relevant
potentials are

U ¼ G
Z

ρðr⃗0; tÞ
R

d3r⃗0; Uij ¼ G
Z

ρðr⃗0; tÞRiRj

R3
d3r⃗0;

ð8Þ

where ρðr⃗; tÞ is the density of the mass distribution,
Rj ¼ r⃗j − r⃗0j and R ¼ jr⃗ − r⃗0j. Here, U is the Newtonian
gravitational potential, and Uij lie beyond general rela-
tivity. Note that these potentials, related to the mass density,
are the dominant terms in the Lorentz-violating post-
Newtonian expansion. Higher-order corrections require
additional potentials which are defined in terms of the
mass current (all discussed in Ref. [14]), however they lie
beyond the scope of this work.
The components of the metric fluctuations can be

obtained after an appropriate coordinate gauge choice.
Here we impose the gauge conditions

∂jh0j ¼
1

2
∂0hjj; ∂jhjk ¼

1

2
∂kðhjj − h00Þ; ð9Þ

which permit breaking the linearized field equations into its
temporal and spatial components, and then expressing the
metric hμν in terms of the potentials U and Uij. To post-
NewtonianOð2Þ and linear order in the LV coefficients, the
metric components hμν read

h00 ¼
1

c2
½ð2þ 3s̄00ÞU þ s̄ijUij�; ð10aÞ

h0j ¼ −
1

c2
ðs̄0jU − s̄0kUjkÞ; ð10bÞ

hij ¼
1

c2
½ð2 − s̄00ÞU þ s̄lmUlm�δij

−
1

c2
ðs̄ilUlj þ s̄jlUliÞ þ 2

c2
s̄00Uij: ð10cÞ

As we shall see in the following, these metric perturba-
tion components couple locally to the fermion fields, thus
affecting the quantum mechanics of the particles.

C. Quantum theory

In order to investigate the effects of the minimal-gravity
SME sector on the quantum mechanics of a nonrelativistic
system we have to consider the associated Hamiltonian.
The derivation is subtle because of the time-dependence
arising from the Dirac equation obtained from Sψ . The
field-redefinition method, which has been systematically
employed to construct Hamiltonians in the context of the
SME, can also be employed in the mgSME case. Full
details are given in Ref. [18]. After an appropriate field-
redefinition at the level of the action, the Dirac equation
emerges with the conventional time-dependence, and thus
the relativistic Hamiltonian can be properly identified. The
Dirac Hamiltonian HD splits into pieces according to the
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perturbation order. The zeroth order,H0, corresponds to the
conventional Dirac Hamiltonian in Minkowski spacetime.
The first-order correction, Hh, arises from the metric
fluctuation hμν. Higher-order corrections and those linear
in the fermion SME coefficients are not of interest here.
In this work we are primarily interested in experiments

with UCNs, in particular, the quantum states of neutrons in
the gravitational field. Therefore, the nonrelativistic limit
of the Dirac Hamiltonian HD is required. This can be
obtained by employing the Foldy-Wouthuysen transforma-
tion, which is a systematic program to obtain the non-
relativistic content of relativistic Hamiltonians [19]. The
needed Hamilton operator is only a particular case of
the full nonrelativistic Hamiltonian derived in Ref. [18].
To post-Newtonian Oð2Þ and linear order in the LV
coefficients, the relevant spin-independent nonrelativistic
Hamiltonian splits into two pieces. First, the conven-
tional Minkowski-spacetime Hamiltonian, and second,
the Lorentz-violating part (arising from the first-order
Dirac Hamiltonian Hh):

HNR ¼ 1

2
mc2h00 − h0kpkc −

1

4m
h00p2 −

1

2m
hjkpjpk:

ð11Þ

In what follows, we focus on the effects of the Hamiltonian
(11) on the gravitational quantum states of UCNs.

III. EFFECTIVE HAMILTONIAN

In this section we derive the effective Hamiltonian Hz
describing the quantum free fall of UCNs in the gravita-
tional field described by the post-Newtonian metric per-
turbations (10a)–(10c). In the coordinate system attached
to the Earth’s surface [i.e., with r⃗n ¼ ðx; y; zÞ and r⃗0 ¼
ð0; 0;−R⊕Þ localizing the neutron and the Earth’s center
from the z ¼ 0 surface, respectively], the post-Newtonian
potentials in Eq. (8) can be written as

U ¼ GM⊕

r
; Uij ¼ U

rirj

r2
; ð12Þ

where G is the gravitational constant, M⊕ is the Earth’s
mass, r ¼

ffiffiffiffiffiffiffiffi
r⃗ · r⃗

p
, and r⃗≡ r⃗n − r⃗0 ¼ ðx; y; zþ R⊕Þ, being

R⊕ the Earth’s radius. As usual, the effective quantum
Hamiltonian can be obtained from the classical one (11) by
promoting the classical observables to quantum operators
by means of the Weyl quantization rule. The Weyl rule
associates to the product qnpm, between the classical
coordinates and momenta, a quantum operator which is
a totally symmetrized linear combination of terms, each
with n factors of q and m factors of p [20]. The resulting
Hamiltonian is given by

HNR ¼ V1 þ V2 þ V3 þ V4; ð13Þ

where Vi, with i ¼ 1, 2, 3, 4, corresponds to the quantum
operator associated with each of the four terms in Eq. (11).
Explicitly we have

V1 ¼
1

2
mc2h00; ð14aÞ

V2 ¼ −c
�
h0kp̂k þ 1

2
h0k;k

�
; ð14bÞ

V3 ¼ −
1

4m

�
h00δijp̂ip̂j þ h00;ip̂i þ 1

4
h00;ii

�
; ð14cÞ

V4 ¼ −
1

2m

�
hjkp̂jp̂k þ hjk;jp̂k þ 1

4
hjk;jk

�
; ð14dÞ

where p̂i ¼ −iℏ∂i is the momentum operator, f;i ≡ p̂if
and f;ij ≡ p̂ip̂jf. Notice that p̂i ¼ p̂i due to the chosen
metric signature.
In what follows we work out the Hamiltonian to

consider only the neutron vertical motion. To clarify
the method let us review the GRANIT experiment
performed at the Institute Laue-Langevin [11]. They
have found that UCNs freely falling in the Earth’s
gravity do not move continuously but jump from one
height to another, such as quantum theory predicts. In the
experiment, they produce an intense horizontal beam of
UCNs pointing slightly upwards and allow the neutrons
to fall onto a horizontal mirror. By using a neutron
absorber right above the mirror and counting the number
of particles that move up to the absorber and down, they
found that the heights of the neutrons are measured only
at certain well defined values. In this situation, the
vertical motion is quantized, while the horizontal one
is driven by classical laws. According to the consider-
ations above, it is valid to consider that the neutron’s
motion in the tangent plane to the Earth’s surface, which
is classical, can be described by a Gaussian wave packet
of the form

ψðr⃗⊥Þ ¼
1ffiffiffi
π

p
σ
e

i
ℏp⃗⊥·r⃗⊥−

r⃗2⊥
2σ2 ; ð15Þ

where r⃗⊥ ¼ ðx; yÞ and p⃗⊥ ¼ ðpx; pyÞ are the coordinates
and momentum in the plane perpendicular to the motion
of free fall, respectively. A very small value of the
characteristic width σ of the wave packet assures that
the classical condition is satisfied. The ansatz in
Eq. (15) allows us to derive a reduced one-dimensional
Hamiltonian describing the neutron’s vertical motion as
follows

Hz ≡ hHNRi ¼
Z

ψ�ðr⃗⊥ÞHNR ψðr⃗⊥Þd2r⃗⊥; ð16Þ
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which indeed corresponds to the first order perturbation in the x − y plane. Now we evaluate the expectation value of
the quantum operators Vi, given by Eqs. (14a)–(14d), in the semiclassical state (15). The calculations are cumbersome,
and thus we relegate the details to Appendix. We obtain z- and p̂z-dependent operators. Finally, we expand the result in
a power series of z and we consider only the leading order terms. We obtain

hV1i ¼ mU0ð1þ γ1Þ þmgzð1þ λ1Þ −mg
z2

R⊕
; ð17aÞ

hV2i ¼ mU0γ2 þmgzλ2; ð17bÞ

hV3i ¼ mU0γ3 þmgzλ3 −mg
z2

R⊕
δ3 þ

p̂2
z

2m
ξ3 þmgz

�
p̂z

mc

�
2

η3 −
1

2
mg

z2

R⊕

�
p̂z

mc

�
2

; ð17cÞ

hV4i ¼ mU0γ4 þmgzλ4 −mg
z2

R⊕
δ4 þ

p̂2
z

2m
ξ4 þmgz

�
p̂z

mc

�
2

η4 −mg
z2

R⊕

�
p̂z

mc

�
2

; ð17dÞ

where U0 ¼ −GM⊕=R⊕ is the Newtonian potential on the Earth’s surface and g ¼ GM⊕=R2
⊕ is the gravitational

acceleration. In these expressions we have defined the s̄μν- and σ-dependent dimensionless quantities

γ1 ¼ λ1 þ ðσ=R⊕Þ2 ≡ 1

2
ð3s̄00 þ s̄zzÞ − 1

2
ðσ=R⊕Þ2; ð18aÞ

γ2 ¼ λ2 ¼ −βas̄0a; βa ¼ pa=ðmcÞ ð18bÞ

γ3 ¼ δ3γ1; λ3 ¼ δ3λ1; ξ3 ¼ ðU0=c2Þγ1; η3 ¼ λ1=2; δ3 ¼
1

2
ðβaβa þ Λ2Þ; Λ≡ ℏ=ðmcσÞ ð18cÞ

γ4 ¼ λ4 − δ3ðσ=R⊕Þ2; λ4 ¼ δ3ð2 − s̄aaÞ; δ4 ¼ δ3ð2þ s̄aaÞ − 1

2
βbβbs̄aa; ð18dÞ

ξ4 ¼ ðU0=c2Þ½2þ s̄aa − ðσ=R⊕Þ2�; η4 ¼
1

2
½2þ s̄aa − 3ðσ=R⊕Þ2�: ð18eÞ

We observe that hV1i consists of two terms. The first one
is the unperturbed gravitational field up to second order
in z, while the second one contains SME and quantum
mechanical corrections. At the level of approximation
we are considering, only the constant and linear terms
receive additional corrections. Noticeably, hV2i is a purely
mgSME-potential. This is so because the nondiagonal
metric components, h0i, arise due to Lorentz symmetry
breaking terms. To derive Eq. (17b) we have used the fact
that any quantity of the form hFðr⃗Þip̂z þ 1

2
hFðr⃗Þi;z, for any

smooth function Fðr⃗Þ, does not produce contributions to
the energy shift. To demonstrate this result, we first note
that it can be written as a total derivative term when acting
on the z-dependent wave function χnðzÞ,

p̂z½χnðzÞhFðr⃗ÞiχnðzÞ�

¼ 2χnðzÞ
�
hFðr⃗Þip̂z þ 1

2
hFðr⃗Þi;z

�
χnðzÞ; ð19Þ

thus producing a boundary term when integrated over the
physically allowed region z ∈ ½0;∞Þ, which is exactly zero
due to the boundary conditions χnðz ¼ 0Þ ¼ 0 and χnðz →
∞Þ ¼ 0. In the derivation of Eqs. (17c) and (17d) we found
many imaginary termswhich fully cancel out due to the result
of Eq. (19). The details are presented in Appendix.
Now we have the pieces to build up the reduced one

dimensional Hamiltonian which describes the neutron’s
vertical motion. It can be conveniently expressed as

Hz ¼ U0 þH0 þ Vσ þ Vs̄; ð20Þ

where U0 ¼ mU0ð1þ
P

4
i¼1 γiÞ collects constant terms,

H0 ¼
p̂2
z

2m
þmgz; ð21Þ

is the conventional linearized Hamiltonian without Lorentz
violation. The potentials
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Vσ ¼ mgzλσ −mg
z2

R⊕
δσ þ

p̂2
z

2m
ξσ þmgz

�
p̂z

mc

�
2

ησ −
3

2
mg

z2

R⊕

�
p̂z

mc

�
2

; ð22Þ

and

Vs̄ ¼ mgzλs̄ −mg
z2

R⊕
δs̄ þ

p̂2
z

2m
ξs̄ þmgz

�
p̂z

mc

�
2

ηs̄; ð23Þ

contain all the corrections from the metric fluctuations and the LV coefficients, respectively. From Eq. (18) we determine the
parameters as

λσ ¼ 2δ3 −
3

2
ðσ=R⊕Þ2ð1þ δ3Þ; λs̄ ¼

1

2
ð3s̄00 þ s̄zzÞ þ 1

2
δ3ðs̄00 þ 3s̄zzÞ − βas̄0a; ð24aÞ

δσ ¼ 1þ 3δ3; δs̄ ¼ ðΛ2=2Þs̄aa; ξσ ¼ ðU0=2c2Þ½4 − 3ðσ=R⊕Þ2�; ξs̄ ¼ ðU0=2c2Þð5s̄00 − s̄zzÞ; ð24bÞ

ησ ¼ 1 − ð9=4Þðσ=R⊕Þ2; ηs̄ ¼ ð5s̄00 − s̄zzÞ=4: ð24cÞ

In the next section we analyze the influence of Lorentz-
violating terms on the nonrelativistic energy levels of
UCNs in the Earth’s gravity.

IV. ENERGY SHIFTS AND BOUNDS
ON THE s̄μν SME COEFFICIENTS

The first term in Eq. (20), U0, does not imply
any physical change on the neutron’s energy spec-
trum; whereas the second term, H0, is the well-known
Hamiltonian describing the stationary energy eigen-
states χnðzÞ of the UCNs in the Earth’s gravity.
Explicitly we have

χnðzÞ ¼
1ffiffiffiffi
l0

p Aiðan þ z=l0Þ
Ai0ðanÞ

ΘðzÞ; ð25Þ

where an is the nth zero of the Airy function Ai, l0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2=ð2m2gÞ3

p
is the gravitational length and ΘðzÞ is the

Heaviside function. The quantum state energies, defined
by the boundary condition at z ¼ 0, are given by En ¼
−mgl0an. The height of a neutron with energy En in the
gravitational field, within the classical description, is found
to be hn ¼ En=ðmgÞ ¼ −anl0.
To evaluate the alterations yielded by the potentials Vσ

and Vs̄, the energy corrections are worked out as a first
order perturbation on the corresponding neutron’s wave
functions χn, that is,

ΔEn ¼
Z

χ�nðVσ þ Vs̄Þχndz: ð26Þ

Using the properties of the Airy functions [21,22], one can
derive the following results

mghzi ¼ 2

3
En; hp̂2

z=2mi ¼ 1

3
En;

g
2mc2

hzp̂2
zi ¼ −

2

15
anEn

gl0
c2

; mghz2i ¼ 8

15

E2
n

mg
;

hz2p̂2
zi

2m
¼ 8

105

E3
n

m2g2
−
3

7
mgl30;

ð27Þ

which yield the energy shifts

ΔEn

En
¼ 2

3
ðλσ þ λs̄Þ −

8

15

En

mgR⊕
ðδσ þ δs̄Þ þ

1

3
ðξσ þ ξs̄Þ þ

4

15

En

mc2
ðησ þ ηs̄Þ −

8

35

E2
n

ðmc2ÞðmgR⊕Þ
; ð28Þ

where the parameters λσ, δσ , ξσ and ησ collect the con-
tributions from the metric fluctuations, and those param-
eters with the subscript s̄ comprise the contributions from
the coefficients for Lorentz violation. This energy correc-
tion ΔEn, together with the maximal experimental uncer-
tainty in the GRANITexperimentΔEexp

n , may be used to set
up an upper bound on the magnitude of the LV coefficients.

In spite of the weakness of the gravitational interaction
and the number of systematic errors in laboratory con-
ditions, the GRANIT experiment has recently confirmed
this quantum-mechanical behavior where a noncoherent
beam of UCNs propagating upwards in the Earth’s gravity
field produces quantized heights only. The values of the
two lowest experimental heights are [23]
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hexp1 ¼ ð12.2� 1.8sys � 0.7statÞ μm;

hexp2 ¼ ð21.6� 2.2sys � 0.7statÞ μm; ð29Þ
such that theoretical values, h1 ¼ 13.7 μm and h2 ¼
24.0 μm [11], are therefore settled within the error bars.
The good agreement between experiment and theory has
been used for exploring deviations from the standard theory
due to an eventual new physical mechanism, for example,
to constrain axionlike interactions [24], short-range gravi-
tational interactions [25] and the fundamental length scale
in polymer quantum mechanics [26]. Below, we will use
the aforementioned results to set up an upper bound on the
s̄μν-coefficients.
Under the conditions in which the GRANIT experi-

ment is performed, the nonrelativistic neutrons in low
quantum states satisfy: U0=c2≈10−10, En=ðmc2Þ≈10−22,
En=ðmgR⊕Þ ≈ 10−31, βa≈10−7, Λ2≈10−15 and ðσ=R⊕Þ2 ≈
10−30. Clearly, most of the terms appearing in the energy
shift (28) will be strongly suppressed. Assuming that the
corrections produced by the LV coefficients are greater
than those produced by the Lorentz-symmetric perturba-
tions, we set an upper bound to the s̄μν coefficients. The
experimental data for the first two lowest quantum states
provide the values jΔEexp

1 j ¼ 0.102 peV and jΔEexp
2 j ¼

0.051 peV [23]. By imposing jΔEnj < jΔEexp
n j we find

j3s̄00 þ s̄zzj < 10−2: ð30Þ
The energy shift (28) is given in the laboratory frame,
where the LV coefficients take the constant values sμν, with
μ; ν ¼ t, x, y, z. However, the laboratory frame rotates
with the Earth, so the spatial components of sμν oscillate
periodically as functions of the sidereal time t. Then, it is
important to work in an appropriate inertial frame, such
as the Sun-centered celestial-equatorial frame, which is
effectively inertial over the time scale of most Earth-based
experiments. This induces corresponding variations in the
observed energy shifts, with periodicities controlled by the
Earth’s sidereal rotation frequency Ω ¼ 2π=ð23 h 56 mÞ.
In the Sun-centered frame the LV coefficients are given by
sμν, where μ; ν ¼ T, X, Y, Z. For a detailed review of
the transformation between the laboratory and the Sun-
centered frames see Ref. [14]. Data in the GRANIT
experiment are usually taken at different sidereal times;
therefore the energy shifts will only be sensitive to the time-
averaged effect of the Lorentz-violating terms. The final
result for the time-averaged combination appearing in
Eq. (30) yields

j3s̄TT þ 0.24ðs̄XX þ s̄YY − 2.16s̄ZZÞj < 10−2; ð31Þ

where we have taken the Grenoble’s colatitude as
χ ≈ 44.83°. Certainly, this bound is far from the expected
values for the SME coefficients but it can be improved with
future improvements in the experimental precision.

We close this section indicating some of the reported
current bounds on the minimal gravity SME sector. For

example, gravitational waves set the bound s̄ð4Þ00 < 10−15

[7]. Similarly, gravimetry tests provide the bounds
s̄XX − s̄YY , s̄XY < 10−9 and s̄XZ, s̄YZ < 10−10 [9]. Other
bounds coming from binary pulsars establish s̄XX þ s̄YY −
2s̄ZZ < 10−11 [27], which in combination with our result
in Eq. (31) can be understood as a bound on the single
coefficient js̄TT j < 10−3, which competes with the one
imposed from the Gravity Probe B [28]. As expected,
astronomic measurements or experiments at high energies
lead to the tightest bounds for Lorentz violation; however,
we cannot abandon other scenarios since they can guide
us to new bounds for specific combinations for the LV
coefficients, as is the case in the present work.

V. CONCLUSION

Motivated by the recent high-sensitivity GRANIT
experiments, in this paper we have investigated the effects
of the minimal gravity sector of the Standard-Model
Extension (SME) upon the gravitational quantum states
of ultracold neutrons (UCNs). In other words, we have
considered the physics of UCNs as a test bed for studying
deviations from Lorentz symmetry at low energies.
In short, the Grenoble’s group has shown that an intense

beam of UCNs moving in the Earth’s gravity field does
not bounce smoothly but at certain well-defined quantized
heights, which indeed is a direct consequence of the
discrete energy levels of the system (by means of the
identification hn ¼ En=mg). Therefore, due to the good
precision achieved in such experiments, any deviation from
the quantum-mechanical prediction (due to an eventual new
physical mechanism) can be tested. This idea has been used
to set bounds on the coupling of short-range gravitational
interactions and the fundamental length in polymer quan-
tum physics. In view of this, in this paper we have
investigated how the minimal gravity SME sector affects
the energy levels of UCNs. To this end, we start with a
Lorentz-violating extension of Einstein’s general relativity
and analyze the quantum free fall of UCNs in the proximity
of the Earth’s surface. Since we aim to compare our
theoretical results with the quantized heights measured
in the GRANIT experiments, we have framed this work
according to the laboratory conditions under which experi-
ments were carried out.
The first step was the calculation of the gravity field near

the Earth’s surface. Since Lorentz violation has not been
detected yet in experiments, it is generally assumed that LV
coefficients have small components in Earth-based labo-
ratories, thus leading to very tiny modifications in physi-
cally measurable quantities. This means that we can solve
the modified Einstein field equations in a post-Newtonian
expansion of the metric. Due to the smallness of the s̄μν-
coefficients, here we only take into account linear-order
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terms in s̄μν and the post-Newtonian expansion up to
second order. Next, once we know the behavior of the
local gravity field, we need to consider the quantum-
mechanics of a single fermion moving under its influence.
To this end, we take the associated relativistic Dirac
Hamiltonian and then compute its nonrelativistic limit by
means of the Foldy-Wouthuysen procedure, which is
appropriate to describe unpolarized UCNs. Given that
the horizontal motion of UCNs is governed by classical
laws, we use a semi-classical wave packet to obtain an
effective Hamiltonian Hzðz; p̂zÞ describing the neutrons
motion along the axis of free fall. We have worked out the
energy shifts to first order in perturbation theory, and we
found that they contain SME-, quantum- and relativistic-
corrections. A comparison with the current experimental
precision in the GRANIT experiment produces an upper
bound of the order of 10−2 for the combination j3s̄00 þ s̄zzj
in the laboratory frame, which can be expressed as j3s̄TT þ
0.24ðs̄XX þ s̄YY − 2.16s̄ZZÞj in the Sun-centered frame.
Finally, we comment on three additional experi-

ments involving UCNs which can also be used to enhance
the bounds on the LV-coefficients: gravity-resonance-
spectroscopy [29], acoustic Rabi oscillations [30] and
the neutron whispering gallery wave [31]. The former
experiment is based on the measurement of transitions
induced by means of a mechanical oscillation of mirrors.
In this case, the experimental precision is of the order
of 10−14 eV, which implies that the bound on the LV-
coefficients can be improved by one order of magnitude as
compared with the one reported here. We also mention the
recent measurements done by the qBOUNCE collaboration
[30], which has measured the energy levels of UCNs with a
precision of 10−15 eV, resulting in much more precise
limits for the LV-coefficients. The latter experiment deals
with the long-living centrifugal quantum states of UCNs
scattered on a cylindrical surface. In this case, the neutrons
move in a fictitious gravity field of strength 105–107g at
energies of the order of neV, which together with the
current experimental precision could improve our upper
bound by five orders of magnitude. We leave these systems
for future investigations.
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APPENDIX: EXPECTATION VALUES

In this section we compute the expectation values of
the quantum operators Vi in the semiclassical state (15).
From now on, Latin indices of the middle of the alphabet
(i, j, k, l) refer to the three spatial components x, y, z; while
Latin indices from the beginning of the alphabet (a, b, c, e)
refer to the coordinates x, y.

Let us first compute hV1i. In order to disentangle the
effects on the neutron’s vertical motion, it is convenient to
split s̄ijUij into their vertical (z-axis) and perpendicular
(xy-plane) parts, namely s̄ijUij ¼ s̄abUab þ 2s̄azUaz þ
s̄zzUzz. Using the result hUazi ¼ 0 (which follows from
the axial symmetry around the axis of free fall), Eq. (14a)
simplifies to hV1i ¼ − 1

2
m½ð2þ 3s̄00ÞhUi þ hs̄abUabi þ

hs̄zzUzzi�. The axial symmetry again implies that hUabi ¼
ðδab=2ÞhUρ2=r2i and from Eq. (12) we find the identity
hUi ¼ hUρ2=r2i þ hUzzi. These results yield

hV1i ¼ −
1

2
m

�
ð2þ 3s̄00 þ s̄zzÞhUi

− ðs̄zz − s̄aa=2Þ
�
U
ρ2

r2

��
: ðA1Þ

The required expectation values in the state (15) can be
computed in a simple fashion. The result is

hUi ¼ GM⊕

σ

ffiffiffi
π

p
eξ

2

erfcðξÞ; ðA2Þ
�
U
ρ2

r2

�
¼ GM⊕

σ
½ð2ξ2 þ 1Þ ffiffiffi

π
p

eξ
2

erfcðξÞ − 2ξ�; ðA3Þ

where erfcðξÞ is the complementary error function and
ξ≡ ðR⊕ þ zÞ=σ. In practice, the experiments with UCNs
bouncing on a horizontal mirror are very localized as com-
pared with the Earth’s radius, and thus we may approximate
the expectation values in Eqs. (A2) and (A3) for R⊕ ≫ z
and R⊕ ≫ σ. Using the asymptotic expansion of the
complementary error function for large real arguments
we can easily compute the asymptotic behavior of
Eqs. (A2) and (A3). Inserting the leading orders into
Eq. (A1), after some algebra we finally establish Eq. (17a).
Now let us focus on hV2i. Decomposing V2 into its

vertical (z) and perpendicular (x, y) components,
Eq. (14a) simplifies to hV2i ¼ −cðhh0ap̂ai þ 1

2
hh0a;aiÞ−

cðhh0zip̂z þ 1
2
hh0z;ziÞ. As discussed in the main text, the

second term does not produce corrections to the energy
levels since it is a boundary term which we drop in what
follows. Then we are left only with the first term.
Substituting the metric fluctuation and disregarding those
terms which vanish due to the axial symmetry we obtain

hV2i ¼
1

c
s̄0aðhUp̂ai þ hUabp̂biÞ

þ 1

c
s̄0z

�
hUazp̂ai þ 1

2
hUaz

;ai
�
: ðA4Þ

Now we evaluate separately each of the required expect-
ation values. Since hUp̂ai ¼ pahUi, hUbap̂bi ¼ pbhUbai,
hUazp̂ai ¼ iℏðzþ R⊕Þhρ

2U
σ2r2i and h12Uaz

;ai¼−iℏðzþR⊕Þ×
hUr2− 3ρ2U

2r4 i, then Eq. (A4) becomes
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hV2i ¼
1

c
s̄0apa

�
hUi þ

�
U

ρ2

2r2

��

þ iℏ
c
s̄0zðzþ R⊕Þ

�
ρ2U
σ2r2

−
U
r2

þ 3ρ2U
2r4

�
: ðA5Þ

In addition to the expectation values (A2) and (A3),
in this expression we also need the following results:

�
U
r2

�
¼ 2GM⊕

σ3

�
1

ξ
−

ffiffiffi
π

p
eξ

2

erfcðξÞ
�
; ðA6Þ

�
U
ρ2

r4

�
¼ 2GM⊕

3σ3

�
2ð1þ ξ2Þ

ξ
− ð2ξ2 þ 3Þ ffiffiffi

π
p

eξ
2

erfcðξÞ
�
;

ðA7Þ

from which we can directly verify that the complex term
appearing in (A5) vanishes. Thus we are left only with the
first term in (A5). Finally, inserting the asymptotic expan-
sions of Eqs. (A2) and (A3) into the first term in (A5) we
obtain Eq. (17b).
The calculations needed for the derivation of hV3i are

more intricate than those required for the previous terms.
Here we describe the main steps and present the final
results. We start by decomposing V3 into its perpendicular
(x, y) and vertical (z) components, namely, hV3ið1Þ ¼
− 1

4m ðhh00p̂ap̂ai þ hh00;ap̂ai þ 1
4
hh00;aaiÞ ≡ hV3ið1;1Þ þ

hV3ið1;2Þ þ hV3ið1;3Þ and hV3ið2Þ ¼ − 1
4m ðhh00ip̂2

z þ
hh00i;zp̂z þ 1

4
hh00i;zzÞ. Inserting the metric perturbation

h00 and taking the required derivatives we can write each
term in hV3ið1Þ as

hV3ið1;1Þ ¼ −
1

4mc2

�
papa þ

2ℏ2

σ2

��
ð2þ 3s̄00ÞhUi þ 1

2
s̄aa

�
U
ρ2

r2

�
þ s̄zzðzþ R⊕Þ2

�
U
r2

��

þ ℏ2

4mc2σ4

�
ð2þ 3s̄00Þhρ2Ui þ 1

2
s̄aa

�
U
ρ4

r2

�
þ s̄zzðzþ R⊕Þ2

�
U
ρ2

r2

��

− i
ℏ

2mc2σ2
s̄azpaðzþ R⊕Þ

�
ρ2

r2
U

�
; ðA8aÞ

hV3ið1;2Þ ¼
ℏ2

4mc2

	
ð2þ 3s̄00Þ 1

σ2

�
U
ρ2

r2

�
þ 2ipas̄az

ℏ
ðzþ R⊕Þ

��
U
r2

�
−
3

2

�
U
ρ2

r4

��

−
s̄aa

σ2

��
U
ρ2

r2

�
−
3

2

�
U
ρ4

r4

��
þ 3

σ2
s̄zzðzþ R⊕Þ2

�
U
ρ2

r4

�

; ðA8bÞ

hV3ið1;3Þ ¼ −
ℏ2

16mc2

�
ð2þ 3s̄00Þ

�
2

r2
U −

3ρ2

r4
U

�
þ s̄aa

�
−

2

r2
U þ 9

ρ2

r4
U − 15

ρ4

2r6
U

�

þ3s̄zzðzþ R⊕Þ2
�
2

r4
U −

5ρ2

r6
U

��
: ðA8cÞ

Collecting these terms we find an imaginary function
whose coefficient is exactly the same appearing in Eq. (A5)
and therefore it vanishes. The remaining terms can be
simplified by computing the required integrals. The final
result is

hV3ið1Þ ¼
1

2ðmcÞ2
�
papa þ

ℏ2

σ2

�
hV1i; ðA9Þ

where hV1i is given by Eq. (17a). The second term, hV3ið2Þ,
simplifies to hV3ið2Þ ¼ − 1

4m ½hh00ip̂2
z − 1

4
hh00;zzi�, where

we have used the result of Eq. (19). Since we are
considering contributions up to second order in z, the
latter term will produce only a constant which does not
affect the energy levels of the system. Therefore we are
left with

hV3ið2Þ ¼
1

2ðmcÞ2 hV1ip̂2
z : ðA10Þ

Finally, using the function hV1i in Eq. (17a) we compute
(A9)+(A10) to obtain Eq. (17c).
Finally, we focus on the term hV4i, given by Eq. (14d).

Using the static gauge conditions (9) to simplify the
calculations, hV4i takes the form

hV4i ¼ −
1

2m

�
hhjkp̂jp̂ki þ 2ð1 − s̄00ÞhU;kp̂ki

þ 1

2
ð1 − s̄00ÞhU;kki

�
: ðA11Þ

Let us study each term independently. Using the result
of Eq. (19), the middle term of the above equation,
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hV4ið2Þ ¼− 1
mð1− s̄00ÞhU;kp̂ki, can be written as hV4ið2Þ ¼

− 1
m ð1 − s̄00ÞhU;ap̂a − 1

2
U;zzi. Computing the expectation

value of U;kp̂k and using some simple identities we find

hV4ið2Þ ¼
ℏ2

m
ð1 − s̄00Þ

�
ρ2

σ2r2
U −

U
r2

þ 3

2

ρ2

r4
U

�
; ðA12Þ

which, as we already proved, is zero. The latter term
in Eq. (A11), hV4ið1Þ ¼ − 1

4m ð1 − s̄00ÞhU;kki, can be

simplified by using the result U;kk ¼ 4πℏ2GM⊕δðr⃗⊥Þ×
δðzþ R⊕Þ, which follows from the gauge conditions.
Therefore we obtain hV4ið3Þ ¼ −ðℏ2=mÞðGM⊕=σ2Þð1−
s̄00Þδðzþ R⊕Þ. Since the wave function χnðzÞ is defined
along the positive z-axis, i.e., z ∈ ½0;∞Þ, then
χnðzÞδðzþ R⊕Þ ¼ 0, and therefore hV4ið3Þ does not con-
tribute to the energy shifts. This means we are left with
hV4ið1Þ ¼− 1

2mhhjkp̂jp̂ki, which we conveniently splits as
hV4ið1Þ ¼ hV4ið1;1Þ þ hV4ið1;2Þ þ hV4ið1;3Þ, where

hV4ið1;1Þ ¼ −
1

2mc2
hð2 − s̄00ÞU þ s̄ijUij þ 2s̄00Uzz − 2s̄ziUziip̂2

z ; ðA13aÞ

hV4ið1;2Þ ¼ −
1

2mc2
hð4s̄00Uzb − 2s̄ziUib − 2s̄biUizÞp̂bip̂z; ðA13bÞ

hV4ið1;3Þ ¼ −
1

2mc2
h½ð2 − s̄00ÞU þ s̄ijUij�p̂ap̂a þ 2ðs̄00Uab − s̄aiUbiÞp̂ap̂bi: ðA13cÞ

Computing the involved expectation values, the above equations can be written in the form

hV4ið1;1Þ ¼ −
1

2mc2

	
ð2þ s̄aaÞhUi − 1

2
ðs̄aa þ 2s̄00Þ

�
U
ρ2

r2

�

p̂2
z ; ðA14aÞ

hV4ið1;2Þ ¼ −
1

2mc2

	
ð3s̄00 − s̄zzÞiℏðzþ R⊕Þ

�
U

ρ2

σ2r2

�
− pas̄za

�
2hUi −

�
U
ρ2

r2

��

p̂z; ðA14bÞ

hV4ið1;3Þ ¼ −
1

2mc2

	
−
iℏpas̄az

σ2
ðzþ R⊕Þ

�
U
ρ2

r2

�
þ
�
papa þ

2ℏ2

σ2

��
ð2 − s̄ccÞhUi þ 3

2
s̄cc

�
U
ρ2

r2

��

−s̄ab
�
papb þ

δabℏ2

σ2

��
U
ρ2

r2

�
þ ℏ2

σ4

�
ðs̄cc − 2ÞhUρ2i − 1

2
ð3s̄00 − s̄zzÞ

�
U
ρ4

r2

��

: ðA14cÞ

Now we have to collect all these terms. After simple
algebraic simplifications, one can further verify that the
imaginary functions appearing with the coefficients pas̄za

and 3s̄00 − s̄zz can be written in the form of Eq. (19), thus

implying that they do not contribute to the energy shifts.
Therefore we can disregard such terms. The remaining
terms can be worked out in a simple fashion. The final
result is given by Eq. (17d).
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