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We formulate the physics of two species of nonrelativistic hard-core bosons with attractive or repulsive
delta function interactions on a spacetime lattice in the worldline approach. We show that worm algorithms
can efficiently sample the worldline configurations in any fixed particle-number sector if the chemical
potential is tuned carefully. Since fermions can be treated as hard-core bosons up to a permutation sign, we
apply this approach to study nonrelativistic fermions. The fermion permutation sign is an observable in this
approach and can be used to extract energies in each particle-number sector. In one dimension,
nonrelativistic fermions can only permute across boundaries, and so our approach does not suffer from
sign problems in many cases, unlike the auxiliary field method. Using our approach, we discover
limitations of the recently proposed complex Langevin calculations in one spatial dimension for some
parameter regimes. In higher dimensions, our method suffers from the usual fermion sign problem. Here we
provide evidence that it may be possible to alleviate this problem for few-body physics.
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I. INTRODUCTION

Computing the properties of quantum systems con-
taining fermions remains challenging especially when
perturbative techniques begin to fail. Even in the case of
few-body physics, where each particle is described by a
large dimensional vector space, the free and the interacting
parts of the Hamiltonian may be diagonalized by two very
different basis vectors and the ground state in a given
particle-number sector may be severely entangled in both
these bases with no apparent small parameters. This
problem is even more severe in quantum field theories,
where these particles are created out of a vacuum that can
itself be nontrivial, like in quantum chromodynamics
(QCD). For this reason, studying the properties of low-
mass hadrons remains a daunting challenge in lattice
QCD [1].
In the context of QCD, an alternative approach has

become exciting in recent years and is based on ideas of a
low-energy effective field theory formulated using the
symmetries of QCD and the fact that the vacuum breaks
the chiral symmetry spontaneously [2,3]. This chiral
effective field theory (χ-EFT) is constructed using nucleons
and pions as the low-energy degrees of freedom. The
interactions are described by local operators constructed
from the nucleon and pion fields, organized as a power

series in the ratio of relevant energy scales, which acts as
the small parameter. But even at leading orders in the
effective field theory, computing the properties of low lying
hadrons and nuclei within χ-EFT can require nonperturba-
tive calculations. While analytic techniques based on
resummations of Feynman diagrams are useful for up to
three particles [4], numerical approaches especially based
on Monte Carlo methods become necessary for a higher
number of particles [5,6].
Nonperturbative state-of-the-art Monte Carlo methods

for few-body problems are based on auxiliary field tech-
niques and fixed node approximations. Many variants of
the algorithms have been developed over the years and for
further details we refer the reader to recent reviews of the
subject [7–9]. While these auxiliary field quantum
Monte Carlo (AFQMC) methods have a clear advantage
in certain parameter regimes, they also exhibit several
limitations in other regimes [10]. Difficulties of the method
become apparent in one spatial dimension, which has
become experimentally interesting in recent years, thanks
to our ability to design and control ultracold quantum gases
confined to optical traps [11,12]. Also, many interesting
quantum phenomena in higher dimensions have analogues
in one spatial dimension [13–17]. Motivated by this, the
AFQMC method was recently used to study two species of
fermions in one spatial dimension interacting through a
delta function interaction [18–20].
One major limitation of the auxiliary field approach is

that it suffers from sign problems in the presence of
repulsive interactions or mass- and spin-imbalanced sys-
tems away from half filling. This is true even in one spatial
dimension. In order to explore a solution to this problem,
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the auxiliary field technique was combined with the
complex Langevin (CL) method to overcome the sign
problem in Ref. [21]. Recently, this approach was also
extended to higher dimensions [22]. Unfortunately, it is
well known that CL methods may have uncontrolled
systematic errors and can converge to wrong results
[23]. In fact, the authors of Ref. [21] suggested caution
for their results, especially in the repulsive case where the
CL approach showed fat-tailed distributions. However, the
authors wondered if the flattening of the ground-state
energy as a function of the strength of repulsion, observed
using the CL approach, was a sign of some interesting
nonperturbative physics. The only way to be sure is to
compare the results with other reliable methods.
One spatial dimension is an excellent place to test

methods like CL, since entanglement is greatly reduced
and a variety of other methods that do not suffer from sign
problems are usually available. For example, exact analytic
calculations based on the Bethe ansatz are possible in some
special cases [24–27]. With open boundary conditions or
odd number of fermions with periodic boundary condi-
tions, sign problems are absent in the worldline formulation
[28,29]. Recently the two-dimensional lattice Thirring
model with open boundary conditions was formulated
using the worldline method [30] to provide benchmark
results to test the Lefschetz thimble approach [31]. Thus,
we should also be able to test the recent CL results of
Ref. [21] using a similar worldline approach.
Motivated by this, we construct a general worldline

approach to study quantum mechanics of hard-core bosons
in any dimension. We show that we can use worm
algorithms to update the worldline configurations effi-
ciently in any particle-number sector by tuning the chemi-
cal potential carefully [32]. While worldline methods to
study bosonic quantum field theories are well known by
now [33–35], and have been used in several studies so far
[36–41], their applicability to bosonic quantum many-body
physics has remained relatively unexplored [42,43]. Thus,
our work can be viewed as an attempt to fill this gap. Our
method can easily be extended to fermions if we can
compute the fermion permutation sign accurately. In one
spatial dimension, fermions are identical to hard-core
bosons up to boundary effects. Hence, our method can
be used to check the recent results of Ref. [21]. We find that
the CL method yields incorrect results as the repulsive
coupling strength grows, implying that the observed flat-
tening is unphysical and an artifact of the method.
We can easily adapt our approach to study fermionic

particles even in higher dimensions by treating the fer-
mionic permutation sign as an observable, but it becomes
difficult to compute it accurately. As expected, this observ-
able suffers from a severe signal-to-noise ratio problem,
especially at low temperatures and when the number of
particles becomes large. However, we provide evidence that
at intermediate temperatures and with a small number of

particles (N ∼ 10) we may be able to beat the signal-to-
noise ratio. This may allow us to explore new and
interesting questions in few-body physics that are difficult
to answer with the AFQMC method.
Our paper is organized as follows. In Sec. II we discuss

the lattice Hamiltonian formulation of two species of hard-
core bosons with a contact interaction. In Sec. III, we
construct the worldline formulation of the problem on a
spacetime lattice and provide details of our worm algorithm
in Sec. IV. In Sec. V, we discuss how we can study fermions
by measuring the fermionic permutation sign. We also
provide evidence that the fermion sign problem is mild in
three dimensions for up to ten particles at an intermediate
temperature. In Sec. VI, we present our results for fermions
in one spatial dimension and consider two cases: the mass-
balanced case and the mass-imbalanced case. In the mass-
balanced case, we show that our results are in agreement
with the exact results obtained using the Bethe ansatz. We
also show that in both cases the flattening of the ground
state-energy observed in the CL calculations is absent in
our approach. In Sec. VII, we discuss a limitation of the
traditional approach used to extract the ground state energy
and suggest a complementary method that is more reliable.
In Sec. VIII, we provide evidence that we can also compute
fermionic ground state energies in 3þ 1 dimensions by
reproducing a benchmark calculation performed several
years ago in Ref. [44] and present our conclusions
in Sec. IX.

II. LATTICE MODEL

The physics of two species of nonrelativistic hard-core
bosons that we consider in this work can be represented
through the lattice Hamiltonian,

H ¼ −
X
i;α̂;σ

tσðc†i;σciþα̂;σ þ c†iþα̂;σci;σ − 2c†i;σci;σÞ

þ U
ad

X
i

Ni;↑Ni;↓; ð1Þ

where c†i;σ; ci;σ create and annihilate bosons of species, say,
spin-up (σ ¼ ↑) or spin-down (σ ¼ ↓), at the site i on a
d-dimensional spatial lattice and α̂ represents unit vectors
in the d spatial directions. The site occupation-number
operators are defined as Ni;σ ¼ c†i;σci;σ . The parameters
tσ ¼ 1=ð2mσa2Þ give the hopping strength of the particles
in terms of the masses of the particles mσ and the lattice
spacing a. The parameter U is the bare interaction strength.
In addition, we impose the hard-core boson constraint on
the states of the Hilbert space, which means each site can
either be empty or contain a single boson of a particular
species. In this work, we will study finite spatial boxes of
size LX with periodic boundary conditions, so that the
physical box size is given by L ¼ LXa. If the particles are
taken to be fermions instead of hard-core bosons, the lattice
model (1) is known as the Hubbard model.

HERSH SINGH and SHAILESH CHANDRASEKHARAN PHYS. REV. D 99, 074511 (2019)

074511-2



The lattice model (1) has a naive continuum limit as
a → 0. In d ¼ 1, this limiting procedure leads to the
continuum theory with a delta function interaction,

Ha→0 ¼ −
X
σ¼↑;↓

1

2mσ

Z
dxψ†

σðxÞ
�
d2

dx2

�
ψσðxÞ

þ g
Z
dxψ†

↑ðxÞψ↑ðxÞψ†
↓ðxÞψ↓ðxÞ; ð2Þ

where g ¼ U. However, in higher dimensions ðd > 1Þ the
problem of the continuum limit is more subtle and the
framework of effective field theory becomes necessary to
implement it. For example, with equal-mass fermions in
three dimensions, the coupling UðaÞ can be tuned to the
unitary fixed point to get an interacting field theory in the
continuum limit. With bosons or additional quantum
numbers, we can get Efimov physics which necessitates
additional counterterms to renormalize the theory [4]. For
this reason, we confine the discussion of the continuum
limit to one dimension. In higher dimensions we will
simply view (1) as a lattice model and set a ¼ 1.
In this work, we will compute the ground-state energy

E0
N↑;N↓

, which is the lowest eigenvalue of the Hamiltonian

in Eq. (1) in the subspace with particle numbersN↑ andN↓.
One way to accomplish this is to simply compute the
average energy

hEi ¼ 1

Zμ
TrðH e−βHμÞ ð3Þ

at very low temperature (β → ∞), where we use the
modified lattice Hamiltonian,

Hμ ¼ H −
X
i;σ

μσNσ;i; ð4Þ

with chemical potentials μσ for the two particle species, and
the partition function

Zμ ¼ Trðe−βHμÞ ð5Þ

to define the expectation value. If we compute the trace in a
fixed particle-number subspace, the chemical potential
terms drop out and we indeed get hEi ¼ E0

N↑;N↓
in the

limit β → ∞. Thus, we need a method to compute hEi
reliably for large values of β.
In the next two sections, we will find an expression for

hEi in the worldline formulation and construct a worm
algorithm to compute it efficiently. Worm algorithms work
by adding and removing particles which then updates the
worldline configuration. If energetics do not favor this,
algorithms can develop exponentially long autocorrelation
times. Hence, for efficient sampling in a fixed particle-
number sector it is important to tune the chemical potentials

carefully. To understand why this is the case, let us consider
the energy of the ground state containing N↑ and N↓
particles in the presence of a chemical potential, which is
given by

EN↑;N↓
¼ E0

N↑;N↓
− N↑μ↑ − N↓μ↓: ð6Þ

If we can tune μσ to critical values μcσ such that
EN↑þ1;N↓þ1 ¼ EN↑;N↓

, that is

E0
N↑þ1;N↓þ1 − E0

N↑;N↓
¼ μc↑ þ μc↓; ð7Þ

then worm algorithms can sample worldline configurations
in the particle-number sectors ðN↑;N↓Þ and ðN↑þ1;N↓þ1Þ
very efficiently even at very large values of β. We can
monitor this by computing the average particle number,

hNσi ¼
1

Zμ
Tr

�X
i

Nσ;i e−βHμ

�
; ð8Þ

and making sure that it fluctuates between the sectors
ðN↑; N↓Þ and ðN↑ þ 1; N↓ þ 1Þ even when β is large
[36]. Such fluctuations are crucial to the efficiency of our
algorithm.

III. WORLDLINE FORMULATION

Let us now construct the worldline formulation of the
problem. We first write the Hamiltonian asHμ ¼ Hd −Hh,
a sum of a diagonal term and a hopping term, where

Hd ¼
X
i;σ

ð2dtσ − μσÞNσ;i þUN↑;iN↓;i; ð9Þ

Hh ¼
X
i;α̂;σ

tσðc†i;σciþα̂;σ þ c†iþα̂;σci;σÞ: ð10Þ

We then expand the partition function as

Zμ ¼
X
k

Z
β

0

dtk

Z
tk

0

dtk−1 � � �
Z

t2

0

dt1

×Trðe−ðβ−tkÞHdHhe−ðtk−tk−1ÞHdHh � � �Hhe−t1HdÞ; ð11Þ

which can be viewed as a hopping parameter expansion in
continuous time. Since we do not truncate the sum over k in
Eq. (11), there is no approximation involved. Such an
approach to write partition functions in continuous time is
well known for hard-core bosons [45] and fermions [46].
However, to develop the worm algorithm, it is convenient to
discretize the time integrals by dividing β into LT imagi-
nary time steps of width ε, such that β ¼ εLT . If we then
compute the trace in the occupation number basis, we can
approximate the partition function as a sum over worldline
configurations C of both species of particles on a spacetime
lattice. We write this as
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Zμ ¼
X
C

ΩðCÞ; ð12Þ

where ΩðCÞ is the Boltzmann weight of each worldline
configuration. Figure 1 gives an illustration of C on a 1þ 1
dimensional spacetime lattice. In the next section, we
construct a worm algorithm to update such worldline
configurations. We usually perform calculations at several
values of ε and then extrapolate to the continuous time
limit. We always find that the time-discretization errors are
linear in ε at leading order (see Figs. 13 and 14). In
principle, this extra work can be avoided by directly taking
the continuous time limit of the worm algorithm itself [45].
In this limit, instead of local updates at each spacetime
point, the worm propagates forward for a finite time
interval, with probabilities determined by the ε → 0 limit
of the discrete-time algorithm that we discuss below.
The Boltzmann weights ΩðCÞ can be obtained as a

product of local weights associated to each spacetime
lattice site,

ΩðCÞ ¼
Y
i;t

Wi;tðCÞ; ð13Þ

where Wi;tðCÞ is obtained from the local worldline con-
figuration C at the spacetime site ði; tÞ and is a product of
either Wσ

e;Wσ
h or Wσ

m for each species and WI that takes
into account particle interactions. The allowed configura-
tions at a site for each particle species are shown in Fig. 2.
Either there is no particle or one particle that comes into the
site and leaves it. If there is no particle, the site weight for
that species is Wσ

e ¼ 1. On the other hand, when there is a

particle, we choose the weight to depend only on its
outgoing direction. If the particle hops to the neighboring
spatial site, the weight is

Wσ
h ¼ tσε: ð14Þ

If, instead, the particle moves forward in time, the weight is

Wσ
m ¼ expð−εð2dtσ − μσÞÞ: ð15Þ

The interaction among the particle species is taken into
account through the weight

WI ¼ exp ð−εUÞ; ð16Þ

if both particles hop forward in time together. Otherwise we
set WI ¼ 1. With these definitions, we can express the
weight of a configuration as

ΩðCÞ ¼ ðW↑
mÞLTN↑ðW↓

mÞLTN↓ðW↓
hÞn

↓
h ðW↑

hÞn
↑
h ðWIÞnI ; ð17Þ

where Nσ is the number of σ-particles in the configuration
C, nσh is the number of hops and nI is the number of
interacting temporal bonds.
It is possible to compute a variety of observables easily

in the worldline formulation. For example, the average
energy defined in Eq. (3) can be expressed in the worldline
formulation, up to OðεÞ errors, as

hEi ¼ 1

Zμ

X
C

EðCÞ ΩðCÞ; ð18Þ

where EðCÞ is the energy of a worldline configuration C,
defined as

FIG. 1. An illustration of a worldline configuration C with
N↑ ¼ 1 and N↓ ¼ 1. The dots represent spacetime lattice sites
and the bold solid lines show the worldlines of the two particles.
The interaction between the particles is shown as a wiggly
temporal bond. The Boltzmann weights associated with lattice
sites containing particles are also shown.

FIG. 2. The allowed worldline configurations C on a 1þ 1
dimensional spacetime lattice site for one particle species. Using
the weights defined in Eqs. (14) to (16), the weights of the
configurations from left to right are (top row) 1;Wm;Wm, (middle
row) Wh, Wh, Wm, (bottom row) Wh, Wh. In addition to these
weights if both layers have the weight Wm we multiply the
product with WI .
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EðCÞ ¼ U
nIðCÞ
LT

þ
X
σ

�
−
nσhðCÞ
β

þ 2dtσNσðCÞ
�
: ð19Þ

This expression for EðCÞ can be derived from Eq. (17) by
taking the appropriate derivative with respect to β. The
average particle number for each species defined in Eq. (8)
is straightforward since worldline configurations have a
well-defined particle number NσðCÞ. Thus, we get

hNσi ¼
1

Zμ

X
C

NσðCÞ ΩðCÞ: ð20Þ

We can also measure ratios of partition functions, like the
one we define later in Eq. (36), by designing an appropriate
sampling method during the Monte Carlo update.

IV. THE WORM ALGORITHM

It is possible to develop worm algorithms to update the
worldline configurations C of the type shown in Fig. 1
[47,48]. In particular, an extension of the algorithm for the
eight-vertex model proposed earlier is applicable here [49].
During the worm update, we pick each particle species and
update its worldline configuration while keeping the world-
line of the other species fixed. To perform the update, we
pick a spacetime site at random and create a defect in the
worldline configuration in the form of either a particle
creation or annihilation event. We choose the worm head as
the position of the annihilation operator and the tail as the
position of the creation operator. We then move the head on
the spacetime lattice, while keeping the location of the tail
fixed, using local moves that obey detailed balance. The
worldline configuration gets updated on each site the worm
visits. The update ends when the worm head meets the tail
and removes the defect. The particle number can be

monitored during the worm update and local rules can
be chosen so as to sample particle numbers within a
fixed range.
For a given worldline configuration, we define the local

configuration at a spacetime site as the incoming and the
outgoing directions of the particle. In addition we also
include the information about how the worm enters or
leaves that site. Each box in Figs. 3 and 4 represents such a
local configuration with the worm entering the site. Local
configurations with the worm leaving the site can be
constructed from these by reversing the direction of the
worm arrow. We then group configurations that can trans-
form into each other under local rules which satisfy detailed
balance.
To understand this procedure better, let us consider local

updates that begin or end a worm update, shown in Fig. 3
for a 1þ 1 dimensional lattice. When the worm update
begins, the incoming worm direction is shown as a diagonal
arrow entering the site. The outgoing worm direction could
be along any of the neighboring spacetime lattice sites as
long as that move is allowed. For detailed balance to work,
the worm update should also be allowed to end through the
reverse process. There are two classes of such begin-end
updates based on whether the first site contains a particle or
not. If the site contains a particle [Fig. 3(a)], then a creation
operator is introduced on the site (i.e., the site becomes the
worm tail) and the worm head that contains the annihilation
operator moves to the neighboring site through which the
particle came to the first site (i.e., with probability one the
outgoing direction is chosen to be the backward direction
the worldline). For detailed balance to be satisfied the
reverse process is also chosen with probability one (i.e.,
when the worm head enters the site that contains the tail, the
worm update ends). Thus, these two local pair of configu-
rations are grouped together. There are seven possible such

(a)

(b)

FIG. 3. The eight groups of possible begin-end updates in 1þ 1 dimensions, classified by where the worm update begins: (a) on a site
with an existing particle, or (b) on an empty site. The small arrow in each local configuration depicts the direction of an incoming worm.
The outgoing worm direction can be obtained by reversing this arrow.
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pairs of begin-end updates in 1þ 1 dimensions, as shown
in Fig. 3(a). In higher dimensions there would be more.
It is also possible that the worm update begins at an

empty site [Fig. 3(b)]. In such a case, a new particle is
proposed to be created on that site (i.e., a creation operator
is placed on the site which becomes the worm tail) and the
worm head moves either to one of the neighboring spatial
sites or upwards to the neighboring temporal site. In 1þ 1
dimensions, the empty site can thus transform into three
possible local configurations. These four configurations are
grouped together and shown in Fig. 3(b). We assign
probabilities for moves within this set of four local
configurations such that detailed balance is satisfied.
Details on how these probabilities are chosen are discussed
below.
Between the begin and end updates, the worm head

moves through spacetime lattice sites. Such moves can be
classified into three classes, as shown in Fig. 4. The
simplest class involves a move where the worm enters
the site that already has a particle on it. In this case, the
entering direction of the worm cannot be the same as
the incoming particle direction. Thus, with probability
one, the outgoing worm direction can be exchanged with
the incoming particle direction. Eight such pairs of con-
figurations exist in 1þ 1 dimensions and are shown in
Fig. 4(a). The next class involves a worm moving into an
empty site from a spatial neighbor. Then the worm can exit
through the forward time direction or through a different
spatial direction. This groups 2dþ 1 local configurations

together in d spatial dimensions. The two possible groups
of three configurations in 1þ 1 dimensions are shown in
Fig. 4(b). The third class involves a worm entering into an
empty site along the forward time direction. Then the
outward worm direction could be along any of the spatial or
forward time directions. In d dimensions, there are 2dþ 2
such local configurations that can transform into each
other. The only possible such group of four configurations
in 1þ 1 dimensions is shown in Fig. 4(c).
For the efficiency of the worm method, probabilities for

moving the worm head must be chosen so as to avoid a
“bounce” as much as possible [50]. A bounce occurs when
the local configuration does not change (i.e., the probability
to simply reverse the incoming worm direction wins). Note
that bounces can be completely eliminated among the pairs
of configurations in Figs. 3 and 4, since they have the same
weight. In these cases, the local worm update simply toggles
the two. However, in the case of groups that contain more
than two local configurations, like the four-configuration
group in Fig. 3(b) or the three- and four-configuration
groups in Figs. 4(b) and 4(c), we need to make sure the
worm bounces areminimized asmuch as possible. For small
values of ε, since two of the weights are very close to one,
and spatial hops are rare this is almost always possible.
Let Pab be the transition probability to go from local

configurations a to b. To illustrate how we choose Pab to
satisfy detailed balance, we consider the example of a
three-configuration group in Fig. 4(b). The bounce prob-
ability is given by

(a)

(b)

(c)

FIG. 4. Local worm updates in 1þ 1 dimensions when (a) the worm enters a site which already contains a particle worldline; (b) the
worm enters an empty site along the spatial direction, or (c) the worm enters an empty site along the forward time direction.
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Paa ¼ 1 −
X
b≠a

Pab: ð21Þ

The weights of the three configurations are W1 ¼ 1, W2 ¼
Wm (or W2 ¼ WmWI) and W3 ¼ Wh. In this case, W1 and
W2 are close to one, whileW3 is of the order of ε. There are
three possible orderings of the weights: case I:
W2 > W1 þW3; case II: W1 > W2 þW3; and case III:
Wa ≤ Wb þWc for all a, b, c different. In Table I, we give
the transition probabilities Pab for all these cases.
The above method of constructing transition probabil-

ities is easily extended to other groups of local configu-
rations in our work. For example, the group of four
configurations in Figs. 3(b) and 4(c) have weights
W1 ¼ 1, W2¼Wm (or W2¼WmWI) and W3 ¼ W4 ¼ Wh.
In these cases we can imagine the configurations
with weights W3 and W4 as a single configuration with
weight W3 þW4 ¼ 2Wh and again use the probabilities
of Table I. The complete set of transition probabilities
for this case is given in Table II. We test our algorithm
for small lattices in d ¼ 1, 2, 3 dimensions and the results of
these tests are given in Appendix A.

V. FERMIONS AND SIGN PROBLEMS

Any lattice model of hard-core bosons can be converted
into a model of fermions if we take into account the fermion
permutation sign. The partition function for fermions Zf

μ,
can be obtained from the bosonic one in Eq. (12) through
the relation

Zf
μ ¼

X
C

SðCÞΩðCÞ; ð22Þ

where SðCÞ is the fermion permutation sign of the worldline
configuration C. This sign can be computed in any
dimension as

SðCÞ ¼
Y
l

ð−1ÞNl
t þ1; ð23Þ

where the product is over all closed worldline loops l in the
configuration C, and Nl

t is the number of fermions in that
loop crossing any time slice [28,51].
If we define the average fermion permutation sign hSi as

the ratio of the two partition functions in a fixed particle
number sector as

hSi ¼ Zf
μ

Zμ
; ð24Þ

then the energy observable in the fermionic theory can be
defined using the relation

hEfi ¼ hEi − 1

β
ln ðhSiÞ; ð25Þ

where hEi is the average energy for hard-core bosons
computed through Eq. (3). The ground-state energy of the
theory with fermions is then obtained in the low temper-
ature limit

Ef0
N↑;N↓

¼ lim
β→0

hEfi: ð26Þ

The situation simplifies in one spatial dimension. It can be
shown that with periodic boundary conditions and an odd
number of particles of each species, hSi ¼ 1. In the case
of the open boundary conditions or in a trapping potential,
the fermions cannot wind around the box and hSi ¼ 1
again. This implies that the fermionic and bosonic energies
are the same, that is, E0f

N↑;N↓
¼ E0

N↑;N↓
. We use this result in

the next two sections when we study one-dimensional
problems.
In higher dimensions, we expect hSi < 1. In particular,

the average permutation sign will suffer from a severe
signal-to-noise ratio problem when β becomes large and in
the presence of a large number of particles. This is
essentially the sign problem coming back to haunt the
Monte Carlo method. However, it is interesting to note that

TABLE I. Table of transition probabilities among the group of
three configurations in Fig. 4(b).

Case I: W2 > W1 þW3

P21 ¼ W1=W2, P23 ¼ W3=W2, P12 ¼ P32 ¼ 1

Case II: W1 > W2 þW3

P12 ¼ W2=W1, P13 ¼ W3=W1, P21 ¼ P31 ¼ 1

Case III: Wa ≤ Wb þWc

P12 ¼ ðW1 þW2 −W3Þ=2W1 P13 ¼ ðW1 þW3 −W2Þ=2W1

P21 ¼ ðW2 þW1 −W3Þ=2W2 P23 ¼ ðW2 þW3 −W1Þ=2W2

P31 ¼ ðW3 þW1 −W2Þ=2W3 P32 ¼ ðW3 þW2 −W1Þ=2W3

TABLE II. Table of transition probabilities among the group of
four configurations in Figs. 3(b) and 4(c).

Case I: W2 > W1 þW3 þW4

P21 ¼ W1=W2, P23 ¼ W3=W2, P24 ¼ W4=W2

P12 ¼ P32 ¼ P42 ¼ 1

Case II: W1 > W2 þW3 þW4

P12 ¼ W2=W1, P13 ¼ W3=W1, P14 ¼ W4=W1

P21 ¼ P31 ¼ P41 ¼ 1

Case III: Wa ≤ Wb þWc

P12¼ðW1þW2−2WhÞ=2W1 P13¼ðW1þ2Wh−W2Þ=4W1

P14¼ðW1þ2Wh−W2Þ=4W1 P21¼ðW2þW1−2WhÞ=2W2

P23¼ðW2þ2Wh−W1Þ=4W2 P24¼ðW2þ2Wh−W1Þ=4W3

P31¼ð2WhþW1−W2Þ=4Wh P32¼ð2WhþW2−W1Þ=4Wh

P41¼ð2WhþW1−W2Þ=4Wh P42¼ð2WhþW2−W1Þ=4Wh

P34 ¼ P43 ¼ 1=2
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our algorithm does not distinguish the free problem
(U ¼ 0) from the interacting cases of attraction (U < 0)
or repulsion (U > 0). Our approach also does not differ-
entiate between whether the two species have similar or
different masses. The sign problem is severe in all
cases, although we find it somewhat milder with attractive
as compared to repulsive interactions. In Fig. 5, we
plot the average sign hSi as a function of the particle
number N ¼ N↑ þ N↓ in the mass-balanced repulsive
model with mσ ¼ 1 and U ¼ 4 at temperatures such that
βð1 − cosð2π=LÞÞ ∼ 1.5. For even N we choose N↑ ¼ N↓
and for odd N we use N↑ ¼ N↓ þ 1. We see that up to
N ¼ 10 the sign problem is not very severe at these
intermediate temperatures. This gives us confidence that,
in combination with ideas of fermion bags [52] and
exponential error-reduction techniques [53], we may be
able to use this approach to study few-body physics even in
higher dimensions. We show some preliminary evidence
for this in Sec. VIII.

VI. ONE-DIMENSIONAL SYSTEMS

In this section, we report our results for a wide range of
coupling strengths and mass imbalances in one spatial
dimension for spin-balanced systems (N↑ ¼ N↓). We fix
the box size to be LX ¼ 40 and impose periodic boundary
conditions. As mentioned in the previous section, an odd
number of fermions of each species is equivalent to hard-
core bosons and so our method is directly applicable to
fermions. We focus on computing the average energy hEi
[see Eq. (3)] at a fixed β ¼ 100. In the next section, we

discuss how our results change with β for a few cases in
more detail and how understanding this dependence is
important to extract the ground-state energy accurately. We
do perform an extrapolation to zero temporal lattice spacing
ε → 0, since these errors can be large. Details of this
extrapolation are discussed further in Sec. VIII and
Appendix A.
We denote the total number of particles asN ¼ N↑ þ N↓

and the particle-number density by n ¼ N=LX. We define
the average mass and the mass-imbalance parameter as

m ¼ m↑ þm↓

2
; m̄ ¼ m↑ −m↓

m↑ þm↓
; ð27Þ

respectively. We work in units with mσ ¼ 1 and a ¼ 1 and
parametrize the interaction strength by γ, which is related to
the bare coupling U in the lattice model (1) by

γ ¼ U
n
: ð28Þ

To facilitate comparison with literature, we report all
energies in units of the corresponding one-dimensional
ideal spin- and mass-balanced Fermi-gas ground state
energy EFG in the continuum defined as

EFG ¼ 1

3
NϵF; ð29Þ

where ϵF ¼ π2n2=8m is the Fermi energy.

A. Mass-balanced systems

The continuum model (2) for fermions with m̄ ¼ 0 is
known as the Gaudin-Yang model and can be solved
exactly when g > 0 using nested Bethe ansatz [24,25].
This solution can also be extended to the lattice model (1)
in one spatial dimension (d ¼ 1) for an arbitrary lattice size
LX, when coupling U ≥ 0, and number of particles N ¼
N↑ þ N↓ as long asm↑ ¼ m↓ [26]. Since attractive models
on a finite lattice can be related to repulsive models by a
particle-hole transformation on one of the spins, we can
compute the exact ground-state energies of our lattice
model in one spatial dimension when m̄ ¼ 0 for a wide
range of the coupling strengths, both attractive and repul-
sive. This allows us to test our Monte Carlo method for the
mass-balanced case against the exact solution. As we show
below, we find excellent agreement between the two.
For completeness, let us quickly review the main steps

that go into the exact computation of the ground-state
energy. We discuss the solution for the lattice model only,
since the solution in the continuum can easily be obtained
from it. Let us assume we have N↓ ¼ M spin-down
fermions, and N↑ ¼ N −M spin-up fermions. Let us
normalize our energies with t↑ ¼ t↓ ¼ t. Let pi ¼
ðp1;…; pNÞ and λα ¼ ðλ1;…; λMÞ be two sets of ascending
real numbers. Then the following N þM coupled

FIG. 5. The average sign hSi in three spatial dimensions at two
different lattice sizes as a function of N ¼ N↑ þ N↓ in the
symmetric repulsive model with mσ ¼ 1 and U ¼ 4.0 at β ¼ 5
(L ¼ 8) and 12 (L ¼ 12). The values of β are chosen such that
roughly ð2π=LÞ2β ∼ 1.5. The results are obtained a finite tem-
poral lattice spacing of ε ¼ 0.01.
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nonlinear equations in the N þM variables fpi; λαg
determine the complete spectrum of this system:

2πIi ¼ LXpi −
XM
α¼1

θð2 sinpi − 2λαÞ; ð30Þ

2πJα ¼
XM
β¼1

θðλα − λβÞ −
XN
i¼1

θð2λα − 2 sinpiÞ; ð31Þ

where i ¼ 1;…; N, α ¼ 1;…;M,

θðpÞ ¼ −2tan−1
�
2pt
U

�
∈ ½−π; πÞ; ð32Þ

and Ii, Jα are specific integers (or half-odd integers)
for N, M even (or odd) that uniquely label the energy
eigenstate. The energy eigenvalue is then given by
E ¼ 2t

P
ið1 − cosðpiÞÞ. For the ground state, we must

choose Ii ¼ − 1
2
ðN þ 1Þ þ i and Jα ¼ − 1

2
ðM þ 1Þ þ α.

The ground state for the attractive Hubbard model can
be obtained from the repulsive case using the relation

E0ðN↑; N↓; UÞ ¼ E0ðN↑; L − N↓;−UÞ
þUN↑ − 2t↓ðL − 2N↓Þ: ð33Þ

The exact ground-state energy obtained by this procedure
for N↑ ¼ N↓ ¼ 5 is shown in the left plot of Fig. 6 as a
dashed line labeled “Bethe ansatz.” We also show results
obtained from perturbation theory up to second order. We
note that our method, labeled as “Worm algorithm,” is able
to precisely reproduce the exact results from the Bethe
ansatz once we extrapolate to the continuous time limit

ε → 0 even at β ¼ 100. For comparison, we also plot the
CL results from Ref. [21] on the same plot. We notice that
CL reproduces the results quite well for small values of the
couplings, but starts to deviate when γ ≳ 2.5. To confirm
that the worm algorithm reproduces the exact Bethe ansatz
calculations in the strong coupling regime, where pertur-
bation theory clearly breaks down, we extend these results
to higher values of γ in the right plot of Fig. 6.
There is a small difference between the exact results from

Bethe ansatz in the continuum as compared to the lattice, as
shown in the left plot of Fig. 7. In the right plot, we show
that the worm algorithm is able to resolve this difference
between the exact Bethe ansatz results in the continuum
and lattice results (at βϵF ¼ ∞), by showing the worm
algorithm results at different values of βϵF, which indeed
converge to the correct lattice answer in the limit βϵF → ∞.

B. Mass-imbalanced systems

In contrast to the mass-balanced case, no exact solution
is known for the general mass-imbalanced case (m̄ ≠ 0).
However, our algorithm is again very efficient even in such
cases. In this section, we compute some spin-balanced
results and check our results against second-order pertur-
bation theory and find good agreement for small values of
γ. Figure 8 shows our results for the ground state energy of
5þ 5 particles as a function of the coupling for a high mass
imbalance of m̄ ¼ 0.8. We perform computations at
β ¼ 100, which we find to be sufficient to make our point.
As can be seen from the left plot of Fig. 8, our results

agree very well with second-order perturbation theory for
up to γ ∼ 3.0, while the CL results disagree with both
perturbation theory and our method when γ ≳ 2. In the right
plot of Fig. 8, we extend this to the regime of very strong

FIG. 6. Plots of ground state energy as a function of γ in the mass balanced case (m̄ ¼ 0.0), withN↑ ¼ N↓ ¼ 5. The left figure focuses
on the perturbative regime while the right figure extends it to the nonperturbative region. The complex Langevin results shown are from
[21]. Note that they begin to disagree with exact results around γ ≳ 2.5.
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repulsion. It was suggested in Ref. [21] that the flattening of
the ground-state energy as a function of γ for strong
repulsive couplings, obtained using the CL method, could
be a physical effect. However, the disagreement with exact
Bethe ansatz calculations at m̄ ¼ 0 (Fig. 6) and with the
worm algorithm at a high mass imbalance of m̄ ¼ 0.8
(Fig. 8) shows that the observed flattening is an artifact of
the CL method.

In Fig. 9, we perform a comparison with the results of
Ref. [21] for N↑ ¼ N↓ ¼ 3 fermions with a fixed attractive
coupling γ ¼ −3.0 across a range of mass imbalances. We
observe that iHMC has large errors for higher values of m̄,
but our method performs consistently across a wide range
of mass imbalances. We also show unpublished data from
the CL approach, shared with us by the authors of Ref. [21].
These CL results seem to converge to the correct values, in

FIG. 7. The left figure shows a comparison between the worm algorithm results at LX ¼ 40, β ¼ 100, ε → 0, m̄ ¼ 0.0, N↑ ¼ N↓ ¼ 5,
with the results obtained using the Bethe ansatz on a lattice with LX ¼ 40 and in the continuum. The β dependence of the energies
plotted at γ ¼ 6.2 in the right figure shows that the worm algorithm results are sensitive to the small difference between the lattice and
continuum. In the βϵF → ∞ limit, we recover the exact lattice result as expected.

FIG. 8. Plots of ground state energy as a function of γ in the high mass imbalanced case (m̄ ¼ 0.8), with N↑ ¼ N↓ ¼ 5. The left figure
focuses on the perturbative regime while the right figure extends it to the nonperturbative region. The complex Langevin results shown
are from [21] and begin to disagree with the worm algorithm around γ ≳ 2, even in the regime where second-order perturbation theory
works well.
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contrast to the repulsive case discussed earlier. The pre-
diction from second order perturbation theory is also
plotted. At m̄ ¼ 0, the exact Bethe ansatz result clearly
disagrees with our algorithm. However, our results are
obtained at β ¼ 100 and the exact answer is entirely within
the Oð1=βÞ error expected from higher excited states. We
discuss this issue in more detail in the next section.

VII. EXTRACTING THE GROUND STATE
ENERGY

In the above section, we presented results for hEi at a
fixed value of β ¼ 100. We found in Fig. 6 that the results
almost agreed with the exact ground state. The small
disagreement was shown to be an effect of β not being
large enough in Fig. 7. This suggests that β ¼ 100 is not
guaranteed to be large in all of the cases. In fact, in Fig. 9
we found that our value for the energy obtained at β ¼ 100
disagreed with the exact ground state energy from the
Bethe ansatz at m̄ ¼ 0 by several standard deviations.
This shows that it is important to be able to perform a
systematic extrapolation to the β → ∞ limit to extract the
ground state energy.
At m̄ ¼ 0.0, Fig. 9 shows a deviation of roughly 0.009

between the exact energy and the energy at β ¼ 100 in bare
units (with EFG ¼ 0.056). While this is within the expected
Oð1=βÞ corrections, it is important to be able to perform
a systematic extrapolation to β → ∞ to extract the

ground-state energy. The traditional procedure followed
in the literature (which we refer to as method I) is to
compute hEi at several values of β and then fit to the form

hEi ¼ E0
N↑;N↓

þ A expð−BβÞ: ð34Þ

While this approach is surely reasonable at sufficiently
large values of β, it is a priori not clear what range of β
should be chosen for the fit. We believe a common
misconception is that the correct range of β can be
determined by increasing the upper limit of β until the
above form begins to fit the data well in a range. This of
course depends on the precision to which the average
energies are computed. Here we show that even if the errors
are in the one-percent range, which is usually difficult in
many cases, we can get a good fit but with wrong results if
we do not choose a sufficiently large range of β.
To demonstrate the problem, in Fig. 10 we show the fit

for two ranges of β at γ ¼ −3.0 in the mass-symmetric case
where we know the exact answer, shown as the dashed line.
As can be seen from the figure, the fit in the range
β ∈ ½40; 80� (βϵF ∈ ½1.11; 2.22�) is excellent but gives us
E0
N↑;N↓

=EFG ¼ −2.285ð19Þ, which is different from the

exact result of E0
N↑;N↓

=EFG ¼ −2.40836 by several stan-

dard deviations. On the other hand, notice that the fit in the
range β ∈ ½70; 500� (βϵF ∈ ½1.94; 13.88�) gives a better
answer of E0

N↑;N↓
=EFG ¼ −2.4104ð30Þ. This also explains

the deviation in Fig. 9 at a fixed value of β ¼ 100 noted in
the previous paragraph.
These observations suggest a need for a complementary

way to compute E0
N↑;N↓

, which can be compared with the
above method. Below we discuss one such method (which
we refer to as method II) which we believe gives better
precision although the analysis is more involved. Since the
worm algorithm allows us to study a variety of particle
number sectors efficiently, we can efficiently build the
desired particle-number sector by adding one particle
at a time. Consider a situation where we can tune the
chemical potentials μσ close to a critical value so that the
average particle numbers fluctuate between ðN↑; N↓Þ and
ðN↑ þ 1; N↓ þ 1Þ. Near such a critical point, we can
develop efficient worm algorithms to sample configurations
where N↑ fluctuates by one while N↓ remains fixed. We
can then accurately measure the ratios like

R↑
N↑;N↓

¼ Z
N↑þ1;N↓
μ

Z
N↑;N↓
μ þ Z

N↑þ1;N↓
μ

; ð35Þ

where Z
N↑;N↓
μ as the partition function defined in Eq. (5)

restricted to a fixed particle number sector,

Z
N↑;N↓
μ ¼ Trðe−βHμÞjN↑;N↓

: ð36Þ
Assuming β is sufficiently large so that only the ground
states contribute, we must have

FIG. 9. Energy as a function of mass imbalance m̄. Note that the
lattice model is invariant under m̄ → −m̄, which implies that the
curve is quadratic in m̄ for small values of m̄. We show our data
using the worm algorithm along with the imaginary-mass hybrid
Monte Carlo (iHMC) results of Ref. [21], unpublished CL data
given to us by the authors of Ref. [21], and second order
perturbation theory. The apparent discrepancy at m̄ ¼ 0 between
our results and the results from the Bethe ansatz is addressed in
Fig. 10.
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R↑
N↑;N↓

¼ g expð−βðμc − μ↑ÞÞ
1þ g expð−βðμc − μ↑ÞÞ

; ð37Þ

where

μc ¼ E0
N↑þ1;N↓

− E0
N↑;N↓

ð38Þ
is the difference in the ground-state energies of the two
particle number sectors, and g is the ratio of their degen-
eracies, which is a fraction typically made up of small
integers. If g can be determined from the knowledge that it
is a fraction of small integers, the fit function (37) has a
single free parameter (μc) for all values of β (sufficiently
large) and μ↑. This fitting procedure gives very precise
values for the critical chemical potential μc. A similar
procedure can be adapted to compute the difference
E0
N↑;N↓þ1 − E0

N↑;N↓
. Absolute energies can be computed by

adding such differences.
In order to demonstrate that method II gives us more

accurate answers as compared to method I and more
importantly does not depend on the range of β used in
the analysis we have extracted the ground state using both
methods at m̄ ¼ 0.5 and γ ¼ −0.3. However, for this study
we limited our effort to a fixed nonzero value of ε ¼ 0.01. It
should be noted that when ε ≠ 0 the definition of the ground
state energy obtained from the twomethods can disagree due
to OðεÞ errors. But it can still give us a sense of the
magnitude of the errors in computation. The extrapolation
to ε → 0 requires further effort but can be done if necessary.
In Fig. 11 we show our results for method II. We

begin with the system containing a single particle

(N↑ ¼ 1; N↓ ¼ 0) whose ground state energy is known
to be zero. We then add particles slowly to reach N↑ ¼
N↓ ¼ 3 in five steps. The results from each step are shown
in the figure by plotting the ratio Rσ

N↑;N↓
as a function of μ.

The solid lines in each plot are a combined fit to the form
Eq. (37) with one parameter μc. This gives us the following
results:

E0
1;1 − E0

1;0 ¼ −0.037473ð19Þ;
E0
2;1 − E0

1;1 ¼ −0.005489ð25Þ;
E0
2;2 − E0

2;1 ¼ −0.027300ð21Þ;
E0
3;2 − E0

2;2 ¼ −0.009505ð13Þ;
E0
3;3 − E0

3;2 ¼ −0.009249ð35Þ:
Adding all of the values of μc we obtain E0

3;3 ¼
−0.089016ð53Þ which gives E0

3;3=EFG ¼ −1.60341ð95Þ.
To compare the errors obtained from method II with

method I we compute hEi at several values of β. In Fig. 12
we show fits of this data to the form Eq. (34) in two
different ranges of β. Again we see that in method I, the
range of β at larger values gives a slightly different estimate
of the ground-state energy as compared to the range at
smaller values. Due to time discretization errors that are
present at ε ¼ 0.01, the estimate of the ground state energy
computed using the two methods can disagree. Here we
focus on the error in this estimate and observe that it is a
factor of 3 more in method I as compared to method II,
although individual data points were all obtained with the
same precision of roughly one percent.

FIG. 10. The two plots shown above compare the systematic errors in extracting the ground state energy E0
N↑;N↓

due to the fitting range
in β used to fit the data to Eq. (34). The data is from the mass-balanced case (m̄ ¼ 0) with N↑ ¼ N↓ ¼ 3 particles with γ ¼ −3.0 and

LX ¼ 40 (see Fig. 9). The left plot shows the fit for the range 25 ≤ β ≤ 75, while the plot on the right is for the fit in the range
100 ≤ β ≤ 500. The extracted ground state energy along with the error is shown as a shaded region. The exact answer from the Bethe
ansatz is shown as a dotted line in both plots.
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FIG. 11. Extraction of the ground state energy by the method of adding one particle at a time and fitting to the one parameter function
Eq. (37). The calculations shown here are for the mass-imbalanced case with m̄ ¼ 0.5, γ ¼ −3.0, and ε ¼ 0.01.

FIG. 12. Comparison of errors in determining the ground state energy by the two methods discussed in the text. The data and fits
shown are for the traditional method (method I) in two different ranges of β. The flat solid line is the result for the ground state energy
obtained from the fit. The dashed line is the result for the ground state energy obtained from method II (see Fig. 11). The results from the
two methods do not have to agree since the calculations are performed at a nonzero value of ε.
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VIII. HIGHER DIMENSIONS

The quantumMonte Carlo method we have developed in
this work is guaranteed to work well only for systems with
hard-core bosons and not fermions. In one dimension,
where fermions are identical to hard-core bosons in many
cases, our method can be used to study fermionic systems
as well. We have demonstrated this in Sec. VI. However, as
we pointed out in Sec. V, we can also study a system of
fermions in higher dimensions if we can compute the
fermion sign hSi accurately. We believe this may be
possible in the context of few-body physics by combining
ideas of fermion bags proposed recently [52] with ideas of
exponential error reduction proposed several years ago [53].
While a complete study of this more difficult problem is a
topic for another paper, here we provide some evidence that
our method can indeed be used for computing the ground-
state energy even in higher dimensions with fermions. For
this purpose, we compute the ground state energy of our
Hamiltonian (1) in three spatial dimensions with LX ¼ 8
lattice for the mass-balanced system (m↑ ¼ m↓ ¼ 1) with
N↑ ¼ N↓ ¼ 2 at U ¼ −3.9570, which corresponds to the

unitary fixed point in the continuum limit. The exact ground-
state energy for this systemwas computed some years ago as
a benchmark calculation by an explicit diagonalization of
the Hamiltonian using the Lanczos algorithm andwas found
to beE0f

2;2 ≈ 0.1042 [44]. Herewe reproduce this result using
our approach.
We first performed calculations at several values of β

ranging from 10 to 50 at ε ¼ 0.01. The results for the
bosonic energy hEi are shown in Table III. Since the
bosonic energy does not change much between β ¼ 30 and
50 we assume that β ¼ 30 is sufficiently large and perform
a careful extrapolation of the ε errors there. In Fig. 13 we
show our results for this extrapolation for both bosonic
energy hEi and the fermion sign hSi. Note that errors due to
a nonzero value of ε are linear at leading order and hence
can be large. The solid lines in the figure are fits that we
used to extract ε → 0 limit. In this time continuum limit
we find that hEi ¼ −0.1675ð20Þ and hSi ¼ 0.00025ð2Þ.
Using Eq. (25) we estimate E0f

2;2 ≈ 0.1090ð40Þ, which
is in reasonable agreement with the exact result E0f

2;2 ¼
0.1042 [44].

IX. CONCLUSIONS

In this work, we proposed a worldline based approach to
few-body physics where fermions are formulated as hard-
core bosons, since they incorporate one of the ingredients
of the Pauli exclusion principle, which is that two identical
fermions cannot exist at the same spacetime point. On the
other hand, hard-core bosons do not capture the fermion
permutation sign, which needs to be taken into account
explicitly before our method can truly be applicable to
fermionic systems. Fortunately, in one spatial dimension,
fermion permutations can only occur over the boundaries
and the fermion permutation sign is positive in many cases.
Our approach is complementary to the well-developed

AFQMC methods for fermionic systems, which unfortu-
nately suffer from sign problems even in one spatial
dimension. To demonstrate the power of our method, we
showed that we can reproduce some exact results for the
one-dimensional Hubbard model, obtained using the Bethe
ansatz, for a wide range of couplings in the mass-balanced
case. Our method can easily be applied to the mass-
imbalanced case where a general exact solution is not
known. We used our approach to show that the results from
the CL method, recently presented in Ref. [21], yield wrong
values for repulsive interactions. This must be related to the
“fat-tailed” distributions of the observables in the CL
method, as noted in the appendix of Ref. [21]. On the
other hand, based on the data shared with us by the authors
of that paper, the CL method seems more robust on the
attractive side in the parameter range studied.
Extending our approach to higher dimensions is straight-

forward, although we have to confront the fermion sign
problem which is equally severe for all types of inter-
actions. Unlike the AFQMC methods, there is no particular

FIG. 13. Plots of the bosonic energy hEi and the fermion sign
hSi as a function of the temporal lattice spacing in the three-
dimensional mass-balanced model (m↑ ¼ m↓ ¼ 1) at LX ¼ 8,
U ¼ −3.9570 for N↑ ¼ N↓ ¼ 2 particles. The inset shows
bosonic energy as a function of ε at LX ¼ 4. The solid lines
are linear fits to extract the continuum time limit.

TABLE III. hEi for various values of β in the three-dimensional
mass-balanced model (m↑ ¼ m↓ ¼ 1) at LX ¼ 8, U ¼ −3.9570
and ε ¼ 0.01 for N↑ ¼ N↓ ¼ 2 particles.

β 10 15 20 30 50

hEi −0.12ð1Þ −0.322ð5Þ −0.368ð5Þ −0.387ð2Þ −0.387ð2Þ
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advantage for attractive interactions as compared to repul-
sive interactions, although we do see that the sign problem
becomes slightly milder in the attractive case. We presented
some evidence that, at least for few-body physics, we may
be able to tame the sign problem using ideas of fermion
bags and exponential error reduction. In particular, we were
able to reproduce a benchmark calculation done a few years
ago with four fermions at unitarity [44].
Finally, unlike the AFQMC method, our worldline

approach can be formulated directly in the time continuum
limit [45,46,52], although in this work we did not exploit
this advantage. Instead, we studied the time discretization
errors. We found that they are linear in the temporal lattice
spacing ε and can be eliminated by a simple extrapolation.
Without such an extrapolation we would not have been able
to compare our results with the exact results from the Bethe
ansatz.
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APPENDIX A: EXACT RESULTS FROM
SMALL LATTICES

In thisAppendixwe compare ourMonteCarlo resultswith
exact results on small lattices over a wide range of param-
eters. This study helps verify the correctness of our algorithm
and provides some benchmark calculations for readers to
understand our model and verify our results if necessary.

1. Discrete time results

We first verify that our algorithm is able to reproduce the
exact partition function on a small spacetime lattice where
we can enumerate all configurations. This should also help
clarify the definition of the finite-ε transfer matrix that we
use. The exact expression for the finite-ε partition function
is given by [see Eq. (12)]

Zμ ¼
X
C

ΩðCÞ; ðA1Þ

where C are the worldline configurations. On a 2 × 2
spacetime lattice we can explicitly enumerate all configu-
rations C, which gives us

Zμ ¼ Z↑
0Z

↓
0 þ Z↑

0 ð2ðW↓
mÞ2 þ 8ðW↓

mÞ2ðW↓
hÞ2 þ ðW↓

mÞ4Þ þ Z↓
0 ð2ðW↑

mÞ2 þ 8ðW↑
mÞ2ðW↑

hÞ2 þ ðW↑
mÞ4Þ

þ 2ðW↑
mÞ2ðW↓

mÞ2 þ 2ðW↑
mÞ2ðW↓

mÞ2ðWIÞ2 þ 16ðW↑
mÞ2ðW↓

mÞ2ðW↑
hÞ2WI þ 16ðW↑

mÞ2ðW↓
mÞ2ðW↓

hÞ2WI

þ 32ðW↑
mÞ2ðW↓

mÞ2ðW↑
hÞ2ðW↓

hÞ2 þ 32ðW↑
mÞ2ðW↓

mÞ2ðW↑
hÞ2ðW↓

hÞ2ðWIÞ2 þ 2ðW↑
mÞ2ðW↓

mÞ4ðWIÞ2

þ 8ðW↑
mÞ2ðW↓

mÞ4ðW↑
hÞ2ðWIÞ2 þ 2ðW↑

mÞ4ðW↓
mÞ2ðWIÞ2 þ 8ðW↑

mÞ4ðW↓
mÞ2ðW↓

hÞ2ðWIÞ2 þ ðW↑
mÞ4ðW↓

mÞ4ðWIÞ4; ðA2Þ

where Zσ
0 ¼ 1þ 4ðWσ

mÞ2 þ 4ðWσ
mÞ4, and the local weights

Wσ
m, Wσ

h, WI were defined in Sec. III to be

Wσ
h ¼ tσε;

Wσ
m ¼ expð−εð2dtσ − μσÞÞ;

WI ¼ exp ð−εUÞ:
Recall that the weight for each configuration is given by
Eq. (17), so the number of particles Nσ , number of hops nσh
and number of interactions nI for each configuration can
simply be read off from the exponents in expression (A2)
above. The average energy is then computed using the
definition (19). Table IV compares the results for the
average particle numbers and average energy obtained
from our Monte Carlo method with those from the exact
expression in Eq. (A2).

2. Continuous time results

Since our time discretization procedure is very different
from conventional approaches, it is useful to verify that our

results do agree with the partition function (5) in the
ε → 0 limit. We can do this for small spatial lattices by
explicitly diagonalizing the Hamiltonian. The dimension of
the relevant Hilbert space for ðN↑; N↓Þ hard-core bosons in
a d-dimensional spatial lattice of size LX is ðLd

X
N↑
ÞðLd

X
N↓
Þ

where N↑; N↓ ∈ f0;…; Ld
Xg.

To compare with the exact Hamiltonian results, we
take the ε → 0 limit by performing calculations at
several values of ε and performing a linear extrapola-
tion. Table V shows a comparison of our Monte Carlo
data with exact results at a few sets of parameters in
d ¼ 1, 2, 3 dimensions for ε ¼ 0.001, 0.0005 and
ε → 0. We find that a proper extrapolation in higher
dimensions is important to reproduce the exact
results within errors. We show an example of this in
Fig. 14. We believe this agreement provides another
nontrivial check of our approach in arbitrary dimen-
sions, coupling strengths, mass imbalances and particle
numbers.
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APPENDIX B: SECOND-ORDER
PERTURBATION THEORY

In many figures, we show results from first- and second-
order perturbation theory. Here we provide the expressions
used to obtain these results. We assume the particles to be
fermions for the Hamiltonian in Eq. (1), and use Ef0

N↑;N↓
to

denote the ground-state energy for ðN↑; N↓Þ fermions in a
box of size LX (even) with periodic boundary conditions.
The energy spectrum for the free theory (U ¼ 0) can be

constructed using single particle energy eigenvalues which
are characterized by integers kσ ¼ ðkσ;1;…; kσ;Nσ

Þ for
σ ¼ ↑;↓, which label the energy eigenstates of individual

fermions of each type. Let the single σ-particle energy
corresponding to the integer k be tσϵðkÞ, where

ϵðkÞ ¼ 4sin2
�
πk
LX

�
k ¼ 0;�1;…;�LX=2: ðB1Þ

The total energy of a system of ðN↑; N↓Þ noninteracting
fermions is then

Eð0Þ
N↑;N↓

ðk↑;k↓Þ ¼ t↑
XN↑

i¼1

ϵðk↑;iÞ þ t↓
XN↓

i¼1

ϵðk↓;iÞ: ðB2Þ

TABLE IV. Comparison of our Monte Carlo method with the exact results for a 2 × 2 spacetime lattice in 1þ 1 dimensions. We show
results for the average energy hEi and average particle numbers N↑; N↓.

μ↑ μ↓ m↑ m↓ U hEi MC
Exact

hN↑i MC
Exact

hN↓i MC
Exact

1.00 −2.00 1.50 0.50 −4.00 −0.552802ð53Þ 1.415660(25) 0.572415(24)
−0.552791 1.415684 0.572407

2.00 0.00 1.50 0.50 −2.00 0.674356(26) 1.706027(29) 0.732806(31)
0.674351 1.706015 0.732805

1.00 4.00 1.50 0.50 0.00 3.525805(51) 1.135221(19) 1.605845(16)
3.525821 1.135242 1.605851

2.50 2.00 1.50 0.50 2.00 1.739032(49) 1.574851(25) 0.333418(20)
1.738968 1.574855 0.333407

1.00 4.00 1.50 0.50 4.00 2.75805(10) 0.357677(24) 1.354424(28)
2.758091 0.357684 1.354429

TABLE V. Comparison of the worm algorithm with exact results obtained by diagonalizing the Hamiltonian for small lattices in
d ¼ 1, 2, 3 spatial dimensions. To demonstrate that extrapolation to the ε → 0 limit is necessary for the agreement, we show an
illustrative fit for the fourth row in Fig. 14.

Worm algorithm

d LX β μ↑ μ↓ m↑ m↓ U ε ¼ 0.001 ε ¼ 0.0005 ε → 0 Exact

1 6 10 2.00 4.00 1.50 0.50 2.00
hEi 8.29402(69) 8.29095(69) 8.2875(17) 8.2881
hN↑i 2.84525(34) 2.84502(91) 2.84532(81) 2.8454
hN↓i 3.95296(18) 3.95307(31) 3.95264(32) 3.9530

1 6 10 −1.00 3.00 1.50 0.50 −2.00
hEi 3.67766(86) 3.6726(23) 3.6663(22) 3.6668
hN↑i 3.26671(48) 3.26674(48) 3.2659(13) 3.2644
hN↓i 5.15396(40) 5.15293(40) 5.15134(86) 5.1509

2 2 10 0.40 0.30 1.50 0.50 2.00
hEi 0.09151(23) 0.09179(33) 0.09299(83) 0.0928
hN↑i 0.79921(42) 0.79698(24) 0.79464(19) 0.7953
hN↓i 0.40562(38) 0.41007(26) 0.41527(76) 0.4148

2 2 10 1.50 4.00 1.50 0.50 −2.00
hEi 5.2475(53) 5.2571(37) 5.2661(76) 5.2631
hN↑i 3.56841(94) 3.57136(67) 3.5741(13) 3.5732
hN↓i 2.62665(97) 2.63011(69) 2.6331(16) 2.6328

3 2 10 4.80 5.00 1.50 0.50 2.00
hEi 21.8894(15) 21.9257(15) 21.9610(17) 21.9587
hN↑i 7.67379(40) 7.66349(41) 7.65307(75) 7.6524
hN↓i 2.39772(48) 2.41500(48) 2.43218(63) 2.4321

3 2 10 2.50 3.50 1.50 0.50 −2.00
hEi 11.1153(22) 11.1625(21) 11.2111(30) 11.2087
hN↑i 6.15373(26) 6.15798(26) 6.16227(40) 6.1619
hN↓i 3.67981(43) 3.69501(84) 3.71093(45) 3.7104
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When Nσ is odd (the values which we consider in this
paper) the ground state is unique and corresponds to the
choice k0

σ≡ð−ðNσ−1Þ=2;−ðNσ−1Þ=2þ1;…;ðNσ−1Þ=2Þ.
The ground state energy of the full Hamiltonian in
perturbation theory up to second order is then given by

Ef0
N↑;N↓

¼E0;0
N↑;N↓

þUE0;1
N↑;N↓

þU2E0;2
N↑;N↓

þOðU3Þ; ðB3Þ

where

E0;0
N↑;N↓

¼ Eð0Þ
N↑;N↓

ðk0
↑;k

0
↓Þ ðB4Þ

E0;1
N↑;N↓

¼ 1

LX
N↑N↓ ðB5Þ

E0;2
N↑;N↓

¼ 1

L2
X

X
ðk↑;k↓Þ

0 1

E0;0
N↑;N↓

− Eð0Þ
N↑;N↓

ðk↑;k↓Þ
; ðB6Þ

where the primed sum
P0 is over states ðk↑;k↓Þ that are

related to the free ground state by an excitation of exactly
one particle of each type, such that the total change in
momentum is zero: k↑ þ k↓ ¼ k0

↑ þ k0
↓.
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