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The photon polarization inDðsÞ → K1ð→KππÞγ decays can be extracted from an up-down asymmetry in
the Kππ system, along the lines of the method known to B → K1ð→KππÞγ decays. Charm physics is
advantageous as partner decays exist: Dþ → Kþ

1 ð→KππÞγ, which is standard model-like, and
Ds → Kþ

1 ð→KππÞγ, which is sensitive to physics beyond the standard model in jΔcj ¼ jΔuj ¼ 1

transitions. The standard model predicts their photon polarizations to be equal up to U-spin breaking
corrections, while new physics in the dipole operators can split them apart at order one level. We estimate
the proportionality factor in the asymmetry multiplying the polarization parameter from axial vectors
K1ð1270Þ and K1ð1400Þ, and find it to be sizable, up to the few Oð10Þ% range. The actual value of the
hadronic factor matters for the experimental sensitivity but is not needed as an input to perform the null test.
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I. INTRODUCTION

Charm decay amplitudes are notoriously challenging due
to an often overwhelming resonance contribution in addi-
tion to poor convergence of the heavy quark expansion.
Yet, rare charm decays are of particular importance as they
are sensitive to flavor and CP violation in the up sector,
complementary to K- and B-physics. While the number of
radiative and semileptonic jΔcj ¼ jΔuj ¼ 1 modes within
reach of the flavor facilities BABAR, Belle, LHCb, BESIII,
and Belle II is plenty, it needs dedicated efforts to get
sufficient control over hadronic uncertainties to be able to
test the standard model (SM). A useful strategy known as
well to the presently much more advanced B-physics
program is to custom-build observables “null tests,”
exploiting approximate symmetries of the SM, such as
lepton universality, CP in b → s and c → u transitions, or
SUð3ÞF. This allows one to bypass a precise, first-principle
computation of hadronic matrix elements which presently
may not exist.
In this work, we provide a detailed study of the up-down

asymmetry AUD in the angular distributions of Dþ →
Kþ

1 ð→KππÞγ and Ds → Kþ
1 ð→KππÞγ decays, as a means

to test the SM. Originally proposed for B decays [1,2], the
method is advantageous in charm as one does not have to

rely on prior knowledge of the Kππ spectrum and theory
predictions of the photon polarization. Instead, one can use
the fact that the spectrum is universal and the photon
polarizations of Dþ and Ds decays in the SM are identical
in the U-spin limit [3].
Both DðsÞ → Kþ

1 γ decays are color allowed and are
induced by W-exchange “weak annihilation” (WA), which
is doubly Cabibbo suppressed and singly Cabibbo sup-
pressed in Dþ and Ds decays, respectively. Thus, the ratio
of their branching fractions BðDþ→Kþ

1 γÞ=BðDs→Kþ
1 γÞ≈

jVcd=Vcsj2ðτD=τDs
Þ is about 0.1, taking into account the

different Cabibbo-Kobayashi-Maskawa elements Vij and
lifetimes τDðsÞ [4]. While the Dþ decay is SM-like, the Ds

decay is a flavor changing neutral current (FCNC) process
and is sensitive to physics beyond the SM (BSM) in
photonic dipole operators, which can alter the polarization.
The photon dipole contributions in the SM are negligible
due to the Glashow-Iliopoulos-Maiani (GIM) mechanism.
The photon polarization in the SM in c → uγ is predomi-
nantly left handed; however, in the D-meson decays,
sizable hadronic corrections are expected [3,5–7]. In the
proposal discussed in this work, the polarization is
extracted from the SM-like decay Dþ → Kþ

1 γ. We test
the SM by comparison to the photon polarization in Ds →
Kþ

1 γ decays. Methods to look for new physics (NP) with
the photon polarization in c → uγ transitions have been
studied recently in Refs. [3,8].
The plan of the paper is as follows. General features of

the decays Dþ → Kþ
1 γ and Ds → Kþ

1 γ are discussed in
Sec. II, including angular distributions for an axial-vector
Kþ

1 decaying to Kππ. Predictions in the framework of QCD
factorization [9,10] are given and used to estimate the
Dþ; Ds → Kþ

1 γ branching ratios, which are not measured.
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We stress that the SM null test proposed in this paper does
not rely on theoretical calculations of rare charm decay
amplitudes. We circumvent a SM calculation of the photon
polarization by an experimental determination in a SM-like
decay, Dþ → Kþ

1 γ. In Sec. III, we analyze Kþ
1 → Kþπþπ−

and Kþ
1 → K0πþπ0 decay chains. Phenomenological pro-

files of the up-down asymmetry are worked out in Sec. IV.
In Sec. V, we conclude. Auxiliary information is given in
three Appendixes.

II. DECAYS D+ → K +
1 γ AND Ds → K +

1 γ

In Sec. II A, we give the DðsÞ → K1ð→KππÞγ angular
distribution that allows us to probe the photon polarizations
and perform the null test. In Sec. II B, we discuss dominant
SM amplitudes and estimate the DðsÞ → K1ð1270Þγ and
DðsÞ → K1ð1400Þγ branching ratios. The BSM reach is
investigated in Sec. II C.

A. DðsÞ → K1ð→KππÞγ angular distribution

The DðsÞ → K1γ decay rate, where K1 is an axial-vector
meson, can be written as [11]

ΓDðsÞ ¼
αeG2

Fm
3
DðsÞ

32π4

�
1 −

m2
K1

m2
DðsÞ

�3

ðjADðsÞ
L j2 þ jADðsÞ

R j2Þ; ð1Þ

where L, R refers to the photon’s left-handed, right-handed
polarisation state, respectively. Here, GF denotes Fermi’s

constant, and αe is the fine structure constant. A
DðsÞ
L;R denote

the DðsÞ → K1γ decay amplitudes.
The polarization parameter λ

DðsÞ
γ is defined as

λ
DðsÞ
γ ¼ −

1 − r2DðsÞ

1þ r2DðsÞ

; rDðsÞ ¼
����A

DðsÞ
R

A
DðsÞ
L

���� ð2Þ

and can be extracted from the angular distribution in
DðsÞ → K1ð→KππÞγ decays

d4ΓDðsÞ

dsds13ds23dcosθ

∝fjJ j2ð1þcos2θÞþλ
DðsÞ
γ 2Im½n⃗ ·ðJ⃗ × J⃗ �Þ�cosθgPSDðsÞ ;

ð3Þ

with the phase space factor

PSDðsÞ ¼
1 − s=m2

DðsÞ

256ð2πÞ5mDðsÞs
: ð4Þ

Here, s denotes the Kππ invariant mass squared, needed for
finite width effects; θ is the angle between the normal
n⃗ ¼ ðp⃗1 × p⃗2Þ=jp⃗1 × p⃗2j and the direction opposite to the
photon momentum in the rest frame of the K1; and

sij ¼ ðpi þ pjÞ2 with 4-momenta pi of the final pseudo-
scalars with assignments specified in (18). Note that
p3 refers to the K’s momentum. Furthermore, J is a
helicity amplitude defined by the decay amplitude
AðK1 → KππÞ ∝ εμJ μ with a polarization vector ε of

the K1; see Sec. III for details. J⃗ are the spacial compo-
nents of the 4-vector J . J is a feature of the resonance
decay, and as such, it is universal for Dþ and Ds decays.
From (3), one can define an integrated up-down asym-

metry which is proportional to the polarization parameter,

A
DðsÞ
UD ¼

�Z
1

0

d2Γ
dsd cos θ

d cos θ −
Z

0

−1

d2Γ
dsd cos θ

d cos θ
��

Z
1

−1

d2Γ
dsd cos θ

d cos θ

¼ 3

4

hIm½n⃗ · ðJ⃗ × J⃗ �Þ�κi
hjJ⃗ j2i

λ
DðsÞ
γ ; ð5Þ

where κ ¼ sgn½s13 − s23� for Kþ
1 → K0πþπ0 and κ ¼ 1 for

Kþ
1 → Kþπþπ−. The brackets h…i denote integration over

s13 and s23. The reason for introducing κ is explained in
Sec III. The up-down asymmetry is maximal for maximally

polarized photons, purely left-handed, λ
DðsÞ
γ ¼ −1, or purely

right-handed ones, λ
DðsÞ
γ ¼ þ1.

It is clear from Eqs. (3) and (5) that the sensitivity
to the photon polarization parameter λ

DðsÞ
γ depends on

Im½n⃗ · ðJ⃗ × J⃗ �Þ�. If this factor is zero, or too small, we

have no access to λ
DðsÞ
γ . As the J -amplitudes are the same

for Dþ and Ds, the factor drops out from the ratio

ADþ
UD

ADs
UD

¼ λD
þ

γ

λDs
γ

¼ 1 − r2Dþ

1þ r2Dþ

1þ r2Ds

1 − r2Ds

: ð6Þ

In the SM, this ratio equals 1 in the U-spin limit.
Corrections are discussed in Sec. II B.
In general, there is more than one K1 resonance

contributing to Kππ, such as K1ð1270Þ and K1ð1400Þ.
Note that the phase space suppression for the KJð1400Þ-
family and higher with respect to the K1ð1270Þ is stronger
in charm than in B decays. Therefore, a single- or double-
resonance ansatz with the K1ð1270Þ or K1ð1400Þ is in
better shape than in the corresponding B → K1ð→KππÞγ
decays. In the presence of more than one overlapping K1

resonance, beyond the zero-width approximation, the
relation between the polarization and the up-down asym-
metry gets more complicated than (5). The reason is that,
ultimately, rDðsÞ and the polarization are different for
K1ð1270Þ and K1ð1400Þ; that is, they vary with s, an
effect that can be controlled by cuts. The general formula
can be seen in Appendix C. What stays intact, however,
is the SM prediction, ðADþ

UD=A
Ds
UDÞSM ¼ 1 up to U-spin

breaking.
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B. SM

Rare c → uγ processes can be described by the effective
Hamiltonian [11,12],

Heff ¼ −
4GFffiffiffi

2
p

�X
q¼d;s

V�
cqVuq

X2
i¼1

CiO
q
i þ V�

cdVus C2Ods
2

þ
X6
i¼3

CiOi þ
X8
i¼7

ðCiOi þ C0
iO

0
iÞ
�
; ð7Þ

where the operators relevant to this work are defined as
follows,

Oq¼d;s
1 ¼ ðūLγμTaqLÞðq̄LγμTacLÞ;

Oq¼d;s
2 ¼ ðūLγμqLÞðq̄LγμcLÞ;
Ods

2 ¼ ðūLγμsLÞðd̄LγμcLÞ;
O7 ¼

e
16π2

mcūLσμνcRFμν;

O0
7 ¼

e
16π2

mcūRσμνcLFμν; ð8Þ

with chiral left (right) projectors L (R); the field strength
tensor of the photon, Fμν; and the generators of SUð3Þc, Ta,
a ¼ 1, 2, 3. Contributions to DðsÞ → K1γ decays are
illustrated in Fig. 1.
In the SM, both four-quark operators O1;2 are induced at

tree level and acquire order one coefficients at the charm
quark mass mc. On the other hand, the SM contributions to

the dipole operators Oð0Þ
7 are strongly GIM suppressed,

Ceff
7 ∈ ½−1.51 − 5.51i;−0.88 − 3.25i� × 10−3, at two loop

level [11], and C0
7 ∼mu=mc ≃ 0. The Dþ → Kþ

1 γ and
Ds → Kþ

1 γ decays are therefore expected to be dominated
by the four-quark operators.
We employ QCD factorization methods [10] to estimate

the Dþ; Ds → Kþ
1 γ branching ratios, which presently are

not known otherwise. We stress that we do not rely on these
predictions in the SM null test we are proposing. On the
other hand, the study of QCD factorization amplitudes
in D decays can give quantitative information on the
performance of the framework once data are available,

which is useful in B-physics, where corrections are less
pronounced. The leading SM contribution to DðsÞ → K1γ
decays is shown in the diagram to the left in Fig. 1, with the
radiation of the photon from the light quark of the DðsÞ
meson. The other three WA diagrams are suppressed by
ΛQCD=mc and are neglected. The corresponding WA
amplitudes for D→Vγ have been computed in Ref. [11].
We obtain1

AD
LSM ¼ −

2π2QdfDfK1
mK1

mDλD
V�
cdVusC2

m2
D

m2
D −m2

K1

;

ADs
LSM ¼ −

2π2QdfDs
fK1

mK1

mDs
λDs

V�
csVusC2

m2
Ds

m2
Ds

−m2
K1

; ð9Þ

where Qd ¼ −1=3. We also kept explicitly, i.e., did not
expand in 1=mD, the factors that correct for the kinematic
factors in ΓDðsÞ , see (1), corresponding to the matrix elements
of dipole operators. Due to the low value of the charm scale,
one expects sizable corrections to the 1=mc and αs expan-
sion. Using the range C2 ∈ ½1.06; 1.14� [11], we find

BðDþ → Kþ
1 ð1270ÞγÞ ¼ ½ð1.3� 0.3Þ; ð1.5� 0.4Þ�

× 10−5
�
0.1 GeV

λD

�
2

;

BðDþ → Kþ
1 ð1400ÞγÞ ¼ ½ð1.4� 0.6Þ; ð1.6� 0.7Þ�

× 10−5
�
0.1 GeV

λD

�
2

;

BðDs → Kþ
1 ð1270ÞγÞ ¼ ½ð1.9� 0.4Þ; ð2.2� 0.5Þ�

× 10−4
�
0.1 GeV

λDs

�
2

;

BðDs → Kþ
1 ð1400ÞγÞ ¼ ½ð2.0� 0.9Þ; ð2.4� 1.0Þ�

× 10−4
�
0.1 GeV

λDs

�
2

; ð10Þ

FIG. 1. Weak annihilation (left) and photon dipole (right) contributions to DðsÞ → K1γ decays. In the weak annihilation diagram, the
crosses indicate where the photon can be attached.

1There is a minus sign for axial vectors relative to vector
mesons from the definition of the decay constant.
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where the first (second) value corresponds to the lower
(upper) end of the range for the Wilson coefficient C2. In
each case, parametric uncertainties from the K1 decay
constants (A4),DðsÞ-decay constants from lattice-QCD fD¼
ð212.15�1.45ÞMeV and fDs

¼ð248.83�1.27ÞMeV [13],
masses, lifetimes [4] and Cabibbo-Kobayashi-Maskawa
elements [14] are taken into account and added in quadrature.
The parameter λDðsÞ ∼ ΛQCD is poorly known and constitutes
a major uncertainty in the SMpredictions (10). Data onD →
Vγ branching ratios suggest a rather low value for λD [11].
We use 0.1 GeV as a benchmark value for both D and Ds
mesons.
Despite its V-A structure in the SM, contributions to

right-handed photons are expected, which we denote by

A
DðsÞ
R SM. One possible mechanism responsible for λ

DðsÞ
γ ≠ −1

is a quark loop with an O1;2 insertion and the photon and a
soft gluon attached [15], at least perturbatively also subject
to GIM suppression [11]. Here, we do not need to attempt
an estimate of such effects as we take the SM fraction of
right- to left-handed photons from a measurement of ADþ

UD
in Dþ → Kþ

1 γ decays, which has no FCNC contribution.
(We neglect BSM effects in four-quark operators.)
U-spin breaking between D and Ds meson decays can

split the photon polarizations in the SM. While obvious
sources such as phase space and Cabibbo-Kobayashi-
Maskawa factors can be taken into account in a straightfor-
ward manner, there are further effects induced by hadronic
physics. Examples for parametric input are the decay
constants and λDðsÞ , as in (9). The former has known U-
spin splitting of ∼ 0.15 [13], and for the latter, as not much
is known, we assume that the spectator quark flavor does
not matter beyond that. A measurement of Ds → ρþγ,
which is a Cabibbo and color-allowed SM-like mode with
branching ratios of order 10−3 [11] can put this to the test.
Nominal U-spin breaking in charm decays is Oð0.2–0.3Þ,
e.g., Refs. [16–18]; however, the situation for the photon
polarization is favorable, as only the residual breaking on
the ratio of the left-handed to right-handed amplitudes is
relevant for the null test. In the BSM study, we work with
U-spin breaking between rDþ and rDs within �20%.

C. BSM

Beyond the SM, the GIM suppression does not have to
be at work in general, and the dipole coefficients can be
significantly enhanced. Model-independently, the follow-
ing constraints hold,

jC7j; jC0
7j≲ 0.5; ð11Þ

obtained from D → ρ0γ decays [11,19] and consistent with
limits from D → πþμμ decays [12].
The corresponding NP contributions to Ds → Kþ

1 γ
decays are given as

ADs
LNP ¼ mcC7TK1 ; ADs

RNP ¼ mcC0
7T

K1 ; ð12Þ

where TK1 ¼ TDs→K1

1 ð0Þ is the form factor for theDs → K1

transition, defined in Appendix A.
From radiative B decay data [20]

BðB → K0�ð892ÞγÞ ¼ ð41.7� 1.2Þ × 10−6; ð13Þ

BðBþ → Kþ
1 ð1270ÞγÞ ¼ ð43.8þ7.1

−6.3Þ × 10−6; ð14Þ

BðBþ → Kþ
1 ð1400ÞγÞ ¼ ð9.7þ5.4

−3.8Þ × 10−6; ð15Þ

one infers that TB→K1ð1400Þ
1 =TB→K1ð1270Þ

1 ≃ 0.5 and

TB→K1ð1270Þ
1 =TB→K�ð892Þ

1 ≃1.1. Using TDs→K�ð892Þ
1 ≃0.7 from

a compilation in Ref. [11] points to TK1ð1270Þ ≃ 0.8 and
TK1ð1400Þ≃0.4. We use TK1ð1270Þ ¼ 0.8 andmc ¼ 1.27 GeV
to estimate the BSM reach.
The SM plus NP decay amplitudes read

ADþ
L=R ¼ ADþ

L=RSM; ADs
L=R ¼ ADs

L=RSM þ ADs
L=RNP; ð16Þ

and

rDþ ¼
����A

Dþ
R SM

ADþ
LSM

����; rDs
¼
����mcTK1C0eff

7 þ ADs
RSM

mcTK1Ceff
7 þ ADs

LSM

����: ð17Þ

In Fig. 2, we illustrate BSM effects that show up in λDs
γ

being different from λD
þ

γ for NP in C0
7 with C7 ¼ 0 (green

curves) and in C7 with C0
7 ¼ 0 (red curves), within the

constraints in (11) for theK1ð1270Þ, central values of input,
and for λDðsÞ ¼ 0.1 GeV. We learn that NP in the left- or
right-handed dipole operator can significantly change the
polarization in Dþ decays from the one in Ds decays.
Larger values of λDðsÞ and TK1 and smaller values of fK1

enhance the BSM effects.

III. K1 → Kππ DECAYS

Here, we provide input for the K1 → Kππ helicity
amplitude J , which drives the sensitivity to the photon
polarization in the up-down asymmetry (5). After giving a
general Lorentz decomposition, we resort to a phenom-
enological model for the form factors, which allows us to
estimate J and sensitivities. This section is based on
corresponding studies in B decays [2,21,22]. While it is
relevant for the sensitivity, we recall that knowledge of J in
charm decays is not needed as a theory input to perform the
SM null test.
We consider two K1 states, K1ð1270Þ and K1ð1400Þ,

with spin parity JP ¼ 1þ. For the charged resonance Kþ
1 ,

two types of charge combinations exist for the final state,
Kþ

1 →K0πþπ0 (channel I) andKþ
1 → Kþπþπ− (channel II),
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I∶ Kþ
1 ð1270=1400Þ → π0ðp1Þπ|fflfflfflffl{zfflfflfflffl}

ρþ

þðp2ÞK
zfflfflffl}|fflfflffl{K�þ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
K�0

0ðp3Þ;

II∶ Kþ
1 ð1270=1400Þ → π−ðp1Þπ|fflfflfflffl{zfflfflfflffl}

ρ0

þðp2ÞK

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
K�0

þðp3Þ; ð18Þ

both of which we consider in the following.
The K1 → Kππ decay amplitude can be written in terms

of the helicity amplitude J as

MðK1L;R → KππÞI;II ¼ εμL;RJ
I;II
μ ; ð19Þ

with the K1 polarization vector εμL;R ¼ ð0;�1;−i; 0Þ= ffiffiffi
2

p
.

For a 1þ state, J I;II
μ can be parametrized by two functions,

C1;2, as

J I;II
μ ¼ ½CI;II1 ðs;s13;s23Þp1μ−CI;II2 ðs;s13;s23Þp2μ�BWK1

ðsÞ:
ð20Þ

From here on, assumptions are needed to make progress
on the numerical predictions of the phenomenological
profiles. First, the C1;2-functions are modeled by the

quasi-two-body decays K1 → Kρð→ππÞ and K1 →
K�ð→KπÞπ. Taking into account the isospin factors for
each charge mode, Kþ

1 → K0πþπ0 and Kþ
1 → Kþπþπ−,

CI;II1;2 can be rewritten in the following form [22],

CI1 ¼
ffiffiffi
2

p

3
ðaK�

13 − bK
�

13 Þ þ
ffiffiffi
2

p

3
bK

�
23 þ 1ffiffiffi

3
p aρ12;

CI2 ¼
ffiffiffi
2

p

3
bK

�
13 þ

ffiffiffi
2

p

3
ðaK�

23 − bK
�

23 Þ −
1ffiffiffi
3

p bρ12;

CII1 ¼ −
2

3
ðaK�

13 − bK
�

13 Þ −
1ffiffiffi
6

p aρ12;

CII2 ¼ −
2

3
bK

�
13 þ 1ffiffiffi

6
p bρ12; ð21Þ

where

aVij¼ gVPiPj
BWVðsijÞ½fV þhV

ffiffiffi
s

p ðEi−EjÞ−Δij�;
bVij¼ gVPiPj

BWVðsijÞ½−fV þhV
ffiffiffi
s

p ðEi−EjÞ−Δij�; ð22Þ

with Δij¼ðm2
i−m

2
j Þ

m2
V

½fVþhV
ffiffiffi
s

p ðEiþEjÞ�, Ei¼ðs−si3þm2
i Þ

2
ffiffi
s

p , and

the Breit-Wigner shapes BWVðsijÞ¼ðsij−m2
VþimVΓVÞ−1.

The definitions of the form factors of the K1 → VP
(V ¼ K�; ρ and P ¼ π, K) decay, fV , hV , and decay
constants of the V → PiPj decay, gVPiPj

are given in
Appendix B. The form factors are obtained in the
Quark-Pair-Creation Model (QPCM) [23].
In the presence of two K1 states, K1ð1270Þ and

K1ð1400Þ, this framework can be extended by adding
the contributions weighted by the line shapes

J I;II
μ ¼

X
Kres¼K1ð1270;1400Þ

ξKres
½CI;II1Kres

ðs; s13; s23Þp1μ

− CI;II2Kres
ðs; s13; s23Þp2μ�BWKres

ðsÞ; ð23Þ

and the parameter ξKres
, which allows us to switch the

states on and off individually. Importantly, in a generic
situation with all K1-resonances contributing, ξKres

takes
into account the differences in their production in the weak
decay. Such effects are induced by the K1-dependence of
hadronic matrix elements, such as fK1

mK1
in (9) or TK1 in

(12). For fK1ð1400ÞmK1ð1400Þ=ðfK1ð1270ÞmK1ð1270ÞÞ ∼ 1.1 and
TK1ð1400Þ=TK1ð1270Þ ∼ 0.5, this effect is rather mild. The
ansatz (23), which is an approximation of the general
formula (C3), allows us to compute AUD=λγ as in (5) in
Sec. IV independent of the weak decays. Equation (23)
becomes exact, i.e., coincides with (C3) for universal ξKres

.
Due to isospin, Im½n⃗ · ðJ⃗ × J⃗ �Þ� in the Kþ

1 → K0πþπ0
channel is antisymmetric in the ðs13; s23Þ-Dalitz plane.
This can be seen explicitly by interchanging s13 ↔ s23
in Eq. (21), which implies C1 ↔ C2, and therefore

FIG. 2. BSM reach of λDs
γ for given λD

þ
γ for NP in C0

7 (with
C7 ¼ 0, green curves) and NP in C7 (with C0

7 ¼ 0 red curves),
within (11) for the K1ð1270Þ, central values of input,
fK1

¼ 170 MeV, TK1 ¼ 0.8, and for λDðsÞ ¼ 0.1 GeV. The black
dashed line denotes the SM in the flavor limit, and the gray
shaded area illustrates �20% U-spin breaking between
rDþ and rDs

.
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Im½n⃗ · ðJ⃗ × J⃗ �Þ� ∝ Im½C1C�2� changes sign when crossing
the s13 ¼ s23 line; see the plot to the right in Fig. 3.
Therefore, in order to have a nonzero up-down asymmetry
after s13, s23-integration, one has to define the asymmetry
with hsgnðs13 − s23ÞIm½n⃗ · ðJ⃗ × J⃗ �Þ�i in Eq. (5). In the
Kþ

1 → Kþπ−πþ channel and with only one K1, the border,
at which AUD changes sign, is a straight line in the
ðs13; s23Þ-plane, see the plot to the left in Fig. 3, which
is described by Im½BWK�ðs13ÞBW�

ρðs12Þ� ¼ 0. The loca-
tion of this line in the Dalitz plane depends on s
via s ¼ s12 þ s23 þ s13 þ 2m2

π þm2
K .

IV. UP-DOWN ASYMMETRY PROFILES

In the following, we work out estimates for the up-down
asymmetry in units of the photon polarization parameter
AUD=λγ , as in (5). The crucial ingredient for probing the

photon polarization is the hadronic factor Im½n⃗ · ðJ⃗ × J⃗ �Þ�.
Using (23), and for two interfering resonances a, b, e.g.,
a ¼ K1ð1270Þ and b ¼ K1ð1400Þ, dropping channel I; II
superscripts and kinematic variables to ease notation, it reads

Im½n⃗ · ðJ⃗ × J⃗ �Þ�
¼ −2Im½ξ2aC1aC�2ajBWaj2 þ ξ2bC1bC

�
2bjBWbj2

þ ξaξbðC1aC�2b −C1bC�2aÞBWaBW�
b�jp⃗1 × p⃗2j; ð24Þ

which shows the necessity of having relative strong phases
for a nonzero up-down asymmetry. Such phases can come
from the interference betweenK�π andKρ channels inside of

C1;2, as well as from the interference between the K1

resonances. Due to the larger number of interfering ampli-
tudes (18), we quite generally expect larger phases in the
Kþ

1 → K0πþπ0 channel. While theK1ð1270Þ decays to both
Kρ and K�π, the K1ð1400Þ decays predominantly to K�π.
We therefore expect the pure K1ð1400Þ contribution to
AUD=λγ in the Kþπþπ− channel to be very small.
In Fig. 4, we show themKππ-dependence of jJ⃗ j2 (plots to

the left) andAUD=λγ (plots to the right). The different colors
refer to different ratios of the K1ð1270Þ and K1ð1400Þ
contributions. Specifically, black, red, green, and magenta
lines correspond to ξK1ð1400Þ ¼ 0;þ0.5;þ1, and−1, respec-
tively, for fixed ξK1ð1270Þ ¼ 1. The blue curve refers to only
the K1ð1400Þ being present, with ξK1ð1270Þ ¼ 0. Upper
(lower) plots are for channel II (channel I).
The measured invariant mass mKππ spectrum in Bþ →

Kþπþπ−γ decays [24–26] exhibits the dominant K1ð1270Þ
peak along with a K1ð1400Þ shoulder, plus higher reso-
nances. For our model, these measurements suggest a value
of ξK1ð1400Þ=ξK1ð1270Þ around þ1, see Fig. 4, consistent with
expectations based on small K1-dependence; see Sec. III.
We also note that resonances higher than the K1ð1270Þ
and the K1ð1400Þ, such as the K⋆

2ð1430Þð2þÞ and the
K�ð1410Þð1−Þ, which are not taken into account in our
analysis, contribute. Our predictions therefore oversimplify
the situation for mKππ ≳ 1400 MeV.
Since the up-down asymmetry is sensitive to complex

phases in the K1 decay amplitudes, we test several possible
sources apart from the ones coming from the Breit-Wigner
functions of the K1, K� and the ρ. As expected, it turns out

FIG. 3. Dalitz contour plots of Im½n⃗ · ðJ⃗ × J⃗ �Þ� for Kþπþπ− (plot to the left) and K0πþπ0 (plot to the right) at m2
Kππ ¼ m2

K1ð1270Þ.
Red (blue) areas correspond to positive (negative) values of Im½n⃗ · ðJ⃗ × J⃗ �Þ�. Grey bands represent the K�ðρÞ resonance
½ðmK�ðρÞ − ΓK�ðρÞÞ2; ðmK�ðρÞ þ ΓK�ðρÞÞ2� intervals.
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that such phases have only a negligible effect on the jJ⃗ j2
distributions, and we do not show corresponding plots. The
Belle Collaboration in the analysis of Bþ → J=ψKþπþπ−
and Bþ → ψ 0Kþπþπ− decays signals a nonzero phase,

δρ¼arg

�
MðK1ð1270Þ→ðKρÞSÞ×Mðρ→ππÞ

MðK1ð1270Þ→ðK�πÞSÞ×MðK�→KπÞ
�
; ð25Þ

as δρ ¼ −ð43.8� 4.0� 7.3Þ° [24]. A similar value was
found in the reanalysis of the ACCMOR data [27] by the
BABAR Collaboration, as δρ ¼ ð−31� 1Þ° [28]. Therefore,
we add an additional phase δρ ¼ −40° to the Kρ S-wave2

amplitude and consider it theoretical uncertainty. The effect
of this additional phase inAUD (dashed curves) in compari-
son with the QPCM predictions (solid curves) is presented
in Fig. 5. We also investigate the impact of the additional
phase δD¼arg½MðK1ð1270Þ→ðK�πÞDÞ=MðK1ð1270Þ→
ðK�πÞSÞ�¼90°. The result can be seen in Fig. 6. Note that
δρ and δD vanish in theQPCMandare therefore termedoffset
phases.
We learn from Figs. 4–6 that AUD=λγ profiles with

ξK1ð1400Þ ¼ 0.5, 1 (red and green curves, respectively) can
be of the orders of ∼ 0.05–0.1 (channel II) and ∼ 0.2–0.3
(channel I), which are, as expected, larger for K0πþπ0 than

for Kþπþπ− final states. Adding phenomenological strong
phases such as δρ and δD has a significant effect for channel
II. As zero-crossings can occur it may be disadvantageous
to not use mKππ bins, in particular, for channel II. The
position of the zeros, however, cannot be firmly predicted,
although the one at mKþπþπ− ≃ 1 GeV, whose origin is
discussed at the end of Sec. III, is quite stable, as well as the
one atmKþπþπ− ≃ 1.3 GeV. The latter stems fromK1ð1270Þ
and K1ð1400Þ interference.
Strong phases and, related to this, K1-mixing constitute

the main sources of uncertainty. Figures 4–6 are obtained
for fixed mixing angle θK1

¼ 59°; see Appendix B. Varying
θK1

within its 1σ range, �10°, determined within the
QPCM, as well as δD ∈ ½0; 2π� for δρ ¼ 0;−40°, we find
for the mKππ-integrated up-down asymmetry assuming
K1ð1270Þ dominance the ranges ½−30;þ2�% (channel I)
and ½þ2;þ13�% (channel II). Recall that the latter exhibits
cancellations so that locally the asymmetry can be larger.
Our results are compatible with the findings ½−10;−7�%
(channel I) and ½−13;þ24�% (channel II) of Ref. [29],
which are based on K1ð1270Þ dominance. Note that
Ref. [29] uses κ ¼ sgnðs13 − s23Þ for both channels.
Our prediction for channel II in this convention reads
½−18;þ8�%.
We stress that the estimates are subject to sizable

uncertainties and serve as a zeroth order study to explore
the BSM potential in Ds → K1γ decays. Kππ profiles
from the B-sector can be linked to charm physics, and
vice versa.

FIG. 4. Invariant Kþπþπ− (upper plots) and K0πþπ0 (lower plots) mass dependence of jJ⃗ j2 (plots to the left), multiplied by the four-
body phase space factor (4), and AUD=λγ (plots to the right) for K1ð1270; 1400Þ resonances separately and with relative fraction of the
K1ð1400Þ contribution, ξK1ð1400Þ; see the text for details.

2Due to the smallness of the KρD-wave amplitude, we neglect
its contribution in our study.
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V. CONCLUSIONS

New physics may be linked to flavor, and K, D, and B
systems together are required to decipher its family
structure. Irrespective of this global picture, SM tests in
semileptonic and radiative c → u transitions are interesting
per se and quite unexplored territory today; present bounds
on short-distance couplings are about 2 orders of magni-
tude away from the SM [11,12].
We study a null test of the SM in radiative rare charm

decays based on the comparison of the up-down asymmetry
in Dþ → Kþ

1 ð→KππÞγ, which is SM-like, to the one in
Ds → Kþ

1 ð→KππÞγ, which is a FCNC. The up-down
asymmetry depends on the photon polarization, subject
to BSM effects in the jΔcj ¼ jΔuj ¼ 1 transition.
We find that, model-independently, NP in photonic dipole

operators can alter the polarization of Ds → Kþ
1 ð→KππÞγ

from the SMvalue at order one level; see Fig. 2.We estimate
the proportionality factor between the integrated up-down
asymmetry (5) and the polarization parameter to be up to
Oð5–10Þ%, and 40% in extreme cases, for Kþ

1 → Kþπþπ−

and Oð20–30Þ% for Kþ
1 → K0πþπ0, respectively; see

Figs. 4–6. As in previous studies carried out for B →
Kþ

1 ð→KππÞγ decays, there are sizable uncertainties asso-
ciated with these estimates. Unlike in B-physics, these do
not affect the SM null test. With branching ratios (10) of
BðDþ → Kþ

1 γÞ ofOð10−5Þ and BðDs → Kþ
1 γÞ ofOð10−4Þ,

analyses of up-down asymmetries in the charm sector
constitute an interesting NP search for current and future
flavor facilities.
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APPENDIX A: MATRIX ELEMENTS

The matrix element of the electromagnetic dipole oper-
ator can be parametrized as

FIG. 6. The same as Fig. 5 for δρ ¼ 0 and with dotted lines representing the offset phase δD ¼ arg½MðK1ð1270Þ → ðK�πÞDÞ=
MðK1ð1270Þ → ðK�πÞSÞ� ¼ 90°.

FIG. 5. Invariant Kþπþπ− (plot to the left) and K0πþπ0 (plot to the right) mass dependence of AUD=λγ for K1ð1270;
1400Þ resonances separately and with the relative fraction of the K1ð1400Þ contribution, ξK1ð1400Þ. Solid lines correspond to all
“offset” phases equal to zero, i.e., the pure quark model prediction. Dashed lines represent the offset phase δρ ¼
arg½MðK1ð1270Þ → KρÞS=MðK1ð1270Þ → ðK�πÞSÞ� ¼ −40°.
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hK1ðε; kÞjūσμνð1� γ5ÞqνcjDsðpÞi
¼ TK1

2 ðq2Þ½ε�μðm2
Ds

−m2
K1
Þ − ðε�pÞðpþ kÞμ�

þ TK1

3 ðq2Þðε�pÞ
�
qμ −

q2

m2
Ds

−m2
K1

ðpþ kÞμ
�

� 2TK1

1 ðq2Þiϵμνρσεν�pρkσ; ðA1Þ

with TK1

1 ð0Þ ¼ TK1

2 ð0Þ.
The K1 and DðsÞ decay constants are defined as

hK1ðε; kÞjūγμγ5sj0i ¼ fK1
mK1

ε�μ; ðA2Þ

h0jd̄ðs̄Þγμγ5cjDðsÞðpÞi ¼ ifDðsÞpμ: ðA3Þ

We employ the following values for the K1 decay
constants:

fK1ð1270Þ ¼ ð170� 20Þ MeV;

fK1ð1400Þ ¼ ð175� 37Þ MeV: ðA4Þ

Here, fK1ð1270Þ is extracted from Bðτ−→K1ð1270Þ−ντÞexp¼
ð4.7�1.1Þ×10−3 [4], as

Bðτ→K1ντÞ¼ττ
G2

F

16π
jVusj2f2K1

m3
τ

�
1þ2m2

K1

m2
τ

��
1−

m2
K1

m2
τ

�
2

:

ðA5Þ

The value of fK1ð1270Þ from a light cone sum rule
calculation [30] is consistent with the data-based value
(A4) assuming the SM. The value of fK1ð1400Þ is taken from
Ref. [30]; we added statistical and systematic uncertainties
in quadrature and symmetrized the uncertainties. Bðτ− →
K1ð1400Þ−ντÞexp ¼ ð1.7� 2.6Þ × 10−3 [4] has too large an
uncertainty to allow for an extraction of fK1ð1400Þ but yields
a 90% C.L. upper limit as jfK1ð1400Þj < 235 MeV, consis-
tent with (A4).

APPENDIX B: K1 → VP FORM FACTORS

The hadronic form factors, fV and hV , defined as

MðK1 → VPÞ ¼ εμK1
ðfVgμν þ hVpVμpK1νÞεν�V ; ðB1Þ

are related to the partial S, D wave amplitudes,

fV ¼ −AV
S −

1ffiffiffi
2

p AV
D;

hV ¼ EVffiffiffi
s

p jp⃗V j2
��

1 −
ffiffiffiffiffi
sV

p
EV

�
AV
S þ

�
1þ 2

ffiffiffiffiffi
sV

p
EV

�
1ffiffiffi
2

p AV
D

�
:

ðB2Þ

These partial wave amplitudes are computed in the frame-
work of the 3P0 QPCM [23]. The details of the computation
and expressions for AK�=ρ

S;D can be found in Ref. [22].
The gVPiPj

couplings can be extracted from the partial
decay width of the vector mesons,

ΓðV → PiPjÞ ¼
g2VPiPj

2πM2
V
jp⃗j3 1

3
; ðB3Þ

where jp⃗j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

V−ðmiþmjÞ2Þðm2
V−ðmi−mjÞ2Þ

q
=2mV .

Using the experimental values of the ρ and K� widths,
we find gρππ ¼ −ð5.98� 0.02Þ, gK�Kπ ¼ 5.68� 0.05 with
the relative sign fixed by QPCM; see Ref. [22] for details.
Due to SUð3Þ breaking, the K1ð1270Þ and K1ð1400Þ

mesons are an admixture of the spin singlet and triplet
P-wave states K1Bð11P1Þ and K1Að13P1Þ, respectively,

jK1ð1270Þi ¼ jK1Ai sin θK1
þ jK1Bi cos θK1

; ðB4Þ

jK1ð1400Þi ¼ jK1Ai cos θK1
− jK1Bi sin θK1

; ðB5Þ

with mixing angle θK1
¼ ð59� 10Þ° [22], which has been

obtained from K1 → VP decay data.

APPENDIX C: GENERAL FORMULA FOR THE
UP-DOWN ASYMMETRY

The reduced amplitude of DðsÞ → Kresγ → Kππγ decays
can be written as the product of the weak decay amplitude

M
DðsÞ;Kres

L=R and strong decay amplitude J Kres
μ as

G
DðsÞ
μ;L=R ¼

X
Kres

M
DðsÞ;Kres

L=R J Kres
μ : ðC1Þ

Multiplying G
DðsÞ
μ;L=R by the photon polarization vector and

integrating over azimuthal angles, we obtain the general
formula for modulus squared of the matrix element,

jMDðsÞ j2 ∝ ðjG⃗DðsÞ
L j2 þ jG⃗DðsÞ

R j2Þð1þ cos2θÞ
− 2Im½n⃗ · ðG⃗DðsÞ

L × G⃗
DðsÞ�
L − G⃗

DðsÞ
R × G⃗

DðsÞ�
R Þ� cos θ:

ðC2Þ
This expression holds even beyond (C1), such as for
nonresonant contributions, as long as the Kππ system is
in the same spin, parity state as Kres, 1þ. The up-down
asymmetry then reads

A
DðsÞ
UD ¼ ½R 1

0 −
R
0
−1� d

2ΓDðsÞ
dsdcosθdcosθR

1
−1

d2ΓDðsÞ
dsdcosθdcosθ

¼−
3

4

hIm½n⃗ · ðG⃗DðsÞ
L × G⃗

DðsÞ�
L − G⃗

DðsÞ
R × G⃗

DðsÞ�
R Þ�i

hjG⃗DðsÞ
L j2þjG⃗DðsÞ

R j2i
: ðC3Þ
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