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We study four-dimensional supersymmetric QCD with gauge group SUðNcÞ and Nf flavors of chiral
supermultiplets on the lattice. We perform extensive calculations of matrix elements and renormalization
factors of composite operators in perturbation theory. In particular, we compute the renormalization factors
of quark and squark bilinears, as well as their mixing at the quantum level with gluino and gluon bilinear
operators. From these results, we construct correctly renormalized composite operators, which are free of
mixing effects and may be employed in nonperturbative studies of supersymmetry. All our calculations
have been performed with massive matter fields, in order to regulate the infrared singularities which are
inherent in renormalizing squark bilinears. Furthermore, the quark and squark propagators are computed in
momentum space with nonzero masses. This work is a feasibility study for the perturbative computations
relevant to a number of observables, such as spectra and distribution functions of hadrons, but in the context
of supersymmetric QCD, as a forerunner to lattice investigations of supersymmetry extensions of the
Standard Model.

DOI: 10.1103/PhysRevD.99.074512

I. INTRODUCTION

Current intensive searches for physics beyond the
Standard Model (BSM) are becoming a very timely
endeavor [1], given the precision experiments at the
Large Hadron Collider and elsewhere; at the same time,
numerical studies of BSM physics are more viable due to
the advent of lattice formulations which preserve chiral
symmetry [2]. In particular, the study of supersymmetric
models on the lattice [3–7] has been an object of intense
research activity in recent years [8–12], and applications to
supersymmetric extensions of the Standard Model are
gradually coming within reach. Studies of hadronic proper-
ties using the lattice formulation of supersymmetric QCD
(SQCD) rely on the computation of matrix elements and
correlation functions of composite operators, made out of
quark (ψ), gluino (λ), gluon (u), and squark (A) fields.
These operators are of great phenomenological interest in
the nonsupersymmetric case, since they are employed in
the calculation of certain transition amplitudes among
bound states of particles and in the extraction of meson
and baryon form factors. Correlation functions of such
operators calculated in lattice SQCD therefore provide

interesting probes of physical properties of the theory.
A proper renormalization of these operators is most often
indispensable for the extraction of results from the lattice.
The main objective of this work is the calculation of the
quantum corrections to a complete basis of “ultralocal”
bilinear currents, using both dimensional regularization
and lattice regularization. We consider both flavor-singlet
and -nonsinglet operators.
Within the SQCD formulation, we compute the quark

and squark propagators, and all two-point Green’s func-
tions of bilinear operators, made out of quark and squark
fields. Our computations are performed to one loop and to
lowest order in the lattice spacing, a; also, in order to avoid
potential infrared singularities in Green’s functions of
squark bilinears, we have employed massive chiral super-
multiplets throughout. We extract from the above quantities
the renormalization factors of the quark and squark fields
and masses. Quantum corrections induce mixing of some of
the bilinear operators which we study, both among them-
selves and with gluon and gluino bilinears having the same
quantum numbers; we compute all the corresponding
mixing coefficients, in different renormalization schemes.
Our calculations also reproduce the Adler-Bell-Jackiw
(ABJ) anomaly of the axial vector quark current to one-
loop order.
This work is a continuation to our recent paper [13],

in which we presented our perturbative results for the
renormalization factors of the coupling constant (Zg) and of
the quark (Zψ ), gluon (Zu), gluino (Zλ), squark (ZA�), and
ghost (Zc) fields in the continuum and on the lattice; they
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were the first one-loop computations of these quantities
using a lattice discretization of the action of SQCD.
The paper is organized as follows. Section II contains all

relevant definitions and the calculational setup. In Sec. III,
we present our computation and results for both dimen-
sional and lattice regularizations. Finally, we conclude in
Sec. IV with a summary and a discussion of our results and
possible future extensions of our work.

II. FORMULATION AND
COMPUTATIONAL SETUP

A. Lattice action

In our lattice calculation, we extend Wilson’s formulation
of the QCD action, to encompass supersymmetry (SUSY)

partner fields as well. In this standard discretization, quarks,
squarks, and gluinos live on the lattice sites, and gluons live
on the links of the lattice: UμðxÞ ¼ eigaT

αuαμðxþaμ̂=2Þ; α is a
color index in the adjoint representation of the gauge group.
This formulation leaves no SUSY generators intact, and it
also breaks chiral symmetry; it thus represents a “worst-
case” scenario, which is worth investigating in order to
address the complications [14] which will arise in numerical
simulations of SUSY theories. In our ongoing investigation,
we plan to also address improved actions, so that we can
check to what extent some of the SUSY breaking effects can
be alleviated. For Wilson-type quarks (ψ) and gluinos (λ),
the Euclidean action SL

SQCD on the lattice becomes (A� are
the squark field components)

SL
SQCD ¼ a4

X
x

�
Nc

g2
X
μ;ν

�
1 −

1

Nc
TrUμν

�
þ
X
μ

Trðλ̄MγμDμλMÞ − a
r
2
Trðλ̄MD2λMÞ

þ
X
μ

ðDμA
†
þDμAþ þDμA−DμA†

− þ ψ̄DγμDμψDÞ − a
r
2
ψ̄DD2ψD

þ i
ffiffiffi
2

p
gðA†

þλ̄αMT
αPþψD − ψ̄DP−λ

α
MT

αAþ þ A−λ̄
α
MT

αP−ψD − ψ̄DPþλαMT
αA†

−Þ

þ 1

2
g2ðA†

þTαAþ − A−TαA†
−Þ2 −mðψ̄DψD −mA†

þAþ −mA−A†
−Þ
�
; ð1Þ

where UμνðxÞ ¼ UμðxÞUνðxþ aμ̂ÞU†
μðxþ aν̂ÞU†

νðxÞ, and
a summation over flavors is understood in the last three
lines of Eq. (1). The 4-vector x is restricted to the values
x ¼ na, with n being an integer 4-vector. The mass terms
which appear in Eq. (1) for the chiral multiplet are
described in more detail in Sec. III A. The terms propor-
tional to the Wilson parameter, r, eliminate the problem of
fermion doubling, at the expense of breaking chiral
invariance. In the limit a → 0, the lattice action reproduces
the continuum one.
The definitions of the covariant derivatives are as

follows:

DμλMðxÞ≡ 1

2a
½UμðxÞλMðxþ aμ̂ÞU†

μðxÞ
−U†

μðx − aμ̂ÞλMðx − aμ̂ÞUμðx − aμ̂Þ� ð2Þ

D2λMðxÞ≡ 1

a2
X
μ

½UμðxÞλMðxþ aμ̂ÞU†
μðxÞ − 2λMðxÞ

þU†
μðx − aμ̂ÞλMðx − aμ̂ÞUμðx − aμ̂Þ� ð3Þ

DμψDðxÞ≡ 1

2a
½UμðxÞψDðxþ aμ̂Þ

− U†
μðx − aμ̂ÞψDðx − aμ̂Þ� ð4Þ

D2ψDðxÞ≡ 1

a2
X
μ

½UμðxÞψDðxþ aμ̂Þ − 2ψDðxÞ

þU†
μðx − aμ̂ÞψDðx − aμ̂Þ� ð5Þ

DμAþðxÞ≡ 1

a
½UμðxÞAþðxþ aμ̂Þ − AþðxÞ� ð6Þ

DμA
†
þðxÞ≡ 1

a
½A†

þðxþ aμ̂ÞU†
μðxÞ − A†

þðxÞ� ð7Þ

DμA−ðxÞ≡ 1

a
½A−ðxþ aμ̂ÞU†

μðxÞ − A−ðxÞ� ð8Þ

DμA†
−ðxÞ≡ 1

a
½UμðxÞA†

−ðxþ aμ̂Þ − A†
−ðxÞ�: ð9Þ

A gauge-fixing term, together with the compensating ghost
field term, must be added to the action, in order to avoid
divergences from the integration over gauge orbits; these
terms are the same as in the nonsupersymmetric case.
Similarly, a standard “measure” term must be added to the
action, in order to account for the Jacobian in the change
of integration variables: Uμ → uμ. All the details of the
continuum and the lattice actions can be found in Ref. [13].
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B. Bilinear operators and their mixing

In studying the properties of physical states, such as
spectra and distribution functions, the main observables are
Green’s functions of operators made of quark fields, having
the form Oψ

i ðxÞ ¼ ψ̄ðxÞΓiψðxÞ, where Γi denotes all
possible distinct products of Dirac matrices, as well as
operators made of squark fieldsOAðxÞ ¼ A†ðxÞAðxÞ, along
with operators of higher dimensionality. The matter fields
are considered to be massive, and for the sake of com-
pleteness, we calculate the quark and squark propagators
with nonzero masses; in this way, we have control over IR
divergences. UV divergences are treated by a standard
regularization, either the lattice (L) or dimensional regu-
larization (DR).
The first new quantities of this paper are the renormal-

ization factors for the squark and quark masses in the
modified minimal subtraction (MS) and modified regulari-
zation independent (RI0) schemes. After these computa-
tions, we focus on the matrix elements of composite bilinear
operators. As we will see below, some of the operators
carrying the same quantum numbers mix together beyond
tree level. In order to determine their mixing coefficients, we
calculate certain two-point Green’s functions of these
operators. More specifically, we calculate the two-point
Green’s function of squark bilinears with external squarks
and gluons, as well as the two-point Green’s functions of
quark bilinears with one external quark-antiquark pair or
one gluino-antigluino pair or two gluons or two squarks. All
of our results are computed as functions of the coupling
constant, the number of colors, the gauge-fixing parameter,
and the external momentum. The renormalization condi-
tions which we will impose involve the renormalization
factors of the fields, that we have computed in Ref. [13].
We identified all operators which can possibly mix with

Oψ
i and all Green’s functions, e.g., hλðxÞOψ

i ðzÞλ̄ðyÞi, which
must be calculated in order to compute those elements of
the mixing matrix which are relevant for the renormaliza-
tion of Oψ

i and OA.
The bilinear operators could in principle mix with four

types of operators having the same quantum numbers. The
four types are as follows. Type I are gauge-invariant
operators. Type II are operators which are not gauge
invariant but are the Becchi-Rouet-Stora-Tyutin (BRST)
variation [15] of some other operators. Type III operators
vanish by the equations of motion. Type IV are operators
which are not linear combinations of types I, II, and III. By
general renormalization theorems (see, e.g., Ref. [16]), type
I operators will not mix with type IVoperators. We list the
type I operators in Table I for the flavor-nonsinglet case
(ψ̄Γiψ ≡ ψ̄fΓiψf0), and in Table II, we list additional
operators which show up in the flavor-singlet case
(ψ̄Γiψ ≡ 1

Nf

P
fψ̄fΓiψf). Different values of the index

“i” lead to the following possibilities for the Γ matrices:
(scalar) ΓS ¼ 1, (pseudoscalar) ΓP¼ γ5, (vector) ΓV ¼ γμ,

(axial vector) ΓAV ¼ γ5γμ, and tensor ΓT ¼ ½γμ; γν�=2. In
Tables I and II, we also include operators with lower
dimensionalities, even though they do not mix with quark
bilinears in dimensional regularization; they do, however,
show up in the lattice formulation. Indeed, on the lattice,
the number of operators which mix among themselves is
considerably greater than in the continuum regularization.
The perturbative computations of all relevant Green’s
functions of operators Oψ

i and OA will be followed by
the construction of the mixing matrix, which may also
involve non-gauge-invariant (but BRST-invariant) opera-
tors or operators which vanish by the equations of motion.

TABLE I. Quark bilinears and other operators with which these
can mix, in the flavor-nonsinglet case. Only gauge-invariant
operators appear in this case. Operators with lower dimension-
ality will mix on the lattice. All operators appearing in this table
are eigenstates of P and C0. In the above operators, the matter
fields should be explicitly identified with a flavor index. The
flavor indices carried by the left fields (f) differ from those
of right fields (f0). The shorthand ð−1Þμ means þ for μ ¼ 0
and − for μ ¼ 1, 2, 3.

Operators P C0 Category

ψ̄ψ þ þ S
ψ̄γ5ψ − þ P
ψ̄γμψ ð−1Þμ − V
ψ̄γ5γμψ −ð−1Þμ þ AV
1
2
ψ̄ ½γμ; γν�ψ ð−1Þμð−1Þν − T

A†
þAþ þ A−A†

− þ þ S
A†
þA†

− þ A−Aþ þ þ S
A†
þA†

− − A−Aþ − þ P
ðmf þmf0 ÞðA†

þAþ þ A−A†
−Þ þ þ S

ðmf −mf0 ÞðA†
þAþ − A−A†

−Þ − þ P
ðmf þmf0 ÞðA†

þA†
− þ A−AþÞ þ þ S

ðmf þmf0 ÞðA†
þA†

− − A−AþÞ − þ P
A†
þDμAþ þ A−DμA†

− ð−1Þμ − V
A†
þDμAþ − A−DμA†

− −ð−1Þμ þ AV
A†
þDμA†

− þ A−DμAþ ð−1Þμ − V

TABLE II. Additional operators which can mix with quark
bilinears in the flavor-singlet case. A non-gauge-invariant
(but BRST-invariant) operator which can mix is shown in
Eq. (12).

Operators Category

1 S
Trðλ̄λÞ S
Trðλ̄γ5λÞ P
Trðλ̄γμλÞ V
Trðλ̄γ5γμλÞ AV
Trð1

2
λ̄½γμ; γν�λÞ T
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In this work, we concentrate on extracting the mixing
coefficients between quark, squark, gluino, and gluon
bilinears, which are relevant for physical external states,
and thus we do not take into account the ghost bilinears.
As it turns out, all flavor-singlet quark bilinears mix with
gluino bilinears: Oλ

i ðxÞ ¼ Trðλ̄ðxÞΓiλðxÞÞ. A particularly
rich mixing pattern emerging from Tables I and II regards
the case of scalar and vector quark bilinears, since they can
mix with a variety of gluon and squark bilinear operators.
Note also that the scalar operators mix with the identity at
the quantum level.
In order to make the BRST symmetry explicit and

elucidate the mixing with non-gauge-invariant operators,
we write the Faddeev-Popov action, using a new auxiliary
field Bα:

SFP ¼
Z

d4x

�
α

2
ðBαÞ2 − Bα∂μuαμ − c̄α∂μDαβ

μ cβ
�
: ð10Þ

Under BRST transformations, the fields appearing in SFP
behave as follows,

uαμ → uαμ þDαβ
μ cβξ;

cα → cα −
g
2
fαβγcβcγξ;

c̄α → c̄α þ Bαξ;

Bα → Bα; ð11Þ

where ξ is an infinitesimal anticommuting parameter.
Under these transformations, SFP is indeed invariant.
Given that the effect of a BRST transformation on gauge
and matter fields is that of a gauge transformation (with
anticommuting parameter), all other parts of the action,
being gauge invariant, will automatically also be BRST
invariant.
From Eq. (11), we see that type II operators may mix in

the flavor-singlet case, e.g.,

δBRSTðuαμc̄αÞ ¼ ðuαμBα þ c̄αDαβ
μ cβÞ

⇒ δBRSTðuαμBα þ c̄αDαβ
μ cβÞ ¼ 0: ð12Þ

This potential mixing of the non-gauge-invariant operator
uμBþ c̄Dμc ¼ ðuμ∂νuνÞ=αþ c̄Dμc (which is also present
in the nonsupersymmetric case) is inconsequential if one is
interested in physical external states with transverse polari-
zation. Other flavor-nonsinglet operators, such as A†

þ∂μAþ,
etc., are not of types I, II, or III and therefore cannot mix
with gauge-invariant operators. The presence of a global
Uð1Þ symmetry, which is preserved by the SQCD action,
both in the continuum and on the lattice, forbids 3-squark
operators from mixing with quark bilinears.

By investigating the behavior of dimension-2 and -3
bilinear operators under parity, P, and charge conjuga-
tion, C, we group them to the categories S, P, V, A, and T in
Tables I and II, based on the transformation properties of
the quark bilinears. P and C are symmetries of the action,
and their definitions are presented below,

P∶

8>>>>>>>>>>>><
>>>>>>>>>>>>:

U0ðxÞ→U0ðxPÞ; UkðxÞ→U†
kðxP−ak̂Þ; k¼1;2;3

ψfðxÞ→γ0ψfðxPÞ
ψ̄fðxÞ→ ψ̄fðxPÞγ0
λfðxÞ→γ0λfðxPÞ
λ̄fðxÞ→ λ̄fðxPÞγ0
A�ðxÞ→A†∓ðxPÞ
A†
�ðxÞ→A∓ðxPÞ

;

ð13Þ

where xP ¼ ð−x; x0Þ, and

C∶

8>>>>>>>>>>>><
>>>>>>>>>>>>:

UμðxÞ → U⋆
μðxÞ; μ ¼ 0; 1; 2; 3

ψðxÞ → iγ0γ2ψ̄ðxÞT
ψ̄ðxÞ → −ψðxÞTiγ0γ2
λðxÞ → −iγ0γ2λ̄ðxÞT
λ̄ðxÞ → λðxÞTiγ0γ2
A�ðxÞ → A∓ðxÞ
A†
�ðxÞ → A†∓ðxÞ

; ð14Þ

where T means transpose. For bilinear operators, it is
convenient to define a new transformation C0, which is a
combination of C with an exchange in the flavors of the two
fields and in their respective masses; this transformation is a
(spurionic) symmetry of the action. The operators shown in
Table I are eigenstates of both P and C0. Mixing with
further operators, such as A†

þAþ−A−A†
− and A†

þDμA†
−−

A−DμAþ, is not allowed, due to incompatible eigenvalues
under C0.
In order to calculate the one-loop mixing coefficients

relevant to the squark- and quark-bilinear operators of
lowest dimensionality, we must evaluate Feynman dia-
grams as shown in Figs. 1 and 2, respectively. In Fig. 1, we
have also included diagrams with external gluons; actually,
since there are no BRST-invariant dimension-2 gluon
operators, no mixing is expected to appear in this case,
and we use this fact as a check on our perturbative results
on the lattice. The diagrams in Fig. 2 lead to the renorm-
alization of dimension-3 quark bilinear operators and to
the potential mixing coefficients with gluino, squark, and
gluon bilinears.
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III. DETAILS OF THE CALCULATION
AND RESULTS

A. Renormalization of quark and squark propagators

The purpose of this section is to renormalize the quark
and squark fields, as a prerequisite for the renormalization
of bilinear composite fields. As a byproduct, we also
obtain the renormalization factors for the corresponding
masses. We use both the dimensional and lattice regula-
rizations of SQCD, in order to calculate the massive
quark and squark propagators. Mass and field renormali-
zations as dictated by renormalization conditions [17] in
fact suffice to render finite all the terms in the inverse
quark and squark propagators [Eqs. (19) and (32), respec-
tively]. The one-loop Feynman diagrams [one-particle
irreducible (1PI)] contributing to the quark propagator,
hψðxÞψ̄ðyÞi, are shown in Fig. 3, and those contributing to
the squark propagators, hAþðxÞA†

þðyÞi, hA†
−ðxÞA−ðyÞi,

hAþðxÞA−ðyÞi, hA†
−ðxÞA†

þðyÞi, are shown in Fig. 4. For
our continuum results, we use MS renormalization in the

’t Hooft-Veltman (HV) scheme [18], and for complete-
ness, we present also the conversion factors to the RI0
scheme. In our calculation of the quark propagator, the
indices carried by all gamma matrices are eventually
contracted with the indices of external momenta; thus,
given that the latter only have four (rather than D)
components, all prescriptions of γ5 in D dimensions
[19,20] give the same one-loop results.
It is convenient to express the squark field components

as a doublet: A≡ ðAþ
A†
−
Þ; the mass term then assumes the

form A†ðm†
AmAÞA, where the matrix m2

A ≡ ðm†
AmAÞ is

Hermitian with non-negative eigenvalues, but not neces-
sarily diagonal.

FIG. 1. One-loop Feynman diagrams leading to the renormalization of dimension-2 squark bilinear operators and to the potential
mixing coefficients among themselves and/or with gluon bilinears. A cross corresponds to squark operators. A wavy (dotted) line
represents gluons (squarks). Squark lines are further marked with a þð−Þ sign, to denote an AþðA−Þ field. A squark line arrow entering
(exiting) a vertex denotes a Aþ (A†

þ) field; the opposite is true for A− (A†
−) fields.

FIG. 2. One-loop Feynman diagrams leading to the renormalization of dimension-3 quark bilinear operators and to the potential
mixing coefficients with gluino, squark, and gluon bilinears. A circled cross corresponds to quark operators. A wavy (solid) line
represents gluons (quarks). A dotted (dashed) line corresponds to squarks (gluinos). Squark lines are further marked with aþð−Þ sign, to
denote an AþðA−Þ field. A squark line arrow entering (exiting) a vertex denotes an Aþ (A†

þ) field; the opposite is true for A− (A†
−) fields.

FIG. 3. One-loop Feynman diagrams contributing to the two-
point Green’s function hψðxÞψ̄ðyÞi. Awavy (solid) line represents
gluons (quarks). A dotted (dashed) line corresponds to squarks
(gluinos). Squark lines are further marked with a þð−Þ sign, to
denote an AþðA−Þ field. A squark line arrow entering (exiting) a
vertex denotes an Aþ (A†

þ) field; the opposite is true for A− (A†
−)

fields.

FIG. 4. One-loop Feynman diagrams contributing to the two-
pointGreen’s function hAþðxÞA†

þðyÞi. The case of hA†
−ðxÞA−ðyÞi is

completely analogous. The cases hAþðxÞA−ðyÞi and hA†
−ðxÞA†

þðyÞi
involve only the third Feynman diagram shown above.
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The definitions of the renormalization factors for the
matter fields and their masses are

ψR ¼ ffiffiffiffiffiffi
Zψ

p
ψB; ð15Þ

AR ¼
ffiffiffiffiffiffiffi
ZA

p
AB; ð16Þ

mR
ψ ¼ Zmψ

mB
ψ ; ð17Þ

mR
A
†mR

A ¼ Z†
mAm

B
A
†mB

AZmA
; ð18Þ

where B stands for the bare and R for renormalized
quantities and ZA, ZmA

are 2 × 2 matrices corresponding
to the doublet A. After summing all the continuum
Feynman diagrams of Fig. 3, the massive inverse quark
propagator in DR becomes

hψ̃BðqÞ ˜̄ψBðq0ÞiDR
inv ¼ ð2πÞ4δðq − q0Þ

�
ði=q −mB

ψÞ þ
g2CF

16π2

�
i=q

�
4þ αþ 2þ α

ϵ
þ ð2 − αÞm

2

q2
þ ð2þ αÞ log

�
μ̄2

q2 þm2

�

−
�
ð2 − αÞm

4

q4
þ 4

m2

q2

�
log

�
1þ q2

m2

��

−m

�
4þ 2αþ 3þ α

ϵ
þ ð3þ αÞ log

�
μ̄2

q2 þm2

�
− ð3þ αÞm

2

q2
log

�
1þ q2

m2

����

¼ ð2πÞ4δðq − q0Þðði=q −mB
ψÞ − ΣB

ψ Þ; ð19Þ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ is the quadratic Casimir

operator in the fundamental representation, q is the external
momentum in the Feynman diagrams, and μ̄ is the MS
renormalization scale. For one-loop calculations, the dis-
tinction betweenmR andmB is inessential in many cases; we
will simply usem in those cases. We have also imposed that
the renormalized masses of one flavor for the quark and
squark be the same. Note also that a Kronecker delta for
color indices is understood in Eqs. (19) and (32). The results
for the DR renormalization factors in the MS scheme are

ZDR;MS
ψ ¼ 1þ g2CF

16π2
1

ϵ
ð2þ αÞ ð20Þ

ZDR;MS
mψ ¼ 1þ g2CF

16π2
1

ϵ
: ð21Þ

Using our results for the quark propagator, we can compute
also the multiplicative renormalization function of the quark
field and mass in the RI0 renormalization scheme (ZDR;RI0

ψ

and ZDR;RI0
mψ ). In order to find ZDR;RI0

ψ , we use the renorm-
alization condition,

½ðZDR;RI0
ψ Þ−1i=q − ΣDR

ψ jterms ∝ =q�qρ¼μ̄ρ
¼ i=qjqρ¼μ̄ρ

; ð22Þ

where μ̄ is the renormalization scale 4-vector and ΣDR
ψ is the

quark self-energy that we compute up toOðg2Þ. We note that
the renormalization scale μ̄ appearing in ZDR;RI0

ψ need not
coincide with the scale used in the MS scheme. The RI0
counterpart for the multiplicative renormalization of the
mass, ZDR;RI0

mψ , can be extracted from

½−ðZDR;RI0
ψ Þ−1ðZDR;RI0

mψ Þ−1mR − ΣDR
ψ jterms∝1�qρ¼μ̄ρ

¼ −mR:

ð23Þ

The expressions for the aforementioned renormalization
factors are

ZDR;RI0
ψ ¼ 1þ g2CF

16π2

�
1

ϵ
ð2þ αÞ þ 4þ α

þ ð2þ αÞ log
�

μ̄2

μ̄2 þm2

�

þm2

μ̄2

�
2 − α − 4 log

�
1þ μ̄2

m2

��

−
m4

μ̄4
ð2 − αÞ log

�
1þ μ̄2

m2

��
ð24Þ

ZDR;RI0
mψ ¼ 1þ g2CF

16π2

�
1

ϵ
þ αþ log

�
μ̄2

μ̄2 þm2

�

−
m2

μ̄2

�
2 − α − ð1 − αÞ log

�
1þ μ̄2

m2

��

þm4

μ̄4
ð2 − αÞ log

�
1þ μ̄2

m2

��
: ð25Þ

Notice that the expression for ZDR;RI0
mψ is not gauge indepen-

dent; this was expected, given that the renormalization
condition relies on a gauge-variant Green’s function. The
ratio between the MS and RI0 renormalization factors give
the corresponding conversion factors:

CMS;RI0
ψ ¼ ZDR;MS

ψ =ZDR;RI0
mψ ð26Þ

CMS;RI0
mψ ¼ ZDR;MS

mψ =ZDR;RI0
mψ : ð27Þ
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Being regularization independent, these same conversion
factors can then be also used in the lattice regularization (L).
Note also that continuum regularizations forbid the additive
renormalization of the mass, so it is renormalized only
multiplicatively, while in the lattice regularization, the
Lagrangian mass mL undergoes additive and multiplicative
renormalization.
We next compute the lattice expression of the

massive quark propagator to one loop. We take into
account the gluon tadpole diagram which has no

analog in the continuum (see Fig. 5). Our result is
given by

hψ̃BðqÞ ˜̄ψBðq0ÞiLinv ¼ ð2πÞ4δðq − q0Þ
�
ði=q −mL

ψÞ þ
g2CF

16π2

�
i=q

�
−12.80254þ 4.79201αþ ð2 − αÞm

2

q2

− ð2þ αÞ log ða2ðm2 þ q2ÞÞ −
�
ð2 − αÞm

4

q4
þ 4

m2

q2

�
log

�
1þ q2

m2

��

−m

�
ð0.30799þ 5.7920αÞ − ð3þ αÞ log ða2ðm2 þ q2ÞÞ − ð3þ αÞm

2

q2
log

�
1þ q2

m2

��

þ 1

a
51.4347r

��

¼ ð2πÞ4δðq − q0Þðði=q −mL
ψ Þ − ΣL

ψÞ: ð28Þ

In Eq. (28), just as in the corresponding equation in
the continuum, terms with γ5 cancel out at one-loop level.
This means that the Majorana components of ψ , corre-
sponding to Aþ and A−, do not mix under renormalization,
unlike the case of the squark fields themselves; see
Eqs. (32) and (46). The renormalization factors of the
quark fields as well as of the quark mass in the MS scheme
and on the lattice are extracted from the subtraction of
the renormalized self-energy contributions, which were
computed in the continuum, from the bare quark lattice
self-energy, as required by the renormalization condition.
The critical mass, mquark

crit: ≡mL −mB, can also be read off
Eq. (28); thus, we find

ZL;MS
ψ ¼ 1þ g2CF

16π2
ð−16.8025þ 3.79201α

− ð2þ αÞ log ða2μ̄2ÞÞ ð29Þ

ZL;MS
mψ ¼ 1þ g2CF

16π2
ð13.1105 − log ða2μ̄2ÞÞ ð30Þ

mquark
crit: ¼ g2CF

16π2
1

a
51.4347r: ð31Þ

We now turn to the one-loop corrections to the squark
propagator. Given the mixing of squarks in the HV scheme,
our results are written in matrix notation,

hÃBðqÞÃB†ðq0ÞiHV
inv ¼ ð2πÞ4δðq − q0Þ

�
ðq21þm2

AÞ þ q2
g2CF

16π2

�
16

3
þ 1þ α

ϵ
þ ð1þ αÞ log

�
μ̄2

q2 þm2

���
1 0

0 1

�

þm2
g2CF

16π2

�
18þ 7þ α

ϵ
þ ð7þ αÞ log

�
μ̄2

m2

�
− 8 log

�
1þ q2

m2

�

− ð7 − αÞm
2

q2
log

�
1þ q2

m2

���
1 0

0 1

�
−
g2CF

16π2

�
4

3
q2 þ 4m2

��
0 1

1 0

��

≡ ð2πÞ4δðq − q0Þ½ðq21þm2
AÞ − ΣHV

A �; ð32Þ

where AB is a 2-component column which contains the bare squark fields.

FIG. 5. One-loop additional lattice Feynman diagram contrib-
uting to the two-point Green’s function hψðxÞψ̄ðyÞi.
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Starting from Eq. (32), one requires the elimination of
the pole part and determines the MS renormalized two-
point Green’s function. Thus, one arrives at the expressions
below for the squark field and mass renormalization,
respectively,

ZDR;MS
A ¼ 1

�
1þ g2CF

16π2
1

ϵ
ð1þ αÞ

�
ð33Þ

ZDR;MS
mA ¼ 1

�
1þ g2CF

16π2
3

ϵ

�
: ð34Þ

In the naive dimensional regularization (NDR) prescription,
in which γ5 anticommutes with all γμ matrices (μ ¼
1;…; D) [21], the nondiagonal elements in Eq. (32) vanish,
and the expression for the bare squark propagator in the
NDR scheme up to one loop is

hÃBðqÞÃB†ðq0ÞiNDRinv ¼ð2πÞ4δðq−q0Þ
�
ðq2þm2Þ

�
1 0

0 1

�
þq2

g2CF

16π2

�
4þ1þα

ϵ
þð1þαÞ log

�
μ̄2

q2þm2

���
1 0

0 1

�

þm2
g2CF

16π2

�
14þ7þα

ϵ
þð7þαÞ log

�
μ̄2

m2

�
−8 log

�
1þ q2

m2

�
− ð7−αÞm

2

q2
log

�
1þ q2

m2

���
1 0

0 1

��
:

ð35Þ

In computing the conversion factors between MS and

MSNDR schemes, we cannot simply set ZMS=ZMSNDR ¼ 1
because the two regularizations actually lead to different
renormalization schemes. Instead, we use the definitions of
the conversion factors,

AMS ¼ CMS;MSNDR
A AMSNDR ð36Þ

m2MS

A ¼ CMS;MSNDR
mA m2MSNDR

A ðCMS;MSNDR
mA Þ†; ð37Þ

which lead to the following values:

CMS;MSNDR
A ¼ 1þ g2CF

16π2
4

3

�−1 1

1 −1

�
ð38Þ

CMS;MSNDR
mA ¼ 1þ g2CF

16π2
4

3

�−1 1

1 −1

�
: ð39Þ

Turning now to RI0 renormalization, there is a certain
amount of freedom in defining it; an essential property
which one would like to require is amenability to non-
perturbative treatment. As will become clear below, when
we discuss the lattice regularization, a natural definition
satisfying this requirement is as follows,1

hÃRI0 ðqÞÃRI0†ðq0Þiinvjq2¼0 ¼ mRI021 ð40Þ

hÃRI0 ðqÞÃRI0†ðq0Þiinvjq2¼μ̄2 ¼ ðq2 þmRI02Þjq2¼μ̄21; ð41Þ

where hÃRI0 ðqÞÃRI0†ðq0Þiinv is the RI0 renormalized inverse
squark propagator which is connected to the bare one
through

hÃRI0 ðqÞÃRI0†ðq0Þiinv
¼ ðZDR;RI0

A Þ1=2hÃBðqÞÃB†ðq0ÞiDRinv ðZDR;RI0
A Þ1=2; ð42Þ

and similarly the renormalized mass mRI0 is related to the
bare mass matrix mDR2

A through

mRI021 ¼ ZDR;RI0
mA

†mDR2

A ZDR;RI0
mA : ð43Þ

Finally, μ̄ is the RI0 renormalization scale 4-vector. In
Eq. (41), the rhs is the tree-level inverse squark
propagator.
Using the renormalization conditions of Eq. (40)–(41),

the multiplicative renomalization in the RI0 scheme for the
squark field and mass can be determined:

ZDR;RI0
A ¼ 1þ g2CF

16π2

��
1þ α

ϵ
þ 16

3
þ ð7 − αÞm

2

μ̄2
þ ð1þ αÞ log

�
μ̄2

m2

�
− ð1þ αÞ log

�
1þ μ̄2

m2

�

− 8
m2

μ̄2
log

�
1þ μ̄2

m2

�
− ð7 − αÞm

4

μ̄4
log

�
1þ μ̄2

m2

���
1 0

0 1

�
−
4

3

�
0 1

1 0

��
ð44Þ

1In Eqs. (40)–(42), the factor ð2πÞ4δðq − q0Þ, which is implicit in both bare and renormalized Green’s functions, has been dropped.
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ZDR;RI0
mA ¼ 1þ g2CF

16π2

��
3

ϵ
þ 17

6
þ α

2
− ð7 − αÞ m

2

2μ̄2
þ 3 log

�
μ̄2

m2

�
þ 1

2
ð1þ αÞ log

�
1þ μ̄2

m2

�

þ 4
m2

μ̄2
log

�
1þ μ̄2

m2

�
þ 1

2
ð7 − αÞm

4

μ̄4
log

�
1þ μ̄2

m2

���
1 0

0 1

�
−
4

3

�
0 1

1 0

��
: ð45Þ

We now proceed with the lattice massive squark propagator, for which we find

hÃBðqÞÃB†ðq0ÞiLinv ¼ ð2πÞ4δðq − q0Þ
�
ðq21þmL2

A Þ

− q2
g2CF

16π2

�
11.0173 − 3.7920αþ ð1þ αÞ

�
log

�
1þ q2

m2

�
þ logða2m2Þ

���
1 0

0 1

�

−m2
g2CF

16π2

�
12.2403 − 3.7920αþ ð7þ αÞ log ða2m2Þ − 8 log

�
1þ q2

m2

�

− ð7 − αÞm
2

q2
log

�
1þ q2

m2

���
1 0

0 1

�
þ g2CF

16π2

�
−23.8430

1

a
rmþ 65.3930

1

a2

��
1 0

0 1

�

−
g2CF

16π2

�
1.0087q2 þ 7.6390m2 − 8.9275

1

a
rm − 75.4031

1

a2

��
0 1

1 0

��

≡ ð2πÞ4δðq − q0Þ½ðq21þmL2

A Þ − ΣL
A�: ð46Þ

In the above equation, the quantities proportional to 1=a
and to 1=a2 constitute a critical mass term m2squark

crit: , which
induces an additive renormalization of the squark mass,

m2squark
crit: ¼ −

g2CF

16π2

�
1

a
rm

�−23.8430 8.9275

8.9275 −23.8430

�

þ 1

a2

�
65.3930 75.4031

75.4031 65.3930

��
: ð47Þ

The appearance ofm on the rhs of Eq. (47) actually refers to
the Lagrangian quark mass; however, given that it is
multiplied by g2, it can be replaced by the renormalized
mass to one-loop order. Substituting Eqs. (15) and (18) into
Eq. (46), and requiring agreement with the finite parts of
Eq. (32) in the a → 0 limit, we find

ZL;MS
A ¼ 1þ g2CF

16π2

�
ð−16.3507þ 3.79201α

− ð1þ αÞ log ða2μ̄2ÞÞ
�
1 0

0 1

�

þ 0.32464

�
0 1

1 0

��
ð48Þ

and

ZL;MS
mA ¼ 1 −

g2CF

16π2

�
ð6.94486þ 3 log ða2μ̄2ÞÞ

�
1 0

0 1

�

þ 1.98181

�
0 1

1 0

��
: ð49Þ

The existence of the critical mass, in the expression of
the squark propagator, can be used to calibrate Monte Carlo

simulations and to tune the Lagrangian mass. Given that
the critical mass is a 2 × 2 symmetric matrix of the form
ðab b

aÞ, there are two parameters (a, b) to be calibrated. Our
perturbative results can be used as a starting point for
this calibration; mB is then the difference between the
Lagrangian mass and the critical mass.
Given that the critical masses are power divergent,

perturbation theory is expected to provide only a ballpark
estimate at best [22,23]. Therefore, nonperturbative esti-
mates are of importance. In order to determine the critical
mass nonperturbatively, one can enforce appropriate Ward
identities (see, e.g., Refs. [11,24]) by calibration of the bare
parameters in the Lagrangian. On the other hand, one may
study the operator ðA†

þA†
− − A−AþÞ which is a superpartner

of ψ̄γ5ψ . Thus, in calculating the corresponding two-point
correlation functions, one may tune the Lagrangian masses
in such a way that these operators create massless states
from the vacuum, just like the pion, and thus one can
determine the critical masses. Clearly, the viability of this
approach relies on the assumption that we are in a regime in
which SUSY is not spontaneously broken.
We also propose a general recipe for tuning the

Lagrangian mass parameters nonperturbatively, in order
to reach a desired value for the renormalized massmR in the
MS scheme. Actually, even when we use RI0 renormaliza-

tion, wewill express our Green’s functions in terms ofmMS;
this is by analogy with the treatment of the renormalized
coupling constant in RI0. The nonperturbative input
which will be required for this purpose consists of the bare
Green’s functions, hÃBðqÞÃB†ðq0ÞiLinv, evaluated at q2 ¼ 0

and q2 ¼ μ̄2. The RI0 conditions, Eqs. (40) and (41), can
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now be expressed in terms of these bare Green’s functions,
making use of the (lattice analog of the) renormalization
relations Eqs. (42) and (43). In this way, the RI0 conditions
become eight equations for the eight unknown matrix
elements of ZA and ZmA. Having determined ZA and ZmA
nonperturbatively in this manner, we thus arrive at a definite
value for mR. We can now tune the Lagrangian mass
parameters so that this resulting mR has the desired value.

B. Mixing of bilinear operators

We compute both in the continuum [25] and on the
lattice [26] the matrix elements for quark and squark
bilinear operators. From these matrix elements, we provide
the renormalization of the quark bilinears and the mixing
coefficients with gluino bilinear operators, as well as with
operators made of gluon and of squark fields [27–30]. In
addition, we present the renormalization of dimension-2
squark operators: To one loop, there is no mixing of these
operators among themselves; further, we check that there is
no mixing with dimension-2 gluon bilinears either.

1. Renormalization of squark bilinear operators

In the following, we first calculate the case of squark
bilinear operators in the continuum, where we regularize
the theory in D dimensions (D ¼ 4 − 2ϵ). The squark
bilinears, OA, having dimension 2, can mix in principle
with other dimension-2 operators. This entails studying the
two-point Green’s functions ofOA with external squark and
gluon fields. There are four squark operators which we
denote as OA

��:

OAþþðxÞ ¼ A†
þðxÞAþðxÞ ð50Þ

OAþ−ðxÞ ¼ A†
þðxÞA†

−ðxÞ ð51Þ

OA
−þðxÞ ¼ A−ðxÞAþðxÞ ð52Þ

OA
−−ðxÞ ¼ A−ðxÞA†

−ðxÞ: ð53Þ

Given that all the quantities which we set out to calculate
are x-independent, we will often apply an integration (or a
summation on the lattice) over x for convenience.

We note that some of these operators may develop a
vacuum expectation value in the flavor-singlet case
( 1
Nf

P
fA

†
fAf), leading to a mixing with the unit operator.

Thus, the tree-level vacuum expectation values of OAþþ and
OAþ− are

hOAþþðxÞiDR ¼ hOA
−−ðxÞiDR ¼ Nc

ð4πÞD=2 m
D−2Γð1 −D=2Þ:

ð54Þ

The vacuum expectation values ofOA
−þ andOAþ− vanish. In

order to eliminate mixing with the unit operator, all
operators will be taken to be normal ordered; thus, their
vacuum expectation values will be subtracted from their
definition.
To one-loop order, the expression of the two-point

Green’s functions of the squark bilinear operators, with
external squark fields, are given by the sum of the Feynman
diagrams shown in Fig. 6. In the flavor-nonsinglet case, the
two squark propagators appearing to the left and right of the
operator insertion contain different masses. However, it is
sufficient to evaluate the diagrams in the mass-degenerate
case, for the following reasons:
(a) The pole parts, which determine renormalization and

mixing coefficients in DR, are mass independent in
all cases.

(b) The difference between lattice and continuum bare
Green’s functions, which gives the corresponding
coefficients on the lattice, is also mass independent.

We present the amputated 1PI two-point Green’s func-
tions with external squark fields in the continuum:

hÃþðqÞOAþþÃ
†
þðq0ÞiDRamp¼hÃ†

−ðqÞOA
−−Ã−ðq0ÞiDRamp

¼ð2πÞ4δðq−q0Þ
�
1þg2CF

16π2

�
α−1

ϵ
−2ðα−3Þþðα−1Þ log

�
μ̄2

m2

�
þ2ðα−3Þm

2

q2
log

�
1þ q2

m2

���

ð55Þ
hÃþðqÞOAþ−Ã−ðq0ÞiDRamp¼hÃ†

−ðqÞOA
−þÃ

†
þðq0ÞiDRamp

¼ð2πÞ4δðq−q0Þ
�
1þg2CF

16π2

�
αþ1

ϵ
−2ðα−3Þþðαþ1Þlog

�
μ̄2

m2

�
þ2ðα−3Þm

2

q2
log

�
1þ q2

m2

���
:

ð56Þ

FIG. 6. One-loop Feynman diagrams contributing to the two-
point Green’s functions of squark bilinear operators with external
squark fields.
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In order to determine the renormalization factors for the
squark bilinear operators, OA

��ðxÞ, we use the renormal-
ization conditions in Eq. (57), requiring that the lhs be
finite,

hÃR
aOA

bc
RÃR

d
†iamp ¼ ðZAÞ−1=2aa0 Zbcb0c0 hÃB

a0O
A
b0c0

BÃB
d0
†iamp

× ðZAÞ−1=2d0d ;

OA
ab

R ¼ Zaba0b0OA
a0b0

B; ð57Þ

where the indices a; b; c; d; a0; b0; c0; d0 can take the values
þ and −, as shown in Eqs. (55) and (56); a summation over
any repeated index is understood.
At one-loop order, using these conditions, we find

that

ZDR;MS
þþþþ ¼ ZDR;MS

−−−− ¼ 1þ g2CF

16π2
2

ϵ
ð58Þ

ZDR;MS
þ−þ− ¼ ZDR;MS

−þ−þ ¼ 1: ð59Þ

All other components of Zaba0b0 vanish. Thus, in the
’t Hooft-Veltman regularization scheme, with MS re-
normalization, the operators OAþ− and OA

−þ receive no

corrections up to one loop; furthermore, there is no mixing
between any of these operators.
In order to check that there is no mixing with other

Lorentz scalar dimension-2 gluon operators, we calculate the
diagrams of the squark bilinear operators with external
gluons, as shown in Fig. 7. By studying the corresponding
Green’s functions, we find that indeed this case receives no
mixing, and thus flavor-singlet squark operators cannot mix
with the gluon bilinear uμuμ. In particular, there is a
cancellation of the pole part in the diagrams of Fig. 7
leading to the expected result. Indeed, the two-point Green’s
functions of these operators with external gluons turn out to
be finite and transverse. Their numerical expressions are

hũαμðqÞOAþþũ
β
νðq0ÞiDRamp ¼ hũαμðqÞÕA

−−ũ
β
νðq0ÞiDRamp

¼ −ð2πÞ4δðqþ q0Þδαβ g2

16π2
ðq2δμν − qμqνÞ

�
2

q2
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
q3

log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2m

��
: ð60Þ

Since uμuμ is not type I, II, or III, the lattice regulator also does not allow mixing with this operator. We check the above,
calculating the same quantities on the lattice. Our results coincide with those of the continuum, Eq. (60).
Let us now turn to the lattice contributions. The vacuum expectation values of OAþþðxÞ and OAþ−ðxÞ on the lattice are, in

the flavor-singlet case,

hOAþþðxÞi ¼ hOA
−−ðxÞi

¼ Nc

Z
π=a

−π=a

d4p
ð2πÞ4

1
4
a2
P

μsin
2ðapμ=2Þ þm2

¼ Nc

a2

�
0.154933390 −

a2m2

π2

�
0.29950 −

1

16
logða2m2Þ

��
: ð61Þ

Regarding the lattice Green’s functions of squark bilinear operators with external squarks, our results are

hÃþðqÞOAþþÃ
†
þðq0ÞiLamp¼hÃ†

−ðqÞOA
−−Ã−ðq0ÞiLamp

¼ð2πÞ4δðq−q0Þ
�
1þg2CF

16π2

�
4þ1.7920ðα−1Þ−ðα−1Þlogðm2a2Þþ2ðα−3Þm

2

q2
log

�
1þ q2

m2

���

ð62Þ
hÃþðqÞOAþ−Ã−ðq0ÞiLamp¼hÃ†

−ðqÞOA
−þÃ

†
þðq0ÞiLamp

¼ð2πÞ4δðq−q0Þ
�
1þg2CF

16π2

�
8þ1.7920ð1þαÞ−ð1þαÞ logðm2a2Þþ2ðα−3Þm

2

q2
log

�
1þ q2

m2

���
:

ð63Þ

FIG. 7. One-loop Feynman diagrams contributing to the two-
point Green’s functions of squark bilinear operators with external
gluon fields.
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Requiring that the above bare lattice Green’s functions,
upon renormalization, lead to the same expressions as the
continuum ones [Eq. (57)], we arrive at the following lattice
renormalization factors:

ZL;MS
þþþþ ¼ ZL;MS

−−−− ¼ 1 −
g2CF

16π2
ð12.5586þ 2 logða2μ̄2ÞÞ

ð64Þ

ZL;MS
þ−þ− ¼ ZL;MS

−þ−þ ¼ 1 −
g2CF

16π2
ð20.1462Þ: ð65Þ

Once again, even though our calculations were performed
with flavors of equal masses, the results in Eqs. (64) and
(65), are valid also in the mass-nondegenerate case.

2. Renormalization of quark bilinear operators

In this subsection, we calculate the two-point Green’s
functions of the quantities Oψ

i , using both DR and lattice
regularization. As shown in Fig. 2, there are nine
(1þ 2þ 4þ 1þ 1) one-loop Feynman diagrams which
involve different external fields. These diagrams corre-
spond to seven Green’s functions which we must compute
in order to identify the renormalization and the mixing
patterns of Oψ

i .
From the first diagram in Fig. 2, we calculate

the renormalization factors Zi of the quark bilinear oper-
ators Oψ

i . The other diagrams contribute to the mixing
coefficients with bilinear operators made of gluinos (zλi ),
squarks with zero derivatives (z��

i ), squarks with one
derivative (z�D�

i ), squarks with one power of the
mass (zm��

i ), or gluons (zui ). The expressions relevant
for the mixing of each quark bilinear assume the following
forms:

Oψ
S
R ¼ ZSO

ψ
S
B þ zλSO

λ
S
B þ zþþ

S ðOAþþB þOA
−−

BÞ
þ zþ−

S ðOAþ−
B þOA

−þBÞ
þ zmþþ

S ðmf þmf0 ÞðOAþþB þOA
−−

BÞ
þ zmþ−

S ðmf þmf0 ÞðOAþ−
B þOA

−þBÞ ð66Þ

Oψ
P
R ¼ ZPO

ψ
P
B þ zλPO

λ
P
B þ zþ−

P ðOAþ−
B −OA

−þBÞ
þ zmþþ

P ðmf −mf0 ÞðOAþþB −OA
−−

BÞ
þ zmþ−

P ðmf þmf0 ÞðOAþ−
B −OA

−þBÞ ð67Þ

Oψ
V;μ

R¼ZVO
ψ
V;μ

Bþ zλVO
λ
V;μ

B

þ zþDþ
V ðA†

þDμAþþA−DμA†
−Þ

þ zþD−
V ðA†

þDμA†
−þA−DμAþÞþ zuVuμ∂νuν ð68Þ

Oψ
AV;μ

R ¼ ZAVO
ψ
AV;μ

B þ zλAVO
λ
AV;μ

B

þ zþDþ
AV ðA†

þDμA
†
þ − A−DμA−Þ

þ zuAVϵμνρσuν∂ρuσ ð69Þ

Oψ
T
R ¼ ZTO

ψ
T
B þ zλTO

λ
T
B: ð70Þ

On the rhs of Eqs. (66)–(70), there appear all operators that
can possibly mix with those on the lhs; the tree-level
Green’s functions of these mixing operators naturally show
up in the results for the one-loop Green’s functions of the
quark operators, thus allowing us to deduce the corre-
sponding mixing coefficients. In the case of flavor-
nonsinglet operators, zλi and zui automatically vanish.
Note that for the scalar and pseudoscalar operators the
presence of the mixing with linear combinations of OA

−þ
and OAþ− comes from parity and charge conjugation. We
have also introduced at this point the mixing coefficients
z�D�
i which correspond to the vector and axial vector
operators shown in Table I with one covariant derivative in
their definition; once again, parity and charge conjugation
dictate their relevant linear combinations. The axial vector
quark operator yields an expression related to the axial
anomaly. The latter stems from the last diagram of Fig. 2,
which involves nonsupersymmetric particles; thus, it must
reproduce the equivalent result in QCD. The lattice dis-
cretization should give the correct axial anomaly term in the
continuum limit. Lastly, the tensor quark operator can only
mix with the gluino one. We first calculate the renormal-
ization factors by computing the Green’s functions with
external quarks. The following expressions are our results
in DR:

hψ̃BðqÞOψ
S
B ˜̄ψBðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ

�
1

�
1þ g2CF

16π2

�
3þ α

ϵ
þ 4þ 2αþ ð3þ αÞ log

�
μ̄2

m2

�

− ð3þ αÞ
�
1þ 3

m2

q2

�
log

�
1þ q2

m2

���
þ 4i

g2CF

16π2
α=q

�
m
q2

þm3

q4
log

�
1þ q2

m2

���
ð71Þ

hψ̃BðqÞOψ
P
B ˜̄ψBðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þγ5

�
1þ g2CF

16π2

�
3þ α

ϵ
þ 4þ 2αþ ð3þ αÞ log

�
μ̄2

m2

�

− ð3þ αÞ
�
1þm2

q2

�
log

�
1þ q2

m2

���
ð72Þ
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hψ̃BðqÞOψ
V
B ˜̄ψBðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ

�
γμ

�
1þ g2CF

16π2
α

�
1

ϵ
þ 1þ log

�
μ̄2

m2

�
− log

�
1þ q2

m2

�

−
m2

q2
þm4

q4
log

�
1þ q2

m2

���
þ qμ=q

g2CF

16π2
α

�
4
m2

q2
− 2

1

q2
− 4

m4

q6
log

�
1þ q2

m2

��

− i
g2CF

16π2
qμð6þ 2αÞ

�
m
q2

−
m3

q4
log

�
1þ q2

m2

���
ð73Þ

hψ̃BðqÞOψ
AV

B ˜̄ψBðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ
�
γ5γμ

�
1þ g2CF

16π2

�
α

ϵ
þ αþ α log

�
μ̄2

m2

�
− α log

�
1þ q2

m2

�

− ð2 − αÞm
2

q2
− 2ð1þ αÞm

2

q2
log

�
1þ q2

m2

�
þ ð2 − αÞm

4

q4
log

�
1þ q2

m2

���

þ i
g2CF

16π2
γ5qμ

�
2ð1 − αÞ m

q2
− 2ð1 − αÞm

3

q4
log

�
1þ q2

m2

��

− i
g2CF

16π2
γ5γμ=q

�
2ð1 − αÞ m

q2
− 2ð1 − αÞm

3

q4
log

�
1þ q2

m2

��

−
g2CF

16π2
γ5qμ=q

�
2α

1

q2
− 4ð2 − αÞm

2

q4
þ 4ð1 − αÞm

2

q4
log

�
1þ q2

m2

�

þ 4ð2 − αÞm
4

q6
log

�
1þ q2

m2

���
ð74Þ

hψ̃BðqÞOψ
T
B ˜̄ψBðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ

�
1

2
½γμ; γν�

�
1þ g2CF

16π2
ðα − 1Þ

�
1

ϵ
þ 2

m2

q2
þ log

�
μ̄2

m2

�

−
�
1þm2

q2
þ 2

m4

q4

�
log

�
1þ q2

m2

���
þ 4i

g2CF

16π2
ðγμqν − γνqμÞ

�
m
q2

−
m3

q4
log

�
1þ q2

m2

��

− 4i
1

2
½γμ; γν�=q

�
m
q2

−
m3

q4
log

�
1þ q2

m2

��

þ g2CF

16π2
ðγμqν − γνqμÞ=q

�
4ð1 − αÞm

2

q4
− 2ð1 − αÞ

�
m2

q4
þ 2

m4

q6

�
log

�
1þ q2

m2

���
: ð75Þ

It is worth noting that the pole terms are proportional
to the tree-level Green’s functions of the operators.
There appear additional, finite contributions with tensor
structures which are distinct from those at tree level. For the
case of the vector and axial vector operators, such tensor
structures appear even in the limit of zero mass. The
determination of the renormalization factors can be
achieved by imposing the renormalization conditions of
Eq. (76) and demanding the lhs to be finite; as usual, Zi

may only contain pole terms beyond tree level in the MS
scheme,

hψ̃ROψ
i
R ˜̄ψRiamp ¼ ZiZ−1

ψ hψ̃BOψ
i
B ˜̄ψBiamp: ð76Þ

Therefore, the continuum renormalization factors are

ZS
DR;MS ¼ 1 −

g2CF

16π2
1

ϵ
ð77Þ

ZP
DR;MS ¼ 1 −

g2CF

16π2
1

ϵ
ð78Þ

ZV
DR;MS ¼ 1þ g2CF

16π2
2

ϵ
ð79Þ

ZAV
DR;MS ¼ 1þ g2CF

16π2
2

ϵ
ð80Þ

ZT
DR;MS ¼ 1þ g2CF

16π2
3

ϵ
: ð81Þ

In what follows, the MS scheme actually refers to HV, and
consequently it provides the well-known result for the axial
current, ABJ anomaly. From the above, we can read the MS
renormalized Green’s functions [Eqs. (71–75), without the
1=ε terms], which are essential ingredients in order to
extract the lattice renormalization factors. We also note that
the results for Zmψ

and ZS are related by Zmψ
¼ Z−1

S as
expected.
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The next step in our renormalization procedure is to
calculate the mixing coefficients. We concentrate on the
Green’s functions of Oψ

i with external gluino, squark, and
gluon fields. Taking as a prototype the scalar quark operator
with external squark fields, the renormalized Green’s
function will be given by

hÃROψ
S
RÃR†iamp ¼ ZSZ

−1=2
A hÃBOψ

S
BÃB†iampZ

−1=2
A

−
X

a;b¼þ;−
zabS Z−1=2

A hÃBOA
abÃ

B†itreeampZ
−1=2
A

ð82Þ

[z−−S ≡ zþþ
S , z−S þ≡zþ−

S , cf. Eq. (66)]. Similarly, taking
into account the potential mixing with Oλ

i , which appears
only in the flavor-singlet case, and the corresponding
tree-level Green’s functions, we can determine zλi . The
expressions we obtain for hλBOψ

i
Bλ̄BiDRamp are shown here

(a Kronecker delta is understood over the color indices of
the external gluino fields, which are left implicit):

hλ̃BðqÞOψ
S
B ˜̄λ

Bðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ g2

16π2

�
i=q

�
2m
q2

−
8m3

q3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2m

���
ð83Þ

hλ̃BðqÞOψ
P
B ˜̄λ

Bðq0ÞiDRamp ¼ 0 ð84Þ

hλ̃BðqÞOψ
V
B ˜̄λ

Bðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ g2

16π2

�
γμ

�
1þ 1

2ϵ
þ 1

2
log

�
μ̄2

m2

�
−

4m2 þ q2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2m

��

þ =qqμ

�
−

1

q2
þ 4m2

q3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2m

���
ð85Þ

hλ̃BðqÞOψ
AV

B ˜̄λ
Bðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ g2

16π2

�
γ5γμ

�
−2 −

1

2ϵ
−
1

2
log

�
μ̄2

m2

�
þ 8m2 þ q2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2m

��

þ γ5=qqμ

�
1

q2
−

4m2

q3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2m

���
ð86Þ

hλ̃BðqÞOψ
T
B ˜̄λ

Bðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ g2

16π2

�
1

2
½γμ; γν�i=q

�
2m
q2

−
8m3

q3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2m

��

− iðγμqν − γνqμÞ
�
2m
q2

−
8m3

q3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2m

���
: ð87Þ

There are four possibilities corresponding to Green’s functions of each quark bilinear with external squarks, according to
the choice of squark components, Aþ or A−. For the sake of a concise presentation, the corresponding expressions are shown
below in the mass-degenerate case, with the necessary exception of a factor Δm≡mf −mf0, which is related to the mixing

withΔmðA†
þAþ − A−A†

−Þ. Indeed, these expressions are sufficient for the extraction of all renormalizaton coefficients on the
lattice, see Eqs. (120)–(127),

hÃBþðqÞOψ
S
BÃ†

þ
Bðq0ÞiDRamp ¼ hÃ†

−
BðqÞOψ

S
BÃB

−ðq0ÞiDRamp

¼ −ð2πÞ4δðq − q0Þ g
2CF

16π2

�
24mþ 16m

�
1

ϵ
þ log

�
μ̄2

m2 þ q2

�
−
m2

q2
log

�
1þ q2

m2

���
ð88Þ

hÃBþðqÞOψ
S
BÃB

−ðq0ÞiDRamp ¼ hÃ†
−
BðqÞOψ

S
BÃ†

þ
Bðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ g

2CF

16π2
ð8mÞ ð89Þ
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hÃBþðqÞOψ
P
BÃ†

þ
Bðq0ÞiDRamp ¼ −hÃ†

−
BðqÞOψ

P
BÃB

−ðq0ÞiDRamp

¼ −ð2πÞ4δðq − q0Þ g
2CF

16π2
Δm

�
8

ϵ
þ 12þ 8 log

�
μ̄2

m2 þ q2

�
− 8

m2

q2
log

�
1þ q2

m2

��
ð90Þ

hÃBþðqÞOψ
P
BÃB

−ðq0ÞiDRamp ¼ −hÃ†
−
BðqÞOψ

P
BÃ†

þ
Bðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ g

2CF

16π2
ð8mÞ ð91Þ

hÃBþðqÞOψ
V
BÃ†

þ
Bðq0ÞiDRamp ¼ hÃ†

−
BðqÞOψ

V
BÃB

−ðq0ÞiDRamp

¼ −ð2πÞ4δðq − q0Þ g
2CF

16π2
iqμ

�
32

3
þ 8

ϵ
− 8

m2

q2
þ 8 log

�
μ̄2

m2 þ q2

�
þ 8

m4

q4
log

�
1þ q2

m2

��
ð92Þ

hÃBþðqÞOψ
V
BÃB

−ðq0ÞiDRamp ¼ hÃ†
−
BðqÞOψ

V
BÃ†

þ
Bðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ g

2CF

16π2
iqμ

�
8

3

�
ð93Þ

hÃBþðqÞOψ
AV

BÃ†
þ
Bðq0ÞiDRamp ¼ −hÃ†

−
BðqÞOψ

AV
BÃB

−ðq0ÞiDRamp ¼ ð2πÞ4δðq − q0Þ g
2CF

16π2
iqμ

�
16þ 8

ϵ

þ 8
m2

q2
þ 8 log

�
μ̄2

m2 þ q2

�
− 16

m2

q2
log

�
1þ q2

m2

�
− 8

m4

q4
log

�
1þ q2

m2

��
ð94Þ

hÃBþðqÞOψ
AV

BÃB
−ðq0ÞiDRamp ¼ hÃ†

−
BðqÞOψ

AV
BÃ†

þ
Bðq0ÞiDRamp ¼ 0 ð95Þ

hÃBþðqÞOψ
T
BÃ†

þ
Bðq0ÞiDRamp ¼ hÃ†

−
BðqÞOψ

T
BÃB

−ðq0ÞiDRamp ¼ 0 ð96Þ

hÃBþðqÞOψ
T
BÃB

−ðq0ÞiDRamp ¼ hÃ†
−
BðqÞOψ

T
BÃ†

þ
Bðq0ÞiDRamp ¼ 0: ð97Þ

Lastly, we compute the gluon matrix elements of the quark bilinears:

hũBσ ðqÞOψ
S
BũBν ðq0ÞiDRamp¼ð2πÞ4δðqþq0Þ g2

16π2

��
δσν−

qσqν
q2

�
×

�
8m−32

m3

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2þq2

p log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2þq2

p
2m

���
ð98Þ

hũBσ ðqÞOψ
AV

BũBν ðq0ÞiDRamp ¼ ð2πÞ4δðqþ q0Þ g2

16π2

�
ϵσνμρiqρ

�
−4þ 16m2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p log

�
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ q2

p
2m

���
ð99Þ

hũBσ ðqÞOψ
V
BũBν ðq0ÞiDRamp ¼ hũBσ ðqÞOψ

P
BũBν ðq0ÞiDRamp ¼ hũBσ ðqÞOψ

T
BũBρ ðq0ÞiDRamp ¼ 0: ð100Þ

Following the example of Eq. (82), and using the
definition of Zi and the renormalization of each field, all
mixing coefficients zλi , z

��
i (z�D�

i , zm��
i ), and zui can be

derived from Eqs. (83)–(87), (88)–(97), and (98)–(100),
respectively:

zλS ¼ zλP ¼ zλT ¼ 0; zλV ¼ g2

16π2
1

ϵ
; zλAV ¼ −

g2

16π2
1

ϵ

ð101Þ

zþþ
S ¼ zþ−

S ¼ zþ−
P ¼ 0 ð102Þ

zmþþ
S ¼ −

g2

16π2
8

ϵ
; zmþ−

S ¼ 0 ð103Þ

zmþþ
P ¼ −

g2

16π2
8

ϵ
; zmþ−

P ¼ 0 ð104Þ

zþDþ
V ¼ −

g2

16π2
8

ϵ
; zþD−

V ¼ 0 ð105Þ

zþDþ
AV ¼ g2

16π2
8

ϵ
ð106Þ

zuV ¼ zuAV ¼ 0: ð107Þ

Having calculated the above quantities in the continuum,
we proceed with the computation of the lattice Green’s
functions in order to extract the renormalization and mixing
coefficients of the quark bilinears. Since on the lattice some
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symmetries are broken, e.g., chiral symmetry, more mixings
arise; they contain inverse powers of the lattice spacing, and
thus they require an independent nonperturbative determi-
nation. In this work, we have evaluated perturbatively all the
renormalizations and mixing coefficients at one loop.
The computation of the two-point bare Green’s functions

of Oψ
i on the lattice are the most demanding part of the

present work. The algebraic expressions involved were split
into two parts: a) terms that can be evaluated in the a → 0
limit (such terms exhibit a very complicated dependence on
the external momentum, even for zero masses, and this
dependence constitutes a part of the regularization inde-
pendent renormalized Green’s functions) and b) all remain-
ing terms (these are divergent as a → 0; however, their
dependence on q, m is necessarily polynomial). The lattice
introduces additional contributions, which are finite and
polynomial in q and m. Our computations were performed
in a covariant gauge, with an arbitrary value of the gauge
parameter α. Given that some of the operators which mix
with Oψ

i contain powers of the masses, we have kept these
masses different from zero throughout the computation.
Renormalizability of the theory implies that the differ-

ence between the one-loop renormalized and bare Green’s

functions must only consist of expressions which are
polynomial in q, m; in this way, the rhs of Eq. (82) can
be rendered equal to the corresponding lhs, by an appro-
priate definition of the renormalization factors and mixing
coefficients. Indeed, we have checked explicitly the poly-
nomial character of the above differences. This check is
quite nontrivial, given the very complex dependence of the
initial expressions on the momenta q. Both renormalized
and bare functions have the same tensorial form, but the
bare ones have additional contributions. Each tensorial
structure will provide an equation [cf. Eq. (82)]; these
equations can be solved independently for each mixing
coefficient.
As mentioned, we employ the HV scheme, which is

more useful for comparison with experimental determina-
tions and phenomenological estimates. Certain results for
the mixing coefficients will depend also on the lattice
spacing. For completeness, we write all relevant Green’s
functions, shown in Eqs. (108)–(112) and (118)–(133). All
results presented in this section are computed for nonzero
masses and momentum. Additionally, we should note that
the errors on our lattice expressions are smaller than the last
shown digit,

hψ̃BðqÞOψ
S
B ˜̄ψBðq0ÞiLamp ¼ hψ̃MSðqÞOψ

S
MS ˜̄ψMSðq0Þiamp − ð2πÞ4δðq − q0Þ1 g

2CF

16π2
ð3.69200 − 3.79201αþ ð3þ αÞ logða2μ̄2ÞÞ

ð108Þ

hψ̃BðqÞOψ
P
B ˜̄ψBðq0ÞiLamp ¼ hψ̃MSðqÞOψ

P
MS ˜̄ψMSðq0Þiamp − ð2πÞ4δðq− q0Þγ5

g2CF

16π2
ð−5.95103− 3.79201αþð3þ αÞ logða2μ̄2ÞÞ

ð109Þ

hψ̃BðqÞOψ
V
B ˜̄ψBðq0ÞiLamp ¼ hψ̃MSðqÞOψ

V
MS ˜̄ψMSðq0Þiamp − ð2πÞ4δðq − q0Þγμ

g2CF

16π2
ð−3.97338 − 3.79201αþ α logða2μ̄2ÞÞ

ð110Þ

hψ̃BðqÞOψ
A
B ˜̄ψBðq0ÞiLamp ¼ hψ̃MSðqÞOψ

A
MS ˜̄ψMSðq0Þiamp − ð2πÞ4δðq − q0Þγ5γμ

g2CF

16π2
ð0.84813 − 3.79201αþ α logða2μ̄2ÞÞ

ð111Þ

hψ̃BðqÞOψ
T
B ˜̄ψBðq0ÞiLamp ¼ hψ̃MSðqÞOψ

T
MS ˜̄ψMSðq0Þiamp

− ð2πÞ4δðq − q0Þ 1
2
½γμ; γν�

g2CF

16π2
ð−0.37366 − 3.79201αþ ð−1þ αÞ logða2μ̄2ÞÞ: ð112Þ

The MS-renormalized quantities on the rhs of the above equations are equal to the corresponding expressions in
Eqs. (108)–(112), with all 1=ϵ poles removed; the same applies to Eqs. (118)–(133). These results are completely
compatible with nonsupersymmetric results in Refs. [31,32].
By combining the lattice expressions with the renormalized Green’s functions calculated in the continuum [see Eq. (76)],

we find for the renormalization factors
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ZS
L;MS ¼ 1þ g2CF

16π2
ð−13.1105þ logða2μ̄2ÞÞ ð113Þ

ZP
L;MS ¼ 1þ g2CF

16π2
ð−22.7536þ logða2μ̄2ÞÞ ð114Þ

ZV
L;MS ¼ 1þ g2CF

16π2
ð−20.7759 − 2 logða2μ̄2ÞÞ ð115Þ

ZAV
L;MS ¼ 1þ g2CF

16π2
ð−15.9544 − 2 logða2μ̄2ÞÞ ð116Þ

ZT
L;MS ¼ 1þ g2CF

16π2
ð−17.1762 − 3 logða2μ̄2ÞÞ: ð117Þ

We note that these factors are all gauge independent, as they
should be in the MS scheme. The remaining quantities
which we need to compute on the lattice are the mixing
coefficients. These can be easily determined by computing
the Green’s functions corresponding to the last four
diagrams of Fig. 2 in the lattice regularization. For several
of these Green’s functions, their difference from the
corresponding functions in DR vanishes, in the limit
a → 0, with no additional lattice contributions; for the
sake of brevity, we list below only those cases in which the
difference is nonvanishing, and we drop the factors of
ð2πÞ4δðq − q0Þ which are implicit in all terms of
Eqs. (118)–(133),

hλBðqÞOψ
V
Bλ̄Bðq0ÞiLamp ¼ hλMSðqÞOψ

V
MSλ̄MSðq0Þiamp þ

g2

16π2
γμ

�
2.24195 −

1

2
log ða2μ̄2Þ

�
ð118Þ

hλBðqÞOψ
AV

Bλ̄Bðq0ÞiLamp ¼ hλMSðqÞOψ
AV

MSλ̄MSðq0Þiamp þ
g2

16π2
γ5γμ

�
2.85434þ 1

2
log ða2μ̄2Þ

�
ð119Þ

hABþðqÞOψ
S
BA†

þ
Bðq0ÞiLamp ¼ hAMSþ ðqÞOψ

S
MSA†

þ
MSðq0Þiamp þ

g2CF

16π2

�
52.8968m̄þ 23.8429r

1

a
þ 16m̄ log ða2μ̄2Þ

�
ð120Þ

hA†
−
BðqÞOψ

S
BAB

−ðq0ÞiLamp ¼ hA†
−
MSðqÞOψ

S
MSAMS

− ðq0Þiamp þ
g2CF

16π2

�
52.8968m̄þ 23.8429r

1

a
þ 16m̄ log ða2μ̄2Þ

�
ð121Þ

hABþðqÞOψ
S
BAB

−ðq0ÞiLamp ¼ hAMSþ ðqÞOψ
S
MSAMS

− ðq0Þiamp þ
g2CF

16π2

�
7.2780m̄ − 8.92745r

1

a

�
ð122Þ

hA†
−
BðqÞOψ

S
BA†

þ
Bðq0ÞiLamp ¼ hA†

−
MSðqÞOψ

S
MSA†

þ
MSðq0Þiamp þ

g2CF

16π2

�
7.2780m̄ − 8.92745r

1

a

�
ð123Þ

hABþðqÞOψ
P
BA†

þ
Bðq0ÞiLamp ¼ hAMSþ ðqÞOψ

P
MSA†

þ
MSðq0Þiamp þ

g2CF

16π2
Δmð7.9207þ 8 log ða2μ̄2ÞÞ ð124Þ

hA†
−
BðqÞOψ

P
BAB

−ðq0ÞiLamp ¼ hA†
−
MSðqÞOψ

P
MSAMS

− ðq0Þiamp −
g2CF

16π2
Δmð7.9207þ 8 log ða2μ̄2ÞÞ ð125Þ

hABþðqÞOψ
P
BAB

−ðq0ÞiLamp ¼ hAMSþ ðqÞOψ
P
MSAMS

− ðq0Þiamp −
g2CF

16π2

�
29.7772m̄þ 32.7704r

1

a

�
ð126Þ

hA†
−
BðqÞOψ

P
BA†

þ
Bðq0ÞiLamp ¼ hA†

−
MSðqÞOψ

P
MSA†

þ
MSðq0Þiamp þ

g2CF

16π2

�
29.7772m̄þ 32.7704r

1

a

�
ð127Þ

hABþðqÞOψ
V
BA†

þ
Bðq0ÞiLamp ¼ hAMSþ ðqÞOψ

V
MSA†

þ
MSðq0Þiamp þ

g2CF

16π2
iqμð5.6888þ 8 log ða2μ̄2ÞÞ ð128Þ

hA†
−
BðqÞOψ

V
BAB

−ðq0ÞiLamp ¼ hA†
−
MSðqÞOψ

V
MSAMS

− ðq0Þiamp þ
g2CF

16π2
iqμð5.6888þ 8 log ða2μ̄2ÞÞ ð129Þ

hABþðqÞOψ
V
BAB

−ðq0ÞiLamp ¼ hAMSþ ðqÞOψ
V
MSAMS

− ðq0Þiamp −
g2CF

16π2
iqμ0.8693 ð130Þ

SUPERSYMMETRIC QCD: RENORMALIZATION AND MIXING … PHYS. REV. D 99, 074512 (2019)

074512-17



hA†
−
BðqÞOψ

V
BA†

þ
Bðq0ÞiLamp ¼ hA†

−
MSðqÞOψ

V
MSA†

þ
MSðq0Þiamp −

g2CF

16π2
iqμ0.8693 ð131Þ

hABþðqÞOψ
AV

BA†
þ
Bðq0ÞiLamp ¼ hAMSþ ðqÞOψ

AV
MSA†

þ
MSðq0Þiamp −

g2CF

16π2
iqμð14.6168þ 8 log ða2μ̄2ÞÞ ð132Þ

hA†
−
BðqÞOψ

AV
BAB

−ðq0ÞiLamp ¼ hA†
−
MSðqÞOψ

AV
MSAMS

− ðq0Þiamp þ
g2CF

16π2
iqμð14.6168þ 8 log ða2μ̄2ÞÞ; ð133Þ

where m̄≡ ðmf þmf0 Þ=2. As is implied by renormaliz-
ability, the differences between bare lattice Green’s func-
tions and their MS counterparts, such as those presented in
Eqs. (118)–(133), can only be polynomial in the external
momentum q (in the limit a → 0); dimensional reasoning
further shows that these polynomials have maximum
degree 0 or 1, depending on the Green’s function.
The lattice one-loop expressions for the mixing coef-

ficients are presented here. By inserting our lattice results
into Eq. (82) (and similarly for all other relevant Green’s
functions), we immediately obtain

zλS ¼ zλP ¼ zλT ¼ 0; zλV ¼ g2

16π2
ð4.4839− logða2μ̄2ÞÞ;

zλAV ¼ g2

16π2
ð5.7087þ log ða2μ̄2ÞÞ ð134Þ

zþþ
S ¼ g2CF

16π2
1

a
23.8429r; zþ−

S ¼ −
g2CF

16π2
1

a
8.9274r

ð135Þ

zmþþ
S ¼ g2CF

16π2
ð26.4484þ 8 log ða2μ̄2ÞÞ;

zmþ−
S ¼ g2CF

16π2
3.6390 ð136Þ

zþ−
P ¼ −

g2CF

16π2
1

a
32.7704r ð137Þ

zmþþ
P ¼ g2CF

16π2
ð7.9207þ 8 log ða2μ̄2ÞÞ;

zmþ−
P ¼ −

g2CF

16π2
14.8886 ð138Þ

zþDþ
V ¼ g2CF

16π2
ð5.6888þ 8 log ða2μ̄2ÞÞ;

zþD−
V ¼ −

g2CF

16π2
0.8693 ð139Þ

zþDþ
AV ¼ −

g2CF

16π2
ð14.6168þ 8 log ða2μ̄2ÞÞ;

zuV ¼ zuAV ¼ 0: ð140Þ

The above perturbative estimates of the renormalization
factors Zi and of the mixing coefficients zi can be used for
the determination of the properly renormalized opera-
tors Oψ

i .

IV. SUMMARYOF RESULTS AND FUTURE PLANS

In this paper, we have studied the mixing under renorm-
alization for local bilinear operators in SQCD. We have
calculated the one-loop renormalization factors and mixing
coefficients for local quark operators and dimension-2
squark operators, both in dimensional regularization and
on the lattice, in the MS renormalization scheme. In the
supersymmetric case, more mixings arise as compared to
QCD, due to the fact that the SQCD action contains more
fields and interactions; indeed, in QCD, there is no mixing
when one calculates the Green’s functions of local quark
bilinears. As a prerequisite, we have computed the quark and
squark inverse propagators, and thus we have determined the
multiplicative renormalization of these fields and of their
masses, as well as the critical values for each mass. One
novel aspect of this work is that we use the SQCD action
with nonzero masses mf throughout our computations, in
order to avoid infrared divergences; thus, there emerge more
mixing patterns among operators made of quarks, squarks,
gluinos and gluons.
The renormalization factors and the operator mixings

can be determined from the calculation of certain two-point
Green’s functions. We have calculated the Green’s func-
tions of the dimension-2 squark operators with external
squarks and gluons. The latter shows that there is no mixing
between squark and gluon operators, and from the former,
we have extracted the renormalization factors for the
dimension-2 squark operators. However, for the quark
operators, which are dimension 3, there are more mixing
patterns. We have calculated the Green’s functions of the
quark bilinears with external quarks, squarks, gluinos, and
gluons, and we determined all renormalization factors and
mixing coefficients to one loop.
A natural continuation of the present work is to calculate

the Green’s functions of the above operators up to all orders
in the lattice spacing. These extensions are useful in order
to construct improved versions of the operators and also to
removeOðg2a∞Þ contributions from future nonperturbative
data. A further extension of the present work would be to
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calculate the mixing matrices of extended quark bilinears
containing one or more covariant derivatives in their
definition. These operators have dimension 4, and thus
the list of the mixing operators increases. To this end, one
should calculate all two-point Green’s functions and may
also need to calculate certain three-point Green’s func-
tions of these operators. Such Green’s functions provide
more detailed information on the structure of bound states
in SQCD. It would be also interesting to compute the
existing Green’s functions up to two loops. Computing
higher loops in perturbation theory is a difficult task due to

the rapidly increasing number of Feynman diagrams in the
supersymmetric case and the appearance of more com-
plicated expressions, as well as due to the more intricate
structure of (sub)divergences. Also, the differences
between flavor-singlet and -nonsinglet operators are more
pronounced because of diagrams with closed fermion
loops. Lastly, it would be important to extend our
computations to further improved actions with reduced
lattice artifacts and reduced symmetry breaking, e.g., the
overlap fermion action, as a forerunner to numerical
studies using these actions.
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