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Recently more generalized four-fermion interactions of neutrinos such as tensor and scalar
interactions (TSIs) have been extensively studied in response to forthcoming precision measurements
of neutrino interactions. We show that due to the chirality-flipping nature, at the one-loop level TSIs
typically generate much larger (107–1010) neutrino magnetic moments (νMMs) than the vector case.
For some cases, the large νMMs generated by TSIs may reach the known bounds, which implies
potentially important interplay between probing TSIs and searching for νMMs in current and future
neutrino experiments.
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I. INTRODUCTION

As neutrino experiments are entering the precision era,
searching for new neutrino interactions beyond the
Standard Model (BSM) is of increasing importance. In
the near future, experiments of coherent neutrino-nucleus
scattering1 and other types of neutrino scattering2 will reach
unprecedented sensitivity to various types of BSM neutrino
interactions.
Among various BSM interactions considered for neu-

trinos, the so-called nonstandard interactions (NSIs; see
reviews [17–20]), which couple neutrinos (ν) to other
fermions (ψ) by the flavor-changing effective operators
ναγμνβψγ

μψ , have been extensively studied due to their rich
phenomenology in neutrino oscillation. In addition to NSIs
which are of the vector form (i.e., containing γμ between ν̄
and ν), recently there has been rising interest in more
general interactions [10,21–32] of scalar or tensor forms
with the γμ replaced by 1 or σμν, respectively.

3 From the
theoretical point of view, the scalar or tensor interactions

are as well motivated as the NSIs, since they can all
originate from integrating out some BSM bosons.4

In this paper, we would like to point out that the scalar or
tensor interactions of neutrinos may lead to much larger
neutrino magnetic moments (νMMs) than the vector inter-
actions. For the vector case, the loop-generated νMM is
proportional to the neutrino mass and thus highly suppressed
[33–38]. However, for scalar or tensor interactions, due to
their chirality-flipping feature, as will be explained later, it is
proportional to the mass of ψ ,5 which is about 107 to 1010

times larger than the neutrino masses. If neutrinos have
sizable scalar/tensor interactions at the magnitude that
concerns the current neutrino scattering experiments, the
large νMMs may reach the known bounds. The connection
between scalar/tensor interactions and large νMMs has
important implications for future neutrino experiments—if
sizable scalar/tensor interactions could be found within the
sensitivity of future experiments, then it might imply large,
detectable νMMs which would motivate more elaborate
experimental searches, and vice versa.

II. νMM FROM EFFECTIVE INTERACTIONS

In what follows, through an explicit but short calculation
(depicted in Fig. 1), we will show that νMMs generated by
scalar/tensor interactions are in general proportional to
charged fermion masses instead of neutrino masses. The
calculation per sewill technically explain the reason. To get
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1First observed by the recent COHERENT experiment [1].
The future experiments include CONUS [2], ν-cleus [3],
CONNIE [4], MINER [5], etc.

2For example, neutrino scattering at the near detectors [6–12]
of long baseline experiments, or at IsoDAR [13,14], LZ [15,16],
etc.

3More generally, one can have additional γ5’s attached, which
would form pseudoscalar, axial vector, and CP-violating tensor
interactions. Hereafter, as a simplified terminology, we will refer
to them as scalar, vector, and tensor interactions likewise. 4Integrating out a vector boson may give rise to NSIs, while

integrating out a charged scalar boson may lead to both scalar and
tensor interactions—exemplified later in Sec. III.

5The idea of obtaining large νMMs by avoiding it from being
proportional to a neutrino mass is not new and has been discussed
widely in the literature; see the review [39] and references therein.
For further discussions, see Sec. IV.
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a deeper insight into it, after the calculation we will provide
an alternative explanation based on fermion chiralities.
We start by considering the following general effective

interactions of neutrinos6 (ν) and other fermions (ψ):

L ⊃ GXðν̄ΓνÞðψ̄Γ0ψÞ; ð1Þ

where Γ and Γ0 can be any Dirac matrices that keep Eq. (1)
Lorentz invariant, including

1; γ5; γμ; γμγ5; σμν ≡ i
2
½γμ; γν�; ð2Þ

and their linear combinations (e.g., γμ − γμγ5).
In terms of Feynman diagrams, Eq. (1) is an effective

vertex of four fermion lines shown in Fig. 1(a), relevant to
elastic neutrino scattering processes that are currently
undergoing precision measurement. Given such a diagram,
one can close the ψ and ψ lines and attach an external
photon line to it, which forms a one-loop diagram respon-
sible for νMM generation. The one-loop diagram can be
evaluated as follows:

Fig:1ðbÞ ¼
Z

d4k
ð2πÞ4 eGXu2ðp2ÞΓu1ðp1ÞϵμðqÞtrloop; ð3Þ

where most notations take the standard convention (e.g.,
e is the coupling constant of ψ to the photon, ϵμ is the
photon polarization vector, etc.), all of the momenta have
been defined in Fig. 1 with k≡ p1 − k1 ¼ p2 − k2, and
trloop stands for the trace of the loop:

trloop ¼ tr

�
1

=k2 −mψ
γμ

1

=k1 −mψ
Γ0
�

ð4Þ

¼ tr½ð=k2 þmψÞγμð=k1 þmψÞΓ0�
ðk22 −m2

ψ Þðk21 −m2
ψÞ

: ð5Þ

Throughout the calculation, we assume that neutrinos are
Dirac particles and leave the case of Majorana neutrinos for
later discussion.
The trace in Eq. (5) is crucial to understanding when the

generated νMM is proportional tomψ . For simplicity, let us
first focus on the scalar interaction (Γ ¼ Γ0 ¼ 1), for which
the trace can be easily worked out:

trloop ¼ mψ

4ðk1 þ k2Þμ
ðk22 −m2

ψÞðk21 −m2
ψ Þ

: ð6Þ

This result can be obtained by noticing that in the
numerator of Eq. (5) only the cross terms tr½mψγμ=k1 þ
=k2γμmψ � are nonzero. This is because the trace of any
product containing an odd number of γ matrices, such as
tr½=k2γμ=k1� and tr½mψγμmψ �, must be zero [40].
Plugging Eq. (6) back into Eq. (3) and integrating out k,

we should have

Eq: ð3Þ ¼ mψeGXu2ðp2Þ½c1pμ
1 þ c2p

μ
2�u1ðp1ÞϵμðqÞ; ð7Þ

simply by using the Lorentz invariance. Since the quantity
between u2 and u1 should be both a Dirac scalar and a
Lorentz vector, we must be able to write it as a linear
combination of pμ

1 and pμ
2—here as c1p

μ
1 þ c2p

μ
2.

Furthermore, since Eq. (6) is symmetric under p1 ↔ p2,
the integral

R
trloopd4k should lead to a symmetric result,

which implies that c1 ¼ c2. Indeed, this can be verified by
computing the integral manually or using PACKAGE-X [41].
Assuming that the effective vertex has similar UV behavior
to the Fermi effective interaction7 and G−1=2

X ≫ mψ ≫ mν,
the integral gives

c1 ¼ c2 ≈
i

8π2
≡ c; ð8Þ

where “≈”means that higher-order terms suppressed bymψ

and mν are not included.
Using the Gordon identity8 and Eq. (8), we can convert

Eq. (7) to the magnetic moment form

Fig: 1ðbÞ ≈ cmψeGXu2ðp2Þiσμνu1ðp1ÞqνϵμðqÞ; ð9Þ

FIG. 1. Feynman diagrams showing the connection between the
effective interactions in Eq. (1) and νMMs.

6Here we consider neutrinos in the mass basis and, for
simplicity, we focus on one of the three generations. We will
discuss the full three-generation framework in the flavor basis in
Sec. IV.

7If GX is a constant at arbitrarily high energies, the integral is
divergent. We assume that at low energies GX approximately
remains constant while for k → ∞, GX decreases as k−2. More
specifically, we adopt GX ∝ 1

k2−m2, with m2 ∼ G−1
X standing for

the energy scale of this transition.
8See, e.g., Appendix A of Ref. [42].
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which implies the following νMM:

μν ≈
eGXmψ

8π2
ðfor scalarÞ: ð10Þ

As one can see, to get μν ∝ mψ , the crucial step in the
above calculation is that the trace in Eq. (5) has non-
vanishing cross terms (proportional to mψ ), while all of
the other terms are zero. This is true for Γ ¼ Γ0 ¼ 1. If
ðΓ;Γ0Þ ¼ ðγν; γνÞ, we would be in the opposite situation—
the cross terms become zero, while the other terms are
nonzero. A straightforward calculation can confirm that
the νMM in this case is approximately proportional to mν

instead of mψ .
To summarize, whether tr½ðmψγμ=k1 þ =k2γμmψ ÞΓ0� van-

ishes or not depends on whether Γ0 consists of an odd or an
even number of γ matrices. Therefore, for the tensor
interaction, we can infer that the result should be propor-
tional to mψ . Indeed, repeating the previous calculation for
ðΓ;Γ0Þ ¼ ðσνλ; σνλÞ with the same assumptions gives

μν ≈
eGXmψ

2π2
½1þ log ðm2

ψGXÞ� ðfor tensorÞ: ð11Þ

So far we have technically explained why tensor and
scalar interactions could lead to large νMMs proportional
to mψ . The above argument based on even/odd numbers of
γ matrices can be more physically interpreted using the
concept of chirality flipping.
First, let us examine the chirality of νMM,

LνMM ¼ μνν̄½iσμνqν�νAμ; ð12Þ

¼ μνν̄½iσμνqν�ðPL þ PRÞνAμ; ð13Þ

¼ μν½νRσμννL þ νLσ
μννR�iAμqν; ð14Þ

where PL=R ≡ 1
2
ð1 ∓ γ5Þ and νL=R ≡ PL=Rν. Equation (14)

implies that a νMM itself has to be chirality flipping, i.e.,
a left-handed neutrino, after participating in the interaction,
will turn into a right-handed neutrino, and vice versa.
On the other hand, all vector interactions preserve

chirality because

ν̄γμν ¼ νLγ
μνL þ νRγ

μνR: ð15Þ

So to obtain a nonzero νMM, we need chirality-flipping
sources. One such source is a Dirac neutrino mass term,

mνν̄ν ¼ mνðνLνR þ νRνLÞ; ð16Þ

which explicitly shows chirality flipping. In addition, as
can be checked, tensor or scalar interactions all have the
chirality-flipping property.

Now let us scrutinize the chirality in the loop diagram. If
the four-fermion vertex does not flip chirality (e.g., Γ ¼ γν
and Γ0 ¼ γν), then chirality flipping can only be achieved
by mνν̄ν, as presented in Fig. 2(a). It is interpreted as
follows. First, if the left leg is νL, then the right leg initially
has to be νL since the four-fermion vertex cannot flip
chirality. However, as required by the chirality-flipping
property of νMM, the right leg eventually should be νR. So
a mass insertion necessarily appears on the right leg to
achieve the flipping. In this case, the diagram must be
proportional to mν.
If the four-fermion vertex is of tensor or scalar form [see

Fig. 2(b)], then the right leg has the opposite chirality of the
left, simply due to the chirality-flipping property of the
vertex. So we do not need the mass insertion of mν. But we
should notice that the charged fermion also flips its chirality
when passing this vertex, while the photon vertex is not
chirality flipping. To accommodate both vertices in one
loop, a mass insertion of mψ is necessary, as marked in
Fig. 2(b). In this case, the diagram must be proportional
to mψ .
Therefore, we can conclude that if the four-fermion

vertex is chirality flipping per se, then it generates
μν ∝ mψ ; otherwise it leads to μν ∝ mν. This explains
why in our previous calculation μν ∝ mψ is obtained for
tensor and scalar interactions.

III. A UV COMPLETE EXAMPLE

The chirality analysis explicates when μν is proportional
to mψ and when to mν. The specific values of μν, however,
depend on the UV completion of the effective vertex.
Below we would like to study a UV complete example
which introduces a charged scalar ϕ� interacting with both
left-/right-handed neutrinos (νL=νR) and charged leptons
(lL=lR):

L ⊃ ycνLϕþlR þ yslLϕ
−νR þ H:c: ð17Þ

FIG. 2. Feynman diagrams explaining when μν are suppressed
(a) by the neutrino mass and (b) by the charged lepton mass.
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The above terms could originate from left-right symmetric
models (LRSMs) [43–45]9 containing the Yukawa inter-
action ðνL;lLÞΦðνR;lRÞT , where Φ is a bidoublet, pro-
vided that the charged components in Φ have generic mass
mixing.
Equation (17) can give rise to the four-fermion effective

interactions of both scalar and tensor forms if ϕ� is
integrated out:

Leff ¼
ycys
m2

ϕ

ðνLlRÞðlLνRÞ þ H:c:; ð18Þ

which after the Fierz transformation10 becomes

Leff ¼ −
ycys
8m2

ϕ

ð4lLlRνLνR þ lLσ
μνlRνLσμννRÞ þ H:c:

ð19Þ

Given the Yukawa interactions in Eq. (17), we know the
specific UV behavior of the effective interactions at high
energies. So μν can be computed without uncertainties
caused by UV divergences. There are two diagrams
responsible for μν:

(i) Figure 1(b) with the four-fermion vertex replaced by
a ϕ� mediator.

(ii) A similar diagram as (i) but with the photon coupled
to the ϕ� mediator.

After straightforward loop calculations, the results are

μðiÞν ¼ emlycys
64π2m2

ϕ

�
3þ 2 log

m2
l

m2
ϕ

�
; ð20Þ

μðiiÞν ¼ −
emlycys
64π2m2

ϕ

; ð21Þ

corresponding to the contributions of (i) and (ii), respec-
tively. So in this model the total contribution to the νMM is

μν ¼ μðiÞν þ μðiiÞν ¼ emlycys
32π2m2

ϕ

�
1þ log

m2
l

m2
ϕ

�
: ð22Þ

This is consistent with our previous discussions based
on the effective operators [cf. Eqs. (10) and (11)]. Taking
GX ∼ ycys=ð8m2

ϕÞ, we can see that the effective and the UV
complete results agree at the same order of magnitude,
while the difference is understandable due to different UV
details.

IV. DISCUSSION AND CONCLUSION

Throughout the paper, we have considered only the case
of Dirac neutrinos. For Majorana neutrinos, our conclu-
sions would be similar but would need slight modification.
As is well known, Majorana neutrinos can have only
transition magnetic moments, meaning that the correspond-
ing term νiσ

μννjqνAμ may exist only if i ≠ j (i, j ¼ 1, 2, 3
denote the mass eigenstates of neutrinos; ν≡ νL þ νcL is a
Majorana spinor such that ν ¼ νc). Viewed from fermionic
degrees of freedom, the transition from νi → νj is essen-
tially equivalent to the aforementioned chirality flipping,
as the initial and final neutrinos are two different Weyl
spinors. Therefore, for Majorana neutrinos, we simply
need the replacement ðνR; νLÞ → ðνcLi; νLjÞ in the above
analyses.
The analyses in this paper can be readily extended to

include three flavors. First, Eq. (1) can be modified to the
flavor-dependent form

L ⊃ Gαβ
X ðναΓνβÞðψ̄Γ0ψÞ; ð23Þ

where α, β ¼ e, μ, τ are flavor indices. Then since we know
that, for tensor and scalar interactions, neutrino masses
make negligible contributions to νMMs, neutrinos can be
treated as massless particles in the calculation, which would
lead to flavor-dependent μαβν in Eqs. (10) and (11) with only
GX replaced by Gαβ

X . Note that many experimental mea-
surements actually produce constraints on combinations of
some μαβν . For example, νe − e scattering experiments with
negligible baselines are sensitive to the effective magnetic
moment of νe below [47]:

μ2νe ¼
X
β

jμeβν j2: ð24Þ

For solar neutrino experiments, the effective magnetic
moment being constrained is [39]

μ2S ¼
X3
j;k¼1

jUM
ekj2jμjkν j2; ð25Þ

where UM
ek is the effective neutrino mixing with the matter

effect included, and μjkν is the mass-basis form of μαβν . In
addition, for plasmon decay (γ� → ν̄ν) [48], one can define
the following effective magnetic moment,

μ2γ ¼
X3
j;k¼1

jμjkν j2 ¼
X
α;β

jμαβν j2; ð26Þ

which is useful in interpreting the astrophysical bounds.
The values of μν given by Eqs. (10) and (11) depend on

the UV completion of the effective vertices. Being model
dependent implies that μν could be much smaller or larger

9Since νR appears as an external fermion line in Fig. 2, the
canonical LRSM in which right-handed neutrinos are heavy
states cannot be applied here.

10To use the chiral form, see Eqs. (2.6) and (2.7) of Ref. [46].
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than Eqs. (10) and (11) in particular models. For example,
if it is UV completed by a neutral scalar ϕ with Yukawa
interactions ν̄νϕ and ψ̄ψϕ, then the loop diagram naively
gives zero μν. However, since it breaks SUð2ÞL, usually this
model is a fragment of some more complete gauge invariant
models, in which ϕ would be the neutral component of a
Higgs multiplet and would be accompanied with charged
scalar bosons. The full calculation, including contributions
from charged bosons, may again lead to large nonzero μν.
Taking Eqs. (10) and (11) as the typical values of μν

generated by the effective tensor and scalar interactions, we
plot them in Fig. 3 together with terrestrial (TEXONO [49],
Borexino [50], GEMMA [51], and LZ equipped with an
intensive 51Cr radiative source [15]) and astrophysical [48]
bounds. Currently the effective coupling GX can be con-
strained by various elastic neutrino scattering data from
CHARM II, LSND, TEXONO, Borexino, COHERENT,
etc. In general, these experiments have GX sensitivity
ranging from 0.1GF to 1GF [22,25,30,52], depending on
the neutrino flavors, the charged fermion ψ , the specific
forms of new interactions, etc. With these details involved
and the uncertainties of theoretical predictions due to the
UV incompleteness, here we refrain from more specific
discussions and show merely two bands (red) of GX ¼
0.1GF–1GF in Fig. 3. In the future, the DUNE near detector
and some reactor-based coherent neutrino scattering experi-
ments may significantly improve the sensitivity by 1 or 2
orders of magnitude [10,23].
The significance of Fig. 3 showing the red bands and

the blue limits in the same windows is manifold. If, e.g.,
GX ¼ 0.1GF for tensor interactions had been probed in
neutrino-electron scattering experiments, it would imply a
large νMM (μν ∼ 10−12μB) that could be observed by
improving νMM experiments by 1 order of magnitude.

In addition, since the same coupling strength for ψ ¼ μ and
τ would lead to too large μν, it would imply that in model
building, GX for these two flavors must be suppressed,
which is of theoretical importance. On the other hand, if
in the future we reach much more solid and stringent
bounds on μν (currently LZ-51Cr is only a proposal and the
astrophysical bound could be altered in nonstandard
scenarios), it will disprove the presence of sizable tensor
and scalar interactions, which is still of importance for both
experimental searches and theoretical model building.
The last comment concerns neutrino masses. It has been

commonly discussed in the literature (reviewed in
Ref. [39]) that the new physics leading to large νMMs
usually generates too large neutrino masses. This can be
understood by simply noticing that in the absence of
chirality-flipping interactions the generated νMM is pro-
portional to mν. There have been various approaches,
however, to get a large νMM while keeping mν small.
One possibility is to avoid it from being proportional tomν,
which has been discussed in Refs. [34,38,53–61]. For
example, in the left-right symmetric model with Dirac
neutrinos, μν ∝ ml can be obtained [see, e.g., Eq. (2.29) in
[38] ] via the charged current (CC) interaction l̄Lγ

μνLW−
Lμ

and its right-handed partner l̄Rγ
μνRW−

Rμ, where W�
L and

W�
R are the charged gauge bosons of SUð2ÞL and SUð2ÞR

with small mass mixing. From the point of view of effective
interactions adopted in this paper, it is straightforward to
understand the result. The left- and right-handed CC
interactions with mixing can give rise to the effective
interaction ðl̄Lγ

μνLÞðν̄RγμlRÞ, which after the Fierz trans-
formation becomes a chirality-flipping scalar interaction
2ðν̄RνLÞðl̄LlRÞ. This should lead to μν ∝ ml according to
our conclusion on such scalar interactions. Therefore, the
calculation in the previous studies confirms our conclusion
on the effective interactions. In addition to this model,
there are various other models proposed for large νMMs
[62–71]. Although building models for large νMMs is not
the focus of this paper, our conclusion indicates that one
may preferably introduce chirality-flipping interactions to
obtain large νMMs because in this situation, μν is propor-
tional tomψ instead ofmν, and the generation of νMMs can
be detached from the generation of neutrino masses.
In conclusion, our analysis reveals that large νMMsmaybe

potentially related to sizable tensor and scalar interactions,
and vice versa. The experimental and theoretical significance
of the interplay will be explored in further studies.
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FIG. 3. μν predicted by tensor and scalar interactions (red lines)
compared with experimental bounds (blue). Here the GEMMA,
TEXONO, and LZ-51Cr bounds are only for the effective
magnetic moment μνe defined in Eq. (24); the Borexino bound
is based on solar neutrinos which should be applied to μS given in
Eq. (25); and the astrophysical (Astro) bound should be applied
to μγ in Eq. (26).
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