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We study the minimal type-III seesaw model in which we extend the standard model by adding two
SUð2ÞL triplet fermions with zero hypercharge to explain the origin of the nonzero neutrino masses. We
show that the naturalness conditions and the limits from lepton flavor violating decays provide very
stringent bounds on the model parameters along with the constraints from the stability/metastability of the
electroweak vacuum. We perform a detailed analysis of the model parameter space including all the
constraints for both normal as well as inverted hierarchies of the light neutrino masses. We find that most of
the regions that are allowed by lepton flavor violating decays and naturalness fall in the stable/metastable
region depending on the values of the standard model parameters.
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I. INTRODUCTION

The discovery of the Higgs boson [1,2] at the Large
Hadron Collider (LHC) has confirmed the mode of gen-
eration of the masses of the fundamental particles via the
mechanism of electroweak (EW) symmetry breaking and
has put the standard model (SM) on a solid foundation.
However, despite its success in explaining most of the
experimental data, the SM cannot address certain issues.
One of the most important experimental observations that
necessitates the extension of the SM is the phenomenon of
neutrino oscillation. The solar, atmospheric, reactor, and
accelerator neutrino oscillation experiments have shown
that the three neutrino flavors mix among themselves, and
they have very small but nonzero masses, unlike as
predicted in the SM.
Among the various beyond the standard model scenarios

that are proposed in the literature to explain the small
neutrino masses, the most popular one is the seesaw
mechanism. This is based on the assumption that the
lepton number is violated at a very high energy scale by
some heavier particles. The tree level exchange of these

heavy particles generates the lepton number violating
dimension-five Weinberg operator κLLHH [3]. This gives
rise to small neutrino masses once the EW symmetry is
broken. Here, L and H are the lepton and Higgs doublets,
respectively, and κ is a proportionality constant with
negative mass dimension and is inversely proportional to
the energy scale at which the new physics enters.
Depending on the nature of the heavy particles added
for the ultraviolet completion, one can have three types of
seesaw mechanisms. If the seesaw is generated by adding
extra neutral fermionic singlets, it is called a type-I seesaw
mechanism [4–7]. Similarly, a type-II seesaw mechanism is
generated by adding a triplet scalar [8–11] to the SM,
whereas the addition of fermionic triplets gives rise to the
type-III seesaw mechanism [12]. It is known that in order to
get a neutrino mass of the sub-eV scale, one has to take the
new particles to be extremely heavy or else take the new
couplings to be extremely small. This spoils the testability
of the theory. However, there are various TeV scale
extensions of the canonical scenarios proposed in the
literature [13–17], which can be probed at the collider
experiments (for recent reviews, see, for instance, [18,19]).
In the case of type-I and type-III seesaw models, one can
also have large Yukawa couplings and new fermions of
masses in the TeV scale by choosing some particular
textures of the neutrino Yukawa coupling matrix [20–22].
An important aspect to be considered while studying the

seesaw models is the issue of naturalness. It is well known
that the Higgs mass gets large corrections from the higher
order loop diagrams due to its self-interaction as well as the
couplings with gauge bosons and fermions. The theory is
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perceived unnatural if a severe fine-tuning between the
quadratic radiative corrections and the bare mass is needed
to bring down Higgs mass to the observed scale. It is well
known that although the dimensional regularization can
throw away the quadratic divergences, the presence of other
dangerous logarithmic and finite contributions can cause a
similar naturalness problem. In the case of seesaw models
in which the new particles couple to the SM Higgs, this
naturalness problem is enhanced [23–33]. Demanding the
correction to the Higss mass to be of the order of TeV can
bring down the seesaw scale.
Another aspect of low-scale seesaw models which has

received attention lately is the implications of such scenar-
ios for the stability of the EW vacuum. It is to be noted that
the observed value of the Higgs mass of 125.7� 0.3 GeV
is quite intriguing from the viewpoint of the EW vacuum
stability. The measured values of the SM parameters,
especially the top mass Mt and strong coupling constant
αs, suggest that an extra deeper minima resides near the
Planck scale, threatening the stability of the present EW
vacuum [34,35], since this may tunnel into that true
(deeper) vacuum. The decay probability has been calcu-
lated using the state-of-the-art next-to-next-to-leading-
order corrections, and it suggests that the present EW
vacuum is metastable at 3σ, which means that the decay
time is greater than the age of the Universe. It is well known
that the scalar couplings pull the vacuum towards stability,
whereas the Yukawa couplings push it towards instability.
Thus, in the case of seesaw models, the Yukawa couplings
as well as the masses of the new fermions will also get
bounded by the constraints from the stability/metastability
of the EW vacuum [36–49]. In particular, in Ref. [50], the
authors have discussed the implications of vacuum stability
and gauge-Higgs unification in the context of the type-III
seesaw model, and Ref. [45] has discussed the EW vacuum
metastability in the context of type-I as well as type-III
seesaw models. In Ref. [32], the authors have studied the
implications of naturalness and vacuum stability in a
minimal type-I seesaw model. Similarly, the naturalness
and vacuum stability in the case of the type-II seesaw
model have been studied in Ref. [31].
In this paper, we study the consequences of naturalness

in the minimal type-III seesaw model, in which we extend
the SM by adding two SUð2ÞL triplet fermions with zero
hypercharge to explain the origin of the nonzero neutrino
masses and mixing. To give mass to all three light active
neutrinos, one needs three triplet fermions. Hence, in the
minimal type-III seesaw model, the lightest active neutrino
will be massless. We use the Casas-Ibarra (CI) paramet-
rization for the neutrino Yukawa coupling matrix [51,52],
and by choosing the two triplets to be degenerate, we have
only three independent real parameters, namely, the mass
of the triplet fermions and a complex angle in the CI
parametrization. We study and constrain the bounds on
these model parameters by demanding that the theory be

natural. In addition, we also study the bounds on the model
from the EW vacuum metastability as well as lepton flavor
violating (LFV) decays.
The rest of the paper is organized as follows: In Sec. II,

we review the minimal type-III seesaw model and the
parametrization used for our studies. In Sec. III, we discuss
the implications of naturalness in the minimal type-III
seesaw model, and in Sec. IV, we discuss the constraints
from the LFV decays. After this, we discuss the effective
Higgs potential in the presence of the extra fermion triplets
and the renormalization group (RG) evolution of the
different couplings and present a detailed discussion of
the results. Finally, we summarize in Sec. VI.

II. THE MINIMAL TYPE-III SEESAW MODEL

We extend the standard model with two fermionic triplets
ΣRi

, i ¼ 1, 2 having zero hypercharge, which can be
represented as

ΣR ¼
�
Σ0
R=

ffiffiffi
2

p
Σþ
R

Σ−
R −Σ0

R=
ffiffiffi
2

p
�
≡ Σi

Rσ
iffiffiffi

2
p ; ð2:1Þ

where Σ�
R ¼ ðΣ1

R ∓ iΣ2
RÞ=

ffiffiffi
2

p
. The parts of the Lagrangian

that are relevant to neutrino mass generation are

−LΣ ¼ Φ̃†Σ̄R

ffiffiffi
2

p
YΣLþ 1

2
Tr½Σ̄RMΣc

R� þ H:c:; ð2:2Þ

where the generation indices have been suppressed. In the
above equation, L ¼ ðνll−ÞT is the lepton doublet and Φ̃ ¼
iσ2Φ� (σ2 is the second Pauli matrix). For simplicity, we
consider the scenario in which the Majorana mass matrixM
is proportional to the identity matrix so that the heavy
fermions have degenerate masses denoted byMΣ. Once the
Higgs field Φ acquires a vacuum expectation value (VEV),
the neutral fermion mass matrix can be written as

Mν ¼
�

0 MT
D

MD M

�
: ð2:3Þ

Here, MD ¼ YΣv=
ffiffiffi
2

p
, where v ¼ 246 GeV is the VEV of

the SM Higgs. The given mass matrix can be diagonalized
by a unitary matrix U0 as

UT
0MνU0 ¼ Mdiag

ν ¼ diagðm1; m2; m3;MΣ;MΣÞ; ð2:4Þ

whereM is the mass of the heavy triplet fermions. Note that
the lightest neutrino is massless in this scenario. We can
write the matrix U0 as [53]
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U0 ¼ WUν ≃

0
B@ ð1 − 1

2
ϵÞU M†

DðM−1Þ�UR

−M−1MDU ð1 − 1
2
ϵ0ÞUR

1
CA

≡
�
UL T

S UH

�
: ð2:5Þ

Here, W brings the full 5 × 5 mass matrix to the block
diagonal form, and U and UR diagonalize the light and
heavy neutrino mass matrices, respectively. In our case, UR
is a 2 × 2 identity matrix. UL is the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix with a small
nonunitary correction. The nonunitarity is characterized
by ϵ and ϵ0 and is given by

ϵ ¼ TT† ¼ M†
DðM−1Þ�M−1MD;

ϵ0 ¼ SS† ¼ M−1MDM
†
DðM−1Þ�: ð2:6Þ

In the limitM ≫ MD, the light neutrino mass matrix can be
written as

mlight ¼ −MT
DM

−1MD: ð2:7Þ

We use the Casas-Ibarra parametrization [51,52] for the
Yukawa coupling matrix YΣ, such that the constraints on the
light neutrino mixing angles as well as the mass squared
differences as predicted from the oscillation data are
automatically satisfied. In this parametrization,

YΣ ¼
ffiffiffi
2

p

v

ffiffiffiffiffiffi
DΣ

p
R

ffiffiffiffiffiffi
Dν

p
U†; ð2:8Þ

whereDΣ ¼ diagðMΣ;MΣÞ,Dν ¼ diagðm1; m2; m3Þ, and R
is an arbitrary complex 2 × 3 orthogonal matrix which
parametrizes the information that is lost in the decoupling
of the triplet fermions. The light neutrino masses for the
normal hierarchy (NH) and inverted hierarchy (IH) are
given by

m1 ¼ 0; m2¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

q
; m3¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

q
ðNHÞ

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

q
; m2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

solþΔm2
atm

q
; m3¼ 0ðIHÞ:

ð2:9Þ

Weuse the followingparametrizationof thePMNSmatrixU,

U ¼

0
B@

c12c13 s12c13 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

1
CAP; ð2:10Þ

where cij ¼ cos θij, sij ¼ sin θij, and the phase matrix P ¼
diagðe−iα; eþiα; 1Þ contains the Majorana phases.
In our numerical analysis, we have used the values of

mass squared differences and mixing angles in the 3σ
ranges as shown in Table I [54] and varied the phases δ and
α between −π toþπ. It has been shown in Ref. [52] that the
matrix R can be parametrized as

R ¼

8>>>>><
>>>>>:

�
0 cos z ζ sin z

0 − sin z ζ cos z

�
ðNHÞ;

�
cos z ζ sin z 0

− sin z ζ cos z 0

�
ðIHÞ;

ð2:11Þ

where z is a complex parameter and ζ ¼ �1. We fix the
value of ζ to beþ1 for our entire analysis, and this does not
change any of our results. Thus, the only free parameters in
the model are the mass of the triplet fermions MΣ and the
complex number z. z can take any value in the complex
plane.
Note that in this model, the charged components of the

triplet fermions mix with the SM charged leptons. This is
governed by the Lagrangian [55]

L¼−ð l̄R Ψ̄R Þ
�

ml 0ffiffiffi
2

p
MD M

��
lL
ΨL

�
þH:c:; ð2:12Þ

where we have defined

Ψ ¼ Σþc
R þ Σ−

R: ð2:13Þ

The charged fermion mass matrix given in the above
equation can be diagonalized by a biunitary transformation.
Since the additional heavy triplet fermions have theSUð2Þ

gauge interactions, they can be produced and detected
in the collider experiments through the process(es) pp →
ΣþΣ− → mjþ nlþ ET (m, n are integers). The collider
study of extra triplet fermions was first explored in
Ref. [56] in the context of an SUð5Þ grand unified model.

TABLE I. The oscillation parameters in their 3σ range for both
NH and IH as given by the global analysis of neutrino oscillation
data with three light active neutrinos [54].

Parameter NH IH

Δm2
21=10

−5 eV2 6.80 → 8.02 6.80 → 8.02
Δm2

3l=10
−3 eV2 þ2.399 → þ93 −62 → −2.369

sin2θ12 0.272 → 0.346 0.272 → 0.346
sin2θ23 0.418 → 0.613 0.435 → 0.616
sin2θ13 0.01981 → 0.02436 0.02006 → 0.02452
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Since then, a lot of work has been done on the phenom-
enology of the type-III seesaw model in the context of the
LHC [57–64]. The experimental searches performed by the
CMS and ATLAS Collaborations have put lower bounds on
the triplet masses. CMS [65] has set a lower limit of 430GeV
on the triplet mass with the data from the

ffiffiffi
s

p ¼ 13 TeV run,
whereas depending on the various scenarios studied, the
ATLAS results rule out masses in the range below 325–
540GeV [66]. Recently, the authors ofRef. [67] have studied
the phenomenology of the type-III seesaw model in the
context of high energy eþe− colliders.

III. NATURALNESS

One of the problems associated with the high-scale
seesaw models is that the associated heavy particles give
very large corrections to the Higgs mass making the theory
unnatural. Here, we shall see the implications of natural-
ness in the context of the type-III seesaw scenario. The tree
level SM Higgs potential is given by

V ¼ −μ2ðΦ†ΦÞ þ λðΦ†ΦÞ2; ð3:1Þ

where

Φ ¼ 1ffiffiffi
2

p
�

Gþ

vþ hþ iG0

�
: ð3:2Þ

Here, the VEV v ¼ 246 GeV, and this will give the
physical Higgs particle with tree level mass as
m2

h ¼ 2λv2. For the naturalness of the Higgs mass, the
heavy right-handed neutrino loop corrections to the mass
parameter μ should be smaller than OðTeV2Þ. In the MS
scheme, the correction is given by

δμ2 ≈
3

4π2
Tr½Y†

ΣD
2
ΣYΣ�: ð3:3Þ

Note that we have taken the quantity ðln½MΣ
μR
� − 1

2
Þ to be

unity (where μR is the renormalization scale). Now, using
the parametrization in Eq. (2.8), we get

δμ2 ≈
3

4π2
2

v2
Tr½DνR†D3

ΣR�

¼ 3M3
Σ

2π2v2
coshð2Im½z�Þ

×

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
ðNHÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffi

Δm2
atm

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δm2
sol þ Δm2

atm

p ðIHÞ:
ð3:4Þ

From the above expressions, we can see that the only
unknown parameters are MΣ and Im½z�.
In Fig. 1, we have presented the naturalness contours in

the Im½z�-MΣ plane for both NH and IH. In the shaded
regions, δμ2 is demanded to be less than p% of 1 TeV2

where p ¼ 500, 100, 50, 20, 10, 5, 1 (from top to bottom).
The unshaded regions are disfavored by naturalness. From
these plots, we can see that higher the mass of the
triplet, the smaller the allowed values of the Im½z�. For
instance, demanding δμ2 < ð1 TeVÞ2 implies that MΣ ≤
1.84 × 107 GeV for Im½z� ¼ 0 and MΣ ≤ 3 × 105 GeV for
Im½z� ¼ 6. These bounds become even more stringent as
we demand δμ2 to be smaller as can be seen from the plots.
Also, from Eq. (3.4), we can see that the δμ2 values for NH
and IH differ roughly by a factor of one-half (Δm2

atm ≫
Δm2

sol). This effect can be seen from the fact that for a given
value of ImðzÞ, the maximum allowed value of MΣ for NH
is slightly higher than that for IH.

(a) (b)

FIG. 1. Naturalness contours in the Im½z�-MΣ plane. Plot (a) is for NH, and plot (b) is for IH. In the shaded regions, δμ2 is less than p%
of 1 TeV2 where p ¼ 500, 100, 50, 20, 10, 5, 1 (from top to bottom). The unshaded regions are disfavored by naturalness.

GOSWAMI, VISHNUDATH, and KHAN PHYS. REV. D 99, 075012 (2019)

075012-4



IV. CONSTRAINTS FROM THE
LEPTON FLAVOR VIOLATION

The decay widths and the branching ratios for the various
lepton flavor violating decays in the context of the type-III
seesawmodel have beenworked out in Ref. [55]. Thismodel
can have the decays μ → eγ and τ → lγ at the one-loop level
and μ → 3e as well as the τ → 3l processes at the tree level
due to the charged lepton mixing. However, among all the
LFVdecays, themost stringent bound is the one coming from
the μ to e conversion in the nuclei. The μ → e conversion rate
to the total nucleon muon capture rate ratio (Rμ→e) puts a
bound on ϵeμ. For the 48

22Ti nuclei, we have [68]

Rμ→e < 4.3 × 10−12; ð4:1Þ

and the bound from this is the most stringent among all the
LFV bounds in the triplet fermion model and is given as [55]

ϵeμ < 1.7 × 10−7: ð4:2Þ

We present the constraints on z and MΣ from this bound
in Fig. 2 for both the NH and IH. The regions above the
blue dotted line are disallowed by the LFV bounds,
whereas the regions to the right of the purple, magenta,
and brown solid lines are disallowed by the naturalness
bounds depending on the naturalness condition used. We
can clearly see that the naturalness bounds restrict larger
values ofMΣ, whereas the LFV bound constrains the larger
values of ImðzÞ corresponding to the smaller values ofMΣ.
The unshaded region is the one that is allowed by both LFV
as well as the naturalness bounds. One can notice from
these plots that for both the NH and IH, the maximum
allowed value of ImðzÞ is ∼10, which corresponds to a

triplet mass of ∼104 GeV. In generating these plots, we
have varied the light neutrino mass squared differences and
mixing angles in their 3σ ranges, the Dirac and Majorana
phases are varied in the range 0 − π, and we have presented
the most stringent bounds.

V. VACUUM STABILITY

In this section, we discuss how the stability of the EW
vacuum is modified in the presence of the extra fermionic
triplets if we assume that there is no other new physics up to
the Planck scale. It is well known that if we have extra
fermions, they tend to destabilize the EWvacuum.We aim to
quantify this effect and obtain constraints in the context of the
model outlined. In the following, we discuss the theoretical
background and tools needed in the stability analysis of the
EWvacuumup to thePlanck scale such as theHiggs effective
potential which determines the instability, metastability,
stability, andperturbative-unitary scales, the propermatching
conditions which give the initial values of the model
parameters at theEWscale, theRGEsdelineating the running
of the couplings, and the other parameters from the EW scale
up to the Planck scale MPl.
The SM one-loop effective Higgs potential in the MS

scheme and the Landau gauge can be written as

VSM
1 ðhÞ ¼

X5
i¼1

ni
64π2

M4
i ðhÞ

�
ln
M2

i ðhÞ
μ2ðtÞ − ci

�
; ð5:1Þ

where the index i is summed over all SM particles,
M2

i ðhÞ ¼ κiðtÞh2ðtÞ − κ0iðtÞ and ch;G;f ¼ 3=2, cW;Z ¼ 5=6
[69–73]. ni is the number of degrees of freedom of the
particle fields. The values of ni, κi, and κ0i are given in

(a) (b)

FIG. 2. Bounds on z from lepton flavor violation (blue dotted line) and naturalness (purple, magenta, and brown solid lines). Plot (a) is
for NH, and plot (b) is for IH. The unshaded region is allowed by both LFV as well as naturalness bounds.
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Eq. (4) in [69]. The above contribution comes with a
positive sign for the gauge and scalar bosons, whereas
it is negative for the fermion fields. The running
energy scale μ is related to a dimensionless parameter t as
μðtÞ ¼ MZ expðtÞ.
Following the method outlined in [38,49,74], the addi-

tional contribution to the one-loop effective potential from
the fermionic triplet is given as

VΣ
1 ðhÞ ¼ −

3ðM†
DðhÞMDðhÞÞ2ii
32π2

�
ln
ðM†

DðhÞMDðhÞÞii
μ2ðtÞ −

3

2

�

−
3ðMDðhÞM†

DðhÞÞ2jj
32π2

�
ln
ðMDðhÞM†

DðhÞÞjj
μ2ðtÞ −

3

2

�
;

ð5:2Þ

where MDðhÞ ¼ YΣffiffi
2

p h, and i, j run over the three light
neutrinos and the two triplet fermions, respectively. In this
analysis, we use the two-loop contributions to the effective
potential for the SM particles, whereas the contribution due
to the extra fermion triplet is considered up to one loop
only. For high field value hðtÞ ≫ v, the effective potential
can be approximated as VSMþΣ

eff ¼ λeffðhÞ h44 . The one- and
two-loop SM expressions for λeffðhÞ can be found in
Ref. [35]. The contribution due to the extra fermionic
triplet is obtained as

λΣeffðhÞ ¼ −
3e4ΓðhÞ

32π2

�
ðY†

ΣYΣÞ2ii
�
ln
ðY†

ΣYΣÞii
2

−
3

2

�

þ ðYΣY
†
ΣÞ2jj

�
ln
ðYΣY

†
ΣÞjj

2
−
3

2

��
; ð5:3Þ

where the factor ΓðhÞ ¼ R
h
Mt

γðμÞd ln μ indicates the wave
function renormalization of the Higgs field. Here, γðμÞ is
the anomalous dimension of the Higgs [69–73], the
contribution to which from the fermion triplet at one loop
is 3

2
TrðYΣY

†
ΣÞ. We also assume that μ ¼ h. In this choice, all

the running coupling constants ensure faster convergence
of the perturbation series of the potential [75].
We compute the RG evolution of all the couplings to

analyze the Higgs potential up to the Planck scale. We first
calculate all the SM couplings at the top mass scale Mt,
taking care of the threshold corrections [76–79]. We use
one-loop RGEs to calculate SUð2Þ and Uð1Þ gauge
couplings g2ðMtÞ and g1ðMtÞ.1 For the SUð3Þ gauge
coupling g3ðMtÞ, we use three-loop RGEs considering
contributions from the five quarks and the effect of the
sixth; i.e., the top quark has been taken using an effective
field theory approach. We also include the leading term in
the four-loop RGE for αs. The mismatch between the top

pole mass and the MS renormalized coupling has been
taken care of by using the threshold correction

ytðMtÞ ¼
ffiffi
2

p
Mt
v ð1þ δtðMtÞÞ, where δtðMtÞ is the matching

correction for yt at the top pole mass. We use λðMtÞ ¼
M2

H
2v2 ð1þ δHðMtÞÞ for the Higgs quartic coupling λ. To
calculate this at the scale Mt, we have included the
QCD corrections up to three loops [80], electroweak
corrections up to one loop [81,82], and OðααsÞ corrections
to the matching of top Yukawa and top pole mass [77,83].
We have reproduced the SM couplings at Mt as in
Refs. [35,79] by using these threshold corrections. We
evolve them up to the heavy fermionic mass scale using the
SM RGEs [84–87]. The extra contributions due to the
femionic triplets are included after the threshold heavy
fermionic mass scale [88]. Then we evolve all the couplings
up to the Planck scale to find the position and depth of the
new minima at the high scale.
It is well known that if the EW vacuum of the Higgs

potential is not the global minimum, then a quantum
tunneling to the true vacuum may occur. This happens
because the RG running can make the quartic coupling λ
negative at a high energy scale. However, this does not pose
a threat to the theory if the decay time is greater than the
lifetime of the Universe τU ∼ 1017 sec [89], and in such a
case, we say that the EW vacuum is metastable. The decay
probability of the EW vacuum to the true vacuum at the
present epoch has been computed using the bounce
solution of the Euclidean equations of motion of the
Higgs field [35,90,91],

P0 ¼ 0.15
Λ4
B

H4
e−SðΛBÞ; where SðΛBÞ ¼

8π2

3jλeffðΛBÞj
:

ð5:4Þ

Here, H is the Hubble constant, and SðΛBÞ is the minimum
action of the Higgs potential at the bounce size R ¼ Λ−1

B ,
which gives the dominant contribution to the tunneling
probability P0. The metastable EW vacuum implies that the
decay probability P0 < 1. This can be translated into a
bound on the Higgs effective quartic coupling λeff , which
can be read as [79,91,92]

λeff > λeff minðΛBÞ ¼
−0.06488

1 − 0.00986 ln ðv=ΛBÞ
: ð5:5Þ

λeffðΛBÞ < λeff minðΛBÞ corresponds to the unstable region,
and the EW vacuum is absolutely stable at λeffðΛBÞ > 0.
Also, the theory violates the perturbative unitarity at
λeffðΛBÞ > 4π

3
[93].

In Fig. 3, we show the running of the Higgs quartic
coupling for four different sets of benchmark points for the
minimal type-III seesaw model. In the left plot, the purple
and gray lines correspond to Mt ¼ 171.3 and 174.9 GeV,

1Our result will not change significantly even if we use the
two-loop RGEs for g1 and g2.
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respectively, with the value of Tr½Y†
ΣYΣ�12 fixed as 0.283 and

MΣ ¼ 107 GeV. For the first case, we can see that the
Higgs quartic coupling λ remains positive up to the Planck
scale; i.e., the EW vacuum is absolutely stable up to the
MPl. For Mt ¼ 174.9 GeV, we can see that λ ∼ λeff
becomes negative at the energy scale ∼109 GeV, the
so-called instability scale ΛI, and remains negative up to
MPl. However, we find that the beta function of the Higgs
quartic coupling βλð≡dVðhÞ=dhÞ becomes zero around the
energy scale ∼1017 GeV, which implies that there is an
extra deeper minima at that scale, and we have checked that
the EW vacuum corresponding to this point is metastable.
Similarly, in the right plot, we have given the running of the
quartic coupling for two different values of Tr½Y†

ΣYΣ�12 with
fixed Mt and MΣ. We notice that as the value of the
Tr½Y†

ΣYΣ� is increased from 0.283 to 0.636, the EW vacuum
shifts from the metastable to the unstable region. In this
way, the conditions of stability and metastability can put
constraints on the allowed values of Tr½Y†

ΣYΣ�12.

A. Phase diagram of vacuum stability

As we have already discussed, the present central values
of the SM parameters imply that an extra deeper minima
exists near the Planck scale. Hence, there is a possibility
that the EW vacuum might tunnel into that true (deeper)
vacuum. In the type-III seesaw model, depending upon the
new physics parameter space, the stability of the EW
vacuum is modified compared to that in the SM, and there
are two effects contributing to this. The first one is the
negative contribution to the running of λ as well as to
the effective Higgs potential due to the triplet fermion
Yukawa coupling [see Eqs. (5.3) and (A1)]. The second one

is through the modified RGE for the SUð2Þ gauge coupling
g2 [Eq. (A3)], which in turn gives a positive contribution to
the running of λ. These effects have also been discussed
in Ref. [45].
In Fig. 4, we have given the phase diagram in the

Tr½Y†
ΣYΣ�12 −MΣ plane for the central values of the SM

parameters Mt ¼ 173.1, Mh ¼ 125.7, and αs ¼ 0.1184.
Here, the horizontal red solid line separating the unstable
region (red) and the metastable (yellow) region is obtained
when βλðμÞ¼0 along with λðμÞ ¼ λminðΛBÞ. From this plot,
we can see that the parameter space with Tr½Y†

ΣYΣ�12 ≳ 0.64

FIG. 3. RG evolution of the Higgs quartic coupling. The plot on the left side shows the running of λ for different values of Mt with
fixed MΣ and Tr½Y†

ΣYΣ�12, whereas the plot on the right side shows the running of λ for different values of Tr½Y†
ΣYΣ�12 with MΣ and Mt

fixed. For both plots, we have taken MΣ1 ¼ MΣ2 ¼ MΣ ¼ 107 GeV.

FIG. 4. The phase diagram in the Tr½Y†
ΣYΣ�12-MΣ plane for NH.

Here, we have used the central values of Mt, Mh, and αs. The
color coding of the lines (blue, purple, magenta, and brown) is
the same as in Fig. 2. The horizontal red solid line separates the
unstable and the metastable regions of the EW vacuum.
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with the heavy fermion mass scale 200–108 GeV is
excluded by instability of the EW vacuum. The gray
dashed line corresponds to the points for which the beta
function of the quartic coupling λ is zero at the Planck
scale; i.e., the second minima is situated at that scale. Also,
we can see a very small green region for the lower values of
masses and couplings for which the EW vacuum is
absolutely stable. However, this region is disfavored from
the LFV constraints as shown by the blue dotted line. The
region to the right of this line is allowed by the current
bounds from LFVas given in Eq. (4.2). We have also given
the bounds from naturalness in these figures as shown by
the slanted solid lines corresponding to three different
values of δμ2. Thus, one can see that the area that is allowed
both by naturalness as well as LFV falls in the stability/
metastability region.
In Fig. 5, we have again plotted the phase diagram in the

Tr½Y†
ΣYΣ�12-MΣ plane for the NH, but with different values

of SM parameters. The panel on the left (right) side gives
the most liberal (stringent) bound from vacuum stability
with minimum (maximum) value of Mt and maximum
(minimum) values of Mh and αs from their allowed 3σ
ranges. Clearly, with the smallest value of Mt and the
largest values of Mh and αs, the stability region increases,
as is shown by the green region in the panel on the left-hand
side. On the other hand, in the right panel with the highest
value of Mt and lowest values of Mh and αs, no region of
stability is found. In this case, the parameter space with
Tr½Y†

ΣYΣ�12 > 0.68 (0.58) is disfavored from the instability
condition in the left (right) panels.
Figure 6 gives the phase diagram in the Mt-Tr½Y†

ΣYΣ�12
plane for the NH with the central values of Mh and αs. The
dashed lines separate the metastable and the unstable

regions, whereas the solid lines separate the stable and
the metastable regions. The red, blue, and purple colored
lines correspond to the representative values of MΣ as 104,
107, and 1012 GeV, respectively. The two vertical lines give
the LFV and the naturalness (δμ2 < 1 TeV2) bounds for

FIG. 5. The phase diagram in the Tr½Y†
ΣYΣ�12-MΣ plane for NH. The plot on the left (right) side gives the most liberal (stringent) bound

from vacuum stability with minimum (maximum) value of Mt and maximum (minimum) values of Mh and αs. The color coding of the
lines (blue, purple, magenta, and brown) is the same as in Fig. 2. The horizontal red solid line separates the unstable and the metastable
regions of the EW vacuum.

FIG. 6. The phase diagram in the Mt-Tr½Y†
ΣYΣ�12 plane for the

NH for the central values ofMh and αs. The dashed lines separate
the metastable and the unstable regions, whereas the solid lines
separate the stable and the metastable regions. The three colors
are for three different values of MΣ. The two vertical lines give
the LFV and naturalness bounds for MΣ ¼ 104 GeV, and the
region on the left of the LFV line (red) is allowed by both.
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MΣ ¼ 104 GeV, and the allowed region is to the left of the
red vertical line. The horizontal shaded gray region denotes
the 3σ allowed range ofMt. It is seen that in this region, the
vacuum is metastable for lower values of Tr½Y†

ΣYΣ�12, while
for higher values, the vacuum is unstable. Once we consider
the bounds from LFV, Tr½Y†

ΣYΣ�12 is less than 0.18 and the
vacuum is in the metastable region.
In Fig. 7, we have shown the phase diagram in the

Mt-Mh plane for MΣ ¼ 104 GeV. The red dashed lines
correspond to the 3σ variation in αs. The figures on the left-
and right-hand sides correspond to Tr½Y†

ΣYΣ�12 ¼ 0.20 and
0.40, respectively. The ellipses correspond to the allowed
values ofMt andMh at 1σ, 2σ, and 3σ. From this figure, we
can clearly see that higher values of Mt and YΣ affect the
stability of the EW vacuum negatively, whereas a higher
value of Mh has a positive effect on the stability. For
Tr½Y†

ΣYΣ�12 ¼ 0.20, some areas of the parameter space fall in
the stable region when Mt and Mh are taken in the 3σ

ranges, whereas for Tr½Y†
ΣYΣ�12 ¼ 0.40, all the allowed

parameter space is in the metastable region.
It is also important to look at the change in the confidence

level at which the (meta)stability is excluded or allowed
[79,92,94] in the context of the minimal type-III seesaw
model. The confidence level plot(s) will provide a quanti-
tative measurement of the (meta)stability for the new physics
parameter space. In Fig. 8, we show how the confidence
level at which EW vacuum is allowed (excluded) from the

metastability (instability) depends on newYukawa couplings
of the heavy fermions for the type-III seesaw model for
different values of MΣ and αs. To plot these, we have
considered the variation of Mt (from 160 to 180 GeV)
and Mh (from 120 to 132 GeV) in the Mt −Mh plane for
fixed values of αs. We draw the metastability line and an
ellipse to which the metastability line is the tangent and the
point corresponding to the central values of Mt and Mh
(Mt ¼ 173.1 GeV, Mh ¼ 125.7 GeV) as the center (see
Fig. 7, for instance). Then we calculate the confidence level
as confidence level ¼ a of the ellipse

1σ error of Mt
¼ b of the ellipse

1σ error of Mh
, where a

and b are the lengths of the major and minor axes of the
ellipse. Figures 8(a) and 8(b) are plotted with the triplet
masses as MΣ ¼ 104 and 1012 GeV, respectively. In both
cases, the EW vacuum is metastable for smaller values of the
newYukawacoupling.Wecan see that the confidence level at
which the EW vacuum is metastable (yellow region)
increases with the increase of Tr½Y†

ΣYΣ�12. Also, one can
see that the confidence level at which the EW vacuum is
metastable increases with the increase in the mass of the
fermion triplets. We can also see the effect of αs on the
confidence level. The dashed, solid, and dotted red lines
correspond to the values of αs as 0.1177, 0.1184, and 0.1191,
respectively. Clearly, the confidence level at which the EW
vacuum is metastable decreases with the increase in αs.
This is because αs has a positive effect on the stability of the
EW vacuum, and the increase in αs increases the confidence
level at which the vacuum is stable, thereby decreasing the

FIG. 7. The phase diagram in theMt-Mh plane for two different values of Tr½Y†
ΣYΣ�12 and MΣ ¼ 104 GeV. The ellipses correspond to

the allowed values of Mt and Mh at 1σ, 2σ, and 3σ.
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confidence level at which it is unstable. The EW vacuum
becomes metastable for Tr½Y†

ΣYΣ�12 ¼ 0.646� 0.008 and
Tr½Y†

ΣYΣ�12¼0.648�0.011 corresponding to αs¼0.1184�
0.0007 for MΣ ¼ 104 and 1012 GeV, respectively. The
demarcations between the stable and the metastable regions
in the plots are only for the central values of αs.

VI. SUMMARY

In this paper, we have analyzed the implications of
naturalness and the stability of the electroweak vacuum in
the context of the minimal type-III seesaw model. We have
also studied the constraints from lepton flavor violating
decays. We have found that the lighter masses of the
fermionic triplets MΣ ≃ 400 GeV are disallowed for all
values of YΣ by the constraints from the μ → e conversion
in the nucleus. At the same time, the heavier triplet masses
are disfavored by naturalness. For instance, if we demand
the correction to the Higgs mass to be less than 200 GeV, it
will put an upper bound of ∼105 GeV on the masses of the
triplets. Also, the maximum value of Tr½Y†

ΣYΣ�12 that is
allowed is 0.1, corresponding to MΣ ∼ 104 GeV. Another
important result is that in the parameter space which is
allowed by both the LFVas well as naturalness constraints,
the EW vacuum is stable/metastable depending on the
values of Tr½Y†

ΣYΣ�12 and the standard model parameters
used. Hence, one does not really have to worry about the
instability of the vacuum in this model. The major part of
the allowed parameter space lies in a region that could be
tested in the future collider experiments.
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APPENDIX: RENORMALIZATION
GROUP EQUATIONS

The beta functions for the various couplings are defined
as

βχi ¼
∂χi
∂ ln μ ¼ 1

16π2
βð1Þχi þ 1

ð16π2Þ2 β
ð2Þ
χi :

For the running scale μ < MΣ,

βχi ¼ βSMχi ; βð1Þg2 ¼ −
19

6
g32; and βYΣ

¼ 0;

and for μ > MΣ, the one-loop RGEs for λ, yt, g2, and YΣ are
as given below

βλ ¼
3

8
g41 þ

3

4
g21g

2
2 þ

9

8
g42 − 3g21λ − 9g22λþ 24λ2 þ 12λy2t

− 6y4t þ 12λTrðYΣY
†
ΣÞ − 10TrðYΣY

†
ΣYΣY

†
ΣÞ; ðA1Þ

βyt ¼ yt

�
9

2
yt2−8g23−

17

12
g21−

9

4
g22þ3TrðYΣY

†
ΣÞ
�
; ðA2Þ

(a) (b)

FIG. 8. Dependence of confidence level at which the EW vacuum stability is excluded/allowed on Tr½Y†
ΣYΣ�12 for different values

of αs and MΣ.
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βg2 ¼ −
1

2
g32; ðA3Þ

βYΣ
¼YΣ

�
5

2
YΣY

†
Σþ3y2t −

33

4
g22−

3

4
g21þ3TrðYΣY

†
ΣÞ
�
: ðA4Þ

Two-loop RGEs used in this work have been generated
using SARAH [95]. In our work, we have taken only the top-
quark contributions. The other SM-Yukawa couplings are
comparatively smaller, and their inclusion does not alter our
result.
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