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We discuss PT -symmetric Abelian gauge field theories as well as their extension to the Englert-Brout-
Higgs mechanism for generating a mass for a vector boson. Gauge invariance is not straightforward, and we
discuss the different related problems as well as a solution which consists in coupling the gauge field to a
current that is not conserved. Non-Hermiticity then necessarily precludes the Lorenz gauge condition but
nevertheless allows for a consistent formulation of the theory. We therefore generalize the Englert-Brout-
Higgs mechanism to PT -symmetric field theories, opening the way to constructing non-Hermitian
extensions of the Standard Model and new scenarios for particle model building.
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I. INTRODUCTION

There has been much work in recent years on quantum-
mechanical models with non-Hermitian, PT -symmetric
Hamiltonians [1–3], which have become an important area
of research in integrated photonics and other fields [4–6]—
see Ref. [7] for a review of relations to conventional models
withHermitianHamiltonians.Quantum field theories (QFTs)
with non-Hermitian Hamiltonians have also attracted
interest, including a model with an iϕ3 scalar interaction
[8–12],whichwas shown in the frameworkofPT -symmetric
QFT to have a physically meaningful effective potential
despite its being unbounded from below [13], and a PT -
symmetric −ϕ4 model featuring asymptotic freedom [14].
APT -symmetric theory with a non-Hermitian fermion mass
term μψ̄γ5ψ was considered in Ref. [15], and it was shown in
Ref. [16] that this model possesses a conserved current and
that its PT symmetry is consistent with unitarity.
Among applications to particle physics, the possibility

of using the non-Hermitian term μψ̄γ5ψ to describe
neutrino masses was considered in Refs. [17–19], and
the application of non-Hermitian QFT to neutrino oscil-
lations was considered in Ref. [20]. A lattice version of a

non-Hermitian fermionic model was studied in Ref. [21], in
which it was shown that this model could accommodate
different numbers of left-handed and right-handed excita-
tions, consistent with the fermionic symmetry current
found in Ref. [16]. There have also been applications of
non-Hermitian QFT to dark matter [22] and to decays of
the Higgs boson [23], and it was argued in Ref. [24] that the
PT -symmetry properties of ghost fields are relevant for the
confinement phase transition in QCD. Effective non-
Hermitian Hamiltonians with complex spectra are also
known to play a role in the description of unstable systems
with particle mixing (see, e.g., Ref. [25]).
In this work, we show how the gauge symmetries of

non-Hermitian and PT -symmetric theories may be broken
via a generalization of the Englert-Brout-Higgs mechanism
[26,27], opening the way to significant extensions of the
Standard Model and other particle physics theories.
This extension is nontrivial, as it was discovered in

Ref. [28] (for a summary, see Ref. [29]) that the existence
of a conserved current in a PT -symmetric QFT does not
correspond to a symmetry of the Lagrangian L. Instead, it
corresponds to a nontrivial transformation of the non-
Hermitian part of L, thereby evading Noether’s theorem
[30], in that symmetries of a PT -symmetric Lagrangian are
not related to conserved currents. We emphasize that con-
served currents doexist, though, as in theHermitian case.This
striking observation raised the interesting question ofwhether
PT -symmetric QFTs exhibit an analog of the spontaneous
breaking of a global symmetry that is familiar in Hermitian
QFTsand, if so,whether this spontaneous symmetrybreaking
is accompanied by a massless Goldstone mode [31–33].
The answers to both questions are yes [34]. One can

define consistently a saddle point of the potential in a
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PT -symmetric QFTwith a quartic scalar potential in which
the scalar fields have symmetry-breaking vacuum expect-
ation values that are accompanied by a massless Goldstone
mode. The existence of the latter follows from current
conservation, even though the Lagrangian is not invariant
under the corresponding field transformations. The exist-
ence of this Goldstone mode was confirmed by an explicit
calculation of the effective potential at the tree and one-loop
levels. Our analysis of these questions was based on a
formulation of a non-Hermitian QFT that included a
consistent quantization of the path integral. This is possible
because the PT -symmetric theory possesses a complete set
of real energy eigenstates, which allow for saddle points
about which the integration of quantum fluctuations is well
defined. The conventional quantization of the path integral
for a Hermitian scalar Lagrangian can be extended con-
sistently to the non-Hermitian case by using PT conju-
gation instead of Hermitian conjugation [34].
These developments have opened the way to exploring

whether the Englert-Brout-Higgs mechanism [26,27] for
generating masses for gauge bosons also has a generali-
zation to the non-Hermitian case. As we show in this paper,
the answer is again yes. This might seem surprising, since
coupling the gauge field to the conserved current does not
lead to a gauge-invariant Lagrangian. However, we show
how a consistent model can be obtained when coupling the
gauge field to a nonconserved current, provided a covariant
gauge-fixing term is present in the Lagrangian.
The layout of this paper is as follows. In Sec. II, we begin

by setting up the PT -symmetric QFT that we use for our
analysis. After reviewing symmetries and conservation
laws in this context, we then discuss spontaneous symmetry
breaking and the Goldstone mode in this theory in Sec. III.
The gauging of this PT -symmetric model is described in
Sec. IV, and the associated Englert-Brout-Higgs mecha-
nism is described in Sec. V. Finally, we summarize our
conclusions and discuss perspectives for possible future
research in Sec. VI.

II. SYMMETRIES AND CONSERVATION LAWS

We start by considering a theory with two complex scalar
fields ϕ1;2 described by the Lagrangian density first studied
in Refs. [28,29],

L ¼ ∂αϕ
⋆
1∂αϕ1 þ ∂αϕ

⋆
2∂αϕ2 −m2

1jϕ1j2 −m2
2jϕ2j2

− μ2ðϕ⋆
1ϕ2 − ϕ⋆

2ϕ1Þ; ð1Þ

the squared mass eigenvalues of which are given by

M2
� ¼ 1

2
ðm2

1 þm2
2Þ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 − 4μ4

q
. ð2Þ

These are real as long as

η≡ 2μ2

jm2
1 −m2

2j
≤ 1: ð3Þ

The Lagrangian (1) is left invariant by the PT trans-
formation

PT ∶ Φ ¼
�
ϕ1

ϕ2

�
→

�
ϕ⋆
1

−ϕ⋆
2

�
: ð4Þ

The field ϕ1 transforms as a scalar under parity, i.e.,
P∶ ϕ1 → þϕ1, and the field ϕ2 transforms as a pseudo-
scalar, i.e., P∶ ϕ2 → −ϕ2. Time-reversal T is taken to be
the usual antilinear operator, the action of which is
equivalent to complex conjugation on the c-number fields
ϕ1 and ϕ2. (We do not consider the discrete symmetries of
this theory in Fock space.)
Since the Lagrangian (1) is not Hermitian, the corre-

sponding action S has the imaginary part

ImS ¼ iμ2
Z

d4xðϕ⋆
1ϕ2 − ϕ⋆

2ϕ1Þ; ð5Þ

implying that the following equations of motion are not
equivalent:

δS
δΦ† ≡

∂L
∂Φ† − ∂α

∂L
∂ð∂αΦ†Þ ¼ 0

⇎
δS
δΦ

≡ ∂L
∂Φ − ∂α

∂L
∂ð∂αΦÞ ¼ 0: ð6Þ

(We emphasize that the functional variation δS=δΦð†Þ is
understood here and in what follows as a shorthand for the
“naive” variation of the action that yields the usual Euler-
Lagrange equations.) It would appear, therefore, that there
is some ambiguity in the definition of the equations of
motion. This ambiguity can be resolved, however, by
carefully defining the states (and their inner product) and
considering the variational procedure in detail [28,29], as
we outline below.
If we neglect surface terms, we can write the Lagrangian

(1) in the symmetric form

L ¼ Φ‡
�−□ −m2

1 −μ2

−μ2 □þm2
2

�
Φ; ð7Þ

where Φ‡ ¼ ðϕ⋆
1 ;−ϕ⋆

2Þ, which shows that the conjugate
variables (and states) to consider here are thePT -conjugate
fields fΦ;Φ‡g, instead of the Hermitian conjugate fields
fΦ;Φ†g. It nevertheless remains the case that we have a
choice to define the equations of motion by varying Eq. (7)
with respect to Φ‡ or Φ. Taking the former variation, the
equations of motion are given by
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δS
δΦ‡ ≡

∂L
∂Φ‡ − ∂α

∂L
∂ð∂αΦ‡Þ ¼ 0 and�

δS
δΦ

�‡ ≡
�∂L
∂Φ − ∂α

∂L
∂ð∂αΦÞ

�‡
¼ 0: ð8Þ

This implies, however, that

δS
δΦ

≡ ∂L
∂Φ − ∂α

∂L
∂ð∂αΦÞ ≠ 0; ð9Þ

except when we have the trivial solution ϕ1 ¼ ϕ2 ¼ 0. For
nontrivial solutions, the nonvanishing of the complemen-
tary variation in Eq. (9) is necessarily supported by non-
vanishing surface terms or external sources, as explained in
detail in Refs. [28,29,34].
The equations of motion defined by Eq. (8) are equiv-

alent to those obtained from

δS
δΦ⋆ ¼ 0 and

δS⋆
δΦ

¼ 0: ð10Þ

This choice places the zero mode in the right eigenspectrum
of the non-Hermitian Klein-Gordon operator. The alter-
native choice

δS
δΦ

¼ 0 and
δS⋆
δΦ⋆ ¼ 0 ð11Þ

corresponds to switching the coupling μ2 ↔ −μ2 and
choosing the zero mode to lie instead in the left eigenspec-
trum. However [28,29], this does not change the physical
observables, since they depend only on ð�μ2Þ2. We are
therefore free to choose the equations ofmotion as inEqs. (8)
and (10). This reflects the fact that, as in the Hermitian case,
physical observables are invariant under transformations of
the discrete Z2 × Z2 group; i.e., we can absorb a change in
the sign of μ2 by an appropriate field redefinition.
We remark that this freedom to choose the defining

equations of motion persists in the Hamiltonian formu-
lation. Specifically, the Legendre transform relating the
Lagrangian and Hamiltonian descriptions is unaffected by
the non-Hermiticity of the potential, since the definition of
the conjugate momenta is unchanged from the Hermitian
case. Of Hamilton’s equations, only those for the time
derivatives of the conjugate momenta are affected, and we
may freely choose to define the equations of motion with
respect to

∂tΠ† ¼ −
∂H
∂Φ† ð12Þ

or, alternatively,

∂tΠ ¼ −
∂H
∂Φ ≠ ð∂tΠ†Þ†: ð13Þ

We emphasize that Eqs. (12) and (13) are not related by
Hermitian conjugation since the Hamiltonian density
H ≠ H† is not Hermitian—the operations of Hermitian
conjugation and derivation with respect to time do not
commute (i.e., ∂tΠ ≠ ∂†

tΠ, where the meaning of ∂†
t

follows from the Hamiltonian equations of motion). As
in the case of the Euler-Lagrange equations, however, the
two choices are related by the transformation μ2 → −μ2,
under which physical observables remain unchanged.
As discussed in Refs. [28,29], the eigenvectors e� of the

mass matrix, appearing in the Lagrangian (1) and corre-
sponding to the eigenvalues M2

�, are not orthogonal with
respect to Hermitian conjugation, i.e., ðeþÞ† · e− ≠ 0, but
they are orthogonal with respect to PT conjugation, i.e.,
ðeþÞ‡ · e− ¼ 0. The inner product of states (in flavor space)
must therefore be defined with PT -conjugate fields, and
the time evolution of the system is then derived in the usual
way by expanding the fields on the basis vectors e�, with
the corresponding creation operators evolving with the
factor exp½itE�ðpÞ�, where E2

�ðpÞ ¼ p2 þM2
�. Note that

the canonical equal-time commutation relations, for each
field ϕi and its conjugate momentum πi ¼ _ϕ⋆

i , are not
modified by the non-Hermiticity, in accordance with the
discussion of the Hamiltonian description above. Once the
equations of motion are chosen according to either
Eqs. (10) or Eqs. (11), quantization therefore follows the
usual steps, and as stated in Ref. [35], the Heisenberg
picture holds since the Hamiltonian, although non-
Hermitian, remains the generator for time evolution.
To elaborate further on the consistency of the choice of

equations of motion, it is convenient to define new field
variables ðΞ; Ξ̄Þ, for which the mass matrix is diagonal,

Ξ≡ RΦ and Ξ̄≡Φ†R−1; ð14Þ

where (for m2
1 > m2

2)

R ¼ N

 
η 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
η

!
ð15Þ

and

N −1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η2 − 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

qr
: ð16Þ

Notice that this is a similarity rather than a unitary trans-
formation, and it is defined only away from the exceptional
point η ¼ 1.
In this basis, the Lagrangian in Eq. (1) takes the form

L ¼ Ξ̄
�
−□ −M2þ 0

0 −□ −M2
−

�
Ξ: ð17Þ
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The variable Ξ̄ ≠ Ξ† is the C0PT -conjugate of Ξ:
Ξ̄ ¼ Ξ‡C0, where the matrix C0 ¼ RPR−1. The C0PT
conjugation is the involution with respect to which the
positive-definite inner product is defined for non-
Hermitian, PT -symmetric QFTs [2], and it is in terms
of these C0PT -conjugate variables that the partition func-
tion can be defined consistently, as explained in Ref. [34].
The equations of motion, consistent with either Eqs. (10) or
(11), follow straightforwardly from the variations

δS
δΞ̄

¼ 0 or
δS
δΞ

¼ 0; ð18Þ

which still correspond to two distinct choices.
Returning to the Lagrangian in Eq. (1), we have

invariance under the global phase transformation
Φ → e−iθΦ. However, the corresponding Noether current

jαþ ≡ iðϕ⋆
1∂αϕ1 − ϕ1∂αϕ⋆

1Þ þ iðϕ⋆
2∂αϕ2 − ϕ2∂αϕ⋆

2Þ ð19Þ

is not conserved when the equations of motion, obtained as
described above, are applied. On the other hand, the current
corresponding to the transformations

Φ → e−iθPΦ ¼
�
e−iθϕ1

eiθϕ2

�
ð20Þ

is conserved, and it is given by

jα− ¼ iðϕ⋆
1∂αϕ1 − ϕ1∂αϕ⋆

1Þ − iðϕ⋆
2∂αϕ2 − ϕ2∂αϕ⋆

2Þ: ð21Þ

We note that the transformation (20) does not leave the
Lagrangian invariant: δL ¼ δS

δϕi
δϕi ≠ 0 (see Ref. [28]).

Instead, the Lagrangian transforms into

Lθ ¼ ∂αϕ
⋆
1∂αϕ1 þ ∂αϕ

⋆
2∂αϕ2 −m2

1jϕ1j2 −m2
2jϕ2j2

− μ2ðeþ2iθϕ⋆
1ϕ2 − e−2iθϕ⋆

2ϕ1Þ: ð22Þ

However, even though the Lagrangian is different from (1),
the physical observables remain unchanged and describe
the same physical system [34]. This implies that there is a
one-parameter family of non-Hermitian Lagrangians that
describe the same physics [34]. As we will see, however,
the situation is quite different in the case of local
symmetries.

III. SPONTANEOUS SYMMETRY BREAKING
AND THE GOLDSTONE MODE

Before considering the case of local symmetries, we first
review how the Goldstone theorem can be extended [34]
from the standard Hermitian case to that of a non-
Hermitian, PT -symmetric system, the only requirement
being the existence of a conserved current jα and a
nontrivial vacuum v for which φðvÞ ≠ v, where φ is the

transformation corresponding to the current jα. A simple
example of such a non-Hermitian, PT -symmetric system is
given by the Lagrangian

L ¼ ∂αϕ
⋆
1∂αϕ1 þ ∂αϕ

⋆
2∂αϕ2 þm2

1jϕ1j2 −m2
2jϕ2j2

− μ2ðϕ⋆
1ϕ2 − ϕ⋆

2ϕ1Þ −
g
4
jϕ1j4: ð23Þ

Using the equations of motion, we find a nontrivial vacuum
that is a solution of the equations

0 ¼ ðgjϕ1j2 − 2m2
1Þϕ1 þ 2μ2ϕ2; ð24aÞ

0 ¼ m2
2ϕ2 − μ2ϕ1: ð24bÞ

This vacuum is given by

�
v1
v2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m2

1m
2
2 − μ4

gm2
2

s � 1
μ2

m2
2

�
; ð25Þ

up to an overall complex phase.
The potential for the fluctuations can be written in the

form

Uðϕ̂1; ϕ̂2Þ ¼ −
2μ4

m2
2

v1ϕ̂1 þ 2m2
2v2ϕ̂2 þ m̃2

1jϕ̂1j2

þ g
4
v21ðϕ̂2

1 þ ðϕ̂⋆
1Þ2Þ þm2

2jϕ̂2j2

þ μ2ðϕ̂⋆
1 ϕ̂2 − ϕ̂⋆

2 ϕ̂1Þ þ
g
2
v1ðϕ̂1 þ ϕ̂⋆

1Þjϕ1j2

þ g
4
jϕ1j4; ð26Þ

where m̃2
1 ≡ gv21 −m2

1 and we have shifted the fields: ϕ1 ≡
v1 þ ϕ̂1 and ϕ2 ≡ v2 þ ϕ̂2. The linear terms in this poten-
tial are a consequence of our non-Hermitian behavior. Note
that they are not symmetric under PT , such that the
nontrivial vacuum spontaneously breaks the PT symmetry
of the action. Even so, there remains a region of parameter
space in which the eigenspectrum of the fluctuations is real
and positive semi-definite and, though present in the
potential, the linear terms play no role in the equations
of motion nor their complex conjugates, which are given by

ð−□ − m̃2
1Þϕ̂1 ¼ þμ2ϕ̂2 þ

g
2
v21ϕ̂

⋆
1

þ g
2
ðv1ϕ̂2

1 þ 2v1jϕ̂1j2 þ jϕ̂1j2ϕ̂1Þ; ð27aÞ

ð−□ −m2
2Þϕ̂2 ¼ −μ2ϕ̂1. ð27bÞ

The mass squared matrix is given by the linear terms in
these equations and takes the form

ALEXANDRE, ELLIS, MILLINGTON, and SEYNAEVE PHYS. REV. D 99, 075024 (2019)

075024-4



M2 ¼

0
BBB@

m̃2
1

g
2
v21 μ2 0

g
2
v21 m̃2

1 0 μ2

−μ2 0 m2
2 0

0 −μ2 0 m2
2

1
CCCA: ð28Þ

This matrix has an eigenmode,

G1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m4

2

m4
2 − μ4

s �
Imðϕ̂1Þ −

μ2

m2
2

Imðϕ̂2Þ
�
; ð29Þ

with eigenvalue λ1 ¼ 0, which is the Goldstone mode in
this model.1 We gave in Ref. [34] a general proof that such a
mode must appear whenever there is a nontrivial vacuum
for which φðvÞ ≠ v holds and verified the persistence of the
Goldstone mode (29) at the one-loop level.
The other modes of this model have eigenvalues

λ2 ¼ m2
2 −

μ4

m2
2

; ð30aÞ

λ� ¼ 1

2m2
2

ð2m2
1m

2
2 − 3μ4 þm4

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

1m
2
2 − 3μ4 −m4

2Þ2 − 4μ4m4
2

q
Þ ð30bÞ

and are given by

G2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m4

2

m4
2 − μ4

s �
Imðϕ̂2Þ −

μ2

m2
2

Imðϕ̂1Þ
�
; ð31aÞ

G� ¼
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ� −m2

2Þ2 − μ4
p
× ½ðλ� −m2

2ÞReðϕ̂1Þ þ μ2Reðϕ̂2Þ�; ð31bÞ

respectively. We note that the masses of these physical
modes depend in different ways on the mass parameter μ
that characterizes the amount of non-Hermiticity in the
Lagrangian (23).

IV. GAUGING THE PT -SYMMETRIC MODEL

A. Naive approach

We may seek to promote the above global transforma-
tions to local transformations by introducing a gauge field
Aα and minimally coupling it to the scalar fields via the
gauge covariant derivatives. For the Maxwell equations to
have the usual canonical form, though, ∂αFαβ ¼ jβA;−, we
must couple the gauge field to a conserved current with

∂βj
β
A;− ¼ 0, since ∂α∂βFαβ ¼ 0 identically. The Lagrangian

then takes the form

L ¼ ½Dþ
α ϕ1�⋆Dαþϕ1 þ ½D−

αϕ2�⋆Dα
−ϕ2 −m2

1jϕ1j2

−m2
2jϕ2j2 − μ2ðϕ⋆

1ϕ2 − ϕ⋆
2ϕ1Þ −

1

4
FαβFαβ; ð32Þ

where the covariant derivatives are Dα
� ¼ ∂α � iqAα. The

conserved current is

jαA;− ¼ iqðϕ⋆
1D

αþϕ1 − ϕ1½Dαþϕ1�⋆Þ
− iqðϕ⋆

2D
α
−ϕ2 − ϕ2½Dα

−ϕ2�⋆Þ; ð33Þ

and the kinetic terms in the Lagrangian are invariant under
the transformations

ϕ1ðxÞ → ϕ1ðxÞe−iqfðxÞ; ð34aÞ

ϕ2ðxÞ → ϕ2ðxÞeþiqfðxÞ; ð34bÞ

AαðxÞ → AαðxÞ þ ∂αfðxÞ: ð34cÞ

The kinetic term could also be written in terms ofDαΦwith
Dα ¼ I2∂α þ iqPAα, making manifest the role played by
the parity matrix P in the definition of the conserved
current.
However, with this form of coupling, we see that the

non-Hermitian mass term explicitly breaks gauge invari-
ance. Specifically, the gauge transformation yields a local
mass squared matrix,

M2ðxÞ ¼
 

m2
1 μ2eþ2iqfðxÞ

−μ2e−2iqfðxÞ m2
2

!

≡
�

m2
1 μ̃2ðxÞ

½−μ̃2ðxÞ�⋆ m2
2

�
: ð35Þ

The eigenspectrum is unaffected by the additional phases in
the off-diagonal elements of Eq. (35), and the squared
mass eigenvalues remain real and independent of the gauge
function f, since they involve μ̃2ðxÞ½μ̃2ðxÞ�⋆ ¼ μ4. Rotating
to the mass eigenbasis via the similarity transformation in
Eq. (14), the gauge dependence is shifted to the gauge
interactions, since the matrix R, which is modified to the
local form

RðxÞ ¼ N

 
ηe−2iqfðxÞ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
ηeþ2iqfðxÞ

!
; ð36Þ

does not commute with the Pmatrix appearing in the gauge
coupling, i.e., R−1PR ≠ P. As a result, and while the
eigenspectrum is gauge invariant, we find that the photon
acquires a mass beyond tree level; namely, at the one-loop
level, we find that the polarization tensor is not transverse:

1Notice that the normalization of the Goldstone mode (with
respect to PT conjugation) diverges in the limit μ2 ¼ �m2

2 (see
the Note Added).
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kαΠαβðk2¼ 0Þ¼ q2

8π2
kβμ4

ðM2þ−M2
−Þ3

×

�
M4þ−M4

−þ2M2þM2
− ln

�
M2

−

M2þ

��
: ð37Þ

The above observations indicate that the non-Hermitian
deformation of massless gauge theories is problematic, due
to the necessary violation of gauge invariance.
One could modify the naive Lagrangian (32), though, if

one wishes to maintain a coupling to the conserved current
as well as gauge invariance. One might be tempted to
introduce a nonminimal coupling, with the Lagrangian

LW¼½Dþ
α ϕ1�⋆Dαþϕ1þ½D−

αϕ2�⋆Dα
−ϕ2−m2

1jϕ1j2

−m2
2jϕ2j2−μ2ðW⋆2ðxÞϕ⋆

1ϕ2−W2ðxÞϕ⋆
2ϕ1Þ−

1

4
FαβFαβ;

ð38Þ

where

WðxÞ ¼ exp

�
iq
Z

x
Aαdyα

�
ð39Þ

is aWilson line [36], running along a path from the boundary
(at infinity) to the spacetime point x. Under a gauge
transformation (chosen to vanish at infinity), we have

WðxÞ ¼ WðxÞeiqfðxÞ; ð40Þ
and the Lagrangian is invariant. However, we have traded
the problem of gauge invariance for the path dependence of
the Wilson line. Moreover, we see that the gauge field now
couples to the non-Hermitian term, such that the equation
of motion for the gauge field obtains an imaginary part,
potentially violating the reality of the gauge field.

B. Modification of charge allocation

In order to keep gauge invariance, we can instead couple
the gauge field to the nonconserved current

jαA;þ ¼ iqðϕ⋆
1D

αϕ1 − ϕ1½Dαϕ1�⋆Þ
þ iqðϕ⋆

2D
αϕ2 − ϕ2½Dαϕ2�⋆Þ; ð41Þ

where Dα ¼ ∂α þ iqAα, with divergence

∂αjαA;þ ¼ 2iqμ2ðϕ⋆
2ϕ1 − ϕ⋆

1ϕ2Þ: ð42Þ
In this case, ϕ1 and ϕ2 are assigned identical charges, and
the non-Hermitian mass term is gauge invariant. However,
in order to ensure that the Maxwell equations are con-
sistent, since ∂βj

β
A;þ ≠ 0, we need to add to the Lagrangian

the term

−
1

2ξ
ð∂αAαÞ2; ð43Þ

which would, in the Hermitian case, correspond to fixing a
covariant gauge that satisfies the Lorenz gauge condition
∂αAα ¼ 0. Notice that, with the addition of this term, and as
in the Hermitian case, the gauge functions must satisfy the
constraint □f ¼ 0, such that we only have a restricted
gauge invariance.
The equation of motion for the gauge field becomes

□Aα − ð1 − 1=ξÞ∂α∂βAβ ¼ jαA;þ; ð44Þ
and its divergence yields

1

ξ
□∂αAα ¼ 2iqμ2ðϕ⋆

2ϕ1 − ϕ⋆
1ϕ2Þ: ð45Þ

We see that the non-Hermiticity precludes the Lorenz
gauge condition, and the consistency of the Maxwell
equation instead leads to the constraint

□π0 ¼ 2iqμ2ðϕ⋆
1ϕ2 − ϕ⋆

2ϕ1Þ; ð46Þ
where π0 ¼ −∂αAα=ξ is the momentum conjugate to A0.
For a last remark, we note that the above formulation

arises naturally from the Stückelberg mechanism [37] (see,
e.g., Ref. [38]), in the limit where the vector mass goes to
zero. To see this, we introduce an extra real scalar field ρ
and consider the Lagrangian

Lρ ¼ ½Dαϕ1�⋆Dαϕ1 þ ½Dαϕ2�⋆Dαϕ2 −m2
1jϕ1j2 −m2

2jϕ2j2

− μ2ðϕ⋆
1ϕ2 − ϕ⋆

2ϕ1Þ −
1

4
FαβFαβ

þ 1

2
ðm0Aα − ∂αρÞðm0Aα − ∂αρÞ

−
1

2ξ
ð∂αAα þ ξm0ρÞ2: ð47Þ

This Lagrangian is invariant under the gauge transformations

ϕ1;2ðxÞ → ϕ1;2ðxÞe−iqfðxÞ; ð48aÞ

AαðxÞ → AαðxÞ þ ∂αfðxÞ; ð48bÞ

ρðxÞ → ρðxÞ þm0fðxÞ; ð48cÞ

where the gauge function satisfies ð□þ ξm2
0Þf ¼ 0. The

equation of motion for Aα then yields Eq. (44) in the limit
m0 → 0, where the scalar ρ decouples from the system, and
the constraint (45) necessarily arises.

C. Reality of the background gauge field

We discuss here the reality of the background gauge field
Aα
b after quantum corrections. Aα

b is defined as

Aα
b ¼

1

Z
δZ
δJα

; ð49Þ
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where Z is the Euclidean partition function and Jα is
the corresponding source. Z is PT-symmetric and can
defined as

Z ¼
Z

D½Aα;Φ;Φ‡� exp
�
−SE þ

Z
d4xðJαAα þ χPT1 ϕ1

þ ϕPT
1 χ1 þ χPT2 ϕ2 þ ϕPT

2 χ2Þ
�
; ð50Þ

where χk and χPTk are the sources for ϕPT
k and ϕk,

respectively.
For Aα

b to be real, it is enough to find a condition for the
Euclidean partition function to be real, although the
Euclidean action SE has an imaginary part, which is
opposite in sign to ImS, given in Eq. (5). This condition
can be achieved by choosing the transformation of the
sources χk under PT appropriately. For this, we note that
the partition function can also be written

Z ¼
Z

D½Aα;Φ;Φ‡� exp
�
−SE þ

Z
d4xðJαAα þ χPT1 ϕ1

þ ϕ⋆
1χ1 þ χPT2 ϕ2 − ϕ⋆

2χ2Þ
�
; ð51Þ

such that

Z⋆ ¼
Z

D½Aα;Φ;Φ‡� exp
�
−S⋆E þ

Z
d4xðJαAα

þ ðχPT1 Þ⋆ϕ⋆
1 þ ϕ1χ

⋆
1 þ ðχPT2 Þ⋆ϕ⋆

2 − ϕ2χ
⋆
2Þ
�
; ð52Þ

which, after the change of variable ϕ2 → −ϕ2, leads to

Z⋆ ¼
Z

D½Aα;Φ;Φ‡� exp
�
−SE þ

Z
d4xðJαAα

þ ðχPT1 Þ⋆ϕ⋆
1 þ ϕ1χ

⋆
1 − ðχPT2 Þ⋆ϕ⋆

2 þ ϕ2χ
⋆
2Þ
�
: ð53Þ

Imposing Z⋆ ¼ Z implies then χPT1 ¼ χ⋆1 and χPT2 ¼ χ⋆2 .
Note that this is consistent with the PT properties of the
scalar background field ϕb

2, defined as

ϕb
2 ¼

1

Z
δZ

δχPT2
; ð54Þ

since

ðϕb
2ÞPT ¼ 1

Z
δZ
δχ2

¼ −ðϕb
2Þ⋆: ð55Þ

As a consequence, PT symmetry ensures that the gauge
field remains real after quantum corrections, even though it
is coupled to a non-Hermitian scalar sector.

Finally, one can also conclude from the reality of the
partition function that physical observables depend on μ4

only. Indeed, for Z to be real, the imaginary part of the
action, cf. Eq. (5), must contribute to the calculation of Z
with even powers, and thus with ð�μ2Þ2. This property,
predicted at the tree level, can thus be extended to the full
quantum system.

V. ENGLERT-BROUT-HIGGS MECHANISM

In this section, we show that a gauge-invariant mass can
be generated at tree level by the Englert-Brout-Higgs
mechanism. Given the considerations in Sec. IV, we
consider the Lagrangian

L¼ ½Dαϕ1�⋆Dαϕ1 þ ½Dαϕ2�⋆Dαϕ2 þm2
1jϕ1j2 −m2

2jϕ2j2

− μ2ðϕ⋆
1ϕ2 −ϕ⋆

2ϕ1Þ−
g
4
jϕ1j4 −

1

4
FαβFαβ −

1

2ξ
ð∂αAαÞ2;

ð56Þ

where we emphasize that the would-be gauge-fixing term
−ð∂αAαÞ2=ð2ξÞ is necessary for consistency of the model.
The vacuum expectation value for the scalar fields is the

same as in the global model (25), and we can express the
Lagrangian (56) in terms of the shifted fields,

L ¼ ∂αϕ̂
⋆
1∂αϕ̂1 þ ∂αϕ̂

⋆
2∂αϕ̂2 − Uðϕ̂1; ϕ̂2Þ

−
1

4
FαβFαβ −

1

2ξ
ð∂αAαÞ2

þ q2AαAαðjv1 þ ϕ̂1j2 þ jv2 þ ϕ̂2j2Þ − Aαjαþ; ð57Þ

whereUðϕ̂1; ϕ̂2Þ is defined in Eq. (26) and jαþ is the current
in Eq. (19). We then obtain the equations of motion

ð−D2 − m̃2
1Þϕ̂1 ¼ þμ2ϕ̂2 − q2v1A2 þ g

2
v21ϕ̂

⋆
1

þ g
2
ðv1ϕ̂2

1 þ 2v1jϕ̂1j2 þ jϕ̂1j2ϕ̂1Þ
þ iqv1∂αAα; ð58aÞ

ð−D2 −m2
2Þϕ̂2 ¼ −μ2ϕ̂1 − q2v2A2 þ iqv2∂αAα; ð58bÞ

ð−□ −M2
AÞAα þ ð1 − 1=ξÞ∂α∂βAβ

¼ 2q2ðv⋆1 ϕ̂1 þ v1ϕ̂
⋆
1 þ v⋆2 ϕ̂2 þ v2ϕ̂

⋆
2ÞAα

þ 2q2ðjϕ̂1j2 þ jϕ̂2j2ÞAα − jαþ; ð58cÞ

where

M2
A ¼ 2q2ðjv1j2 þ jv2j2Þ ð59Þ

is the gauge-invariant squared mass of the gauge
boson. Therefore, although the non-Hermitian model has
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nontrivial features related to gauge invariance, the usual
Englert-Brout-Higgs mechanism still holds.

VI. CONCLUSIONS AND PERSPECTIVES

We have shown in this paper how the Englert-Brout-
Higgs mechanism [26,27] for generating masses for gauge
bosons can be generalized from the familiar case of
Hermitian QFTs to the more general framework of PT -
symmetric field theories. However, we have seen that to
preserve gauge invariance in the non-Hermitian gauge
theories described here it is necessary to couple the gauge
field to the nonconserved current. The consistency of the
Maxwell equations then requires the inclusion of the
would-be gauge-fixing term but precludes the Lorenz
gauge and leads to a particular constraint on the gauge
field that depends on the non-Hermitian structure of the
theory.
We have restricted our attention in this work to the

Abelian case, and it would clearly be interesting to explore
the possible extension to the non-Abelian case [39], which
will require a careful reexamination of the quantization
procedure for non-Abelian gauge fields in the context of
PT -symmetric field theories. Such an analysis should be
completed by a study of renormalization and unitarity,
including the possibility of non-Hermitian gauge anoma-
lies. We note that the scalar fields in the PT -symmetric

model we have studied could in principle be elevated to
doublets of an SU(2) gauge group, so if these issues can be
resolved, one might consider using this model as the basis
for the possible construction of a non-Hermitian extension
of the Standard Model as well as other new scenarios in
particle modeling that might also incorporate non-
Hermitian extensions of the Yukawa sector [18,19].
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Note added.—Recently, we saw Ref. [40], in which
Goldstone bosons and the Englert-Brout-Higgs mechanism
in non-Hermitian theories are discussed from a comple-
mentary perspective. We thank Philip Mannheim for kindly
drawing our attention to his interesting paper. This also
made us aware of a consistent error in the normalization of
the Goldstone modes in our previous work [34] (corrected
herein), which obscured the behavior of the exceptional
point μ2 ¼ �m2

2, as discussed in detail in Ref. [40].
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