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Matrix elements of six-quark operators are needed to extract new physics constraints from experimental
searches for neutron-antineutron oscillations. This work presents, in detail, the first lattice quantum
chromodynamics calculations of the necessary neutron-antineutron transition matrix elements including
calculation methods and discussions of systematic uncertainties. Implications of isospin and chiral
symmetry on the matrix elements, power counting in the isospin limit, and renormalization of a chiral basis
of six-quark operators are discussed. Calculations are performed with a chiral-symmetric discretization of
the quark action and physical light quark masses in order to avoid the need for chiral extrapolation.
Nonperturbative renormalization is performed, including a study of lattice cutoff effects. Excited-state
effects are studied using two nucleon operators and multiple values of source-sink separation. Results for
the dominant matrix elements are found to be significantly larger compared to previous results from the
MIT bag model. Future calculations are needed to fully account for systematic uncertainties associated with
discretization and finite-volume effects but are not expected to significantly affect this conclusion.
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I. INTRODUCTION

In the contemporary theory of particles and fields, there
is no fundamental reason for baryon number B to be
conserved. Quantum effects in the Standard Model (SM)
can lead to B violation, and at temperatures above the
electroweak phase transition, sphaleron processes can
efficiently convert baryons into antileptons while preserv-
ing (B − L), where L is lepton number. Low-temperature
B-violating effects have not been observed experimentally,
and their existence would have significant implications for
the stability of nuclear matter. However, the observed
baryon-antibaryon asymmetry of the Universe cannot be
explained within the SM, which fulfills Sakharov’s con-
ditions for baryogenesis [1] but does not contain enough
baryon number and CP violation to reproduce the observed

baryon asymmetry of the Universe [2–5]. Moreover, while
(B − L) symmetry is preserved in the SM, it likely has to
be violated in its extensions (BSM theories) aimed at
explaining baryogenesis, since electroweak sphaleron tran-
sitions would otherwise “wash out” any net baryon number
generated by (B − L)-conserving interactions in the early
universe.
Baryon number violation might be experimentally

observed in proton decays [6] or neutron-antineutron
oscillations [7–10]. The implications of these two hypo-
thetical processes are fundamentally different: proton
decay changes baryon number by jΔBj ¼ 1 unit and
involves (anti)leptons, while neutron-antineutron oscilla-
tions change baryon number by jΔBj ¼ 2 units and do not
involve leptons. Proton decay, even if observed, does not
necessarily violate (B − L) and may be insufficient to
explain baryogenesis.
Despite decades of searches, neither process has been

observed, constraining the strength of B-violating inter-
actions. In particular models of baryogenesis, this may
require higher level of CP violation, which is in turn
constrained by searches for the electric dipole moments of
neutrons, nuclei, and atoms. However, excluding theories
of baryogenesis using results from these experiments
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requires knowledge of nucleon matrix elements of B- and
CP-violating effective interactions expressed in terms
of fundamental fields, quarks and gluons. For neutron-
antineutron transitions, these calculations have previously
been performed using nucleon models [11]. Modern
lattice QCD methods permit model-independent calcula-
tion of these matrix elements. This paper reports the first
completely nonperturbative calculation of the neutron-
antineutron transition matrix elements computed in lattice
QCD with physical quark masses and chiral symmetry.
In particular, we find that lattice QCD calculations result
in substantially larger n-n̄ matrix elements compared to
nucleon model calculations. Our findings imply that n-n̄
oscillation experiments should observe 1-2 orders of
magnitude more oscillation events than was previously
expected for the same BSM physics parameters.
This paper describes in detail our methodology for

computing neutron-antineutron matrix elements of oper-
ators changing baryon number by jΔBj ¼ 2 units, which
have already been reported in a short publication [12]. In
particular, the operator definitions, symmetry properties of
their matrix elements, and their impact on phenomenology
within SUð2ÞL × Uð1Þ-symmetric extensions are discussed
in Sec. II. The setup for our calculation of these matrix
elements on a lattice is described in Sec. III. Extraction of
ground-state matrix elements from lattice correlation func-
tions and analysis of potential excited state contaminations
are performed in Sec. IV. Nonperturbative renormalization
and matching to the MS scheme are described in Sec. V.
The final results for n-n̄ matrix elements and their uncer-
tainties are provided in Sec. VI. In Sec. VII, we discuss
briefly the impact of our results in light of other potential
sources of systematic uncertainties that are not controlled in
our present calculation.

II. EFFECTIVE n-n̄ INTERACTIONS

A. Chiral basis of n-n̄ operators

A complete basis of color-singlet, electrically neutral six-
quark operators with uudddd flavor structure can be
constructed from operators of the form [11,13–16]

O1
χ1χ2χ3 ¼ ðuTi CPχ1ujÞðdTkCPχ2dlÞðdTmCPχ3dnÞTðsymmÞ

fijgfklgfmng;

O2
χ1χ2χ3 ¼ ðuTi CPχ1djÞðuTkCPχ2dlÞðdTmCPχ3dnÞTðsymmÞ

fijgfklgfmng;

O3
χ1χ2χ3 ¼ ðuTi CPχ1djÞðuTkCPχ2dlÞðdTmCPχ3dnÞTðasymÞ

½ij�½kl�fmng

ð2:1Þ
where quark spinor indices are implicitly contracted in the
parentheses, the PL;R ¼ 1

2
ð1 ∓ γ5Þ are chiral projectors,

and the quark color tensors T are

TðsymmÞ
fijgfklgfmng ¼ εikmεjln þ εjkmεiln þ εilmεjkn þ εjlmεikn

¼ TS1S2S3 ; ð2:2Þ

TðasymÞ
½ij�½kl�fmng ¼ εijmεkln þ εijnεklm ¼ TA1A2S3 ; ð2:3Þ

with Si, Ai standing for the symmetrized and antisymme-
trized pairs of color indices, respectively. These operators
are identical in Euclidean and Minkowski spaces with the
charge-conjugation spin matrix C,1

C ¼ γ2γ4 ¼ C� ¼ −CT ¼ −C†; ð2:4Þ

that satisfies the usual condition CγμC† ¼ −γTμ . Operators
involving vector diquarks ðqTCPχγμqÞ or tensor diquarks
ðqCPχσμνqÞ are redundant and can be related to linear
combinations of the operators in Eq. (2.1) by spin Fierz
relations. The two choices of chirality for each ðqCPχqÞ
diquark above inO1;2;3 provide an overcomplete basis of 18
operators. Fierz relationsO2

χχχ0 −O1
χχχ0 ¼ 3O3

χχχ0 reduce the
number of independent operators to 14.2

All 14 independent effective six-quarks operators are
electrically neutral and change the baryon number byΔB ¼
−2 units. However, they are not independent under isospin
symmetry transformations. The electroweak (EW) sym-
metry SUð2ÞL ×Uð1ÞY requires that all interactions are
SUð2ÞL-singlet, which may be achieved with additional
factors of the Higgs field (see Sec. II E). Furthermore,
since the chiral symmetry SUð2ÞL ⊗ SUð2ÞR is preserved
exactly in the massless perturbation theory, and preserved
with good precision on a lattice with chiral fermions, it is
more convenient to use a basis made of operators having
definite values of chiral L, R-isospin.
The operators in Eq. (2.1) are built from color-symmetric

(6c) and antisymmetric (3̄c) chiral diquarks, which can be
denoted as

ðqT1Cq2ÞS;Aχ ¼ ðqT1CPχq2ÞS;A ¼ �ðqT2CPχq1ÞS;A; ð2:5Þ

where q1;2 ¼ u or d and the relative signs upon quark
permutation come from their anticommutation, CT ¼ −C,
and color (anti)symmetry. Using the isospin doublet ψ ¼
ðu; dÞ and its conjugate ψ̃ ¼ ðψTCiτ2Þ, the chiral isoscalar
and isovector diquarks can be written as

ðψ̃ψÞAχ ; ðψ̃τaψÞSχ ; ð2:6Þ

1To avoid confusion, throughout the paper we use Euclidean γ-
matrices ðγ⃗; γ4ÞEuc ¼ ðγ⃗; γ4Þ†Euc ¼ ð−iγ⃗; γ0ÞM satisfying γ†μ ¼ γμ.

2These Fierz relations are valid in four spacetime dimensions
but are violated in dimensional regularization at two-loop order
[17]. The MS scheme defined in Ref. [17] includes evanescent
operator counterterms that ensure that renormalized matrix
elements obey these Fierz relations. Provided that matching
between BSM theory and SM effective operators is consistently
performed in this MS scheme or is performed at a high enough
scale that one-loop QCD corrections are negligible, these Fierz
relations can be assumed for MS renormalized matrix elements.
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where τa are the Pauli matrices, ½τa; τb� ¼ 2iϵabcτc. The
details of isospin classification were given in Ref. [17], and
here we list only the chiral-basis operators and their relation
to the conventional basis (2.1). All the SUð2ÞL-singlet
operators can be constructed from some R-diquarks and L-
isoscalar diquarks, resulting in three operators belonging to
the ð1L; 3RÞ irreducible representation of the chiral isospin,

Q1 ¼ ðψ̃ψÞA1

R ðψ̃ψÞA2

R ðψ̃τþψÞS3R TA1A2S3 ¼ −4O3
RRR;

Q2 ¼ ðψ̃ψÞA1

L ðψ̃ψÞA2

R ðψ̃τþψÞS3R TA1A2S3 ¼ −4O3
LRR;

Q3 ¼ ðψ̃ψÞA1

L ðψ̃ψÞA2

L ðψ̃τþψÞS3R TA1A2S3 ¼ −4O3
LLR; ð2:7Þ

and one ð1L; 7RÞ operator

Q4 ¼
�
ðψ̃τ3ψÞS1R ðψ̃τ3ψÞS2R −

1

5
ðψ̃τaψÞS1R ðψ̃τaψÞS2R

�

× ðψ̃τþψÞS3R TS1S2S3 ¼ −
4

5
O1

RRR −
16

5
O2

RRR; ð2:8Þ

where τ� ¼ 1
2
ðτ1 � iτ2Þ. The remaining ten independent

n-n̄ transition operators are not SUð2ÞL singlets. Of these
additional operators, three belong to the ð5L; 3RÞ irreduc-
ible representation,

Q5 ¼ ðψ̃τ−ψÞS1R ðψ̃τþψÞS2L ðψ̃τþψÞS3L TS1S2S3 ¼ O1
RLL;

Q6 ¼ ðψ̃τ3ψÞS1R ðψ̃τ3ψÞS2L ðψ̃τþψÞS3L TS1S2S3 ¼ −4O2
RLL;

Q7 ¼
�
ðψ̃τ3ψÞS1L ðψ̃τ3ψÞS2L −

1

3
ðψ̃τaψÞS1L ðψ̃τaψÞS2L

�

× ðψ̃τþψÞS3R TS1S2S3 ¼ −
4

3
O1

LLR −
8

3
O2

LLR: ð2:9Þ

The remaining seven independent operatorsQP
1 ;…; QP

7 are
obtained from Q1;…; Q7 by parity transformation dis-
cussed below (2.19) and belong to the ð3L; 1RÞ, ð7L; 1RÞ,
and ð3L; 5RÞ irreducible representations. The operators
Q1;…; Q7; QP

1 ;…; QP
7 form a complete basis of 14 linearly

independent SUð3ÞC × Uð1ÞEM-invariant dimension-nine

operators with baryon number ΔB ¼ −2 and isospin
ΔI3 ¼ −1.3

Isospin properties of the n-n̄ operators are summarized in
Table I, together with relations to notations used in other
papers. In the following sections, we will discuss nucleon
matrix elements only of the operatorsQ1;2;3;5, and the other
matrix elements can be easily obtained using symmetries
discussed below.

B. Operator mixing

In this work, we study lattice regularized operators that
have to be nonperturbatively renormalized and then per-
turbatively converted to the MS scheme using the one-loop
matching results of Ref. [17], as described in Sec. V,

QR
I ðμÞ ¼ ZR

IJðμÞQlat
I : ð2:10Þ

The renormalization matrix ZR
IJ takes especially simple

form in the “chiral basis” consisting of elements QðPÞ
I¼1…7,

because they belong to different chiral multiplets and
cannot mix with each other due to chiral SUð2ÞL ×
SUð2ÞR symmetry of massless QCD. Although some chiral
representations appear in Table I more than once, they are
actually also prevented from mixing. Specifically, operators

QðPÞ
5;6;7 consist of different components (“rows”) of chiral

3- and 5-multiplets, and transform differently under

SUð2ÞL × SUð2ÞR. Operators QðPÞ
1;2;3 cannot mix with each

other for a more subtle reason. Even though they belong to
the same chiral representation, they contain different
numbers of left- and right-handed diquarks. While the
Uð1ÞA symmetry is violated in QCD by the ABJ anomaly,
operators Q1;2;3 do not mix in perturbative QCD because
perturbative gluon exchanges preserve the Uð1ÞA trans-
formation properties of external quark fields in their
respective Green’s functions. At the diagram level, there

TABLE I. Summary of operator properties and relations to notations used in other papers. The last column shows
one-loop QCD anomalous dimensions of the operators (see Sec. V).

QI Ref. [18] Ref. [11] Ref. [19] ðI; I3ÞR ⊗ ðI; I3ÞL γð0ÞO

− 3
4
Q1 ½ðRRRÞ1� 3O3

fRRgR ¼ O2
fRRgR −O1

fRRgR 12O1 ð1;−1ÞR ⊗ ð0; 0ÞL 4

− 3
4
Q2 ½ðRRÞ1L0� 3O3

fLRgR ¼ O2
fLRgR −O1

fLRgR 6O2 ð1;−1ÞR ⊗ ð0; 0ÞL −4
− 3

4
Q3 ½R1ðLLÞ0� 3O3

fLLgR ¼ O2
fLLgR −O1

fLLgR 12O3 ð1;−1ÞR ⊗ ð0; 0ÞL 0

− 5
4
Q4 ½ðRRRÞ3� O1

RfRRg þ 4O2
fRRgR � � � ð3;−1ÞR ⊗ ð0; 0ÞL þ24

−QP
5

½ðRRÞ2L1�ð1Þ O1
LfRRg −4OP

4
ð2;−2ÞR ⊗ ð1; 1ÞL þ12

1
4
QP

6
½ðRRÞ2L1�ð2Þ O2

fLRgR −2OP
5

ð2;−1ÞR ⊗ ð1; 0ÞL þ12

3
4
QP

7
½ðRRÞ2L1�ð3Þ O1

RfRLg þ 2O2
fRRgL −4OP

6
ð2; 0ÞR ⊗ ð1;−1ÞL þ12

3The isospin of operators ΔIQ is defined here as
½Q; I⃗� ¼ ΔI⃗QQ, leading to the selection rule Ii − If ¼ ΔIQ for
the isospins of initial and final states.
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are only quark (and no antiquark) external fields, which
cannot be contracted into closed loops, and thus penguin-
like diagrams do not appear. This point is discussed and
illustrated by an explicit two-loop perturbative calculation
in Ref. [17].
In order to avoid mixing of renormalized operators, one

has to define renormalization matrix ZR
IJ in a scheme

respecting chiral symmetry, such as MS, and perform
perturbative matching calculations in massless QCD.
Likewise, to avoid mixing of bare lattice operators Qlat

I ,
chiral symmetry must be preserved in lattice QCD
regularization, which requires [Möbius] domain wall
([M]DWF) or overlap fermion discretization. The
MDWF action that we use in this work has been shown
to have good chiral properties [20] (see Sec. III), and
our lattice results may be safely matched to perturbative
QCD in the UV regime. Finally, nonperturbative effects
such as spontaneous chiral symmetry breaking and Uð1ÞA-
violating topological fluctuations (instantons) in the QCD
vacuum could lead to operator mixing in nonperturbative
renormalization (NPR). Mixing can be also induced by the
light quark masses and residual chiral symmetry violation.
However, as we study NPR numerically in Sec. V, we find
that this mixing is negligible [≈Oð10−3Þ] and can be safely
neglected at our level of precision.

C. Isospin relations between matrix elements

Since the chiral symmetry of QCD is spontaneously
broken SUð2ÞL ⊗ SUð2ÞR → SUð2ÞLþR, the isospin selec-
tion rules for n-n̄ matrix elements constrain only the total

isospin ILþR of the effective operators QðPÞ
1;…;7. The n-n̄

transition changes the isospin by ΔI3 ¼ −1; therefore, the
L, R isospins must add as

ðI; I3ÞL ⊗ ðI; I3ÞR → ðI; I3ÞLþR ¼ ð1;−1Þ: ð2:11Þ

The operator in the ð1L; 7RÞ representation (2.8) with the
total isospin ILþR ¼ 3 cannot couple a neutron to an
antineutron (ILþR ¼ � 1

2
) in our calculation that is per-

formed with SUð2Þf-symmetric QCD with mu ¼ md;
therefore,

hn̄jQ4jnijmu¼md
¼ 0: ð2:12Þ

Even if the isospin-breaking effects ∼ðmu −mdÞ ≠ 0 are
included, such SUð2Þf-violating matrix elements will be
suppressed with powers of ðmu −mdÞ=ΛQCD relative to
those of other operators.
Similarly, while the Q5;6;7 operators introduced in

Eqs. (2.9) are linearly independent, isospin symmetry leads
to additional relations between their n-n̄ matrix elements
that make two of them redundant. The relations between
them are determined by the ðI; I3ÞLþR ¼ ð1;−1Þ compo-
nent in the product of their chiral factors,

Q5 ∼ ð2;−2ÞL ⊗ ð1; 1ÞR; Q6 ∼ ð2;−1ÞL ⊗ ð1; 0ÞR;
Q7 ∼ ð2; 0ÞL ⊗ ð1;−1ÞR; ð2:13Þ

as well as their normalization. To find the latter, one can use
SUð2Þ ladder operators

hI; I3jÎþjI; I3 − 1i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI þ I3ÞðI − I3 þ 1Þ

p
¼ hI; I3 − 1jÎ−jI; I3i ð2:14Þ

to construct the full 3R and 5L isospin multiplets starting

from ðuTCuÞSR ∼ ð1;þ1ÞR and ðuTCuÞfS1L ðuTCuÞS2gL ∼
ð2;þ2ÞL, respectively,

3R∶

0
B@

ðuTCuÞSRffiffiffi
2

p ðuTCdÞSR
ðdTCdÞSR

1
CA ∼

0
B@

1; þ1

1; 0

1; −1

1
CA

R

; ð2:15Þ

5L∶

0
BBBBBBBB@

ðuTCuÞSLðuTCuÞSL
2ðuTCuÞSLðuTCdÞSLffiffi

2
3

q
½ðuTCuÞSLðdTCdÞSL þ 2ðuTCdÞSLðuTCdÞSL�

2ðuTCdÞSLðdTCdÞSL
ðdTCdÞSLðdTCdÞSL

1
CCCCCCCCA

∼

0
BBBBBB@

2; þ2

2; þ1

2; 0

2; −1
2; −2

1
CCCCCCA

L

: ð2:16Þ

Combining these components to construct Q5;6;7 accord-
ing to Eq. (2.13) yields their relative normalizations. Taking
into account the Clebsch-Gordan coefficients for the
projection (2.11), one obtains the relations between matrix
elements

hn̄jQ5jni ¼ hn̄jQ6jni ¼ −
3

2
hn̄jQ7jni; ð2:17Þ

which are also fulfilled in lattice contractions up to the
machine precision. Additionally, one can check that these
relations hold, e.g., for the results of the bag-model
calculation [11] in the form

hn̄jO1
RLLjni ¼ ð−4Þhn̄jO2

RLLjni
¼ ðþ2Þhn̄jðO1

LLR þ 2O2
LLRÞjni: ð2:18Þ

D. C, P, and T relations

The discrete symmetries C, P, and T , which are
conserved in QCD, imply further relations for n-n̄
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transition matrix elements. Since the form of n-n̄ operators
is identical in Minkowski and Euclidean space, we study
the relations between their matrix elements in Minkowski
space but using Euclidean γ-matrix conventions. From the
usual transformations for the fermion fields, we obtain
C,P,T -transformation properties for quark bilinears and the
six-quark operators, which are summarized in Appendix A,

QP
I ¼ PQIP−1 ¼ −η6P½QI�L↔R; ð2:19Þ

QC
I ¼ η6CQ̄I ¼ η6C½QI�ψ→ψ̄ ¼ −η6Cη6PQ

P†
I ; ð2:20Þ

QT
I ¼ η6TQI; ð2:21Þ

where ηC;P;T are arbitrary complex phases accompanying
the C, P, T transformations of fermion fields. These factors
and the relevance of Eq. (2.21) for CP-violating processes
are discussed further in Refs. [21–23]. The conjugated
operators Q†

I are related to QI by the CP transformation,

Q†
I ¼ ½QI�ψ↔ψ̄ ;L↔R ¼ −η�6C η�6P ðCPÞQIðCPÞ−1: ð2:22Þ

The CP transformation also relates the transition matrix
elements n̄ → n and n → n̄, which can be shown to be real.
For that, one has to use the transformation properties
of the neutron and antineutron states (see Appendix A
for the details):

ðhn̄ð−Þþ1=2jQIjnðþÞ
þ1=2iÞ� ¼ hnðþÞ

þ1=2jQ†
I jn̄ð−Þþ1=2i

¼ −η�6C η�6P hnðþÞ
þ1=2jðCPÞQIðCPÞ−1jn̄ð−Þþ1=2i

¼ hn̄ð−Þþ1=2jQIjnðþÞ
þ1=2i: ð2:23Þ

Parity relates nn̄ transition matrix elements of QP
I

and QI,

hn̄ð−Þþ1=2jQIjnðþÞ
þ1=2i ¼ hn̄ð−Þþ1=2jP−1QP

I PjnðþÞ
þ1=2i

¼ −η�6hn̄ð−Þþ1=2jQP
I jnðþÞ

þ1=2i; ð2:24Þ

where the phase factor is complementary to that in
Eq. (2.19). For the conventional choice ηP ¼ 1, it is clear
that only the pseudoscalar combination (QI −QP

I ) has
nonzero matrix elements, since n → n̄ transition changes
parity. Note that in all the cases, the arbitrary phase factors
ηC;P;T arising from the transformations of QI cancel with
the phase factors arising from the transformations of the
states.
Finally, with the help of the T -reflection, one can also

show that the matrix elements do not depend on the
direction of the (anti)neutron spin. Using the transforma-
tion properties of the neutron and antineutron states,

hn̄ð−Þ�1=2jQIjnðþÞ
�1=2i ¼ hn̄ð−Þ�1=2jT −1QT

I T jnðþÞ
�1=2i

¼ ð∓η�3T Þhn̄ð−Þ∓1=2jQT
I jnðþÞ

∓1=2ið∓η�3T Þ ¼ hn̄ð−Þ∓1=2jQIjnðþÞ
∓1=2i:
ð2:25Þ

All spin-flip matrix elements of QI are trivially zero
because QI are (pseudo)scalars.
Denoting the ground-state nn̄ transition matrix elements

for each QI by

MI ¼ hn̄ð−Þþ1=2jQIjnðþÞ
þ1=2i ¼ hn̄ð−Þ−1=2jQIjnðþÞ

−1=2i; ð2:26Þ

the matrix element results derived above can be summa-
rized as

M�
I ¼ MI; MP

I ¼ −MI: ð2:27Þ
In conjunction with the results from Sec. II C,

M4 ¼ 0; M5 ¼ M6 ¼ −
3

2
M7; ð2:28Þ

this implies that in the isospin limit where Eq. (2.28) is

valid, nn̄ transition rates involving the 14 operators QðPÞ
I

are given in terms of 4 real nn̄ transition matrix ele-
ments M1;2;3;5.

E. nn̄ effective field theory

The jΔBj ¼ 2 effective interactions discussed above
must be generated by some extension of the Standard
model at yet unknown scale ΛBSM. It is generally assumed
that such extensions have higher symmetry, which is
broken at scales below ΛBSM to the electroweak symmetry
SUð2ÞL ×Uð1ÞY , and thus the effective interactions must
be EW-symmetric. From the discussion above it follows
that only Q1;2;3 are SUð2ÞL ×Uð1ÞY-singlets, while Q4,
Q5ð67Þ, and all QP

I operators are not. These latter operators
require additional EW-charged factors to make them EW-
symmetric, which affect the power counting and result in
higher suppression by the ΛBSM scale.
Such factors can be easily constructed from the Higgs

field doublet ϕ and its conjugate iτ2ϕ� to compensate for

the SUð2ÞL- and hypercharge of the operators QðPÞ
I . The

Higgs VEV v in unitary gauge leads to nonzero effective
n-n̄ interaction in the form

Ln−n̄¼
X
IðPÞ

C̃ðPÞ
I ðμÞ
Λ5
BSM

�
v2

Λ2
BSM

�
IL½QðPÞ

I �
QðPÞ

I ðμÞþH:c:; ð2:29Þ

where C̃IðμÞ are dimensionless Wilson coefficients and

IL½QðPÞ
I � is the left-handed isospin of the operator QðPÞ

I . In
addition to Eq. (2.29), the full jΔBj ¼ 2 Lagrangian must
also include combinations of electrically charged jΔBj ¼ 2
operators with oppositely charged Higgs fields to assure the
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EW symmetry above the EW scale. Such interactions can
lead to n ↔ p̄ and p ↔ n̄; p̄ transitions, and the emitted
charged Higgs bosons (e.g., decaying into leptons)
would compensate for the change in the electric charge.
These transitions are suppressed by at least one factor
of (v2=Λ2

BSM).
4

Using the effective Lagrangian (2.29) and the relations
derived in the previous sections, the full n-n̄matrix element
can be written as

Mn−n̄ ¼
1

Λ5
BSM

� X
I¼1;2;3

C̃IMI þ
v2

Λ2
BSM

X
I¼1;2;3;5

C̃P
I M

P
I

þ v4

Λ4
BSM

C̃5M5

�
; ð2:30Þ

where MðPÞ
I are the nucleon matrix elements of operators

QðPÞ
I . The dimensionless low-energy constants C̃ðPÞ

I ðμÞ
depend on the scale μ only logarithmically and can be
computed perturbatively by using CIðΛBSMÞ ∼Oð1Þ given
by a particular BSM scenario as an initial condition for
renormalization group evolution. A nonperturbative calcu-
lation of the matrix elements MI is presented in the
following sections.

III. LATTICE SETUP

In this section, we fist recount the details of the lattice
QCD gauge configurations and propagators used in this
study, and then describe the construction of (anti)neutron
correlation functions with the n-n̄ operators. The QCD
gauge field configurations were generated with the Iwasaki
gauge action on a 483 × 96 lattice and Nf ¼ 2þ 1 flavors
of dynamical Möbius domain wall fermions. The fermion
masses are tuned to be almost exactly at the physical point
[20], such that the pion mass is approximately mπ ¼
139.2ð4Þ MeV and the scale (the lattice spacing) is
a ¼ 0.1141ð3Þ fm. The residual mass mres, which encap-
sulates the residual violation of chiral symmetry, is smaller
than 50% of the input quark mass. The physical lattice size
L ≈ 5.45 fm and mπL ¼ 3.86 should be sufficient to
suppress finite volume effects of the n-n̄ matrix elements
to a level below our target precision. In particular, accord-
ing to chiral perturbation theory, these finite size effects are
expected to be ≲1% [24].
The three-point functions needed to evaluate the matrix

elements of the operators QðPÞ
I require six quark propa-

gators for the u and d quarks flavors; they result from
Wick contractions of the six-quark operators with the

(anti)neutron interpolating fields. There are no discon-
nected quark-loop diagrams because the operators
QIðQ†

I Þ contain only quarks (antiquarks). For both two-
and three-point lattice correlation functions we compute
propagators on 30 independent gauge field configurations
separated by 40 molecular dynamics time steps. All the
quark propagators required for a single sample are com-
puted from a point source located at the operator insertion
point, which is identified in the analysis with the origin
x0 ¼ ð0; 0; 0; 0Þ using translational invariance. To reduce
stochastic uncertainty, sampling of the neutron correlation
functions is enhanced by all-mode-averaging [25], in which
we compute 1 exact and 81 low-precision samples evenly
distributed over the 4D volume on each gauge configura-
tion. The low-precision quark propagators are computed
with low-mode deflation and the conjugate gradient algo-
rithm truncated at 250 iterations.
The propagators are contracted at the sink into inter-

mediate baryon blocks [26,27] with polarized nucleon and
antinucleon quantum numbers to minimize the time spent
in the contraction step of the calculation. (Anti)neutron
source and sink interpolating operators are constructed
with either point or Gaussian-smeared (anti)quarks and are
denoted with nJ¼P;S, respectively. Final contraction at the
propagator source yields an (anti)neutron two-point corre-
lation function sample with a point source at x0. Thus, the
polarized neutron two-point correlation function with zero
spatial momentum for positive time t > 0 is

GJJ0
nnðσÞðt > 0Þ ¼

X
x

hvacjnðþÞJ0
σ ðx; tÞnðþÞJ†

σ ð0Þjvaci

¼ ΓσðþÞ
αα0

X
x

hnJ0α0 ðx; tÞn̄Jαð0Þi; ð3:1Þ

and, similarly, for the polarized antineutron,

GJJ0
n̄ n̄ðσÞðt > 0Þ ¼

X
x

hvacjnð−ÞJ0†σ ðx; tÞnð−ÞJσ ð0Þjvaci

¼ Γσð−Þ
αα0

X
x

hnJαð0Þn̄J0α0 ðx; tÞi; ð3:2Þ

where the polarization matrix Γσð�Þ ¼ 1�γ4
2

1þσγ3γ5
2

projects
on the selected parity (�) and spin σ ¼ � 1

2
, and the

interpolating operator at the source is J ¼ P and the one
at the sink can be either J0 ¼ P or J0 ¼ S. Neutron/
antineutron two-point functions have the spectral repre-
sentation

GJJ0
nnðσÞðtÞ ¼ GJJ0

n̄ n̄ðσÞð−tÞ ¼
X
m

ffiffiffiffiffiffiffiffiffiffiffiffi
ZJ
mZJ0

m

q
e−Emt; ð3:3Þ

where the overlap factors ZJ
m are identical for neutrons and

antineutrons in either spin orientations.

4Isospin breaking effects in QCD may result in suppression in
powers of ðmu −mdÞ=ΛQCD instead of v=ΛBSM, which is beyond
the scope of the present paper. Also, while additional higher-
dimensional operators suppressed at the same level may be
constructed using field derivatives, they are less relevant and
not considered here.
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The three-point functions involve two neutron or two
antineutron fields to create and annihilate states with
opposite baryon numbers. Using the (anti)neutron states
defined in Eq. (A12), one can express the three-point
correlation function containing, e.g., the n ← n̄ transition
matrix element (see Fig. 1),

GJJ0
nQ†

I n̄ðσÞ
ðt1; t2Þ

¼
X
x;y

hvacjnðþÞJ0
σ ðx; t2ÞQ†

I ð0Þnð−ÞJ−σ ðy;−t1Þjvaci

¼ ðCΓσðþÞÞαα0
X
x;y

hnJ0α0 ðx; t2ÞQ†
I ð0ÞnJαðy;−t1Þi; ð3:4Þ

where nð−Þ−σ is the nucleon interpolating field that creates
an antineutron with spin σ,5 both the (anti)neutron oper-
ators are summed over the spatial coordinate to project on
zero momentum. By calculating quark propagators with
point sources located at the operator insertion point and
momentum-projected P and S sinks located on all time
slices, the correlation functions GJJ0

nQ†
I n̄

can be accessed for

all smearing combinations PP, PS, SP, and SS, any
temporal separation between the source and the sink
tsep ¼ t1 þ t2, and any operator separation from the source
τ ¼ t1. The same propagators are used to calculate PP and
PS two-point correlation functions. The spectral represen-
tation for Eq. (3.4) analogous to Eq. (3.3) is given by

GJJ0
nQ†

I n̄ðσÞ
ðt1; t2Þ ¼

X
m;m0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZJ
mZJ0

m0

q
e−Em0 t2−Emt1ðMIÞmm0 ;

ð3:5Þ
where ðMIÞm0m ¼ hm0jQIjmi, the ground-state matrix
element of interest is MI ¼ ðMIÞ00, and the overlap
factors ZJ

m, ZJ0
m0 are the same as in Eq. (3.3). We perform

contractions for all combinations of point and smeared

sources and sinks in the three-point functions to enhance
the analysis of the ground and excited state matrix elements
in the next section. To reduce stochastic uncertainties, we
also average lattice matrix elements over the spins of the
neutron and antineutron states. The specific combinations
of (anti)neutron 4-spinor components in the three-point
functions that give matrix elements MI are

hn̄ð−Þþ1=2jQIjnðþÞ
þ1=2i ∼ −hn†4ðt2ÞQIð0Þn†1ð−t1Þi

hn̄ð−Þ−1=2jQIjnðþÞ
−1=2i ∼ hn†3ðt2ÞQIð0Þn†2ð−t1Þi

hnðþÞ
þ1=2jQ†

I jn̄ð−Þþ1=2i ∼ −hn1ðt2ÞQ†
I ð0Þn4ð−t1Þi

hnðþÞ
−1=2jQ†

I jn̄ð−Þ−1=2i ∼ hn2ðt2ÞQ†
I ð0Þn3ð−t1Þi ð3:6Þ

where the signs correspond to the conventions listed in
Appendix A. As shown in Sec. II D, these matrix elements
are real, and combining them with the conjugated ones is
also used to enhance statistics following Eq. (2.27).

IV. ANALYSIS OF MATRIX ELEMENTS

To account for excited-state contributions, we perform
two-state fits to a truncation of Eq. (3.4),

GJJ0
nQ†

I n̄
ðtsep; τÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ZJ
0Z

J0
0

q
e−E0tsepMI þ e−E0τ−E1ðtsep−τÞAJJ0

I

þ e−E1τ−E0ðtsep−τÞAJ0J
I þ e−E1tsepBJJ0

I ; ð4:1Þ

where AJJ0
I and BJJ0

I are products of overlap factors and
matrix elements involving only excited states, which are
discarded in our calculation. The ground-state overlap
factors ZP

0 and ZS
0 required to extract matrix elements of

GJJ0
nQ†

I n̄
can be obtained independently from fits of two-point

functions GPP
nn and GPS

nn to an analogous two-state model

GJJ0
nnðσÞðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
ZJ
0Z

J0
0

q
e−E0t þ

ffiffiffiffiffiffiffiffiffiffiffi
ZJ
1Z

J0
1

q
e−E1t; ð4:2Þ

The energies E0 and E1 appear in both Eq. (4.1) and
Eq. (4.2); therefore, fits of GnQ†

I n̄
may be simplified by

fixing the state energies E0, E1 to values determined from
fits of two-point functions GJJ0

nn . In principle, the overlaps
with excited neutron states ZJ

1 are also determined from
two-point function fits, thus the number of parameters in
Eq. (4.1) can be reduced by factoring AJJ0

I , BJJ0
I into

excited-state matrix elements and overlap factors ZJ
0;1, of

which only the latter would depend on the neutron
interpolating operators. It would be possible if the two-
and three-point functions were saturated by contributions
only from the ground and the first excited states, or their
contributions could be reliably distinguished from higher-
energy states omitted from Eqs. (4.1), (4.2). However, as
our two-point function fits in Fig. 2 show, there are higher

FIG. 1. Contractions for the three-point correlation function of
the (anti)neutrons with a n̄ ← n transition operator. The indices of
the neutron interpolating operators refer to the standard Dirac-
Pauli representation (see Appendix A).

5Note that spin-flip of a spinor incorporates nontrivial signs in
order to satisfy n−ð−σÞ ¼ −nσ similar to T transformation, which
is responsible for the relative signs of the neutron and antineutron
states.
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excited-state contributions to Gnn; in particular, there is
large systematic uncertainty on E1 in (see Table II).
These considerations lead us to adopt the following fit

strategy: first, a combined fit of GPP
nn and GPS

nn to Eq. (4.2) is
used to determine the four parameters E0;1 and ZP;S

0 as
summarized in Fig. 2 and Table II; then, a combined fit of
GPS

nQ†
I n̄
, GSP

nQ†
I n̄
, and GSS

nQ†
I n̄

to Eq. (4.1) is used to determine

the six parameters MI , APS
I , ASP

I , ASS
I , BPS

I ¼ BSP
I , and

BSS
I . Also, since PP three-point functions would have

even large excited-state contamination and PP three-point/
two-point ratios are not close to their plateau region for
the tsep used here (not shown), we do not include GPP

nQ†
I n̄

in

our analysis.
With all-mode-averaging described in Sec. III, we obtain

one unbiased sample of the two- and three-point functions
per gauge field configuration. The number of gauge field
configurations used in this calculation Nconf ¼ 30 is not

large enough to obtain nondegenerate determination of a
covariance matrix for the required number of data points
31 ≤ K ≤ 76 included in the three-point correlator fits.
Therefore, spin and parity symmetries are used to increase
the effective number of unbiased samples of correlation
functions. Thus, GnQ†n̄ and GnðQP

I Þ†n̄ with two polarizations
are treated as four samples per gauge-field configuration,
resulting in N ¼ 120 samples for each data point after all-
mode-averaging bias correction. Polarized two-point func-
tions Gnnð�1=2Þ, Gn̄n̄ð�1=2Þ are similarly combined to obtain
a statistical ensemble of N ¼ 120 two-point functions.
Although this yields an “ensemble” with N > K samples, it
is still not sufficient for reliable determination of covariance
matrix, which typically requires N ≳ K2.
For both two-point and three-point functions, finite

sample-size fluctuations may make the sample covariance
matrix ill determined and lead to a numerically unstable
inverse covariance matrix required for least-squares fitting.
Shrinkage [28,29] has been proposed as a method of
improving the condition number of covariance matrix
estimates. Denoting the sample covariance matrix by S,
the corresponding covariance matrix estimate with shrink-
age is given by

ΣðλÞ ¼ λ diagðSÞ þ ð1 − λÞS; ð4:3Þ

where 0 ≤ λ ≤ 1 is the shrinkage parameter, and diagðSÞ is
a particular “shrinkage target”. Taking any λ > 0 “shrinks”
the spectrum of the covariance matrix by reducing the
relative size of off-diagonal correlations compared to the
diagonal covariance matrix elements. This leads to a better-
conditioned covariance matrix and a more robust estimate
of the inverse covariance matrix used for χ2-minimization.
Trivial λ ¼ 0 corresponds to no shrinkage, while λ ¼ 1
removes off-diagonal correlations completely, which is
equivalent to an uncorrelated fit. Therefore, varying the
parameter 0 ≤ λ ≤ 1 interpolates continuously between
correlated (albeit with potentially poorly-determined
covariance matrix) and uncorrelated fits. A standard pre-
scription for choosing the optimal shrinkage parameter is to
minimize the rms difference between ΣðλÞ and the true
covariance matrix. A sample estimator for the optimal
shrinkage parameter λ� is suggested in Ref. [29] and
summarized in Appendix B 1. Bootstrap covariance matri-
ces with optimal shrinkage6 Σ� ¼ Σðλ�Þ are obtained by

TABLE II. Results of two-point function fits from different
time ranges: ground- and excited-state energies, reduced χ2=Ndof ,
and optimal shrinkage parameters λ�. The uncertainties in
individual fits are statistical. The last line shows “fit averages”
with statistical and systematic uncertainties computed as de-
scribed in Appendix B 3.

tmin
PP tmin

PS tmax Ndof E0 E1 χ2=Ndof λ�

6 4 13 12 0.578(23) 1.23(27) 0.50 0.14
6 6 13 10 0.556(22) 1.11(15) 0.42 0.15
6 5 13 11 0.560(24) 1.13(21) 0.40 0.14
5 5 13 12 0.566(20) 1.26(9) 0.40 0.13
7 5 13 13 0.554(69) 0.98(43) 0.42 0.15

Weighted Ave 0.565(24)(8) 1.21(15)(65)

PP

PS

0 2 4 6 8 10 12

0.50

0.55

0.60

0.65

0.70

0.75

0.80

t

M
n

FIG. 2. Combined correlated χ2 fits of PP, PS two-point to
Eq. (4.2) in the time range shown in the first row of Table II. The
covariance matrix is estimated with optimal shrinkage λ� as
described in the main text. Corresponding data points show the
effective masses MnðtÞ ¼ lnGnnðtÞ − lnGnnðtþ 1Þ with their
statistical uncertainties. Note that tmax in Table II indicates the
largest separation for Gnn considered and that the effective mass
is consequently shown for 0 ≤ t ≤ tmax − 1.

6λ� are chosen to provide optimal shrinkage for the normalized
sample correlation matrix as described in Appendix B 1 rather
than the bootstrap covariance matrix. It is possible that finite-
sample-size bias will lead to differences between the optimal
shrinkage parameters for the two matrices. Since λ� defined by
this prescription vanishes in the infinite-statistics limit, the
bootstrap covariance matrix obtained with this choice of shrink-
age parameter will provide an unbiased (but not necessarily
optimal) estimate of the true covariance matrix in the infinite-
statistics limit.
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inserting λ� from Eq. (B6) into Eq. (4.3) with S the
bootstrap covariance matrix obtained from Nboot ¼
10; 000 samples of two-point and three-point correlation
functions. The effects of shrinkage on the central values,
uncertainties, and goodness-of-fit of the matrix element fits
described below are explored by varying λ, and the results
for one choice of fit range are shown in Figs. 3–4. For all
operators, the central values and the statistical uncertainties
are relatively insensitive to the value of the shrinkage
parameter once λ > 0. The χ2=Ndof values decrease sharply
in a small region around λ ¼ 0; however, they are much less
sensitive for larger λ values. In all cases, the optimal values
λ� for the shrinkage parameter are found outside of the
region of strong dependence of χ2 on λ.
The average two-point function and the corresponding

bootstrap covariance matrix with optimal shrinkage are
used for nonlinear χ2-minimization to determine E0, E1,ffiffiffiffiffiffi
ZP
0

p
, and

ffiffiffiffiffiffi
ZS
0

q
. χ2-minimization is reduced to a two-

parameter optimization problem by variable projection
(VarPro) technique [30,31] detailed in Appendix B 2. In
VarPro, the products of overlap factors in Eq. (4.2) are
found from a linear χ2-fit for particular values of E0;1 and
the solution is substituted back into χ2 in order to obtain a

two-parameter function χ2VPðE0; E1Þ, which is then mini-
mized using nonlinear numerical methods. With these four
parameters held fixed, the remaining six free parameters in
the three-point function fit (4.1) can also be found from a
linear χ2 fit. The parameter covariance matrix for all 10
parameters is subsequently estimated using an additional
correlated bootstrap resampling and fitting of two- and
three-point function data. The original bootstrap covariance
matrices are used in all these fits in order to avoid the
possibility of ill-conditioned covariance matrices. The
bootstrap parameter covariance matrix is obtained from
N0

boot ¼ 200 correlated resampling draws. The parameter
covariance matrix is diagonalized, the eigenvalues are
resampled N00

boot ¼ 200 times, and the resampled eigen-
values are transformed back to the original parameter
basis. Finally, the standard deviation of the resulting
resampled values of MI is used to define the margin-
alized uncertainty of MI for each fit range shown in
Table III. An analogous procedure is used to obtain the
uncertainties of E0 and E1 shown in Table II. Results for
the matrix elements from the fits that include our smallest
tsep value are compared to the ratios of three-point to
two-point functions (adjusting for proper overlap factors)

FIG. 3. Sensitivity of resulting (bare) matrix elements MI obtained from three-point function fits [Eq. (4.1)] to the shrinkage
parameter λ that is used to estimate the covariance matrix as described in the main text (black points). The dark blue points indicate
the values obtained with optimal shrinkage parameters λ� (see Eq. (4.3) and Appendix B 1). The fit ranges are shown in the fourth row
of Table III.
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in Fig. 5. In addition, the two-point function fits are

compared to the corresponding effective masses in Fig. 2.
Systematic uncertainties of our analysis procedure are

studied by varying the time ranges of data included in the
two-state fits. Results of fits of two-point function data
GPP

nnðn̄ n̄Þðtmin
PP ≤ t ≤ tmax

sep Þ and GPS
nnðn̄ n̄Þðtmin

PS ≤ t ≤ tmax
sep Þ for a

variety of tmin
PP and tmin

PS are shown in Table II. Results
of corresponding fits of three-point function data
GSS

nQ†
I n̄
ðτPmin þ τSmin ≤ tsep ≤ tmax

sep ; τSmin ≤ τ ≤ tsep − τSminÞ and

GPS
nQ†

I n̄
ð2τSmin ≤ tsep ≤ tmax

sep ; τPmin ≤ τ ≤ tsep − τSminÞ for a

variety of τSmin and τPmin are shown in Table III. The data
for SP and PS three-point correlation functions are aver-
aged using relation GSP

nQ†
I n̄
ðtsep; τÞ ¼ GPS

nQ†
I n̄
ðtsep; tsep − τÞ to

reduce the number of data points in the fits. Results for bare
ground-state matrix elements from different fits are in very
good agreement with each other, as shown in Fig. 6.
The five fit range choices shown in Tables II–III result in

acceptable correlated χ2=Ndof values in fits of two- and

FIG. 4. Dependence of correlated χ2=Ndof values of three-point function fits [Eq. (4.1)] on the shrinkage parameter λ that is used to
estimate the covariance matrix as described in the main text (black points). The dark blue points indicate the values obtained with
optimal shrinkage parameters λ� (see Eq. (4.3) and Appendix B 1). The fit ranges are shown in the fourth row of Table III.

TABLE III. Fit ranges, bare matrix element results and uncertainties in lattice units, reduced χ2 showing goodness-of-fit, and optimal
shrinkage parameters used for each three-point function fit for the electroweak-singlet operators Q1, Q2, Q3, and Q5.

τmin
P τmin

S tmax
sep Ndof Mlat

1 × 105 χ2=Ndof λ� Mlat
2 × 105 χ2=Ndof λ� Mlat

3 × 105 χ2=Ndof λ� Mlat
5 × 105 χ2=Ndof λ�

6 2 13 70 −4.13ð0.92Þ 0.25 0.77 8.50(1.07) 0.40 0.35 −5.01ð0.76Þ 0.44 0.32 −0.098ð39Þ 0.62 0.53
6 4 13 25 −3.81ð1.78Þ 0.44 0.72 6.46(2.15) 0.31 0.31 −3.21ð1.25Þ 0.40 0.29 −0.063ð45Þ 0.53 0.41
6 3 13 45 −3.85ð1.07Þ 0.30 0.76 8.24(1.52) 0.34 0.31 −4.09ð0.95Þ 0.47 0.30 −0.068ð38Þ 0.54 0.50
5 3 13 51 −4.09ð0.92Þ 0.28 0.75 8.61(1.06) 0.34 0.29 −4.50ð0.67Þ 0.44 0.29 −0.077ð22Þ 0.54 0.47
7 3 13 40 −3.87ð1.13Þ 0.34 0.76 8.13(1.32) 0.37 0.32 −4.05ð1.00Þ 0.50 0.31 −0.069ð32Þ 0.55 0.53

Weighted Ave −3.99(1.08)(0.13) 8.28(1.29)(0.54) −4.37(0.86)(0.52) −0.075(32)(10)
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FIG. 5. Combined correlated χ2 fits of PS, SS three-point functions to Eq. (4.1) for operators Q1, Q2, Q3, and Q5 for the time range
shown in the first row of Table III (shaded bands). The state energies are determined from fits to two-point functions as shown in Fig. 2.
Covariance matrix is estimated with optimal shrinkage λ� as described in the main text. Corresponding data points for ratios of three- to
two-point correlation functions for all used source and sink separations tsep are shown with intermittent square and circle data points. The
central values of matrix elementsMI and their statistical uncertainties are shown with gray shaded bands. All the displayed uncertainties
are statistical and estimated using bootstrap.
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three-point function data. These results are combined into
final estimates of MI and estimates of their statistical
and systematic uncertainties. Since the various fits have
different Ndof , we use a weighted-averaging procedure
defined in Appendix B 3. For a particular fit, the weight is a
combination of the likelihood that the fit describes the data
(we use its p value as the likelihood proxy) and its
statistical precision, to penalize both fits that fail to describe
data and fits that do not constrain the relevant parameters.
The same weights are used to determine the average
statistical uncertainty, which ensures that including multi-
ple similar fits will not lead to a spurious reduction in the
final statistical uncertainty. The weighted mean-square
difference between each fit result and the weighted average
is used to define the systematic uncertainty due to

arbitrariness of choice of a fit window. Applying this
weighted averaging procedure to the ground-state energy
E0 of the two-point function yields the result for the
nucleon mass that agrees well with the physical value,

E0 ¼ 0.565ð24Þð8Þa−1 ¼ 977ð42Þð13Þ MeV; ð4:4Þ

where we have used the scale-setting result a ¼
0.1141ð3Þ fm from Ref. [20], which has negligible uncer-
tainty for our purposes as it is much smaller compared to
other uncertainties in our calculation. Applying the same
procedure to the fit results in Table III provides our final
estimate of the bare matrix elements including statistical
and fitting systematic uncertainties,

Mlat
1 ¼ −3.99ð1.08Þð0.13Þ × 10−5a−6 ¼ −107ð29Þð3Þ × 10−5 GeV6

Mlat
2 ¼ 8.28ð1.29Þð0.54Þ × 10−5a−6 ¼ 221ð35Þð14Þ × 10−5 GeV6

Mlat
3 ¼ −4.37ð0.86Þð0.52Þ × 10−5a−6 ¼ −117ð23Þð14Þ × 10−5 GeV6

Mlat
5 ¼ −0.075ð32Þð10Þ × 10−5a−6 ¼ −2.01ð86Þð22Þ × 10−5 GeV6: ð4:5Þ

FIG. 6. Comparison of ground state matrix elements (lattice units) extracted in fits with different fit ranges that are listed in Table III.
The black point at zero indicates the result of the weighted averaging procedure described in Appendix B 3, and the small and large error
bars indicate statistical and statistical-plus-systematic uncertainties, respectively.
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These lattice regularized matrix elements can be related to
renormalized matrix elements through NPR as described in
the next section.

V. RENORMALIZATION OF
LATTICE OPERATORS

Since the matrix elements of the six-quark operators
are computed on a lattice, they have to be converted to
some perturbative scheme, e.g., MS, before they can be
used in BSM phenomenology. We calculate conversion
factors between lattice-regularized operators and their
perturbative definitions nonperturbatively, by computing
their Green’s functions on a lattice and matching them to

perturbative calculations. The operators QðPÞ
I are the

lowest-dimension operators with ΔB ¼ −2; therefore,
they can only either mix with each other, or get
discretization corrections from higher-dimensional oper-
ators that vanish in the continuum limit. In the chiral
basis, all the 14 operators transform differently under
Uð2ÞL ⊗ Uð2ÞR flavor symmetry, so they can mix only
due to the spontaneous chiral symmetry breaking (SχSB)
in QCD, nonperturbative Uð1ÞA violation, or chiral
symmetry violations by quark masses and discretization
of the fermion action. Mixing due to quark masses and
nonperturbative effects should be small if renormalization
is carried out in the UV region jpj ≈ μ ≫ fΛQCD; mqg
where perturbative matching is applicable. Furthermore,
effects of the explicit chiral symmetry violation by the
(M)DWF fermion action on a lattice are suppressed as the
“residual mass” mres ≲mq [20], and thus are also
negligible. Therefore, we do not expect that renormaliza-
tion of our results will be affected by mixing between the
chiral-basis operators.7

A. RI-MOM amplitudes on a lattice

The lattice renormalization constants for the six-quark
operators are defined as

QR
I ðμÞ ¼ Zlat

IJðμ; aÞQlat
J ðaÞ; ð5:1Þ

but, as will be shown below, in the chiral-diagonal basis
jZI≠Jj ≪ ZII ≡ ZI , soQR

I ðμÞ ¼ ZIQlat
I both on a lattice and

in continuum perturbation theory. The nonperturbative
renormalization and mixing of the six-quark operators is
computed using a variant of the RI-MOM scheme [32] with
a specific choice of momenta of the external quark states.
Since the external states are not color-singlets, the gauge is
fixed to the Landau gauge using the Fourier-accelerated
conjugate gradient algorithm [33]. All the operators of

interest withΔB ¼ 2 andΔI ¼ 1
8 can be represented in the

generic form

Q̄I ¼ ðΓIÞa1a2a3a4a5a6α1α2α3α4α5α6 d̄
a6
α6 d̄

a5
α5 d̄

a4
α4 d̄

a3
α3 ū

a2
α2 ū

a1
α1

¼ ðΓIÞ½A1A2�½A3…A6�d̄½A6 d̄A5 d̄A4 d̄A3�ū½A2 ūA1�; ð5:2Þ
where Ai ¼ ðαi; aiÞ are the spin × color indices. Then their
Green’s functions with external plane-wave quark states,

GB1…B6

I ðfpigÞ ¼
X
xi

ei
P

i
pixihQ̄Ið0ÞuB1ðx1Þ � � � dB6ðx6Þi;

ð5:3Þ
are computed on a lattice contracting six quark propagators
computed with a point source at the operator location. The
same propagators are used as for the n-n̄ three-point
correlators (see Sec. III), with the only difference that
prior to the contraction the propagators are Fourier-
transformed at the sink. The six-quark vertex functions
are obtained by “amputating” the Green’s functions (5.3)

ΛA1…A6

I ðfpigÞ ¼ hQ̄Ið0ÞuA1ðp1Þ � � � dA6ðp6Þiamp

¼ GB1…B6

I ðfpigÞ · ½S−1ðp1Þ�B1A1 � � �
× ½S−1ðp6Þ�B6A6 ; ð5:4Þ

where contraction in fBig is implied, and the momentum-
projected quark propagators are

SABðpÞ ¼
X
x

eipxhqAðxÞq̄Bð0Þi ð5:5Þ

Note that the amputated Green’s functions (5.4) are not
symmetric with respect to permutation of the spin × color

indices Ai, unlike the tree-level vertex function Γ
½A1A2�½A3…A6�
i

in Eq. (5.2). This is due to the fact that GIðfpigÞ and
ΛIðfpigÞ depend on the nonequal momenta pi of the
external fields. Such dependency would break the isospin
symmetry and thus may mix operators from different
chiral representations.
One must choose specific momenta for external quark

fields in order to preserve the chiral isospin symmetry. The
simplest choice pi ¼ p would result in a large momentum
pO ¼ 6p at the operator insertion leading to large pertur-
bative corrections in conversion to the MS scheme. To
avoid that, the external quark momenta are arranged so thatP

ipi ¼ 0 and, specifically, pi ¼ �p (see Fig. 7), where
p2 ¼ μ2 determines the scale for perturbative RI-MOM →
MS matching. In addition, the amputated amplitudes (5.4)
must be averaged over permutations of the �p momenta to
enforce the symmetry with respect to the external quark
states [18],

7This holds even without taking the continuum limit, since the
continuum and the chiral limits can be taken separately in
calculations with the (M)DWF lattice fermions; see Ref. [20]
and references within.

8Instead of the six-quark, we study renormalization of the six-
antiquark operators, which is equivalent but is more natural on a
lattice since it does not require conjugating quark propagators.
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Λ½A1A2�½A3…A6�
I ðpÞ ¼

�
1

5
hQ̄IuðþpÞuðþpÞdðþpÞdð−pÞdð−pÞdð−pÞiamp

þ 3

5
hQ̄IuðþpÞuð−pÞdðþpÞdðþpÞdð−pÞdð−pÞiamp

þ 1

5
hQ̄Iuð−pÞuð−pÞdðþpÞdðþpÞdðþpÞdð−pÞiamp

�½A1A2�½A3…A6�
; ð5:6Þ

where the factors are determined by combinatorics. All
possible permutations of momenta are implicitly included
by Wick contractions, and the symmetries of the color ×
spin indices are restored automatically. Perturbative match-
ing at the one-loop level for this particular scheme has been
computed in Ref. [17].
The lattice renormalization factors Zlatðp2Þ (5.1) can be

computed by imposing the condition

Z−3
q ðpÞZlat

IJðpÞΛfAig
J ðpÞ ¼ ΓfAig

I ; ð5:7Þ

where Zq is the lattice quark field renormalization factor

qRðμÞ ¼ Z1=2
q ðμ; aÞqlat: ð5:8Þ

The renormalization factors Zlat
IJ can be expressed in terms

of the amputated and symmetrized vertex functions

ΛfAig
I ðpÞ that are projected onto the original tree-level

structures ΓfAig
J ,

Zlat
IJðpÞ ¼ Z3

qðpÞ½Λ−1ðpÞ�IJ; ð5:9Þ

ΛIJðpÞ ¼
�X

Ai

ΛfAig
I Γ�fAig

K

�
ðg−1ÞKJ; ð5:10Þ

gJK ¼
X
Ai

ΓfAig
J Γ�fAig

K ; ð5:11Þ

where the “metric tensor” gJK is diagonal in the chiral

basis Q̄ðPÞ
I . (Approximate) chiral symmetry on a lattice

is important for ensuring that ZIJ and ΛIJ are also
(predominantly) diagonal in this basis. Deviations from
the diagonal form are due to the nonzero quark mass and

residual chiral symmetry breaking of the DWF discretiza-
tion. The effect of symmetrization (5.6) is evident from the
magnitude of the off-diagonal components, which is shown
in the log scale as the matrix

XIJ ¼ log

� jΛIJjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛIIΛJJ

p
�

ð5:12Þ

in Fig. 8 comparing the momentum permutation-averaged
amplitude (5.6) to the one with a specific choice of
momentum p1 ¼ p3 ¼ p4 ¼ −p2 ¼ −p4 ¼ −p6 ¼ p as
in Fig. 7. These data are shown for the momentum
p ¼ 2π

a ð11
48
; 11
48
; 11
48
; 22.5
96
Þ, which is close to a 4d diagonal

direction (up to (π=L) along the time axis due to the
antiperiodic boundary conditions) and p2 ≈ ð5 GeVÞ2.
Therefore, we conclude that in the chiral basis the
renormalization matrix ZIJ is diagonal, jZIJj=ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZIIZIJ

p ≲Oð10−3Þ, which is definitely within our target

precision, and the operators QðPÞ
I may be renormalized

multiplicatively in our lattice calculation. Additionally,
we observe that the mixing between six-quark opera-
tors containing different numbers of L, R-diquarks is
negligible, indicating that nonperturbative chirality-
changing effects due to fluctuations of topology of
the QCD vacuum do not lead to mixing in excess of
the 10−3 level.
We define lattice renormalization factors in the RI-MOM

scheme for the n-n̄ operators in the chiral basis as

Zlat
I ðpÞ ≐ Zlat

II ðpÞ ≈
Z3
qðpÞ

ΛIIðpÞ
: ð5:13Þ

Finally, to get rid of the quark field renormalization, we use
the renormalization constant ZA for the local axial-vector
current Aμ ¼ q̄γμγ5q. Using the value of ZA computed in
Ref. [20], we can compute ZqðpÞ in the RI-MOM scheme
from the condition

Z−1
q ðpÞZAðpÞhAμð0ÞqðpÞq̄ðpÞilatamp ¼ γμγ5; ð5:14Þ

where hAμqq̄i is the amputated Green’s function for
the axial current computed analogously to Eq. (5.4).
“Scale-independent” lattice renormalization factors

FIG. 7. Momentum configuration for nonperturbative renorm-
alization of six-quark operators using RI-MOM scheme (only one
permutation).
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ZSI
Γ ¼ Zlat

Γ ðpÞ=ZRI;pertðpÞ for the vector, tensor, and scalar
vertices are shown in Fig. 9.
The value of the lattice renormalization constants ZIðpÞ

may depend on the orientation of the momentum p with
respect to the lattice axes due to discretization effects. We
compute the lattice vertex functions (5.10) for various
orientations of lattice momenta interpolating between
3d-diagonal and 4d-diagonal orientations to study these
effects in the following sections.

B. Perturbative running

In order to convert operator normalization from the
RI-MOM scheme discussed above to MS, perturbative
matching calculations are required. To extract lattice
renormalization factors independent from the momentum

subtraction point p, the lattice factors (5.13) are compared
to the perturbative predictions for the RI-MOM scheme in
some window pmin ≤ jpj ≤ pmax where lattice artifacts are
believed to be under control. In this section, details of
relevant perturbative results are summarized.
The one-loop anomalous dimensions of the operators

(2.7)–(2.9) were computed in Ref. [16], and the MS
anomalous dimensions to the Oðα2SÞ precision together
with OðαSÞ conversion factors were computed in Ref. [17].
In the chiral basis, the perturbative renormalization of the
operators is diagonal (no mixing), and their independent
anomalous dimensions are

1

ZI

d
d ln μ

ZI ¼ −γIðαSÞ ¼ −γð0ÞI

�
αSðμÞ
4π

�
− γð1ÞI

�
αSðμÞ
4π

�
2

;

ð5:15Þ
with the coefficients γð0ÞI given in Table I. These anomalous
dimensions are substantially different, which would com-
plicate operator renormalization if chiral symmetry was
violated by a lattice fermion action and mixing was
allowed. We integrate the equations (5.15) together with
an RG equation for the coupling constant αSðμÞ using the
four-loop βðαSÞ function. Since our lattice QCD action has
Nf ¼ 2þ 1 dynamical flavors, the lattice factors (5.13) are
matched to ZRIðμÞ factors computed inNf ¼ 3 perturbative

QCD and the coupling constant α
Nf¼3

S is matched to its
physical value at μ ≤ mc. The latter is obtained from a
global fit [34] and matched at the mb;c quark mass
thresholds. For the reference point μ0 ¼ 2 GeV, its values9

are α
Nf¼3

S ¼ 0.2827 and α
Nf¼4

S ¼ 0.2948.
The final results are converted to Nf ¼ 4 QCD at

μ0 ¼ 2 GeV, again matching at the mc threshold. The final

FIG. 9. Scale-independent renormalization factors for vector,
scalar, and tensor currents. The axial current renormalization ZA
is trivially constant because its vertex is used to eliminate the
quark field renormalization Zq. The close values of the vector and
axial-vector renormalization constants indicate that chiral sym-
metry-breaking effects are negligible.

FIG. 8. Magnitude of the off-diagonal components of the lattice mixing matrix (5.12) for (approximately) 4d-diagonal momentum
p2 ¼ ð5 GeVÞ2: (left) with quark external momenta shown in Fig. 7 and (right) averaged over their permutation (5.6). Only the values
jXIJj ≥ 10−4 are shown. The operator labels show their chiral isospin structure (see Table I). The solid lines delineate operators that
contain RRR, RRL, LLL, and LLR diquarks.

9The coupling constant in the RI-MOM scheme is conven-
iently defined to be equal to the MS coupling constant.
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conversion factors from lattice to the MS scheme at
scale μ0 are

C
MSðNf¼4Þ←lat
I ðμ0Þ

¼
"
Z
MSðNf¼4Þ
I ðμ0Þ

Z
MSðNf¼4Þ
I ðmcÞ

#
pert

"
Z
MSðNf¼3Þ
I ðμ0Þ

Z
MSðNf¼3Þ
I ðmcÞ

#−1

pert

× C
MS←RIðNf¼3Þ
I ðμ0ÞZSI

I ðμ0; aÞ; ð5:16Þ
where ZSI

I is a “scale-independent” lattice renormalization
factor with a reference point μ0 defined in the next section.
The perturbative scale dependence in both the MS and
RI-MOM schemes with Nf ¼ 3 and 4 flavors is shown
in Fig. 10.

C. Fits of nonperturbative and discretization effects

With known perturbative running, we can separate scale-
independent renormalization from lattice artifacts and
nonperturbative effects. Correlation functions computed
on a lattice are subject to discretization effects that may
break rotational symmetry at short distances, which are
relevant for the large momenta used in the nonperturbative
renormalization. In addition, they may have nonperturba-
tive contributions that complicate matching with perturba-
tive calculations. Below, we follow closely the analysis
performed in Ref. [35] and extract the scale-invariant
renormalization constants ZSI

I from a fit

Zlat¼ZSI
I ðμ0;aÞ

�
ZRI
I ðjpjÞ

ZRI
I ðμ0Þ

�
pert

þΔZdisc
I ðakp½k�ÞþΔZNP

I ðp2Þ;

ð5:17Þ
where ZSIðμ0; aÞ is the momentum-independent lattice
renormalization constant, ZRI;pert

I ðμÞ is the perturbative

running of QI in the RI-MOM scheme and ΔZdisc;NP
I

encapsulates discretization and nonperturbative correc-
tions. In our calculation with OðaÞ-improved action, the
discretization effects must scale as OððapÞ2Þ,

ΔZdisc
I ðakpi½k�Þ ¼ AðapÞ2 þ ½B1ðapÞ2 þ B2ðapÞ4�

a4p½4�

ðapÞ4 ;

ð5:18Þ

where we also include the hypercubic invariant ∝ p½4� (see
Fig. 11),

p½2k� ¼
X
μ

p2k
μ ; ð5:19Þ

that breaks the rotational symmetry Oð4Þ→Hð4Þ for
n ≠ 0, 1.
Although the vertex functions (5.4) are computed with

“exceptional” kinematics pO ¼ 0 (see Fig. 7), they do not
have “pole” contributions ∝ 1=p2 because, unlike the
pseudoscalar density operator that can couple to pions,
the six-quark operators QI can couple only to two-baryon
(B ¼ 2) states with masses M ≥ 2mN . However, the non-
perturbative contributions are added to Eq. (5.17),

ΔZNPðp2Þ ¼ C
p2

; ð5:20Þ

to account for effects of the dimension-two gluon con-
densate [36–42] that may be present in the quark
propagators used to amputate the Green’s functions.
Contributions of condensates to correlation functions are
scale-dependent and should be evaluated using OPE as in,
e.g., Ref. [43]. Such analysis has not been performed yet,
and the correction in Eq. (5.20) should be regarded as a
phenomenological assumption. Another potential source of
∝ 1=p2 effects are nonperturbative infrared contributions
due to potential low-momentum subdiagrams, which may
appear due to the same arguments as in Ref. [44].

FIG. 10. Perturbative running of the operators QI at the two-
loop level [17] in the RI-MOM scheme with Nf ¼ 3 (solid) and
Nf ¼ 4 (dotted) and in the MS scheme with Nf ¼ 3 (dashed) and
Nf ¼ 4 (dash-dotted). The one-loop results are shown with thin
solid lines. The reference point is μ1 ¼ 1.5 GeV ≈mc.

FIG. 11. Normalized H(4) invariant p½4�=ðp2Þ2 [see Eq. (5.19)]
for the lattice momenta included in the analysis.
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We perform uncorrelated fit (5.17) with five parameters
(ZSI

I , and A, B1;2, C) to the lattice data Zlat
I ðpÞ for varying

sets of momenta p, and two examples are shown in Fig. 12.
To keep discretization errors omitted from Eq. (5.18)
as small as possible, we include only momenta p that
interpolate between the 3d- and 4d-diagonals,

pμ ¼ ð�k1;�k2;�k2; k2Þ; k1 ≤ k2;

k1 ¼ a−1
�
0…

π

2

�
¼ ð0…2.7Þ GeV;

k2 ¼ a−1
�
π

6
…

π

2

�
¼ ð0.9…2.7Þ GeV; ð5:21Þ

FIG. 12. Fits of lattice renormalization constants ZlatðpÞ to the form (5.17), for 1.6 ≤ p ≤ 4.5 GeV (left) and 2.0 ≤ p ≤ 3.5 GeV
(right). For each operator, the figures show the ZSI contribution together with the ∝ ðapÞ2 discretization correction (dashed lines),
plus the nonperturbative correction (5.20) (solid lines), plus the discretization corrections (5.18) (crosses) vs lattice values Zlat

(open symbols). The gray bands indicate the fit regions. The star symbols on the left of each panel show the final ZSI values and their
statistical uncertainties.
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The lowest rotational symmetry-breaking contribution ∝
p½4�=p4 to Eq. (5.18) is shown in Fig. 11. Values Zlat

I ðpÞ at
Hð4Þ-equivalent momenta p are averaged. The fit range
p2
min ≤ p2 ≤ p2

max is varied with pmin ¼ 1.6; 2.0 GeV and
pmax ¼ 3.5, 4.0, 4.5 GeV, resulting in 27 ≤ nmom ≤ 61

lattice momentum data points that are distinct with respect
to Hð4Þ transformations. We use uncorrelated χ2 values to
evaluate goodness-of-fit and estimate systematic uncertain-
ties from variation of the results with the fit range and the
order of the perturbation theory. Although correlated fits
would be preferred, we resort to uncorrelated fits, because
with a small number of independent configurations
Ncfg ¼ 30, it is difficult to ensure that covariance matrices
of sizes nmom ∼ Ncfg are estimated with uniform reliability.
The results of the fits for all fit windows using ZRI;pert

from one- and two-loop perturbative calculations ZRI;pert

are collected in Table IV, together with the resulting
uncorrelated χ2 values. In order to obtain the final value,
we average the central values over all the fitting methods as
described in Sec. B 3. In the last row of Table IV, we show
the final conversion coefficients between the lattice bare
and MS-renormalized operators QI that take into account
the difference between Nf ¼ 3 and Nf ¼ 4 QCD pertur-
bative running [see Sec. V B and Eq. (5.16)].
Our lattice vertex functions (5.4) are computed with

nonzero quark masses but matched to massless perturbation
theory. Since we analyze only one ensemble, we cannot
take the chiral limitmu=d;s → 0 and our renormalization can
potentially have systematic bias due to quark mass depend-
ence. While the light quark masses are small and are
unlikely to have significant effect, the strange quark mass is
larger and it may bias our results. Although we cannot

directly assess this quark mass dependence with data at
only one combination of quark masses, we can make a
rough estimate of its magnitude from the quark mass
dependence of the axial-vector renormalization constant
ZA. Since the operator renormalization constants in our
analysis are multiplied by factors ∝ Z3

q ∝ Z3
A, we can

estimate their corresponding quark-mass correction as

δZI

ZI
≈ 3

δZA

ZA
; ð5:22Þ

where the correction δZA due to the mu=d;s → 0 limit may
be conservatively estimated as

δZA ≈mphys
s · max

����� ∂ZA

∂ml

����;
���� ∂ZA

∂ms

����
	
: ð5:23Þ

Using the data from Ref. [45] obtained with a very similar
fermion action and lattice spacing, we find from Eq. (5.22)
that δZI=ZI ≈ 1.7%. Considering that this (likely overesti-
mated) correction is small compared to the uncertainties
quoted in Table IV, we neglect it in the present analysis.

VI. RESULTS

The four indepdent nonvanishing nn̄ matrix elements in
the isospin limit are given in terms of the above bare matrix
elements and renormalization factors as

MMS
I ð2 GeVÞ ¼ C

MSðNf ¼ 4Þ←lat
I ð2 GeVÞMlat

I : ð6:1Þ

Combining the uncertainties from Mlat
I and ZSI

I in quad-
rature gives the result

TABLE IV. Summary of renormalization constants from fits in different q ranges and with one- and two-loop QCD running, with
statistical uncertainties and uncorrelated χ2-values. The first two columns show the fit ranges and the perturbative orders of QCD
matching. The last two rows show the wm-weighed (B13) final values with statistical and systematic uncertainties for ZSI

I (5.17) and the
conversion coefficients between the lattice bare values and the MSð2 GeVÞ scheme.

p [GeV] Zpert ndof Q1 χ2 Q2 χ2 Q3 χ2 Q4 χ2 Q5 χ2

1.6∶3.5 1L 28 0.425(30) 31.7 0.378(36) 25.6 0.369(39) 33.8 0.615(55) 22.3 0.509(47) 27.4
2L 28 0.432(31) 32.0 0.380(37) 25.5 0.372(39) 33.9 0.646(58) 23.0 0.519(48) 27.7

1.6∶4.0 1L 42 0.458(11) 37.8 0.403(14) 33.3 0.421(11) 47.1 0.605(14) 28.2 0.526(11) 35.6
2L 42 0.471(11) 38.4 0.405(14) 33.2 0.426(11) 47.9 0.650(15) 29.6 0.544(11) 37.4

1.6∶4.5 1L 56 0.462(10) 69.3 0.409(08) 68.4 0.427(08) 83.8 0.622(14) 50.2 0.530(07) 62.9
2L 56 0.477(10) 72.1 0.411(08) 68.3 0.433(08) 86.1 0.673(15) 55.0 0.551(08) 68.5

2.0∶3.5 1L 22 0.508(75) 24.6 0.469(61) 19.0 0.434(68) 28.9 0.763(91) 17.1 0.602(79) 21.9
2L 22 0.523(76) 24.6 0.471(62) 19.0 0.440(69) 28.9 0.826(98) 17.1 0.626(82) 21.7

2.0∶4.0 1L 36 0.476(15) 30.7 0.433(17) 25.3 0.452(14) 38.0 0.638(32) 24.6 0.559(24) 29.2
2L 36 0.494(16) 30.7 0.435(17) 25.3 0.460(14) 38.4 0.698(35) 24.7 0.586(25) 29.6

2.0∶4.5 1L 50 0.477(12) 60.4 0.433(10) 55.7 0.451(10) 70.4 0.656(21) 43.5 0.556(13) 53.1
2L 50 0.495(13) 62.1 0.435(10) 55.6 0.459(11) 71.7 0.720(23) 45.6 0.585(14) 55.9

ZSI
I ðμ0Þ ðδstatÞðδsysÞ 0.471(15)(15) 0.420(17)(17) 0.437(16)(20) 0.644(22)(35) 0.543(16)(19)

CMS←lat
I ðδstatÞðδsysÞ 0.433(14)(14) 0.429(17)(17) 0.425(15)(20) 0.520(18)(28) 0.527(15)(19)
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MMS
1 ð2 GeVÞ ¼ −46ð13Þð2Þ × 10−5 GeV6

MMS
2 ð2 GeVÞ ¼ 95ð15Þð7Þ × 10−5 GeV6

MMS
3 ð2 GeVÞ ¼ −50ð10Þð6Þ × 10−5 GeV6

MMS
5 ð2 GeVÞ ¼ −1.06ð45Þð15Þ × 10−5 GeV6; ð6:2Þ

where the first uncertainty is the combined statistical
uncertainty in Mlat

I and ZI and the second uncertainty is
the combined systematic uncertainty associated with varia-
tion in fit window described in Secs. IV and V and
Appendix B 3. Quark mass effects lead to negligible
systematic uncertainties because of the nearly physical
pion mass used [20].10 Uncertainties in the determination
of the lattice spacing in Ref. [20] are negligible compared
to the fitting uncertainties in Eq. (6.2). Finite-volume
effects have been estimated in chiral pertubation theory
to be ≲1% effects for the volume used for this study [24].
Discretization effects are expected to be the largest
unquantified systematic uncertainty that are neglected in
this work. Chiral symmetry leads to OðaÞ improvement of
the fermion action, and discretization effects on meson
observables for these configurations have been seen to be
percent-level [20]. Discretization effects will be studied and
removed from future calculations with multiple lattice
spacing.
Final results for the n-n̄ transition matrix elements with

statistical and systematic uncertainties added in quadrature
and given in Table V. These results can be directly
compared with MIT bag model results previously used
to relate experimental results to BSM couplings [11] as
shown in Table V. Two different sets of MIT bag model
parameters are used to calculate n-n̄ transition matrix

elements in Ref. [11]: in fit A, the up and down quark
masses are set to zero, while in fit B, the up and down quark
masses are set to 108 MeVand a different value is used for
the “bag radius” parameter. MIT bag model results for
both fit A and fit B are compared to LQCD results in
Table V. In LQCD, the electroweak-nonsinglet matrix
element M5 is more than an order of magnitude smaller
than the electroweak-singlet matrix elements. This fea-
ture is captured by the MIT bag model, although the sign
of M5 differs between the two bag model parametriza-
tions. LQCD results for the electroweak-singlet operator
matrix elements M1, M2, and M3 are larger than MIT
bag model results with both parametrizations by factors
of 4–8. This difference between LQCD and MIT bag
model results is significantly larger than the differences
between MIT bag model results with different parameter
values.
The effective Lagrangian for n-n̄ oscillations given in

Eq. (2.30) can be used to parameterize the n-n̄ vacuum
transition rate for a generic BSM theory as

τ−1n-n̄¼ jMn-n̄j

¼ 1

Λ5
BSM

���� X
I¼1;2;3

ðC̃I −ηC̃P
I ÞMI þðη2C̃5−ηC̃P

5 ÞM5

����;
ð6:3Þ

where η ¼ v2=Λ2
BSM is the ratio of the Higgs VEV and

the BSM scale squared. Both the matrix elements M and
the Wilson coefficients C̃ðPÞ are scheme- and scale-
dependent, and these dependencies must cancel in τn-n̄.
Below we present results with coefficients C̃ defined in
MS scheme. The Wilson coefficients in Eq. (6.3) are
predicted to be nonzero in various BSM theories, see
Refs. [46–48] for reviews and further references, and are
calculable at tree-level in QCD at BSM scales μ ¼ ΛBSM.
The n-n̄ vacuum transition rate is given in terms of the
above results by

TABLE V. Matrix element results for the chiral basis operators with independent nonzero matrix elements in the isospin limit. The
second column shows the renormalized matrix elements at a scale of 2 GeV and total uncertainty including statistical and systematic
uncertainties from the bare matrix elements and nonperturbative renormalization factor added in quadrature. Renormalized results use
the MS scheme with Nf ¼ 4 active quark flavors and are obtained through nonperturbative RI-MOM renormalization and perturbative
matching to MS. The third column shows the corresponding MS renormalized matrix elements and uncertainties after renormalization
group evolution from 2 GeV to a higher scale of 700 TeV. The fourth and fifth columns show comparisons with the results of the same
matrix elements in the MIT bag model from Ref. [11] as described in the main text.

Operator MMS
I ð2 GeVÞ, MMS

I ð700 TeVÞ, MMS
I ð2 GeVÞ

MIT bag A
MMS

I ð2 GeVÞ
MIT bag B

Q1 −46ð13Þ × 10−5 GeV6 −26ð7Þ × 10−5 GeV6 4.2 5.2
Q2 95ð17Þ × 10−5 GeV6 144ð26Þ × 10−5 GeV6 7.5 8.7
Q3 −50ð12Þ × 10−5 GeV6 −47ð11Þ × 10−5 GeV6 5.1 6.1
Q5 −1.06ð48Þ × 10−5 GeV6 −0.23ð10Þ × 10−5 GeV6 −0.84 1.6

10The renormalization constants require taking the limit
mu=d;s → 0 for matching to their exact perturbative counterparts.
The associated uncertainty is estimated in Sec. V to be small and
is neglected in the present study.
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τ−1n-n̄ ¼ ð10−9 s−1Þ
�
700 TeV
ΛBSM

�
5

j4.2ð1.1ÞðC̃MS
1 ðμÞ − ηC̃MS;P

1 ðμÞÞ − 8.6ð1.5ÞðC̃MS
2 ðμÞ − ηC̃MS;P

2 ðμÞÞ

þ 4.5ð1.1ÞðC̃MS
3 ðμÞ − ηC̃MS;P

3 ðμÞÞ þ 0.096ð43Þðη2C̃MS
5 ðμÞ − ηC̃MS;P

5 ðμÞÞjμ¼2 GeV: ð6:4Þ

To make the prefactor dimensionless, we use the “refer-
ence” normalization scale of 700 TeV. Estimates based on
Eq. (6.4) put BSM theories with scales of ΛBSM ∼
700 TeV and Oð1Þ matching coefficients within reach
of next-generation experiments that will be able to detect
baryon number violation with τ−1n-n̄ ≥ 109 s [49–52]. To
more precisely assess the expected signatures of theories
with B-violation at ΛBSM ∼ 700 TeV, the operators can be
evolved to μ ¼ ΛBSM using the results of Refs. [16,17],

MMS
1 ð700 TeVÞ ¼ −26ð7Þð1Þ × 10−5 GeV6

MMS
2 ð700 TeVÞ ¼ 144ð23Þð11Þ × 10−5 GeV6

MMS
3 ð700 TeVÞ ¼ −47ð9Þð6Þ × 10−5 GeV6

MMS
5 ð700 TeVÞ ¼ −0.23ð10Þð3Þ × 10−5 GeV6: ð6:5Þ

Leading-order one-loop running from 2 GeV to 700 TeV
modifies the dominant matrix elements M1;2;3 by up to
59%. At next-to-leading-order (NLO), two-loop running
modifies M1;2;3 by 4%–9% and one-loop scheme matching
modifies them by 2%–8%. Neglected next-to-next-to-
leading-order perturbative renormalization effects lead to
unknown systematic uncertainties estimated to be at the
level of 1%–3% (as the square of the relative NLO
effects). The n-n̄ transition rate can be expressed in terms
of the matrix elements at this scale as

τ−1n-n̄¼ð10−9 s−1Þ
�
700TeV
ΛBSM

�
5

j2.4ð0.7ÞðC̃MS
1 ðμÞ−ηC̃MS;P

1 ðμÞÞ

−12.9ð2.3ÞðC̃MS
2 ðμÞ−ηC̃MS;P

2 ðμÞÞ
þ4.2ð1.0ÞðC̃MS

3 ðμÞ−ηC̃MS;P
3 ðμÞÞ

þ0.021ð9Þðη2C̃MS
5 ðμÞ−ηC̃MS;P

5 ðμÞÞjμ¼700TeV: ð6:6Þ

This result can be combined with tree-level BSM matching

results for CMS
I ð700 TeVÞ to extract constraints on BSM

theory parameters from experimental constraints on n-n̄
oscillations.

VII. CONCLUSION

We have performed the first lattice QCD calculation of
the renormalized neutron-antineutron transition matrix
elements needed to extract BSM physics constraints from
n-n̄ oscillation experiments. The precision of our final
results including statistical and most systematic uncertain-
ties is 15%–30% for the electroweak-singlet matrix

elements M1, M2, and M3, which can be straightfor-
wardly improved in future calculations. Several important
sources of systematic uncertainty are under control for the
first time, most importantly nonperturbative renormaliza-
tion, chiral symmetry violations, excited state contamina-
tion, and quark mass dependence. The two sources of
systematic uncertainty that are not completely controlled in
this pioneering calculation are finite volume and discreti-
zation effects. To summarize our control of common
systematic uncertainties in lattice calculations:

(i) The (nearly exact) physical pion mass mπ ¼
139.2ð4Þ MeV in our calculation eliminates the need
for chiral extrapolation, which would otherwise
introduce systematic uncertainties associated with
low-energy effective theory. In addition, the large
difference of our results from the MIT bag model
may have a similar origin as the strong suppression
of proton decay matrix elements found in the chiral
bag model [53]; therefore, using the realistic light
quark masses in our calculation is arguably the most
important systematic effect we have under control.

(ii) The chirally symmetricMöbius domain wall fermion
action used to generate these gauge field ensembles
by the RBC/UKQCD collaborations [20] and com-
pute neutron-antineutron matrix elements in this
work ensures that the 14 distinct jΔBj ¼ 2 operators
do not mix with each other and renormalization and
conversion of lattice operators to MS scheme is free
from associated uncertainties. In particular, the non-
perturbatively computed operator mixing matrix in
RI-MOM scheme is diagonal up to Oð10−3Þ correc-
tions, which are two orders of magnitude below other
uncertainties and can be safely neglected. The iden-
tical action is used for valence quarks, so this is a fully
unitary calculation.

(iii) Excited-state effects are accounted for using corre-
lated two-state fits with 10 different values of tsep
and different combinations of nucleon source and
sink smearing. The energy gaps are extracted from
correlated fits to nucleon two-point functions. Since
we have limited statistics for such a large number of
τ, tsep points included in correlated fits, we use
“shrinkage” estimators to obtain well-conditioned
covariance matrices. We obtain systematic errors by
varying the fit ranges and averaging their results
weighted by the quality-of-fit figure.

(iv) Renormalization effects are included through NPR
in an RI-MOM scheme as described in Sec. V and
one-loop matching to MS using the results of
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Ref. [17]. Some discretization effects in NPR results
such as rotational symmetry breaking and ðapÞ2
dependence are studied and removed by fitting the
lattice data with different quark momentum scales
and orientations, varying scale ranges, and compar-
ing to one- and two-loop perturbative QCD running.
One presently uncontrolled systematic uncertainty in
our renormalization procedure is the quark mass
dependence. However, a rough estimate in Sec. V
suggests that this uncertainty should not exceed
1.7%, which is below our current level of precision;
this uncertainty will be studied in the future.

(v) Although we do not control finite-volume effects
directly in this study on a single ensemble, we expect
them to be small. First, finite-volume effects are
suppressed with e−mπL where mπL ∼ 3.9 for the
volume used for this study, which is generally con-
sidered sufficiently large for nucleon structure calcu-
lations [54]. Second, chiral perturbation theory
calculations in Ref. [24] estimate that finite-volume
effects lead to corrections below 1% to MI for the
volumeused in this study. Future lattice calculations at
additional volumes couldbeused to test this prediction
and perform an infinite-volume extrapolation.

(vi) Discretization effects are the least-controlled sys-
tematic uncertainty in our current work. Lattice
QCD calculations with finer lattice spacing(s) in
the immediate future will be used to fully quantify
and remove discretization effects that are not con-
trolled in this calculation. However, it is reasonable
to assume that discretization effects are small com-
pared to our current combined uncertainty from
other sources. First, the chirally-symmetric fermion
action that we use is automatically OðaÞ-improved.
Second, the meson decay constants computed on
this ensemble (before finite volume and discretiza-
tion corrections are applied) are within 0.6% of the
physical values (fπ¼131.1ð4Þ, fK ¼ 156.4ð4Þ GeV
[20] compared to PDG values fπ ¼ 130.4ð2Þ, fK ¼
156.2ð7Þ GeV [55]). Finally, the nucleon effective
mass and energy dependence on the momentum is in
close agreement with the continuum limit [56].

Our renormalized lattice QCD results for n-n̄ transition
matrix elements provide a significant step forward in
accuracy and reliability compared to previous results from
quark models and preliminary lattice studies. The matrix
elements predicted by QCD are found to be 4–8 times
larger than the predictions of the MIT bag model for the
dominant electroweak-singlet operators. This difference
between our lattice results and previously available bag
model results is much larger than the statistical or system-
atic uncertainties present in this calculation and is also
much larger than the expected size of finite-volume effects
that have not yet been studied directly. There is less
certainty about the size of discretization artifacts; however,

the automatic OðaÞ improvement due to the chiral sym-
metry as well as minuscule discretization corrections in the
meson decay constants, nucleon mass and dispersion
relation make large discretization effects in the n-n̄ matrix
elements very unlikely.
The difference in MI between the bag model and our

lattice results leads to increased experimental sensitivity to
baryon-number violating interactions that may cause n-n̄
oscillations. Numbers of events that can be observed both
in quasi-free neutron oscillation experiments and under-
ground nuclear decay experiments are proportional to
τ−2n-n̄ ∝ jMIj2; therefore, the ×ð4…8Þ larger values of the
n-n̄ matrix elements found in our work lead to ×ð16…64Þ
increase in the event rates. Since our results are obtained
from ab initio QCD calculations in a model-independent
way, they must be used for more precise assessments of the
potential of planned n-n̄ oscillation searches as well as
stronger constraints on theories of baryon-number violation
and baryogenesis in the future.
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APPENDIX A: C-, P-, T SYMMETRIES AND
NUCLEON STATES

Fermion field transformations under C, P, and T are
given by

PψxP−1 ¼ ηPγ4ψPðxÞ; Pψ̄xP−1 ¼ η�Pψ̄PðxÞγ4; ðA1Þ

CψxC−1 ¼ ηCCψ̄T
x ; Cψ̄xC−1 ¼ η�Cψ

T
xC; ðA2Þ

T ψxT −1 ¼ ηTTψTðxÞ; T ψ̄xT −1 ¼ −η�T ψ̄T ðxÞT; ðA3Þ

where C is given in Eq. (2.4) and the spin matrix T is

T ¼ ½γ1γ3�Euc ¼ T� ¼ −TT ¼ −T† ¼ −T−1; ðA4Þ

and has the property

Tγ�μT† ¼ γμ; Tσ�μνT−1 ¼ −σμν: ðA5Þ

Both the color-symmetric and antisymmetric quark bilin-
ears transform as

PðψTCPR;LψÞP−1 ¼ −η2PðψTCPL;RψÞ; ðA6Þ

CðψTCPR;LψÞC−1¼ η2Cðψ̄CPL;Rψ̄
TÞ¼�η2CðψTCPR;LψÞ†;

ðA7Þ

T ðψTCPR;LψÞT −1 ¼ η2TðψTCPL;RψÞ; ðA8Þ

from which the transformation properties for the six-quark
operators (2.19)–(2.21) follow.
In order to find the effect of these symmetries

on the nucleon states and matrix elements of the
operators, we spell out explicitly the neutron interpolating
operators,

nð�Þ
α ¼ εijk

�
uTi Cγ5

1� γ4
2

dj

�
dk;

n̄ð�Þ
α ¼ ðn†γ4Þα ¼ εijkd̄k

�
d̄jC†γ5

1� γ4
2

ūTi

�
; ðA9Þ

which transform as

Pnð�Þ
x P−1 ¼ η3Pγ4n

ð�Þ
PðxÞ; Pn̄ð�Þ

x P−1 ¼ η�3P n̄ð�Þ
PðxÞγ4;

Cnð�Þ
x C−1 ¼ −η3CCn̄

ð∓ÞT
x ; Cn̄ð�Þ

x C−1 ¼ −η�3C nð∓ÞT
x C;

T nð�Þ
x T −1 ¼ η3TTn

ð�Þ
TðxÞ; T n̄ð�Þ

x T −1 ¼ −η�3T n̄ð�Þ
T ðxÞT:

ðA10Þ

which are used to construct (anti)neutron states on a lattice.
This construction is more natural in the standard (Dirac-
Pauli) basis in which the γ4 matrix is diagonal. It is related
to the de Grand–Rossi basis commonly used in lattice
calculations by the transformation

ψ std ¼
1ffiffiffi
2

p

0
BBB@

−1 −1
1 1

1 −1
−1 1

1
CCCAψdGR ðA11Þ

The operators (A9) create the neutron and antineutron
states with definite ẑ-spin as

jnðþÞ
þ1=2i ¼ nðþÞ†

1 jvaci; jn̄ð−Þþ1=2i ¼ −nð−Þ4 jvaci;
jnðþÞ

−1=2i ¼ nðþÞ†
2 jvaci; jn̄ð−Þ−1=2i ¼ n̄ð−Þ3 jvaci; ðA12Þ

which can be found to transform as

PjnðþÞ
�1=2i ¼ η�3P jnðþÞ

�1=2i; Pjn̄ð−Þ�1=2i ¼ −η3Pjn̄ð−Þ�1=2i;
CjnðþÞ

�1=2i ¼ −η�3C jn̄ð−Þ�1=2i; Cjn̄ð−Þ�1=2i ¼ −η3CjnðþÞ
�1=2i;

T jnðþÞ
�1=2i ¼ ∓η�3T jnðþÞ

∓1=2i; T jn̄ð−Þ�1=2i ¼ ∓η3T jn̄ð−Þ∓1=2i:
ðA13Þ

These states are used to determine the properties of the n-n̄
matrix elements in Sec. II D and define them in terms of
three-point functions in Sec. III.

APPENDIX B: STATISTICAL ANALYSIS

This work uses techniques such as bootstrap resampling
that are common to lattice calculations as well as tools that
are less common and detailed below: shrinkage estimation
of covariance matrices, VarPro χ2-minimization, and
weighted averaging of multiple fits with different numbers
of degrees of freedom.

1. Shrinkage estimation of covariance matrices

Correlated χ2-fits require sample covariance matrices
that are difficult to estimate when the number of data
samplesN is limited compared to the number of data points
K, as in our case. In order to estimate covariance matrices
that can be safely inverted, we use the “optimal shrinkage
estimator” described in Refs. [29]. Shrinkage involves
replacing the covariance matrix with a linear combination
of a well-conditioned “shrinkage target” and the original
covariance matrix. It has been shown that expectation
values of “shrunk” covariance matrices are closer to the
true covariance matrix than the sample covariance matrix
[28]. The condition number of the covariance matrix is also
improved by shrinkage and estimates of χ2 relying on the
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inverse covariancematrix aremore robust. Shrinkage targets
that better approximate the true covariance matrix naturally
lead to better estimates of the true covariance matrix from a
finite sample, but any prescription for defining the “shrink-
age parameter” introduced below that leads to zero shrink-
age in the infinite statistics limit will provide a consistent
estimator for the true covariance matrix.
The estimator in Ref. [29] uses a shrinkage target

proportional to the K × K identity matrix I where K is
the number of data points. However, correlation functions
in lattice calculations vary over orders of magnitude if a
wide range of tsep are used for fitting. To transform the
covariance matrix into a form where the shrinkage target of
Ref. [29] more closely resembles the true covariance
matrix, we normalize the data by subtracting the mean
and diving by the square root of the variance. For data
points xiα where i ¼ 1;…; N labels decorrelated statistical
samples and α ¼ 1;…; K labels data points (i.e., t in two-
point function fits and τ, tsep in three-point function fits),
define normalized data points yiα and a normalized sample
correlation matrix ραβ as

yiα ¼
xiα − x̄αffiffiffiffiffiffiffi

Sαα
p ; ραβ ¼

Sαβffiffiffiffiffiffiffiffiffiffiffiffiffi
SααSββ

p ; ðB1Þ

where the sample mean and covariance are defined as

x̄α¼
1

N

XN
i¼1

xiα; Sαβ¼
1

N−1

XN
i¼1

ðxiα− x̄αÞðxiβ− x̄βÞ: ðB2Þ

The correlation matrix with optimal shrinkage is given by

ρ� ¼ ρðλ�Þ ¼ λ�μI þ ð1 − λ�Þρ; ðB3Þ

where μ ¼ 1
K Tr½ρ� ¼ 1 is the mean of the spectrum of ρ and

the optimal shrinkage parameter λ� is defined to minimize
the expected Frobenius norm kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½XXT �

p
of the

difference Efmin
λ
kρðλÞ − ϱk2g between the estimator ρ�

and the true correlation matrix ϱ. A sample estimator for the
optimal shrinkage parameter is given in Ref. [29]

λ� ¼ minfb̄2; d2g
d2

; ðB4Þ

b̄2 ¼ 1

N2

X
n

X
αβ

ðyiαyiβ − ραβÞ2; ðB5Þ

d2 ¼
X
αβ

ðραβ − μδαβÞ2: ðB6Þ

The quantity d2 estimates the dispersion of the eigenvalues
of the sample correlation matrix ρ, which typically has a
wider spectrum and correspondingly larger (worse) con-
dition number compared to the true correlation matrix ϱ.

The optimal estimator (B3) “shrinks” the spectrum by
emphasizing the diagonal elements and makes the matrix
Σ� better-conditioned, resulting in more statistically stable
χ2 values in correlated fits. Multiplying both sides of
Eq. (B3) by the normalization factor in Eq. (B1) yields
the corresponding estimator for the covariance matrix

Σ�
αβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SααSββ

p
ρ�αβ ¼ λ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SααSββ

p
δαβ þ ð1 − λ�ÞSαβ;

Σ� ¼ λ�diagðSÞ þ ð1 − λ�ÞS: ðB7Þ

This shrinkage prescription is, therefore, equivalent to an
interpolation between a fully correlated fit with λ� ¼ 0 (no
shrinkage), and an uncorrelated fit with λ� ¼ 1 (full shrink-
age). Although this prescription does not provide the strictly
optimal λ� minimizing the distance betweenΣ� andΣ, it gives
a simple practical prescription for a stable and consistent
choice of the shrinkage parameter.Optimal closeness between
ρ� and ϱ suggests that Σ� should provide an acceptable
approximation of Σ that is better conditioned than S.

2. VarPro χ 2-minimization

Fluctuations of the sample meanGðtÞ ¼ 1
N

P
iGiðtÞ of an

ensemble of i ¼ 1;…; N correlation functions become
Gaussian distributed as N → ∞ by central limit theorems.
The χ2 value associated with the log-likelihood of the mean
correlation function becomes

χ2ðE; ZÞ ¼
X
t;t0

�
GðtÞ −

X
n

ZnfnðE; tÞ
�

× Cðt; t0Þ
�
Gðt0Þ −

X
m

ZmfmðE; t0Þ
�
; ðB8Þ

where fnðEn; tÞ ¼ e−Ent for a two-point correlation func-
tion and more complicated correlation functions differ only
in that fn has more parameters. The term quadratic in ZnZm
can be turned into a sum of squares by transforming to the
eigenbasis of

VnmðEÞ ¼
X
t;t0

fnðE; tÞC−1ðt; t0ÞfmðE; t0Þ: ðB9Þ

Since Vmn is a symmetric positive-definite matrix, it can be
diagonalized an orthogonal transformation, which is equiv-
alent to a change of variables in the likelihood function with
a trivial Jacobian, making the eigenvalues of Vmn new
independent fit variables. The minimum of χ2 is determined
by vanishing derivatives with respect to these eigenvalues.
This provides a system of constraints that can be solved to
determine the overlap factors

Zn ¼
X
t;t0

GðtÞC−1ðt; t0Þ
X
m

fmðt0; EÞVmnðEÞ: ðB10Þ

This solution can now be substituted back into Eq. (B8) to
give the VarPro χ2 function of the energies E only,
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χ2VPðEÞ ¼
X
t;t0

GðtÞ
�
C−1ðt; t0Þ −

X
n;m

X
t00

fnðt; EÞC−1ðt; t00ÞV−1
nmC−1ðt00; t0Þfmðt0; EÞ

�
Gðt0Þ: ðB11Þ

The En and Zn minimizing χ2 in Eq. (B8) can be obtaining
by determining the En that minimize χ2VP in Eq. (B11) and
then solving for Zn from Eq. (B10). More details and
general discussion can be found in Refs. [30,31].

3. Averaging over fits

Our analysis of nonperturbative renormalization and the
ground-state matrix elements involves fits over different
ranges of data points. The χ2 values of these fits cannot be
directly compared due to different numbers of degrees of
freedom Ndof ; instead, the quality of each fit Q can be
assessed with its p-value,

p ¼ Probðη < χ2Þ; η ∼ χ2Ndof
: ðB12Þ

In order to compare and average values from a family of fits
as well as estimate their stochastic and systematic uncer-
tainties in a “blind” fashion, we use the p-value above as a
proxy for the likelihood that these fits describe data. Thus,
for any parameter x extracted from a particular fit m as
xm � δxstatm , we use the combination of its statistical
uncertainty (estimated with bootstrap or jackknife) and
the p-value of the fit pm as the weight

wm ∝ pmðδxstatm Þ−2 ðB13Þ

to compute the “global” average value x̂ and its statistical
fluctuation δx̂stat,

x̂ ¼ hxiw ¼
P

mwmxmP
mwm

¼
P

mpmðδxstatm Þ−2xmP
mpmðδxstatm Þ−2 ; ðB14Þ

ðδx̂statÞ2 ¼ hðδxstatÞ2iw ¼
P

mwmðδxstatm Þ2P
mwm

¼
�P

mpmðδxstatm Þ−2P
mpm

�−1
; ðB15Þ

while the weighted deviation from the total average serves
as the estimate of the systematic uncertainty δxsys,

ðδx̂sysÞ2 ¼ hðx − x̂Þ2iw ¼
P

mwmðxm − x̂Þ2P
mxm

: ðB16Þ

The rationale for using the weight (B13) is that it
penalizes both bad fits (small pm) and unconstraining fits
(large statistical uncertainty δxstat typical of overfitting).
The ðδxstatÞ−2 factor is motivated by similarity to a
weighted average of independent data. However, since
all these fits are performed on the same data set, the
“global” stochastic uncertainty is computed as the inverse-
squared average (instead of the sum) of individual fit
uncertainties. The resemblance is especially evident if the
“likelihoods” of all the fits are the same, pm ¼ const.
Thus, the estimator (B15) is also somewhat robust with
respect to having similar or (nearly)duplicated fits in
the set.
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