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Precision cosmology provides a sensitive probe of extremely weakly coupled states due to thermal freeze-
in production, with subsequent decays impacting physics during well-tested cosmological epochs. We
explore the cosmological implications of the freeze-in production of a new scalar S via the super-
renormalizable Higgs portal. If the mass of S is at or below the electroweak scale, peak freeze-in production
occurs during the electroweak epoch. We improve the calculation of the freeze-in abundance by including all
relevant QCD and electroweak production channels. The resulting abundance and subsequent decay of S is
constrained by a combination of x-ray data, cosmic microwave background anisotropies and spectral
distortions, Neff , and the consistency of big bang nucleosynthesis with observations. These probes constrain
technically natural couplings for such scalars frommS ∼ 10 keV all the way tomS ∼ 100 GeV. The ensuing
constraints are similar in spirit to typical beam dump limits, but extend to much smaller couplings, down to
mixing angles as small as θSh ∼ 10−16, and to masses all the way to the electroweak scale.
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I. INTRODUCTION

A pragmatic approach to searching for new physics is to
focus on generic interactions that have the potential to be
detected experimentally with current or upcoming technol-
ogy. Classifying the interactions of new neutral states with
the Standard Model (SM) according to the dimensionality
of the couplings, there are only three “portal” operators that
are unsuppressed by a new energy scale. The so-called
scalar, vector, and neutrino portals could provide the
leading connection to a hidden or dark sector, motivated
by considerations of neutrino mass and dark matter, but
possibly comprising a rich structure of yet-unseen particles
and forces [1].
The three portals have recently been under intense

experimental scrutiny (see, e.g., Refs. [2,3]), with a forth-
coming program to increase sensitivity into unexplored
regions of the parameter space. While collider and beam-
dump experiments provide sensitivity to relatively large
portal couplings, astrophysical phenomena and cosmology
can provide complementary reach to much weaker

couplings. Constraints generically arise as follows: thermal
production of new states in the very early universe can
occur with a sub-Hubble rate (a process often called
“freeze-in”), which necessarily leads to a small but non-
negligible abundance of such particles in the thermal bath.
If the lifetime of these particles is large, they may survive to
later epochs and decay during or after big bang nucleo-
synthesis (BBN) altering the light element yield. Longer
lifetimes may lead to decays during or after the formation
of the cosmic microwave background (CMB), potentially
altering the detailed features observed in precision CMB
experiments.
The origin of these cosmological constraints is reminis-

cent of the detection strategy behind a generic particle
beam-dump experiment. Typically, very energetic particles
in the beam initiate the production of exotic states in the
target, which then propagate through a rock or dirt filter,
and decay/scatter in a relatively background-free environ-
ment inside the detector, thus generating a signal of
anomalous energy deposition. In the cosmological setting,
the analogue of the initial beam on target is the stage of the
very early hot universe, and the analogue of propagation
through a dirt filter is the long stage of subsequent
expansion and cooling, as the Universe evolves into a
well-understood stage associated with BBN or the CMB,
which is then a direct analogue of the calorimeter-type
detector that measures abnormal energy deposition.
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Therefore, it is appropriate to name this method of
studying rare long lived particles the cosmological beam
dump.
Cosmological constraints of this kind were first applied

to the heavy neutral lepton (HNL) portal and were
considered in a number of publications [4–6], resulting
in stringent constraints on sterile neutrino degrees of
freedom (d.o.f.) N. Cosmological constraints on the ultra-
weak regime of the dark photon parameter space (a new
particle A0

μ that has an ϵF0
μνFμν coupling to photons) were

explored in Ref. [7] (see also Ref. [8]). For the very small
coupling constants relevant for cosmological probes, dark
photons never thermalize and the abundance is determined
by freeze-in production via inverse decay reactions.
Subsequent energy injection from dark photon decays
can alter the path of BBN and the CMB, and agreement
with precision observations excludes certain disconnected
regions in the parameter space. Unlike the case of HNL,
thermal production of dark photons may not exhaust all
channels, as bosonic states can also be copiously produced
during inflation. This extra production channel has, how-
ever, a wide range of possible outcomes depending on the
Hubble scale during inflation. In that sense, the limits
presented in [7] are conservative.
A similar study can be carried out for the scalar portal.

Unlike the cases of HNL and dark photons where the
leading portal operator is of dimension four, the neutral
scalar S can have a dimension three coupling to the Higgs
bilinear, SH†H. This represents the only superrenormaliz-
able portal that exists between the SM and any potential
dark sector. Moreover, the radiative corrections to the scalar
mass created by such an interaction can naturally be under
control [9], ensuring technical naturalness of a small mS.
There has been significant attention paid to this interaction
over the past few years, due, for example, to the idea of
cosmological self-tuning of the Higgs mass through scan-
ning via the small SH†H interaction [10].
With the SH†H interaction alone, S is guaranteed to be

produced in the early universe, and its subsequent decay
may occur during cosmological epochs that are sensitive to
energy injection, as was pointed out in Ref. [11] in an
application to BBN. It is therefore interesting in our search
for new physics to investigate the phenomenology of this
interaction in the superweak regime, in which the abun-
dance is determined by the freeze-in mechanism. The
electroweak era can be identified as the main contributor
to the freeze-in abundance of S, at temperatures where
tðt̄Þ;W�; Z; h are thermally excited, due to the preferential
coupling of the SM Higgs to heavy particles. This was first
recognized in [12] in the context of the quadratic S2H†H
interaction formS > 1 MeV, but the same conclusion holds
for the SH†H interaction. This is markedly different fromN
and A0 freeze-in production [13,14], where the peak occurs
at noticeably different temperatures Tmax (for kinematically
accessible particles):

TmaxðA0Þ ∝ mV;

TmaxðNÞ ∝ Oð100 MeVÞ;
TmaxðSÞ ∝ MW: ð1Þ

The goal of the present work is to determine the
cosmological constraints on S, due to its Higgs portal
coupling. This requires a computation of the cosmological
S abundance YS ≡ nS=s̃ due to freeze-in production, where
nS is the S number density and s̃ the entropy density.
Existing estimates of S freeze-in have considered QCD
production via top quarks, leading to YS ∼ 1.6 × 1012θ2 [8],
where θ is the mixing angle between S and the SM Higgs,
and also a lower bound YS ≳ 2.9 × 109θ2 on the abundance
from Primakoff and Compton processes at low temper-
atures T < 20 GeV, in the context of relaxion-Higgs
mixing [15]. (Further in-depth considerations of the
freeze-in production due to quadratic and linear couplings
of S were performed very recently in [16] and in a more
generic setting in [17].) Our analysis of the S abundance
and decays indicates that QCD and electroweak processes
are both significant, and the conclusions are summarized
below:

(i) Freeze-in yield: The tree-level freeze-in production
of S is computed for all electroweak and QCD
channels, with a T-dependent electroweak vacuum
expectation value (VEV) vðTÞ used as the first
approximation of the relevant thermal effects and
to provide an estimate of the precision of the
calculation. Solving the Boltzmann equation nu-
merically and incorporating a full set of QCD cross
sections result in a reduction of the total QCD yield
relative to the channel analyzed in [8]. We also
assess the accuracy of the Maxwell-Boltzmann
approximation in the production calculation, leading
to the following result for the abundance from QCD
and electroweak processes for the mS ≪ MW case:

YS ∼ 2.8 − 5.2 × 1011θ2; ð2Þ

This estimate becomes more uncertain for masses
mS ∼ 100 GeV, i.e., for masses close in value to the
temperature/energy scale of the electroweak phase
transition.

(ii) Decay rate: We find that there is a sizable uncer-
tainty in the constraints for mS in the QCD range,
due to the poorly known S decay rate to pions and
kaons. We show two decay profiles in this case.
Additionally, we improve the calculation of the
S → γγ decay rate, which is important for
mS < 1 MeV, by incorporating the light quark
contribution via mesonic loops, thus decreasing
(or increasing) the decay rate by a factor of 4 over
the rate used when u, d, s are assumed to be massive
(or are neglected).
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(iii) Early decays: Reference [8] performed a thorough
analysis of the BBN constraints, but noted that their
analysis of early decays for mS < 2mπ did not
consider energy density considerations due to the
large stored energy in the S bath. We include a
treatment of early decays, transitioning from the
freeze-in abundance to the thermalized freeze-out
relic, and consider the impact on the relative
neutrino and electromagnetic energy baths.

In what follows, we first review the model and describe
its features in Sec. II. The freeze-in abundance calculation
is described in Sec. IV, including details of several subtle-
ties. We provide a complete scan of the S parameter space at
small mixing angles in Sec. V, with details of the cosmo-
logical constraints updated in this work. The results are
summarized in Fig. 1, which shows that precision cosmol-
ogy provides an efficient probe of the parameter space of
the model many orders of magnitude inside the region
where it is “technically natural” (i.e., not plagued by the
issue of fine-tuning). Finally, we conclude the paper with a
general discussion of the robustness of these results and
final conclusions in Sec VI. Several technical results are
relegated to appendixes.

II. THE SUPERRENORMALIZABLE HIGGS
PORTAL MODEL

We consider a subset of the minimal Higgs portal model,
the superrenormalizable Higgs portal. The scalar part
of the SM Lagrangian involving the Higgs doublet H is

augmented by a mass term for the singlet S and a dimension
three interaction:

LH=S ⊃ μ2H†H − λHðH†HÞ2 − 1

2
m2

SS
2 − ASH†H: ð3Þ

The A term induces a small mixing angle θ between the
physical excitations S and h. At linear order in A, the
mixing angle is given by

θ ¼ Av
m2

h −m2
S
; ð4Þ

and leads to Yukawa interactions between S and SM
particles, equivalent to the SM Higgs boson interactions
rescaled by the suppression factor θ. In the unitary gauge
for the broken electroweak phase, after diagonalizing to
find the physical states h and S, we have the scalar potential

VH=S ¼
m2

h

2
h2 þm2

S

2
S2 þ λvh3 þ λ

4
h4 ð5Þ

þ
�
A
2
− 3θλv

�
h2S − θλh3S; ð6Þ

which exhibits the hhS and hhhS contact interactions.
The S sector could include additional self-interactions,

e.g., λ3S3. Such self-interactions would combine with the A
term and contribute to the S freeze-in production via Higgs
boson decays h → SS. Large self-interactions can also
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FIG. 1. An overview of the excluded parameter space for the superrenormalizable Higgs portal scalar, including the updated
constraints from this work due to the diffuse x-ray background (XRay), CMB anisotropies, spectral distortions, Neff , and BBN.
Constraints from new short-range forces (Force) [18–21] and stellar cooling (Stellar) [22] from other authors are also shown. We also
display the projected SHiP sensitivity [2] and an estimate of supernova (SN) constraints [23]. Note that the primary uncertainties
impacting the limits are for the S decay rate formS ∼ GeV (see Fig. 2), and the cosmological S abundance formS ≳mW. See the text for
further details.
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influence the S metastable abundance after freeze-in by
maintaining thermalization of the dark sector prior to
subsequent decays [24,25]. We will neglect this type of
interaction and focus on the pure freeze-in regime of
Lagrangian (3).

A. S decay rate

The S decay rate has well-known theoretical uncertain-
ties associated with mesonic decay channels in the mass
range 2mπ < mS < 4 GeV [26]. We follow Ref. [27] and
use two different decay models to demonstrate the magni-
tude of the theoretical uncertainty in the final S freeze-in
parameter space. The baseline decay model matches low-
energy theorems near the pion threshold to a ππ phase-shift
analysis above 600 MeV by the CERN-Munich group [28]
up to mS ≲ 1.4 GeV, and interpolates to mS ≲ 2.5 GeV
where analytical results are expected to be valid [29]. For
comparison, the spectator model uses perturbative results
up to the c-quark threshold. In this case, the decay rate into
pions is given by low-energy theorems and the kaon or η
meson contributions are estimated by rescaling the muon
branching ratio appropriately [2,30,31]. The S lifetime in
this mass range for the two decay models is shown in Fig. 2.
(See also the recent work [32–34].)
Below the electron threshold, a Higgs-like particle

decays to two photons through a loop of heavy particles.
The leading order decay rate is found by summing over the
massive charged particles entering the loop [35],

ΓðS → γγÞ ¼ θ2α2m3
S

256π3v2
jCj2; ð7Þ

where C is a loop function, given explicitly in Appendix A.
In this prescription, the light quark d.o.f. are incorporated
through their explicit breaking of chiral symmetry, and the
associated mass of pions, kaons, and eta mesons [36], i.e.,
through virtual loops of pions and kaons [37]. Adding the
contributions from all SM particles, for mS ≪ 2me we find

C ¼

8>>><
>>>:

11=3 ≃ 3.67 for 0þ 6 quarks

989=522 ≃ 1.89 for 2þ 4 quarks

50=27 ≃ 1.85 for 3þ 3 quarks

1 ¼ 1 for 0þ 3 quarks

; ð8Þ

where different scenarios of ða lightÞ þ ðb heavyÞ quarks
are shown. For the case of 2 (3) light flavors the pion (pion
and kaon) loops are taken into account, while for 0 light
flavors they are neglected. The true physical value should
be close to the 3þ 3 or 2þ 4 scenarios. Since the differ-
ence in decay rate between the two cases, Oð4%Þ, is
negligible for the analysis of new physics, we simply
choose C ¼ 50=27.

III. SCALAR MIXING IN THE COSMOLOGICAL
THERMAL BATH

In vacuum, the relevant SM masses are generated via the
Higgs mechanism and are proportional to the electroweak
VEV v. In the cosmological thermal bath, and in particular
near the electroweak symmetry restoration temperature,
long-range interactions are screened by the plasma.
Particles effectively develop a thermal mass as a repre-
sentation of this screening. The mass of a particle at a given
temperature T can generally be written as [38]

m2ðTÞ ¼ m2
0ðvðTÞÞ þm2

TðTÞ; ð9Þ

where m0 is the zero-temperature mass that depends on the
VEV and mT is the thermal mass. Note that the VEV
depends on T, so that m0 also has a temperature depend-
ence. A simple analytic formulation of the high-T Higgs
thermal mass parameter in the effective potential is given
by [39]

m2
h;TðTÞ ¼ chT2; ð10Þ

where

ch ¼
1

16
ð8λH þ 4y2t þ 3g22 þ g21Þ: ð11Þ

Inserting the additional term ch
2
T2h2 into the Lagrangian (3)

to generate the equivalent thermal mass, we can solve for
vðTÞ,

vðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20 −

chT2

λh

s
; ð12Þ

which predicts an electroweak symmetry restoration at the
critical temperature Tc ≃ 140 GeV.1 The Higgs thermal
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FIG. 2. The S lifetime as a function of mS for θ ¼ 10−6

(reproduced from Ref. [27]).

1This value is Oð10%Þ smaller than the full SM value of
TSM
c ≃ 160 GeV from lattice simulations [40,41].

FRADETTE, POSPELOV, PRADLER, and RITZ PHYS. REV. D 99, 075004 (2019)

075004-4



mass (10) applies to the SM eigenstate prior to mass
diagonalization.2 After this diagonalization of h − S mix-
ing, we obtain a temperature-dependent mixing angle,

θðTÞ ¼ AvðTÞ
m2

hðTÞ −m2
S
; ð13Þ

which incorporates the leading dependence on temperature
for small mS. However, this expression also signals the
presence of a thermal resonance when mS ∼mhðTÞ, which
can arise on scanning T for mhðTÞmin ≲mS ≲mh;0. Lattice
results indicate the Higgs thermal mass drops to
mhðTÞmin ∼ 15 GeV at the electroweak crossover [41].
The apparent divergence in (13) at mS ¼ mhðTÞ is

resolved by thermal broadening, which amounts to replacing
the factor of 1=ðm2

h −m2
SÞ with a Breit-Wigner propagator

for the intermediate metastable Higgs in the rest frame of the
thermal bath. This is conveniently derived by considering the
thermal rate ΓS at which S approaches equilibrium, given by
ΓS ¼ −ImΠS=E where E is the particle energy. ΓS in turn is
related to the S production rate Γprod by a Boltzmann factor,
ΓS ¼ Γprod − Γdest ¼ ðeE=T − 1ÞΓprod. The S self-energy
takes the form

ΠSðkÞ ¼ AvðTÞ × 1

k2 −m2
0ðvÞ − ΠhðkÞ

× AvðTÞ; ð14Þ

whereΠh is theHiggs self-energy. Computing the imaginary
part in the on-shell limit, and with ReΠh ¼ m2

h;T , leads to

ΓS ≡ θ2effðTÞΓh

¼ A2vðTÞ2 Γh

ðm2
S −m2

hðTÞÞ2 þ ðEΓhÞ2
; ð15Þ

allowingus to readoff the thermally broadenedmixing angle,

θ2effðTÞ ¼
A2vðTÞ2

ðm2
S −mhðTÞ2Þ2 þ ðEΓhÞ2

; ð16Þ

where Γh is the Higgs width, or more generically, damping
rate. The zero temperature width Γh;0 ¼ 4.07 MeV gives a
reasonable approximation for the decay rate, since for the
parameter regime of interest here, these decays occur late in
the cosmological evolution when the temperature is low.
Notice, however, that at temperatures around the electroweak
scale, the damping rate (set by interactions with top quarks
and weak gauge bosons) is expected to scale as ΓhðTÞ ∝ T,
andΓhðT ∼mWÞ ≫ Γh;0. The effect of thermal broadening at
high temperatures can be relevant for the epoch of freeze-in

production. A density plot of θeffðTÞ from (16) is shown in
Fig. 3. As T → Tc, simulations suggest that mhðTÞ drops
rapidly near Tc to 15–20 GeV [41], potentially allowing a
resonance for any mS > 15 GeV, an effect that is not well
captured by our vðTÞ-scaling model. The potential impor-
tance of the thermal resonance will be considered in more
detail in the next section.
We conclude this section by noting an apparent dis-

continuity in the behavior of the mixing angle at zero
temperature and at temperatures close to the phase tran-
sition, assuming for simplicity thatmS is a small parameter.
From (4), it follows that θ ∝ A=ðλHvÞ, while at finite
temperature θeffðTÞ, from (16), scales quite differently as
θeffðTÞ ∝ AvðTÞ=ðcouplings × T2Þ. As vðTÞ approaches
zero, these two formulas have completely different behav-
ior. Taken at face value, this suggests that vertices with
Feynman rules proportional to vðTÞ will not contribute at
all in the electroweak symmetric phase. However, this is
only true at tree level, and the surviving diagrams are
generated at higher order in perturbation theory and do not
vanish in the limit of vðTÞ → 0. These higher order
corrections are discussed further in Appendix B, and
example diagrams in the higher order expansion are shown
in Fig. 14. Therefore, very near the phase transition, the
thermally corrected mixing angle (16) will not provide an
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FIG. 3. A density plot of the thermal mixing angle θeffðTÞ from
(16), showing the location of the thermal resonance for
T < 140 GeV. The peak of the resonance defines the resonance
temperature Tres as a function of mS. The behavior of mhðTÞ
follows (9) with the naive vðTÞ model, but with an additional T-
dependent contribution added to ensure that mhðTÞ tracks down
to the minimum value of mhðTÞmin ∼ 15 GeV near the crossover
transition, as suggested by lattice simulations [41]. A finite Higgs
damping rate of 0.05T was also added for illustration.

2As we are considering very small mixing, the effect of S on
the SM thermal masses is negligible. Similarly, the S thermal
mass will be m2

SðTÞ ∼ θ2T2 and thus can be neglected for this
study.
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adequate description of thermal effects, and a complete
treatment of thermal loops would be necessary.

IV. COSMOLOGICAL PRODUCTION
VIA FREEZE-IN

The cosmological production rate of a new species S, due
to 2 → 2 interactions, is given by the Boltzmann equation

s̃ _Y ¼
Z XY4

i¼1

�
d3pi

2Eið2πÞ3
�
Λðf1; f2; f3; f4ÞjMj2

× ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ; ð17Þ

where s̃ is the entropy density, Y ≡ nS=s̃, while Λ ¼
f1f2ð1� f3Þð1� f4Þ represents the thermal distribution
of each species and jMj2 is the spin-summed squared
amplitude. In the Maxwell-Boltzmann (MB) approxima-

tion for the freeze-in mechanism Λ → fMB
1 fMB

2 ¼ e−
ðE1þE2Þ

T .
The sum goes over various multiplicity factors, such as
spin and color. For four different species Eq. (17) takes the
form [42]

s̃ _Y12→3S ¼
g1g2
8π4

T
Z

∞

smin

dsp2
12

ffiffiffi
s

p
σ12→3SK1

� ffiffiffi
s

p
T

�
; ð18Þ

where smin ¼ Max½ðm1 þm2Þ2; ðm3 þm4Þ2� and

p2
12 ¼

s
4

�
1 −

ðm1 −m2Þ2
s

��
1 −

ðm1 þm2Þ2
s

�
; ð19Þ

while σ ¼ σ12→3S is the standard cross section averaged
over initial state d.o.f., while g1ð2Þ are the spin and color
multiplicity factors for initial particles.
The total S yield is found by summing all possible

12 → 3S interactions where 1, 2, and 3 are SM particles.
Production channels of the form 12 → SS are suppressed

by an extra factor of θ and are neglected. Since S
preferentially interacts with massive particles, we anticipate
a large number of possible production channels around the
electroweak scale. We classify the different channels by
their asymptotic behavior in the electroweak unbroken
phase. According to the Goldstone boson equivalence
theorem [43,44], in the v2=s → 0 limit the behavior must
be determined by the corresponding Goldstone bosons
interactions. Expanding the Higgs doublet in the form

H ¼
�

ϕþ

ðhþ iϕ0Þ= ffiffiffi
2

p
�
; ð20Þ

we find that the only interactions producing S in the
symmetric phase will be 2 → 2 scattering channels,
tRQL → HS, VH → HS [V is a SUð2Þ=Uð1Þ gauge boson],
and tRH → QLS, shown in Fig. 4. We can therefore
categorize the S-producing interactions as follows:

(i) QCD production, which includes all diagrams with
gluons and top quarks such as tg → tS.

(ii) Yukawa annihilation, which includes the four re-
actions contributing to tRQL → HS.

(iii) Compton-like scattering, which includes reactions
with a quark scattering off a boson in the form of
tRH → QLS.

(iv) Gauge boson scattering, which includes the reac-
tions purely with electroweak bosons and Higgses.

We segment the production calculation into two regimes,
first for T < Tc with v=ðv − vðTÞÞ > 1, and then for
T > Tc, where the vacuum expectation value is negligible
and the dimensionful SM couplings proportional to v
vanish. T close to Tc can be treated by continuity. In all
instances, we compute the cross sections at tree level, with
a few phenomenological improvements justified below.
In the broken phase, we incorporate the first thermal

corrections by explicitly varying the electroweak VEVas in
(12), treating all SM masses as VEV-dependent variables

FIG. 4. S-producing interactions in the electroweak symmetric phase. Left: Yukawa annihilations. Center: Gauge boson scatterings.
Right: Compton-like scatterings.
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mSMðTÞ ¼ m0
SM ×

vðTÞ
v0

; ð21Þ

and dropping the T2 term in Eq. (9). As we will see in
Sec. IVA, we expect this approximation to hold for
vðTÞ≳ gT, i.e., until the temperature is high enough that
the thermal masses become dominated by plasma contri-
butions. For mhðTÞ, the T2 term is retained for consistency
in the definition of vðTÞ and to make sure θðTÞ does not
have an unphysical divergence for small mS.
In the symmetric phase, we retain the quark masses in the

cross sections and promote them to thermal masses
acquired from the QCD plasma [45]

m2
qðTÞ ¼

g2sCF

8
T2 ¼ g2s

6
T2; ð22Þ

which affects the kinematic phase space available for inter-
actions. The Higgs doublet components all obtain the Higgs
thermal mass (10). We neglect the gauge boson transverse
mass. From a finite-temperature point of view, the magnetic
thermal mass of a non-Abelian SU(N) gauge boson vanishes
at one loop [46]. A nonvanishing value is generated at higher
order as a nonperturbative quantity m2

T ∼ ðg=3πÞgT [47,48],
which is subleading compared to the other masses.
In the intermediate regime where a full finite-temper-

ature calculation is needed vðTÞ
g ≲ T ≤ Tc, we extrapolate

from the two limiting regimes to obtain an uncertainty band
for the model. In either case, we obtain results for the relic
density that are consistent to within a factor of 2, which is
acceptable for the problem at hand.
Retaining the top quark Yukawa coupling yt, the

electroweak couplings g, g0, and the Higgs self-coupling
λH as the only nonzero coupling constants, the yields from
each nonvanishing production channel in the mS ≪ mh
limit are compiled in Table I. In total, on including the vðTÞ
model, we obtain the following result for the abundance
from QCD and electroweak processes,

YSjMBapprox ∼ 3.1 − 3.8 × 1011θ2; ð23Þ

for mS well below the thermal resonance region. The
quoted uncertainty band corresponds to whether we cut
off the production at T ≤ v=gs ≃ 121 GeV or we push the
extrapolation to T ≤ Tc ≃ 140 GeV. Later in this section,
we will also make an estimate of the precision of the
Maxwell-Boltzmann approximation, which will enlarge the
precision band somewhat [see Eq. (43)]. Note that the total

yield from QCD reactions is found to be YðQCDÞ
S ≃

ð6.3 − 8.2Þ × 1010θ2, a factor of approximately 20 smaller
than the value quoted by Berger et al. [8].3 As listed in

Table I, we also find many other channels with electroweak
gauge bosons that contribute at or above the level of these
QCD-induced reactions. We use FEYNCALC [49,50] to
compute the relevant cross sections, and they are listed for
completeness in Appendix C, primarily in the limit of large
Mandelstam s. The respective emissivity as a function of
temperature is shown in Figs. 5 and 6.
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FIG. 5. Total S freeze-in emissivity and the contribution from
each production channel category as a function of temperature
for θ ¼ 10−5.

TABLE I. S freeze-in yields for small mS. For each production
channel, the yield is given in units of 1010θ2, separated into the
near-vacuum contribution Yv≫0

i and the additional yield Yv≳0
i if

extrapolated to the phase transition. The yield from each
production category in the symmetric phase is shown as Ysym

cat
with the range displaying the total yield for T above Tc or
extrapolated down to T ≳ gvðTÞ.
Production
channel i Yv≫0

i Yv≳0
i Ysym

i Y tot
i ½1010θ2�

tt̄ → gS 2.11 0.93
0 6.29–8.11tg → tS ð×2Þ 4.17 0.90

tt̄ → hS 0.41 0.08
0.03–0.05 1.72–2.01tt̄ → ZS 0.44 0.11

tb̄→WþS ð×2Þ 0.82 0.11

th → tS ð×2Þ 0.38 0.13

0.14–0.21 14.40–17.77
tZ → tS ð×2Þ 1.46 0.77
tW → bS ð×2Þ 3.66 1.43
bW → tS ð×2Þ 8.70 1.11

Zh → ZS 0.26 0.10

0.01–0.02
8.68–10.93

ZZ → hS 0.33 0.17
WW → hS 0.57 0.25
WW → ZS 3.47 0.89
Wh→WS ð×2Þ 0.46 0.16
WZ→WS ð×2Þ 3.57 0.69
hh → hS 0.01 <0.01 0

Total 30.81 7.84 0.19–0.28 31.1–38.8

3We also point out a disagreement with one of the QCD cross
sections quoted by [8], with correct expressions given in
Appendix C.
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Thus far, we have discussed the parameter range where
mS is parametrically smaller than the weak scale. In this
regime, with production occurring mostly at weak scale
temperatures, the prediction for YS is approximately
independent of mS. However, this will change once mS
is increased to a scale comparable to the thermal masses of
particles in the SM bath. In Fig. 7, we plot the resulting
value of YSðmSÞ that follows from generalizing the 2 → 2
production mechanisms discussed above to finite mS. We
note that once mS reaches a few tens of GeV, the 2 → 2
production channels may no longer be dominant, and other
processes such as resonant oscillations (1 → 1 production),
and inverse decays (2 → 1 production), may also contribute
significantly to YS. We discuss such contributions in
separate subsections below.

A. Infrared divergences

When calculating various 2 → 2 production processes
using the simplified vðTÞ approach, we encounter
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FIG. 6. The S abundance yield from each production channel category with θ ¼ 10−5. Top left:QCD production. Top right: Compton-
like scattering. Bottom left: Gauge boson scattering. Bottom right: Yukawa annihilation.
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FIG. 7. The total S abundance yield from nonresonant 2 → 2

production channels as a function of mS (with θ ¼ 10−10). The
mass region where S is resonant with the Higgs boson is excluded,
and we note that formS above a few tens of GeV, other production
channels may also be significant. (See the text for details.)
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additional complications due to the infrared sensitivity of
the production cross sections. There are two types of
infrared divergences in the interactions that require special
care, both present in the channel with the largest yield
contribution, bW → tS, schematically shown in Fig. 8.
At lower temperatures, where the vacuum cross sections

are clearly applicable, the emission of a soft S is enhanced
by the near-on-shell t and W mediators. Removing the S
emission, the inverse decay process bW → t is kinemati-
cally allowed. Since we are considering an arbitrarily light
scalar, mS ≪ mW , mt, the 2 → 2 reactions creating the S
have a kinematic cutoff s ≥ ðmt þmSÞ2, which approaches
the propagator singularity 1=ðs −m2

t Þ asmS → 0. This type
of divergence is regulated by the finite width of the
propagator. For this channel, we promote the denominator
of the t quark and W boson propagators to their Breit-
Wigner equivalent

1

p2 −m2
t=W

→
1

p2 −mt=WðTÞ2 − iΓt=WðTÞEt=W
; ð24Þ

where ΓiðTÞ ¼ Γ0
i ×

vðTÞ
v0

is consistent with our vðTÞ model

throughout the calculation and the SM values are Γ0
t ¼

1.4 GeV and Γ0
W ¼ 2.1 GeV [51]. The resonances are

further broadened by thermal effects. Multiple schemes
for calculating cross sections with unstable particles have
been proposed beyond the simple substitution (24). The
basic Breit-Wigner is technically incompatible with gauge
invariance and Ward identities [52–54], a problem that can
lead to dramatic inconsistencies in the small-angle scatter-
ing away from the resonance [52]. Explicitly comparing the

cross section with and without the substitution (24) away
from the resonance, we find

σBWbW→tS

σ0bW→tS

⟶
s≫m2

t ;m
2
W mW

ΓW
arctan

ΓW

mW
¼ 0.9998; ð25Þ

which justifies the use of Breit-Wigner propagators in this
reaction near the singular point.
The second class of infrared divergences appear near Tc,

where v → 0. The exchange of a massless spin-1 particle in
the tðuÞ channel generates a well-known collinear diver-
gence in forward (backward) scattering [55]. Therefore,
with the approximation m2

W ¼ 1
4
g2v2ðTÞ, when the mass of

mW approaches zero, all the t-channel exchange diagrams
are necessarily enhanced. Once again, thermal effects will
come to the rescue and stabilize these divergences.
In the context of S freeze-in production, the total cross

sections with the t- or u-channel gauge boson propagators
do not fall off as 1=s in the high energy limit (see
Appendix C for expressions). For the example shown in
Fig. 8, we have

σbWþ→tS →
θ2m2

W

12πv4
þOð1=sÞ → θ2g2

48πv2
þOð1=sÞ:

At low temperatures, this asymptotic behavior does not
matter as large values of s are exponentially suppressed by
the energy available in the initial particle distributions,
which clearly diverges as vðTÞ → 0. Conceptually, this IR
divergence should be regularized in the same fashion as the
scalar QED example. In particular, g2v2ðTÞ=4 will receive
an additional m2

W;TðTÞ ∝ g2T2 temperature-dependent cor-
rection. Thus the Coulomb-like enhancement near T → Tc
obtained from a simple extrapolation of the vacuum cross
sections, with VEV-dependent masses [as in Eq. (21)],
signifies the breakdown of our calculation as thermal
effects are not incorporated. The formal strategy to deal
with collinear IR divergences in thermal field theory has
been laid out by Braaten and Yuan [56] in the weak
coupling limit g ≪ 1. We will not perform this full
calculation, but simply use the limit gT ≲ vðTÞ as the
boundary of validity for our tree-level cross sections.

B. Resonant S production

As seen in Fig. 3, the mixing angle has a physical
resonance when mhðTÞ ≃mS. Near resonance, the h → S
oscillation may become efficient and contribute to the
overall yield YSðmSÞ. Below, we are going to show that
the contribution of the resonance is not important for the
production of very light S particles, while it can contribute
significantly, starting at mS in the range of a few tens of
GeV. In practice, there is a significant uncertainty in the
behavior ofmhðTÞ, and the lowest valuemhðTÞ can acquire
as a function of temperature. Recent lattice simulations
suggest that near Tc the thermal Higgs mass mhðTÞ drops
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FIG. 8. The emissivity of the production channel bW → tS
showing the two types of IR divergences present in the calcu-
lation. The soft S emission is physical and unique to this
production channel. The Coulomb-like enhancement is present
in all reactions with a t- or u-channel spin-1 mediator, is
unphysical, and signifies the breakdown of our calculations.
(See the text for details.)
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rapidly to 15–20 GeV, in a manner reminiscent of a second-
order phase transition. In principle, this allows the reso-
nance to arise for any mS above this scale. Physically, the
resonance arises when the virtual Higgs that rotates into S is
allowed to go on-shell, and the corresponding mixing angle
develops a Breit-Wigner form (16) associated with the
Higgs thermal width.
Although our primary interest is in lower values of mS,

where the resonance is not present, it is interesting to
consider the enhancement associated with the thermal
resonance. Since Γh ≪ mh even after accounting for
thermal broadening, we can use the narrow-width approxi-
mation (NWA) to estimate the S yield from the resonance.
Taking the NWA in (16), we obtain

θ2eff → θ2NWA¼ A2v2ðTresÞπ
2m2

SEΓhðTresÞjm0
hðTresÞj

δðT−TresÞ; ð26Þ

where m0
hðTresÞ is the temperature derivative of mhðTÞ

evaluated at resonance. Substituting into (18), we find the
simplified integral

YS;res ≃
Z

dnhðE; TresÞ
sðTresÞHðTresÞTres

πA2v2ðTresÞ
mSEjm0

hðTresÞj
; ð27Þ

where dnhðT; EÞ is the Bose-Einstein distribution for the
Higgs boson. Notice that the overall damping rate Γh for the
Higgs boson drops out of this formula, and its main
uncertainty is encapsulated in the value for Tres and
m0

hðTresÞ. Evaluating the remaining integral (and using
simplified Maxwell-Boltzmann statistics in the process),
we arrive at an analytic estimate for the h → S oscillation-
induced abundance,

YS;res ≃
πθ2vac
2ð2πÞ3

ðm2
h;vac −m2

SÞ2vðTÞ2K1ðmS=TÞ
v2HðTÞsðTÞjm0

hðTÞj
; ð28Þ

where all thermal quantities are to be evaluated at
T ¼ Tres; mhðTresÞ ¼ mS.
The simplicity of (28) is deceiving. Depending on the

assumed behavior of mhðTÞ, the results can vary substan-
tially. It is possible, however, to conclude that if one takes
the most extreme behavior, mhðTÞ ¼ ðvðTÞ=vÞ ×mh;vac,
which should conservatively overestimate the resonant
contribution, the result is still quite small for small mS.
In particular, we find

YS;resðmS < 2mbÞ ≤ 1010θ2: ð29Þ

On the other hand, for mh ≃ 100 GeV, our results indicate
that YS;res can reach ∼4 × 1011θ2 and become comparable
to or even larger than the nonresonant contributions.
Interestingly, for mS as high as 100 GeV, the uncertainty
in the resonant contribution becomes smaller, due to the

fact that the resonance occurs at temperatures significantly
lower than the crossover temperature.)
Another interesting observation is that for mS ≃mh the

actual cosmological constraints are weaker than for
mS ≠ mh. In that limit, Eq. (28) is not applicable, and
one has to retain the proper thermal damping rate for the
production calculation. The point is that all constraints are
very asensitive to the lifetime of S, and the effect of close-
to-resonance mixing on the decay rate is very pronounced,
leading to significant shortening of the lifetime and
relaxation of the bounds despite enhanced production.
To ensure that our constraints are conservative, we focus

onmS below the weak scale and do not include the resonant
contribution to YS.

C. Production via inverse decays at large mS

We have concentrated on 2 → 2 and resonant production
modes of the S scalar, which are dominant formS below the
weak scale. However, at much larger values of mS, there is
also an inverse decay, or 2 → 1 type production channel,
that we comment on briefly in this subsection.
The treatment is simplest when the mass of S is

asymptotically larger than the weak scale. The decay is
then predominantly to longitudinal WW, ZZ and to hh
pairs, or equivalently into four pairs of real scalars. The
total width is

ΓS ¼
A2

8πmS
¼ θ2m3

S

8πv2

����
mS≫mh

: ð30Þ

Production is governed by the very same width, and
appropriately modifying previous results for dark photons
[7], we obtain the corresponding estimate for the yield,

YS ¼
3

4π
×

ΓSm3
S

ðHsÞT¼mS

: ð31Þ

Parametrically, this result scales as θ2MPlmS=v2 or
MPlA2=m3

S, where MPl is the Planck mass, while numeri-
cally we find

YS;IDðmS ¼ 1 TeVÞ ≃ 2.5 × 1012θ2: ð32Þ

Notice the slightly larger overall numerical coefficient,
which results from less phase space suppression for the
inverse decay process compared to 2 → 2 processes.
Jumping forward to consider potential cosmological

sensitivity in this high mS regime, we note that the best
chance of constraining the model is provided by BBN (as
the lifetime is too short for other probes). Normalizing the
decay width to the most sensitive lifetime window,
ΓS ¼ 1=ð1000 sÞ, we have
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YS;ID ¼ 1.3 × 10−18 ×
ΓS

10−3 Hz
×

�
1 TeV
mS

�
2

⇒ mSYS ¼ 1.3 × 10−15 GeVjmS¼1 TeV: ð33Þ

In spite of the large abundance, this falls about 1 order of
magnitude short of the current best sensitivity [57]. In
practice, the sensitivity to singlet scalars is enhanced below
their decay threshold to weak bosons, mS < 2mW , where
the decay width is set by the Yukawa coupling of b quarks.
Correspondingly, the same lifetime is achieved through a
parametrically larger value of θ, which also translates into a
larger abundance, and as a consequence, tighter BBN
constraints.
For mS ∼ 100 GeV, the inverse decay processes are

subject to significant uncertainties. In particular, it is not
entirely clear what the true kinematic threshold is for
WW;ZZ; hh → S production via the 2 → 1 mechanism.
For example, the thermal mass of longitudinal W’s is
expected to be of order mW;L ∼ ð0.5 − 0.6Þ × T at temper-
atures around the electroweak scale. Thus, for
mS ∼ 100 GeV, it is difficult to determine for how long
the WW → S process is kinematically accessible, which
renders predictions for the inverse decay processes very
uncertain, and sensitive to the details of thermal physics
near the electroweak crossover.
Bearing these uncertainties in mind, and given our focus

on the low mS range, to be conservative we will retain only
the 2 → 2 production channels in analyzing the constraints
below. Note that an in-depth analysis would be required to
achieve a higher precision calculation of the resonant and
inverse decay production channels of Oð100 GeVÞ singlet
scalar bosons.

D. Thermalization of the S sector with the SM

The freeze-in abundance of S applies for mixing angles
sufficiently small that the production rate remains below
the Hubble rate,

Γprod ¼ nihσvi12→3S ≲HðTÞ: ð34Þ

Summing all the production channels, we find that the
freeze-in relic abundance obtained with Eq. (18) is valid for

θ ≲ θtherm ∼ 10−6: ð35Þ

Larger mixing angles ensure complete thermalization
with the SM bath before S decouples and the relic
abundance is simply given by the standard freeze-out
paradigm. In this case, YS is maintained at its relativistic
equilibrium value

Yeq ¼
45ζð3Þ

2π2g⋆ðTÞ
≃

0.28
g⋆ðTÞ

; ð36Þ

until mS becomes nonrelativistic, T ≲mS, or the coannihi-
lation rate becomes inefficient and S decouples with its
freeze-out abundance. Since S interacts dominantly with
heavy particles, S remains relativistic while the coannihilat-
ing partners become nonrelativistic and the annihilation
efficiency is exponentially lowered by the phase-space
suppression of the other particles. Thus, S freezes out
according to Eq. (36) and the abundance depends only on
the number of relativistic d.o.f. g⋆ at the decoupling temper-
ature. Above the QCD confinement scale TQCD ∼ 200 MeV,
g⋆ varies by at most a factor of 2, in the range of
g⋆ ∼ 205=4–427=4. A conservative estimate for the ther-
malized S relic abundance is therefore

Yf−o
S ≃

1

400
: ð37Þ

E. Validity of the Maxwell-Boltzmann approximation

In the classic case of weakly interacting massive particle
freeze-out, the decoupling temperature of the species is
typically in the nonrelativistic regime Tdecoupl ∼m=20. The
statistical ensemble of particle energies is well described by
the MB distribution, which allows for an analytical sim-
plification of the phase-space integrals in the Boltzmann
equation. In the freeze-in scenario considered here, this
simplification is not necessarily justified, and we must
verify its validity. We derive in Appendix D the analytical
three-dimensional expression to be numerically integrated
for the S abundance including the correct statistical dis-
tribution for all particles.
Instead of proceeding with the full treatment, we can

verify the MB approximation with a simpler integration.
Keeping the exact statistical distributions in the Boltzmann
equation, we obtain [42]

s _Y ¼ 1

32π4

Z
dspij

ffiffiffi
s

p
σ

Z
∞ffiffi
s

p dEþ

Z
Eþ
−

E−
−

dE−f1f2ð1� f3Þ

ð38Þ

with

E�
− ¼ jm2

1 −m2
2jEþ

s
� 2pij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2þ − s

s

r
; ð39Þ

where the initial energies were rewritten in terms of
Eþ ¼ E1 þ E2, E− ¼ jE1 − E2j, fi is the Fermi-Dirac
(FD) or Bose-Einstein (BE) distribution of species i, and
the þ (−) is chosen for bosons (fermions) in the last term.
The MB approximation (18) arises as an analytic solution
in the MB limit f1;2 ¼ e−E1;2=T and ð1� f3Þ → 1. We
should stress that Eq. (39) is not mathematically correct as
E3 should have been included in the cross section phase-
space integration over the end products. This integration is
in general nontrivial and includes an additional angular
dependence with s (see Appendix D). Nonetheless, we can
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use Eq. (39) as an estimate to the full result. To obtain the
first correction beyond the MB approximation, we can
expand

fi ¼
1

eEi=T � 1
≃ e−Ei=Tð1 ∓ e−Ei=T þ � � �Þ: ð40Þ

It is important to notice that the first order correction for the
initial particles is equal to the MB limit of the ð1� fÞ term.
At first order in e−Ei=T , we have

f1f2ð1� f3Þ ≃ e−Eþ=Tð1þ κ1e−ðEþþE−Þ=2T

þκ2e−ðEþ−E−Þ=2T þ κ3e−E3=TÞ; ð41Þ

where κi ¼ �1, with þ (−) for bosons (fermions). As
expected, the bosonic distribution enhances the overall
yield, while the fermionic distribution decreases it. In
principle, E3 is a function of

ffiffiffi
s

p
and the angular kinematics

for the final state particles. As mentioned, the 1� f3 factor
should be included in the annihilation cross section,
modifying σ. However, we know by conservation of energy
that E1 þ E2 ¼ E3 þ E4, with the following bounds on E3

m3 ≤ E3 ≤ Eþ: ð42Þ

To estimate the range of possible yield values from the first
correction to the full quantum distribution, we can integrate
Eq. (39) with Eq. (41) for each of the E3 extremum values.
The potential spread in total emissivity is shown in Fig. 9
with an estimated range,

2.8 × 1011θ2 < YS < 5.2 × 1011θ2: ð43Þ

The total error for the MB approximation is thus expected
to be within a factor of 2. The first order correction band in

the symmetric phase lies completely below the MB value,
because the top quark thermal masses in the QCD plasma
dominate and suppress the available Fermi-Dirac distribu-
tion phase space.

V. COSMOLOGICAL CONSTRAINTS

Having determined the freeze-in abundance for small
mixing angles, we can now place the minimal set of bounds
on the S parameter space with θ ≲ θtherm ∼ 10−6. We update
and improve the cosmological constraints partially pre-
sented in both Ref. [8] and Ref. [15], and the final results
for the low-θ parameter space are shown in Fig. 1. The
cosmological constraints that depend on YS are discussed in
the following subsections. Below mS ≲ 5 keV, the strong-
est constraint on S comes from stellar energy loss [22], and
even lighter scalars in the sub-eV range are constrained by
fifth force experiments [18–21] (as discussed in [9]). We
also show the projected sensitivity from the SHiP beam-
dump experiment [2] and an order-of-magnitude estimate
of supernova energy loss [23] (which should be modified to
account for in-medium effects [22]). Above the pion
threshold, we find strong sensitivity to the S decay model.
The colored exclusion regions presented in Fig. 1 utilize the
baseline decay model, which has a decay width that is
larger than or equal to that in the spectator model. The
baseline model therefore provides more conservative
results due to the reduced abundance for a fixed lifetime.

A. Diffuse x-ray background

Many present-day satellites observe the galactic and
extragalactic photon spectrum in various wavelength bands
and provide upper bounds on the luminosity of x-ray or
Gamma-ray emission. These bounds apply, for example, to
photons from decaying or annihilating dark matter. Below
mS ¼ 2me and at s small mixing angle, the lifetime of S is
longer than the age of the Universe, and therefore the model
is constrained by these observations. In particular, Ref. [58]
derived the lifetime constraint on scalar dark matter
particles decaying into two photons in the 4 keV < mS <
10 GeV mass range assuming τS ≫ τuniverse. We directly
rescale their constraint from the HEAO-1 [59] and
INTEGRAL [60] satellites to obtain an exclusion band
for 4 keV < mS < 1 MeV with 1016 s ≲ τS ≲ 1022 s dis-
played as x-Ray in Fig. 1.

B. CMB anisotropies

Precision measurements of the temperature and polari-
zation anisotropies in the CMB by the WMAP [61] and
Planck [62] satellites provide strong constraints on energy
injection that can ionize cosmic neutral hydrogen after
recombination [63–68]. The raised ionization fraction at
lower redshifts allows for delayed photon interactions,
which modifies the visibility function that weighs the
probability of last scattering for a given CMB photon at
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FIG. 9. The total S emissivity as a function of temperature,
including the estimated error range from adopting the MB
approximation compared to the correct emissivity with quantum
distributions of particles 1, 2, and 3.
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a specific time. This effectively damps the high-l tail of the
temperature anisotropy (TT) power spectrum and increases
the low-l E-mode polarization [63,64].
At redshift zdep, the efficiency of energy deposition in the

cosmic plasma by an energetic electron-positron pair or
photons injected at an earlier redshift zinj > zdep has been
determined in Ref. [69] and updated in Ref. [70]. This
update provides the energy fractions that go into ionization,
excitations, heating, and emission of low-energy photons.
Given the process-dependent and z-dependent ionization
efficiency, comparing the modified power spectra to the
CMB data is computationally intensive. In practice, prin-
cipal component analysis of modified recombination his-
tories shows that a decaying particle is well described by a
constant deposition efficiency taken at zdep ¼ 300 [70,71].
We can then simply utilize the derived constraints for
decaying particles in Ref. [7] and translate to the current
model with

ζ ¼ feff
mSYSs0
mpnb;0

; ð44Þ

where feff ¼ fðz ¼ 300Þ is the ratio of energy absorbed
leading to ionization over energy emitted at zdep ¼ 300. In
the mass range where S → μþμ− is the main decay channel,
we solve for feff by integrating over the electron frommuon
decay, which decreases the ionization efficiency by a factor
of 3 due to neutrinos radiating away energy. We repeat the
procedure for the decay chains S → πþπ− → μþμ−νν, S →
π0π0 → γγγγ and find that it is well approximated by
evaluating the decay products at their average energy from
the decay. We evaluate the efficiency of kaons by weighting
the main branching ratios and the decay products by their
average energy, percolating down to their final e� − γ − ν
spectra. Above the dicharm threshold, the light quarks,
charm quark, and gluon all have similar deposition effi-
ciencies that lie somewhere between those of electrons and
muons [68]. In general, for mS ≲ 10 GeV, the efficiency
tends to approach the muonic case [72]. We adopt the same
ionization efficiency as muons for conservative results. The
overall feff for S with τS ¼ 1014 s is shown in Fig. 10 for
both the baseline and spectator decay models.
We will not extrapolate the CMB constraints down to

lifetimes τS < 1013 s because feff is not numerically stable
for decays before recombination [70] and the on-the-spot
approximation at zdep ¼ 300 fails to represent the correct
physics for short lifetimes [71]. The excluded band is
shown in orange within Fig. 11 for the baseline model, with
the would-be exclusion region for the spectator decay
model delimited by a thin gray line.

C. CMB spectral distortions

While energy injection after recombination may be
observed in the CMB as variations in the anisotropies,

earlier energy injection can induce spectral distortion of the
blackbody distribution (see Ref. [74] for a recent review)
and can be used as probes of decaying particles [75,76].
Cosmological thermalization is very efficient at arbitrar-

ily early times, and the photon plasma becomes susceptible
to incomplete reequilibration of its spectrum for energy
injected at z≲ zμ ≃ 2 × 106. The CMB photons are still
efficient at redistributing their energy across the energy
spectrum, but double-Compton scattering and bremsstrah-
lung interactions that adjust the number of photons become
inefficient. The bath thus develops a nonzero chemical
potential in its high-energy tail resulting in the μ distortion.
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FIG. 10. Effective fraction of energy deposited leading to
ionization of the cosmic plasma at z ¼ 300 for ΓS ¼ 1014 s,
for the baseline and spectator decay models.
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FIG. 11. Detailed cosmological constraints on S in the MeV–
GeV mass range, excluding BBN (see Fig. 13). The solid lines
and shaded areas represent the parameters excluded in the
baseline decay model. Dashed lines refer to the projected
sensitivity to spectral distortions of a PIXIE-like detector [73]
and the thin gray line exhibits the would-be PIXIE sensitivity in
the spectator S decay model.
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At lower redshifts, z≲ zμy ≃ 5 × 104, Compton scattering
between electrons and photons fails to maintain both
species at a common temperature. The photon bath inherits
a reduced temperature at low energies while high frequen-
cies receive a relative gain in temperature, a phenomenon
called the Compton y distortion [74].
Distortion due to arbitrary energy injection can be

approximated by [77]

y ¼ 1

4

Z
zμy

zrec

dðQ=ργÞ
dz0

dz0; ð45Þ

μ ¼ 1.401
Z

∞

zμy

e−ð
z0
zμ
Þ5=2 dðQ=ργÞ

dz0
dz0; ð46Þ

where zrec ¼ 1000 and the normalized injected electromag-
netic energy is

dðQ=ργÞ
dz0

¼ 1

ργ

dE
dtdV

Brem
1

Hð1þ z0Þ : ð47Þ

In this expression, dE
dtdV is the total energy injected and Brem

is the branching ratio to electromagnetic end products. In a
radiation-dominated universe, the y distortion can be
evaluated analytically,

y ≃
ffiffiffi
π

p
8

YSmSs0
ργ0

ffiffiffiffiffiffiffiffiffi
ΓSt0

p BremIðΓÞ; ð48Þ

with the current entropy density s0 ¼ 2891 cm−3, the
current photon energy density ργ0 ¼ 0.26 eV cm−3, a time
normalization of t0 ¼ 2.4 × 1019 s and where the integral
IðΓÞ is defined as

IðΓÞ¼ 2ffiffiffi
π

p
Z Γt0

z2rec

Γt0
z2μy

e−ξ
ffiffiffi
ξ

p
dξ

→

�
1; if 10−13≲Γ×s≲10−10;

0; if Γ≪ 10−13 s−1 or Γ≫ 10−10 s−1:
ð49Þ

The measured bounds from COBE/FIRAS [78] and the
projected sensitivity from a primordial inflation explorer
(PIXIE)-like detector [73] are

COBE=FIRAS∶ jyj≤ 1.5×10−5; jμj≤ 9×10−5; ð50Þ

PIXIE∶ jyj ≤ 2× 10−9; jμj ≤ 1× 10−8: ð51Þ

We approximate the electromagnetic branching ratio by
weighting the average energy carried by end products from
initial decays at rest with their respective branching ratios
from S. Since the averaged energy carried away by the
electron in a muon decay is hEei=mμ ¼ 0.35 [11], we have

BrS→μþμ−
em ¼ 0.35. The electromagnetic fractions for heavier

decay products can be found from the corresponding
fractions of their lighter decay products. We find the
following electromagnetic energy injection ratios:

Eμ�
em ≃ 0.35 × Eμ� ; Eπ�

em ≃ 0.27 × Eπ� ; ð52Þ

Eπ0
em ¼ 1.00 × Eπ0 ; EK�

em ≃ 0.29 × EK� ; ð53Þ

E
K0

S
em ≃ 0.49 × EK0

S
; E

K0
L

em ≃ 0.48 × EK0
L
; ð54Þ

where we neglected the kaon decay channels that contribute
less than 10% of the kaon decay width. The total electro-
magnetic branching ratios for the S decay channels are

BrS→μþμ−
em ¼ 0.35; BrS→ππ

em ¼ 0.51; ð55Þ

BrS→KK
em ¼ 0.39; BrS→qq̄;gg

em ¼ 0.45; ð56Þ

where 2=3 (1=3) of pions are charged (neutral), 1=2
(1=4þ 1=4) of kaons are charged (neutral shortþ long),
and we assume the electromagnetic yield of high energy
quarks and gluons of 0.45 is maintained for c quarks. The
total Brem as a function of mS is shown for the baseline and
the spectator decay models in Fig. 12. The excluded regions
from COBE/FIRAS are shown in Fig. 11, with a robust
conservative overlap between all probes in the 1 MeV <
mS < 2mμ mass range. A PIXIE-like detector would not
change the constraints in themS < 2mμ mass range, but has
the potential to increase the sensitivity range to
mS ≲ 8 GeV, with a sensitivity band that somewhat
depends on the S decay model.
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FIG. 12. Fraction of S rest energy decaying into electro-
magnetic energy as a function of its mass for the baseline and
spectator decay models.
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D. Relativistic d.o.f. (Neff)

The total relativistic energy density in the Universe at
decoupling is well constrained by the CMB. The temper-
ature of the photon bath determines its contribution to the
total radiation energy density. Any additional component is
parametrized inNeff , the effective number of neutrinos with
a temperature Tν ¼ ð4=11Þ1=3Tγ . The Planck Collaboration
measurement of Neff ¼ 3.04� 0.33 [62] at 2σ is in agree-
ment with the SM predicted value of 3.046 [79].
The constraints on early injection τS < 1 s of S →

feþe−; γγg or S → μþμ− have been derived in Ref. [27]
including neutrino decoupling effects, which we apply
using the freeze-out abundance from Eq. (37) in the mass
range 10 MeV≲mS < 2mμ. For lower masses, the S
lifetime at the border of the exclusion band is longer than
τS ¼ 100 s, the maximal range derived in Ref. [27]. For
longer lifetimes, we simply compare the energy density of
the S sector with the SM energy densities in the neutrino
and EM baths prior to the energy release (at t ¼ xτS) and
assume an instantaneous decay. Neff can then be estimated
by comparing the relative energy density in the neutrino
and EM baths

Neff ¼
8

7

�
11

4

�
4=3 ρ0ν þ ρSν

ρ0γ þ ρSγ
; ð57Þ

where ρSγ ¼ BremρSðt ¼ xτSÞ, ρSν ¼ ð1 − BremÞρSðt ¼ xτSÞ
and the electromagnetic/neutrino energy partition of the
end products Brem is taken from Fig. 12. We choose x ¼
1=10 to match the constraints for τS < 100 s. This choice of
x ¼ 1=10 is conservative. The nonrelativistic S energy
density decreases less with time than the relativistic SM
energy density, and larger values of x would yield stronger
constraints. Using the 2σ range for Neff ¼ 3.04� 0.33, we
find the constraints labeled Neff in Figs. 1 and 11.

E. Big bang nucleosynthesis

The synthesis of light nuclei during BBN is well
understood, with the final abundance of stable light
elements in good agreement with predicted values (see,
for example, [80–82] for recent overviews and discussions
of the discrepancy with 7Li). The concordance between
predicted and observed abundances of 4He, 3He, and D can
be used to constrain electromagnetic and hadronic energy
injection (see Refs. [57,83,84] for reviews).
The impact of decaying particles in the BBN era depends

on the ability of the decay products to efficiently interact
with light nuclei, which varies as the BBN reaction network
evolves and the universe cools down. Early meson decays
were thoroughly discussed in Ref. [27], effectively increas-
ing the n=p ratio before they freeze out, thus raising the 4He
yield above its observational limit. After most neutrons
have converted to 4He, the negatively charged mesons, π−

and K−, can dissociate the copious 4He, producing lighter

3He, T, D, n, and p that are fed back into the reaction
network [11]. This mechanism was suggested to decrease
the 7Li prediction by reducing the amount of 7Be and
resolving the discrepancy with observations [11], but
incidentally also raising the D=H ratio above 3 × 10−5

from inefficient D burning, which is now excluded by
observations [85,86]. Beyond τS ≳ 104 s, the mesonic
interaction rate with ambient nuclei is suppressed
below the decay rate by the dilution due to expansion.
The mesons instead have enough survival time to
decay away in a shower of electromagnetic energy.
Photodissociation of nuclei becomes efficient when pho-
tons have cascaded down below the eþe− thermal pair
creation energy Eth ¼ m2

e=22T. These γ rays can photo-
dissociate D with a binding energy of Ebind

D ¼ 2.2 MeV at
t ∼ 5 × 104 s and similarly for 4He with Ebind

4He ¼ 19.8 MeV

at t ∼ 4 × 106 s [87].
We implement mesonic decays of S → ππ and S → KK

(charged and neutral) by weighting the freeze-in abundance
by their respective ratios. We can then apply the constraint
on early decays from Ref. [27], constraining the S param-
eter space by an overproduction of 4He shown in blue in
Fig. 13. Moreover, we use the D=H < 3 × 10−5 limit from
Ref. [11], utilizing their stopped pion and kaon analysis for
conservative results, displayed as the orange region on the S
parameter space. Longer lifetimes with electromagnetic
shower constraints are shown in green. We weight the S
abundance by the electromagnetic branching ratio from
Fig. 12 and compare the value with the electromagnetic
injection limit from Ref. [57]. The upper protruding band is
from a decreased D/H ratio while the lower green region is
from an increased 3He=D ratio. We have assumed 100%
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FIG. 13. BBN constraints above the di-pion threshold. Solid
lines and shaded areas are ruled out if S follows the baseline
decay model. Thin gray lines show the region for the spectator
decay model instead. For comparison, dashed lines represent
the future spectral distortion sensitivity from a PIXIE-like
detector [73].
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decays to kaons in the uncertain region, from mS ∼
1.4 GeV to the dicharm threshold. Note that the BBN
constraint on S from mesonic decays has large uncertainties
due to the unknown decay spectrum. This is illustrated by
the rather different exclusion region if the spectator decay
model is assumed instead, as shown by the thin gray line
in Fig. 13.
Above the dicharm threshold, the S decay products are

well understood and the model allows for more accurate
predictions. BBN is sensitive to the total energy injected via
quark pairs, with a negligible dependence on the quark
flavor [57]. The sensitivity is mostly dominated by the
number of hadrons produced in the hadronic shower, with a
m0.3

S dependence on the total energy input (assuming a
nonrelativistic S). Constraints from quark injection there-
fore increase with a smaller mS [57]. We use the bb̄ limits
from a 30 GeV initial particle from Ref. [57] for cc̄ and bb̄
injections, both rescaled by their respective branching
ratios. The resulting exclusion is shown in red in
Fig. 13, with the upper θ range constrained by 4He
overabundance and the lower θ values excluded by a D
overproduction.
Electromagnetic injection below the pion threshold will

also affect the BBN network, through decays to muons and
electrons with a nontrivial dependence on the S mass [8].
However, the S decay rate is much weaker and requires θ
values close to S thermalization in order to decay during the
active BBN epoch. In similar regions of parameter space,
there are also significant constraints from the limits on Neff ,
derived in Sec. V D, along with the spectral distortion
results from Sec. V C. These already exclude the parameter
space with τS ∼ 0.1–1013 s for 2me < mS < 2mμ. We
therefore do not need to perform a detailed analysis of
the BBN constraints below the di-pion threshold and, by
the same token, the potential solution to the 7Li problem
tagged in Ref. [8] is also ruled out.

VI. DISCUSSION AND CONCLUSIONS

Interacting light scalar bosons are usually associated
with a familiar technical naturalness problem, mscalar ∼
ðcouplingsÞ × ΛUV, resulting in the dilemma of justifying
fine-tuning. The superrenormalizable portal offers an
exception: the mass of the scalar can be natural at both
tree and loop levels, as long as mS is larger than the
trilinear coupling A, or in terms of the mixing angle,
mS > θ × ð100 GeVÞ. Only a very few particle physics
experiments (notably flavor changing decays b → sS,
s → dS [88]) and the fifth force experiments [9] can probe
the parameter space with natural values of couplings.
In contrast, cosmology within the ΛCDM framework
provides a sensitive probe of this model, with couplings
reaching down to θ ∼ 10−16, which in terms of the coupling
to electrons translates to gSe ¼ θ × ðme=vÞ ∝ 10−21.
(Incidentally, gravitons have approximately the same

coupling strength to nonrelativistic electrons.) In this paper,
we have attempted to take full advantage of the available
cosmological sensitivity, by improving the calculations of
metastable S abundance produced through the unique
superrenormalizable portal the SM has to offer: ASH†H.
We have revisited the calculation of freeze-in production

of the Higgs portal scalar and shown that electroweak
gauge bosons and the t − b quarks have non-negligible
contributions to the total yield. We find the largest yield
from top quark coalescence with a soft S emission,
regulated by the finite top quark width. Even for
mS ≪ mh, the favored interactions with heavy particles
push the bulk of the production just below the electroweak
phase transition, in the 10 GeV ≤ T ≤ Tc temperature
range. Improvements in the precision of the calculation
require the full finite-temperature quantum field theory
machinery that models the phase transition and includes
plasma screening effects. This incremental effort is sub-
stantial and not necessarily justified for new physics
searches, especially because we estimate the current level
of precision to be a factor of ∼2.
Control of the abundance calculation has allowed us to

provide a full parameter space scan of the low mixing angle
constraints, from sub-eV masses to 100 GeV. The cosmo-
logical constraints that depend on the primordial S abun-
dance appear formS > 10 keV. The Higgs portal scalar has
well-defined decay products below the pion threshold. It
allows for rigorous constraints in the 10 keV < mS < 2mμ

range that fully cover 6 to 10 orders of magnitude in the
mixing angle. The low θ boundary is probed by the late
decays seen in the diffuse x-ray background and the CMB.
In both cases, the lifetimes exceed the sensitive injection
time window. This means that the number of decaying
particles scales as dN=dt ∝ YSΓS ∝ θ4. We note at this
point that the dependence on ðcouplingÞ4 is a familiar one:
it appears in any beam-dump experiment searching for a
decay within a detector in the limit where the decay length
is much larger than the size of the experiment. It also
appears in the “cosmological beam-dump” constraints
considered here, for the case of extremely long-lived
particles. The change in S abundance by a factor of 2
would change the θ sensitivity by a factor of 21=4, which
would not be visible on the scale of the final log-log plot.
For this reason, improvements in the calculation of YS
would provide a minimal gain in precision and our
approximate framework with near-vacuum cross sections
is justified, at least for mS < 2mμ. Similarly, the upper
boundary for large θ is set by the freeze-out relic abun-
dance, rather than the freeze-in abundance. Early cosmo-
logical energy injection has a logarithmic dependence on
the S primordial metastable abundance [27]. This log
dependence renders the exclusion region robust to varia-
tions of a few in Yf−o

S , confirming the accuracy of our
conservative estimate, Eq. (37), without the need for a
relativistic freeze-out computation.
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Above the pion threshold, in the 2mπ < mS ≲ 2mc mass
range, we have derived the CMB anisotropy, spectral
distortion (plus the forecast for a PIXIE-like detector),
and BBN constraints for two different decay models, with
significant differences in the exclusion bands. Especially
near the kaon resonance, mS ∼ 1 GeV, the sensitivity of
each probe can vary by an order of magnitude in θ.
Given this poorly defined feature, we stress that improve-
ments in the determination of the S mesonic decay width
are needed before finite-temperature abundance calcula-
tions are warranted to improve the accuracy of cosmologi-
cal probes.
For higher masses, where S predominantly decays to

quarks, the large θ sensitivity boundary diverges sharply for
short lifetimes in the mSYS vs τS plane [57]. Thus the θ
constraint is insensitive to minor changes in YS. For
τS > 104 s, however, the required energy stored in the
dark sector, mSYS, is almost flat as a function of increasing
lifetimes. Changes in the freeze-in yield by a factor of 2 can
thus be compensated by a factor of 21=4 in the mixing angle.
We therefore conclude that cosmological constraints
on S are robust to variations of YS by a factor of a few,
except where S decays primarily to mesons, where the
determination of the decay width results in a larger
uncertainty.
The derived constraints are relatively conservative with

respect to the structure of the dark sector provided that a
quartic interaction λSS2H†H does not thermalize the dark
sector. The only additional requirement for the existence of
these constraints is that S decays visibly and not into some
additional stable dark state. In this case, the freeze-in
production mechanism provides the minimal metastable
abundance S can have for a given lifetime. Any additional
interactions with other states will increase its population,
until it thermalizes with the SM. Large self-interactions
can potentially dilute YS before it decays, which would
reduce the S abundance by a factor of lnðaτS=af−iÞ [24].
Given that the freeze-in relic abundance is set at
Tf−i ∼ 10 GeV, this is a negligible factor of a few for
early decays probed by BBN or Neff, but can potentially be
more than an order of magnitude in YS for lifetimes
relevant to the CMB and x-ray measurements. Large
self-interactions could therefore reduce the low θ sensi-
tivity by a factor of a few.
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APPENDIX A: SCALAR DECAYS BELOW
THE ELECTRON THRESHOLD

As summarized in Sec. II A, below the electron mass
threshold a Higgs-like particle decays to two photons at
leading order through a loop of heavy particles [35],

ΓðS → γγÞ ¼ θ2α2m3
S

256π3v2
jCj2; ðA1Þ

where

C ¼
X
f

NcQ2
fAfðτfÞ þ AWðτWÞ; ðA2Þ

in terms of loop functions Af and AW which are functions
of τX ¼ m2

S=4m
2
X. Note that the W contribution has the

opposite interference sign, and the functions are given by

AfðτÞ ¼
2

τ2
½τ þ ðτ − 1ÞfðτÞ�⟶

τ→0
4=3; ðA3Þ

AWðτÞ ¼
−1
τ2

½2τ2 þ 3τ þ 3ð2τ − 1ÞfðτÞ�⟶
τ→0

− 7; ðA4Þ

with

fðτÞ ¼
(
arcsin2

ffiffiffi
τ

p
τ ≤ 1;

− 1
4

h
ln 1þ

ffiffiffiffiffiffiffiffiffi
1−τ−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−τ−1

p − iπ
i
2

τ > 1.
ðA5Þ

In this prescription, the inclusion of light quarks u, d, and s
is rather ambiguous. Their masses are not physical rest
masses since mu;d;s ≪ ΛQCD ≃ 350 MeV. Instead, they are
determined as chiral symmetry breaking variables in QCD
which generate the nonzero mass of the Goldstone bosons
of the approximate symmetry, the pions, kaons, and eta
mesons [36]. A more appropriate interpretation of their
contribution to S → γγ is through virtual loops of pions and
kaons [37]. Adding the contributions from all SM particles,
for mS ≪ 2me we find

C ¼

8>>><
>>>:

11=3 ≃ 3.67 for 0þ 6 quarks;

989=522 ≃ 1.89 for 2þ 4 quarks;

50=27 ≃ 1.85 for 3þ 3 quarks;

1 ¼ 1 for 0þ 3 quarks;

ðA6Þ

where different scenarios of ða lightÞ þ ðb heavyÞ quarks
are shown. For the case of 2(3) light flavors the pion (pion
and kaon) loops are taken into account, while for 0 light
flavors they are neglected. The true physical value should
be close to the 3þ 3 or 2þ 4 scenarios.
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APPENDIX B: HIGHER ORDER CORRECTIONS
TO THE THERMAL MIXING ANGLE

As discussed in Sec. III, for small mS the mixing
angle θ scales quite differently at zero temperature and
at temperatures close to the phase transition. From Eq. (4),
we find θ ∝ A=ðλHvÞ, while at finite temperature
θeffðTÞ, given by Eq. (16), scales quite differently as
θeffðTÞ∝AvðTÞ=ðcouplings×T2Þ, particularly as vðTÞ→0
at the phase transition. The resolution is that there are
additional diagrams which contribute to these vertices at
higher order in perturbation theory and survive in the limit
of vðTÞ → 0. Example diagrams in the higher order
expansion are shown in Fig. 14.
The tree-level coupling between Z and S is proportional

to g2Av2ðTÞ=m2
hðTÞ and vanishes in the limit vðTÞ → 0.

However, it is clear that the thermal average of the full
Higgs including VEVand fluctuations, hðvþ hÞ2ðTÞi, does
not vanish. This follows from the first thermal correction,
with one thermal loop of Goldstone and Higgs bosons.
Taking the soft S limit so that the Matsubara sum of the
Goldstone boson loop is tractable, we find that at finite T
the first vertex correction is

Γμν
ZZS ∼

Ag2

4
gμν

Z
d3p
ð2πÞ3

βωeβω þ eβω − 1

ω3ð1 − eβωÞ2 ; ðB1Þ

where β ¼ 1=T and ω is the energy of the boson in the
loop. For a massless boson, this integral is infrared
divergent ∝

R
dω
ω2 , a well-known feature of finite-temper-

ature corrections [45]. However, accounting for screening
with the effective thermal mass m2

h;T ¼ chT2, the regulated
corrections scale as follows: Γμν

ZZSm ∝ ðAg2= ffiffiffiffiffi
ch

p Þgμν.
Notice that despite the associated loop suppression, this
thermal loop correction is finite in the limit vðTÞ → 0.
Therefore, near the phase transition, a more complete
treatment of thermal loops would be necessary.

APPENDIX C: S PRODUCTION
CROSS SECTIONS

In this appendix, we exhibit the production cross sections
used in the calculation of the S freeze-in abundance, in the
limit of smallmS. As a couple of primary examples of QCD

production, the cross sections for a gluon scattering with a
top quark to produce a S (in the mS → 0 limit) are

σtt̄→gS ¼
αsθ

2y2t
9s

2
64�1 − 4m2

t

s

�
ln

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t
s

q
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t
s

q
1
CA

þ 8m2
t

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t
s

q
3
75; ðC1Þ

σtg→tS ¼
αsθ

2y2t
96s

�
2sðsþ 3m2

t Þ2
ðs −m2

t Þ3
ln

�
s
m2

t

�

−
1

ð1 − s
m2

t
Þ3
�
3þ 22

m2
t

s
− 20

m4
t

s2
− 6

m6
t

s3
þm8

t

s4

��
;

ðC2Þ

where yt ¼
ffiffiffi
2

p
mt=v and αs is the strong coupling constant,

evaluated at the cosmic temperature αs ¼ αsðTÞ.
The cross sections in other channels are quite lengthy, so

we collect here just the large s limits to simplify the
presentation. Note, however, that full expressions are used
in the numerical computation. For the Yukawa-type anni-
hilation, we have

σtt̄→hS →
y4t θ2

192πs

�
ln

s
m2

t
− 2

�
; ðC3Þ

σtt̄→ZS →
θ2

576πv4s

h
6m2

t ð2m2
t þ ð1þ c2vÞm2

ZÞ ln
s
m2

t

þm2
Zðð1þ c2vÞm2

Z − 24m2
t Þ
i
; ðC4Þ

σtb̄→WþS →
θ2

288πv4s

�
3m2

t ðm2
t þ 2m2

WÞ ln
s
m2

t
þ 2m2

W

− 12m2
t m2

W − 3m2
t

�
; ðC5Þ

where cv ¼ I3 − 2Q sin2 θW , in terms of the eigenvalues
of charge Q and isospin I3 for the relevant fermion.
The leading forms for the Compton-like scattering cross
sections are

FIG. 14. Survival of the ZZS vertex at higher order in the symmetric phase.
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σth→tS →
θ2y4t
128πs

�
2 ln

s
m2

t
þ 5

�
; ðC6Þ

σtZ→tS →
θ2m2

Z

48πv4
ð1þ c2vÞ þO

�
1

s

�
; ðC7Þ

σtW−→bS →
θ2m2

W

12πv4
þO

�
1

s

�
; ðC8Þ

σbWþ→tS →
θ2m2

W

12πv4
þO

�
1

s

�
; ðC9Þ

and the bosonic scattering cross sections are

σZh→ZS →
θ2m2

Z

12πv4
; ðC10Þ

σZZ→hS →
θ2m2

Z

36πv4
; ðC11Þ

σWþW−→hS →
θ2m2

W

18πv4
; ðC12Þ

σWþW−→ZS →
θ2m2

Wð8m2
W þm2

ZÞ
18πm2

Zv
4

; ðC13Þ

σW�h→W�S →
θ2m2

W

36πv4
; ðC14Þ

σW�Z→W�S →
θ2ð20m4

W − 3m2
Wm

2
Z þm4

ZÞ
36πm2

Zv
4

; ðC15Þ

σhh→hS →
9θ2λ2

8πs
: ðC16Þ

APPENDIX D: NUMERICAL INTEGRATION
WITH QUANTUM STATISTICS

We use an integration strategy based onRef. [89] in which
the authors reduced the collision integral in the context of
neutrino decoupling from nine dimensions to two dimen-
sions retaining the quantum distributions of particles. The
heavymediator limit was assumed in this reference, which is
not appropriate here, but we present a strategy to reduce the
number of integrals requiring numerical treatment.
We wish to integrate

s _Y ¼
Z Y4

i¼1

�
d3pi

2Eið2πÞ3
�
Λðf1; f2; f3; f4Þ

× jMj2ð2πÞ4δ4ðp1 þ p2 − p3 − p4Þ; ðD1Þ

where Λ represents the thermal distribution of each species
and jMj2 is the spin-summed squared amplitude. Working

in a reference frame where species 1 travels in the x̂
direction, we define the four vectors as

p1 ¼ ðE1; p1; 0; 0Þ; ðD2Þ

p2 ¼ ðE2; p2 cos α; p2 sin α sin β; p2 sin α cos βÞ; ðD3Þ

p2 ¼ ðE3; p3 cos θ; 0; p3 sin θÞ; ðD4Þ

p4 ¼ p1 þ p2 − p3; ðD5Þ

where pi ¼ jp⃗ij; the angle between p⃗1 and p⃗2 is
α and between p⃗1 and p⃗3 is θ. Both p⃗2 and p⃗3 have
an azimuthal angle with p⃗1, but there is an overall
azimuthal symmetry and only the difference between
the two azimuthal angles matters, denoted by μ. We
have used the azimuthal symmetry to fix the p⃗3

azimuthal angle to 0. Then we have d3p1d3p2d3p3 ¼
p1E1dE1dΩ1p2E2dE2dðcos αÞdβp3E3dE3dðcos θÞdμ, and
our overall integral reduces to

s _Y¼ 2ð2πÞ2
8ð2πÞ8

Z Y3
i¼1

ðpidEiÞ
d3p4

2E4

dðcosαÞdβdðcosθÞ

×Λðf1;f2;f3;f4ÞjMj2δ4ðp1þp2−p3−p4Þ; ðD6Þ

on performing the trivial integrals over Ω1 and μ. We
recall that the three-dimensional integral d3p4 comes

from d3p4
2E4

¼ d4p4δðp2
4 −m2

4ÞΘðp0
4Þ, and we can use the

four-dimensional δ function to perform the d4p4 integral,

s _Y ¼ 1

4ð2πÞ6
Z Y3

i¼1

ðpidEiÞdðcos αÞdβdðcos θÞ

× Λðf1; f2; f3; f4ÞjMj2δðp2
4 −m2

4ÞΘðp0
4Þ; ðD7Þ

which fixes p2
4¼p2

1þp2
2þp2

3þ2ðp1 ·p2−p1 ·p3−p2 ·p3Þ
from now on. The dot products can be evaluated via our
angle definitions (pi · pj ≡ pij)

p12 ¼ E1E2 − p1p2 cos α; ðD8Þ

p23 ¼ E2E3 − p2p3ðcos α cos θ þ sin α sin θ cos βÞ;
p13 ¼ E1E3 − p1p3 cos θ; ðD9Þ

p24 ¼ m3
2 þ p12 − p23; ðD10Þ

p14 ¼ m2
1 þ p12 − p13; ðD11Þ

p34 ¼ −m3
3 þ p13 þ p23: ðD12Þ

The argument of the last delta function can be expressed as
a function of β,
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fðβÞ ¼ p2
4 −m2

4

¼ ωþ 2ðp2p3 cos α cos θ þ p2p3 sin α sin θ cos β

− p1p2 cos αÞ; ðD13Þ

where

ω ¼ Qþ 2ðE1E2 − E1E3 − E2E3 þ p1p3 cos θÞ

with Q ¼ m2
1 þm2

2 þm2
3 −m2

4. The β integral can be
evaluated using f0ðβÞ ¼ −2p2p3 sin α sin θ sin β, forcing
β → β0, where

cos β0 ¼ −
ωþ 2ðp2p3 cos α cos θ − p1p2 cos αÞ

2p2p3 sin α sin θ
ðD14Þ

is found by solving fðβ0Þ ¼ 0. There are actually two β0
solutions given by sin β0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 β0

p
. Since every-

thing is symmetric in β (all dot products are cos β
dependent and the ∂f=∂β factor that appears in the
dominator is an absolute value), we can simply use the
positive root and multiply by 2. Hence, we get

s _Y ¼ 1

2ð2πÞ6
Z Y3

i¼1

ðpidEiÞdðcosαÞdðcosθÞΛðf1; f2; f3; f4Þ

×
jMj2Θðp0

4ÞΘð4p22p23sin2αsin2θsin2β0Þ
2p2p3 sinα sinθ sinβ0

: ðD15Þ

The extra step function arises via an obligation to maintain
β0 in the physical phase space

cos2β0 ≤ 0 ↔ ð2p2p3 sin α sin θ sin β0Þ2 ≥ 0

↔

���� ∂f∂β0
����2 ≥ 0: ðD16Þ

We can now focus on the angular integrations.

s _Y ¼ 1

2ð2πÞ6
Z

dE1dE2dE3p1p2p3Λðf1; f2; f3; f4Þ × I

I ¼
Z

dðcos θÞdðcos αÞ
jMj2Θðp0

4ÞΘðj ∂f
∂β0 j

2Þ
j ∂f
∂β0 j

: ðD17Þ

Expanding f0 as���� ∂f∂β0
����2 ¼ a cos2 αþ b cos αþ c ðD18Þ

a ¼ −4p22ðp21 þ p23 − 2p1p3 cos θÞ ðD19Þ

b ¼ 4p2ðp1 − p3 cos θÞω ðD20Þ

c ¼ 4p22p
2
3 sin

2 θ − ω2; ðD21Þ

the step function ensures that the denominator is real,

I ¼
Z

dðcos θÞ
Z

cosαþ

cos α−

dðcos αÞ

×
jMj2Θðp0

4ÞΘða cos2 αþ b cos αþ cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a cos2 αþ b cos αþ c

p : ðD22Þ

Since jMj2 only consists of simple functions of cosα,
the cos α integration can be performed straightforwardly for
each process. Since a ≤ 0, the integration bounds are
set by the real-valued criterion, between which the quad-
ratic function is positive. Given the roots cos α� ¼
ð−b ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − 4ac
p

Þ=ð2aÞ, notice that we always have −1 ≤
cos α− and cos αþ ≤ 1. The θ integral can be performed in a
similar fashion. Requiring cosα� to be real implies the
condition b2 − 4ac ≥ 0, and

cosθ� ¼ −
Qþ 2p22 þ 2γ ∓ 2p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ p21 þ p22 þ p23 þ 2γ

p
2p1p3

;

where we use the shorthand γ ¼ E1E2 − E1E3 − E2E3 and
we have

I ¼
Z

minð1;cos θþÞ

maxð−1;cos θ−Þ
dðcos θÞ

Z
cosαþ

cos α−

dðcos αÞ

×
jMj2Θðp0

4ÞΘðacos2αþ b cos αþ cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acos2αþ b cos αþ c

p : ðD23Þ

These two integrals can be carried out analytically for each
reaction. The final integral to be performed numerically for
the emissivity is three dimensional, and a step function
guarantees that the phase space is physical and cos α� is
real valued,

s _Y ¼ 1

2ð2πÞ6
Z

dE1dE2dE3p1p2p3Λðf1; f2; f3; f4Þ

× I × ΘðQþ p21 þ p22 þ p23 þ 2γÞ; ðD24Þ

I ¼
Z

minð1;cos θþÞ

maxð−1;cos θ−Þ
dðcos θÞ

×
Z

cos αþ

cos α−

dðcos αÞ jMj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acos2αþ b cos αþ c

p : ðD25Þ
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