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Gauge invariance requires even in the weak interactions that physical, observable particles are described
by gauge-invariant composite operators. Such operators have the same structure as those describing bound
states, and consequently the physical versions of the W�, the Z, and the Higgs should have some kind of
substructure. To test this consequence, we use lattice gauge theory to study the physical weak vector bosons
off shell, especially their form factor and weak radius, and compare the results to the ones for the
elementary particles. We find that the physical particles show substantial deviations from the structure of a
pointlike particle. At the same time the gauge-dependent elementary particles exhibit unphysical behavior.
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I. INTRODUCTION

Physical states have to be gauge invariant. This, almost
trivial, statement applies also to the weak interaction [1–8].
However, this has unexpected consequences: The elemen-
tary W�-boson, the Z-boson and the Higgs, i.e., the states
obtained from the fields in the Lagrangian, cannot describe
physical observable states,1 as they are not gauge invariant
beyond perturbation theory. Rather, equivalent gauge-
invariant states have to be constructed using composite
operators [2–7,9].
This is at first surprising, as a description of weak

interactions in experiments using the elementary particles
works out very well [10,11]. This contradiction has been
resolved by Fröhlich, Morchio and Strocchi [2,9]. For this,
they extended standard perturbation theory (PT). A double
expansion of the gauge-invariant composite operators in
both the Higgs vacuum expectation value (vev) and the
couplings yields that the composite states have on shell
essentially identical properties as the gauge-dependent
elementary degrees of freedom (d.o.f.). This, at first sight
very surprising result, has been confirmed in various lattice
calculations [12–15], and also extends to the rest of the
standard model [2,9]. For a review see [7].
However, it turns out that this is due to the quite special

structure of the standard model. In more general theories
this leads frequently to qualitative disagreement between

the gauge-invariant states and the elementary d.o.f. even on
shell [16,17]. This can again be treated with the same
double expansion [17], which will be dubbed gauge-
invariant perturbation theory (GIPT) here following [18].
Lattice results confirm both the qualitative disagreement
and the adequacy of GIPT on shell for such theories
[19–21]. This is again reviewed in [7].
However, in absence of any discovery of new physics,

these dramatic predictions cannot yet be tested experimen-
tally. But it would still be good to test such a fundamental
prediction of quantum gauge theories within the available
physics, i.e., the standard model. This is indeed possible.
While on shell a description in both terms agree, off shell
this is no longer necessarily the case. This will be discussed
in Sec. II. Such deviations need to be rather small, to be
consistent with existing data. But if these deviations should
be large enough to be observable in experiments they
constitute an additional standard-model background in new
physics searches, which has not yet been accounted for.
In the present exploratory study we are primarily

interested in the underlying mechanisms and orders of
magnitude. We will therefore study only the reduced weak
sector, i.e., the W�, the Z, and the Higgs, and drop the
remainder of the standard model. For this purpose, we use
a, in principle, reliable method to calculate correlation
functions, even of composite operators, in a manifest
gauge-invariant way: lattice simulations. We describe our
technical setup and details of these simulations in Sec. III.
Our primary observable is the form factor for the vector
bosons probed by a weak vector current.
The results are shown in Sec. V. From this quantity we

also extract the weak radius of the vector bosons, which are
consistent with an extended structure. The central result is
that, rather independent of the details, the observable weak
vector bosons have a size mr ≈ 2, i.e., about two Compton
wavelengths, see Fig. 12. This should be contrasted with
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1That for the parameters in the standard model they decay
is actually only a parametric effect, and has no implications for
this [7].
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the proton for which mr ≈ 5 holds. We discuss a possible
experimental setup to test this in Sec. V D. The form factor
of the gauge-dependent particles, on the other hand, shows
an unphysical behavior.
A secondary aim of this work is to test how well GIPT

works off shell, as it can also be applied in this case. This
would be very useful, as an analytical tool to treat these
composite operators off shell would allow us to include the
remainder of the standard model and access timelike
phenomena. Therefore, we compare the off-shell properties
of the vector bosons in Secs. IV and V to the GIPT
predictions to a particular order in the double expansion.
Our results show that off-shell substantial deviations can
appear, though quantitatively they depend on the param-
eters. We contrast these results with the ones from PT, i.e.,
the ones obtained from the elementary, gauge-dependent
d.o.f. The difference between both is a quantitative measure
of the subleading terms in the vacuum expectation value of
the Higgs.
From the results we conclude in Sec. VI that deviations

between a manifest gauge-invariant description and the one
using the elementary fields are, in principle, present and
observable. However, given the exploratory nature of the
present study, we would not take our numbers quantita-
tively serious yet. Still, as we also observe qualitative
differences, our results also suggest that momentum-
resolved form factors of the weak vector bosons are
candidates for an experimental investigation and tests of
both the underlying field theory as well as of GIPTas a tool.
For those who wish to skip the technical details of the

lattice computation, we refer to the theoretical background
in Sec. II as well as the results in Secs. IV B, V B, and V C,
and a possible experimental test setup in Sec. V D.

II. THEORETICAL BACKGROUND

A. Setup

We consider an SU(2) gauge theory with a complex
scalar doublet, i.e.,

L ¼ −
1

4
Wa

μνWa μν þ 1

2
tr½ðDμXÞ†ðDμXÞ�

− λ

�
1

2
tr½X†X� − v2

�
2

; ð1Þ

where Wa
μν ¼ ∂μWa

μ − ∂νWa
ν − gϵabcWb

μWc
ν is the field-

strength tensor with the gauge fields Wa
μ and the gauge

coupling g, Dμ ¼ ∂μ − igWa
μ
σa

2
is the covariant derivative

with the Pauli matrices σa. X is a matrix representation of
the scalar ϕ, i.e.,

X ¼
�
ϕ1 −ϕ†

2

ϕ2 ϕ†
1

�
; ð2Þ

where ϕi are the components of the usual complex scalar
doublet ϕ.
Besides the gauge symmetry there is a global SUð2Þc

symmetry acting only on the scalar, the custodial sym-
metry. The full symmetry transformations are

σaWa
μðxÞ
2

¼WμðxÞ→GðxÞWμðxÞGðxÞ†þ
i
g
ð∂μGðxÞÞGðxÞ†

ð3Þ

XðxÞ → GðxÞXðxÞM†; ð4Þ

where GðxÞ ∈ SUð2Þ and M ∈ SUð2Þc.
The classical potential allows for a Brout-Englert-Higgs

effect. The parameters will be chosen below to have this
effect, and to have a phenomenology of the type encoun-
tered in the standard model. Thus, in a PT setting standard
methods [10] yield that the three W receive a mass mW by
absorbing 3 d.o.f. of the scalar field, leaving only a single,
massive (Higgs) scalar with mass mH. Note, that because
there is no QED, the threeW are degenerate, and the would-
be Z is the ordinary third component. We do not perform
the usual base rotation to generateW� states [10], and thus
our W states remain pure weak eigenstates.

B. The gauge-invariant weak vector boson

We now shift to a discussion of the physical, i.e.,
composite states. These need to be constructed such that
they are nonperturbatively gauge invariant, i.e., including
the Gribov-Singer ambiguity, see [7] for details.
A vector custodial triplet is a suitable gauge-invariant

replacement for the gauge-dependent W-bosons [2,9].
A possible nonperturbative gauge-invariant composite
operator is

Oā
μðxÞ ¼ tr

�
σā

2

XðxÞ†ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detXðxÞp Dμ

XðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detXðxÞp

�
; ð5Þ

where ā ¼ 1, 2, 3, is an index belonging to the custodial
symmetry group. In principle, such an operator requires
genuine nonperturbative methods to evaluate.2 This will be
done later using lattice methods to address our primary aim.

C. The properties of the weak vector boson in GIPT

For our secondary aim, GIPT [2,7,9] allows for an
analytical evaluation of this operator. This requires us to
switch to a gauge with explicit vacuum expectation value,
e.g., a ’t Hooft gauge [10]. Then, we split the matrix X as

XðxÞ ¼ vΩþ χðxÞ; ð6Þ

2There is also the issue of operator mixing, to which we will
turn in Sec. II F.
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where Ω ∈ SUð2Þ, v is the vev, and χðxÞ is a matrix
representation of the fluctuations. The operator (5) is then
expanded in both the vev v and the couplings. Keeping for
the moment all orders in the coupling, the leading order in v
yields [2,7]

Oā
μðxÞ ¼ −ig tr

�
σā

2
Ω† σ

a

2
Ω
�
Wa

μðxÞ þOðv−1Þ

≡ CāaWa
μðxÞ þOðv−1Þ; ð7Þ

with Cāa ¼ −ig tr½σā
2
Ω† σa

2
Ω�. If Ω ¼ 1, which is just a

special gauge choice, then Cāa ¼ −ig δāa. This shows that
to leading order in v the composite operator is equivalent to
all orders in the couplings g and λ to the elementary gauge
boson operator, thereby mapping custodial indices to gauge
indices.
For the propagator in position space this yields

hOā
μðxÞOb̄

νðyÞi ¼ CāaCb̄bhWa
μðxÞWb

νðyÞi þOðv−1Þ ð8Þ

¼CāaCb̄bhWa
μðxÞWb

νðyÞitlþOðv−1;g;λÞ; ð9Þ

where in the first line (8) still the full propagator appears.
Thus, at leading order in v and to all orders in g and λ the
poles on the left-hand side and the right-hand side coincide,
and on-shell properties of both particles match.
In the second line (9) at leading order in the double

expansion of the right-hand-side correlator yields that this
pole is atmW. Thus, the physical vector triplet has the same
mass as the unphysical gauge triplet, which has been
explicitly confirmed in lattice calculations [14,15]. This
can be repeated for the whole standard model [2,7,9],
yielding always a map between a physical (custodial) state
to one of the elementary (gauge-dependent) particles with
coinciding poles. So far, this has been confirmed on the
lattice also for the Higgs [14,15].
On shell, this result remains true to all orders in g and λ

because of the leading term in (8). However, the subleading
orders in v could affect this result, especially off shell.
Therefore, we will determine both sides of (8) in Sec. IV,
and compare them, as they only differ in the subleading
terms of the v expansion.

D. Form factor

Not only the particles have been investigated experi-
mentally in detail, but also their interactions [11]. Our
primary aim is therefore the computationally3 simplest such
interaction. This will be the 3-vector vertex of the physical
vector bosons, defined in momentum space as

Vā b̄ c̄
μνρ ðp; q; kÞ ¼ hOā

μðpÞOb̄
νðqÞOc̄

ρðkÞi; ð10Þ

where momentum conservation implies pþ qþ k ¼ 0.
Choosing a different custodial basis, this would be the
physical version of theWþW−Z vertex. However, this form
is more convenient for the lattice calculations, especially as
all three particles are identical without QED.
A general 3-vector vertex such as (10) can be decom-

posed in 14 Lorentz-tensor structures TðiÞ
μνρðp; q; kÞ and, for

the custodial SU(2) symmetry, one custodial rank three
tensor [22], i.e.,

Vā b̄ c̄
μνρ ðp; q; kÞ ¼ ϵā

0b̄0c̄0Dāā0
μμ0 ðpÞDb̄b̄0

νν0 ðqÞDc̄c̄0
ρρ0 ðkÞ

×
X14
i¼1

ΓðiÞðp; q; kÞTðiÞ
μ0ν0ρ0 ðp; q; kÞ; ð11Þ

whereDā b̄
μν ðpÞ is the Fourier transformation of the position-

space propagator (9), and the ΓðiÞðp; q; kÞ are the form
factors or dressing functions. We will here concentrate on a
single one of it, which will be motivated by our secondary
aim, GIPT.
Performing the same steps as in Sec. II B for (10) yields

Vāb̄c̄
μνρ ðp;q;kÞ¼CāaCb̄bCc̄chWa

μðpÞWb
νðqÞWc

ρðkÞiþOðv−1Þ
ð12Þ

¼CāaCb̄bCc̄chWa
μðpÞWb

νðqÞWc
ρðkÞitlþOðv−1;g;λÞ: ð13Þ

Thus the gauge-invariant 3-vector vertex is to lowest order
in v identical to the tree-level vertex of the interaction of 3
W-bosons from standard perturbation theory. From now on
we will refer to this approach from standard perturbation
theory as 3-W interaction resp. 3-W vertex. This especially
implies that to leading order in v the derived coupling
constant will be identical, and no anomalous three-gauge-
coupling (ATGC) arises. This is consistent with experi-
mental measurements [11]. Again, this may change in
subleading orders in v, and therefore we determine and
compare both sides of Eq. (12) in Sec. V separately to
assess the size of these.
At leading order in v, g, and λ Eq. (13) implies

furthermore that the gauge-invariant vertex should be given
to this order by the tree-level 3-W vertex, i.e., should have
only the tensor structure

Tð1Þ
μνρ ¼ ðq − kÞμδνρ þ ðk − pÞνδμρ þ ðp − qÞρδμν: ð14Þ

Wewill therefore concentrate here entirely on this one. This
will keep the technical complications for the lattice
calculations at a handleable level.
We therefore consider here not (10), but rather project to

the tree-level basis element and solve for the tree-level form
factor. This yields

3While having a three-point interaction with the physical scalar
would reduce the Lorentz structure it would introduce discon-
nected contributions, which would substantially increase the
numerical cost.
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Γðp;q;kÞ¼Γð1Þðp;q;kÞ

¼ hΓā b̄ c̄
μνρ ðp;q;kÞOā

μðpÞOb̄
νðqÞOc̄

ρðkÞi
Γā b̄ c̄
μνρ ðp;q;kÞDāā0

μμ0 ðpÞDb̄b̄0
νν0 ðqÞDc̄c̄0

ρρ0 ðkÞΓā0b̄0c̄0
μ0ν0ρ0 ðp;q;kÞ

;

ð15Þ

where we used the definition Γā b̄ c̄
μνρ ðp; q; kÞ ¼

ϵā b̄ c̄Tð1Þ
μνρðp; q; kÞ. Using (8) and (12) shows that (15) is

to leading order in v just the amputated tree-level 3-W
vertex. At leading order in v, g, and λ, (9) and (13) imply
Γ ¼ 1. Thus, any deviation from Γ ¼ 1 measures the
deviation from double leading-order GIPT.

E. Radius

From form factors radii of particles can be defined
[23,24]. Consider a spherical particle with charge density
ρðrÞ, where r is the radial coordinate. If the form factor is
normalized to one at vanishing momenta, the form factor
obeys

ΓðpÞ ¼
R
d3r ρðrÞeip·rR
d3r ρðrÞ ¼ 1

p

R∞
0 dr ρðrÞ sinðprÞR∞

0 dr r2ρðrÞ

¼ 1 −
p2

6
hr2i þ � � � ; ð16Þ

where we used a Taylor expansion of the sin function in the
third equality, and p is a characteristic scale of the momen-
tum configuration. We defined hr2i ¼ R

∞
0 drr2ρðrÞr2=R∞

0 drr2ρðrÞ, which is the expectation value of the square
of the radius of the considered particle.
Therefore, the square of the weak radius is given by

hr2i ¼ −6
dΓðpÞ
dp2

����
p2¼0

: ð17Þ

The definition (16) used actually the three-momentum to
motivate the definition. The final formula (17) then defines
the radius at spacelike, i.e., Euclidean, four-momenta [25],
which we will employ. Note, that if the right-hand side
should be negative this formally implies an imaginary
radius, which is at odds with any particlelike interpreta-
tion.4 For example, gluons in Yang-Mills theory have such
an imaginary radius [26].
However, because of the finite-volume zero momentum

is not accessible. Thus, (17) cannot be determined directly.
We attempted to determine the radius using a fit to a Taylor
expansion of Γ, but found that the results were strongly
affected by finite-volume artifacts. On the other hand, for
weak interactions of particles with a single resonance with

mass m2
W it is expected that the form factor, normalized to

one at p2 ¼ 0, behaves like [24]

Γðp2; p2; p2Þ ¼ 1

N

�
a

m2
W

p2 þm2
W
þ b

�
ð18Þ

where b is added to include the possibility to have just a
tree-level behavior, and N ¼ Nða; b;m2

WÞ is the normali-
zation ensuring Γð0; 0; 0Þ ¼ 1. This has a pole at timelike
momenta at the resonance. This expression fits the results
quite well, and we will use this analytical form to determine
the radius (17) analytically in Sec. V C. The results from
fitting using a Taylor expansion were consistent, though
much less reliable, with the fit ansatz (18).
The quantity a=N can be used to define a coupling

strength to this pole in this channel [24]. Thus, this defines
a renormalization scheme in which a reduced coupling
constant α ¼ ða=NÞ2=ð4πÞ is defined when the renormal-
ization condition Γð0; 0; 0Þ ¼ 1 is enforced.

F. Subtleties

There are two subtleties, which need to be addressed.
The first is with respect to tensor structures. In the

Landau gauge limit the gauge fields satisfy ∂μWa
μ ¼ 0.

Thus, the propagators are transverse [10] and only four out
of the 14 tensor structures in (11) have nonzero dressing
functions [22]. However, for gauge-invariant quantities this
can necessarily not have any implications. Especially, a
massive propagator can have, and will be seen below has, a
longitudinal, poleless part [27], and can have nonvanishing
form factors for all 14 tensor structures in the decom-
position (11).
This seems to kill at first sight already statements like (9)

and (13), as they would be violated in Landau gauge, and it
seems subleading terms in (8) and (12) would be necessary.
However, this is not true. Statements that correlation
functions have tensor indices are only a mnemonic, rather
than literally true. Any quantity not invariant under Lorentz
symmetry actually vanishes, as no direction is preferred.
Rather, only fully contracted quantities, like (15), can be
nonzero, even for the propagators. Thus, agreement or
disagreement has to be considered independently for each
form factor. Here, we consider two form factors for the
propagator, the transverse one and the longitudinal one, and
the form factor (15) for the vertex. And indeed, the entirely
gauge-dependent longitudinal part of the propagator will
disagree at leading order, as the physical one is nonzero and
the gauge-dependent one in the here chosen Landau gauge
is zero. This statement is true even for the expression (8),
and thus at leading order in v and all orders in g and λ. The
longitudinal information of the physical operator requires
thus in this gauge subleading orders in v.
The second is connected with the choice (5). Of course,

any operator with the same quantum numbers will mix with
this one. This has been studied for this channel on the

4Note that a negative radius can occur if the probed particle is
uncharged as, e.g., happens for the electric radius of the neutron.
But here all probed particles are always charged, and thus a
positive radius is expected.
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lattice [28,29]. Fortunately, most operators in this channel
appear to decay very quickly to the ground state [28], and
thus describe very well asymptotically a single physical
vector particle. Thus, for the sake of having well-defined
asymptotic states to really speak of testing a radius, such a
choice is sufficient, and the remaining effects are contained
in the finite-volume systematics for the lattice formulation
used here.
Conversely, this implies that there exists an operator

basis for every channel in which the ground state is
contained only in a single operator, the perfect ground-
state operator Õ. In Euclidean space-time, the operator will
generate a propagator

DðpÞ ¼ hÕiðpÞ†ÕiðpÞi ¼
Z

p2 þm2
; ð19Þ

where i is a suitable multi-index,m is the ground-state mass
in this channel, and Z is a wave-function renormalization.
This implies that if all propagators in the channel are
renormalized as Dð0Þ ¼ 1=m2, this propagator is a lower
bound at all momenta for all physical correlators [30]. This
will be relevant below in Sec. IV and the analysis of the
relation (8).

III. TECHNICAL DETAILS

The lattice simulations use the same setup as in
[14,15,28], to which we refer for technical details. For
the gauge-fixed calculations we use a Landau gauge, in
which we average over all possible orientations of the vev,
making use of the fact that for the gauge bosons no
direction is preferred. See [15] for details and how this
relates to gauges with an explicit direction for the vev. This
also allows us to average all quantities over custodial and
gauge indices, effectively increasing our statistics.
Especially, in this gauge (12) and (13) hold to very good
accuracy on shell [14,15].
The lattice parameters we use are listed in Table I. As

there are three bare parameters three physical quantities are
needed to characterize them, which we choose to be the
physical scalar singlet mass, the physical vector triplet
mass, and the running weak gauge coupling in the
miniMOM scheme [31] at 200 GeV. The latter is derived
from the ghost-W vertex, and is also employed, e.g., to
determine ΛQCD [11]. These have been determined using
the methods in [15,28]. We fix the two masses such that
they roughly correspond to the masses in the standard
model, knowing that because of the absence of QED in our
simulations they can be at best adequate to the level of
∼10 GeV. The lattice spacing is set by requiring that the
vector triplet has a mass of 80.375 GeV, and thus this mass
is identical for all parameter sets in Table I.
The sets are grouped into a set with rather large gauge

coupling, much larger than in the standard model, to
enhance subleading effects (set A), and one with smaller

coupling to see how the effects change when moving
towards more standard-model-like couplings (set B). In
both cases multiple lattice spacings have been used. The
individual sets are most likely not part of a line-of-constant
physics, but are the best approximations to these right now
we have available from the existing phase diagram scans in
[28,32]. At any rate, it will be seen that the results are rather
comparable within the sets, and for some of the results even
among both sets. Thus, this seems to be a minor issue.
Similar hints of independence of the actual choice of the
line-of-constant physics have also been seen in other
spectroscopical channels in [28]. For the present explor-
atory study this appears adequate, though a systematic
investigation along several lines of constant physics
remains desirable for quantitatively reliable statements.
For every set of parameters the volumes 84, 124, 164, and

204 have been simulated. As it turned out, very large
amounts of statistics, listed in Tables II and III, are
necessary, which prevented us from going to even larger
volumes in this exploratory study. However, for most of our

TABLE II. Number of configurations for physical quantities.

Set A1 A2 A3 B1 B2

84 1032200 1032200 1032200 1032200 1032200
124 680625 687500 687500 687500 687500
164 254700 254700 254700 254700 254700
204 198400 198400 198400 197408 198400

TABLE I. The parameters of the lattice setup. The masses of the
physical vector bosons and the physical scalar are obtained as in
[28], and the running coupling α in the miniMOM scheme [31] as
in [15]. The lattice spacing a−1 is set such that the physical vector
boson has a mass of 80.375 GeV. The statistical errors are
suppressed, but are at the subpercent level for all quantities except
m0þ

1
, for which it is at the order of a few percent.

Name β κ λ

a−1

[GeV]
m1−

3

[GeV] m0þ
1

αð200GeVÞ
A1 2.7984 0.2927 1.317 453 80 124 0.605
A2 2.7987 0.2953 1.267 335 80 122 0.506
A3 2.3634 0.3223 1.066 151 80 131 0.558

B1 4.2000 0.2736 1.000 438 80 129 0.106
B2 4.0000 0.3000 1.000 255 80 118 0.211

TABLE III. Number of gauge-fixed configurations for gauge-
dependent quantities.

Set A1 A2 A3 B1 B2

84 85462 142128 147500 147500 147500
124 119885 137500 137500 137500 137500
164 62186 63683 63700 63700 63700
204 60878 65092 66200 65869 66200
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results the statistical error currently still dominates in
comparison to systematic errors, as will be seen below.
The final ingredient is the choice of operators. For the

gauge-dependentW propagator and 3-W vertex we employ
the same methods as in [15], to which we refer for details.
For the gauge-invariant operator (5), from which we will
build the gauge-invariant propagator and 3-vector vertex,
we choose

Oā
μðxÞ ¼ tr

�
σā

2

XðxÞ†ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detXðxÞp UμðxÞ

Xðxþ μ̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detXðxþ μ̂Þp

�
; ð20Þ

whereUμðxÞ ¼ eiaWμðxÞ is the gauge link. The operator (20)
is transformed into momentum space using standard lattice
methods for both the propagator and the vertex [33]. As it
turns out, lattice improvements will be needed for both the
propagator and the vertex, which will be discussed in
Secs. IVA and VA. Note, that because on the lattice the
fields are rescaled [15,34], for both the propagators and the
vertices this rescaling has to be reversed to obtain con-
tinuum expressions. There are also factors of the coupling
constants, which need to be removed to ensure Γ ¼ 1 in the
tree-level case. This has been done.

IV. PROPAGATOR

A. Lattice aspects

For the gauge-dependent W propagator we refer for
details of the implementation to [15,33]. In our choice of
Landau gauge there is only a transverse dressing function
left, which will be denoted DW in the following. For the
gauge-invariant one, we decompose the propagator in a
transverse part DT and a longitudinal part DL as

Dā b̄
μν ðpÞ ¼ δā b̄ðTμνðpÞDTðpÞ þ LμνðpÞDLðpÞÞ: ð21Þ

As discussed in Sec. II F, the dressing functionsDT and DL
need to be obtained by contraction with corresponding
tensors from the correlation function hOā

μðpÞOb̄
νðpÞ†i,

which is built from the lattice operator (20). For this we
use the lattice-improved projectors

TμνðpÞ ¼ δμν −
sinðPμÞ sinðPνÞP

4
ρ¼1 sin

2ðPρÞ
;

LμνðpÞ ¼
sinðPμÞ sinðPνÞP

4
ρ¼1 sin

2ðPρÞ
; ð22Þ

with Pμ ¼ πnμ=L, nμ ¼ 0; 1;…; N=2, with N being the
extent of the lattice, and pμ ¼ 2=a sinðPμÞ the improved
continuum momentum. We will evaluate the physical
propagator along a momentum with two nonvanishing
components, i.e., along a plaquette diagonal, and with
one nonvanishing momentum component, i.e., along an
edge. These are themomentum configurations whichwill be

needed in Sec. V for the projection (15). For the gauge-
dependent W propagator several additional momentum
configurations are used, as described in [33], reaching to
much larger momenta.
Unfortunately, it turns out that the physical propagator is

much stronger affected by lattice artifacts than the W
propagator. This is shown in Fig. 1. Especially noteworthy
is that the longitudinal propagator is not constant, which is
forbidden in the continuum limit [27], and the transverse
one raises at large momenta, which is equally forbidden
for a physical correlation function [30]. Both properties
are thus clearly lattice artifacts. In fact, the expected
behaviors are

DTðpÞ¼
X
i

Zi

p2þm2
i
⟶
p→∞ Z

p2
; DLðpÞ¼ const: ð23Þ

We use a purely phenomenological approach to reduce
these artifacts. To establish the correct asymptotic behavior
we use

DTðpÞp2 − A sinðjPjÞ32; ð24Þ

and adjust the parameter A such that the result becomes
constant for large momenta. For the longitudinal part we fit
the lattice propagator by

Bþ C cosðjPjÞ−5
4: ð25Þ

Then, only the second term of the fit is subtracted from
DLðpÞ, and we set DLð0Þ ¼ Bþ C. Furthermore, at zero
momentum the decomposition in transverse and longi-
tudinal parts is not unique, and thus only the sum can be
determined. Thus, at zero momentum also the so obtained
DLð0Þ has to be subtracted from DTð0Þ, which is in Fig. 1
not visible, as the propagators are renormalized to the value
1=ð80.375 GeVÞ2 at zero momentum.
The results of these corrections are also shown in Fig. 1.

The transverse part is now a monotonically decreasing
function of momentum and the longitudinal part is approx-
imately constant. Both corrections do, by construction, not
affect the infrared behavior, as it should be for a pure lattice
artifact.5 Of course, as already mentioned, this approach is
just a phenomenological one and proper improvements
could be obtained using lattice perturbation theory [34].
However, given the involved six-point functions this
appears overkill for the present exploratory study.

B. Results

In the following we concentrate on the transverse
propagator only, as the gauge-dependent one vanishes by
construction and the longitudinal physical one is constant.

5That this may look differently for the transverse propagator in
Fig. 1 is because both have been renormalized.
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We renormalize the transverse propagators by requiring
DTð0Þ ¼ 1=m2

phys, with mphys ¼ 80.375 GeV, i.e., the
experimentally determined mass of the physical vector
boson [11]. As both propagators turn out to be only weakly
affected by the volume, we can concentrate here on the
largest volume only.
The lattice-improved physical transverse propagators for

all sets and for the largest lattice volume 204 are shown in
Fig. 2. All the propagators lie well above the line for the
physical ground-state propagator (19), and satisfy ultimately
at large momenta the behavior (23). The deviation at small
momenta is because the operator (5) does not coincide with
the optimal ground-state operator Õ, but apparently excited
states contribute, as discussed in Sec. II F. Therefore, the

transverse propagator of the bound state is a superposition of
all these states, i.e.,

DTðpÞ ¼
X
i

Zi

p2 þm2
i
; ð26Þ

where the Zi are the renormalized overlaps, and mi are the
masses of the states contributing to this quantum number
channel. It is also visible that the sets with finer lattice
spacing pick up more massive modes in the sum (26),
thus the later agreement with the asymptotic behavior (23).
As the two next levels due to scattering states are already
of order 200 and 240 GeV [28,29] this is not unexpected
given the lattice spacings listed in Table I. Other than these
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higher-state contaminations, the propagators show the
expected physical behavior.
Note that in position space the correlator decays over a

much shorter time, i.e., about 3 lattice spacings, to the
ground-state one than the momentum-space correlator
suggests [28]. A different choice of basis, e.g., the one
obtained from a variational analysis as in [28], would yield
better agreement with the ground state in momentum space,
though would not improve the position-space properties
substantially.
The situation is very different for the gauge-dependentW

propagator, also shown in Fig. 2. Here the behavior is
grouped not with the lattice spacing, but with the gauge
coupling. The smaller the gauge coupling, the longer the
propagator remains close to the physical, optimal ground-
state one. At large momenta, it starts to deviate below the
optimal one. As noted in Sec. II F, this implies that no
physical state can be described by it. This conclusion is
supported by observations of nonpositive contributions to its
corresponding spectral function [15] as well as the Oehme-
Zimmermann superconvergence relation [35]. However, as
this is a gauge-dependent quantity, this is neither surprising
nor problematic.
Concerning the primary objective it just shows that off-

shell mixing becomes important. Given the observation in
Sec. V C that the vector boson is relatively large, it is not
surprising that a local operator like (5) picks up a lot of
short-distance fluctuations. Using smeared operators, like
in [28,29], it is straightforward to construct extended
operators which are much better in agreement with the
optimal ground-state one.
This leaves the following observation for the secondary

objective, and thus of (8) and (9). First of all, the tree-level
expression in (9) coincides with the optimal one. The fullW
propagator corresponds to the leading term in the vev
expansion (8), which includes all orders in g and λ. As is
seen in Fig. 2, this becomes a worse approximation the
larger g is. On the other hand, it is a very good approxi-
mation up to a few hundred GeV at small g. Thus, GIPT is
well suited as an approximation of the ideal ground state
propagator at sufficiently small g.
But this still shows that GIPT does not a very good job

when literally considering the approximation (8), because
these are not statements about the optimal propagator, but
about the ones given by the correlator of the operator (5).
Thus, the leading order in the v expansion is not sufficient.
As in higher orders the scattering states immediately appear
at order g0 and λ0 [7], this would yield a much better
agreement than all orders in g and λ, as was done here.

V. FORM FACTOR

A. Lattice aspects

For the 3-W vertex the same techniques as in [15,33]
have been used. Especially, in [15] the same vertex has

been investigated, albeit at much smaller statistics. Out of
the momenta configurations in [15] we will investigate here
two particular ones. One is the symmetric one, in which the
three momenta satisfy p2 ¼ q2 ¼ k2. The other is a back-
to-back configuration, in which one of the three momenta
vanishes, e.g., p ¼ 0, which implies k ¼ −q.
For the 3-vector vertex we use the same techniques6 as in

[33], except that we replace the W field by the operator
(20), and theW propagators by the vector triplet propagator
(21).7 In doing so, motivated by (13), we used in the ratio
(15) the lattice version of the tree-level tensor structure of
the 3-W vertex [34], as is done for the 3-W vertex itself
[33], to remove the leading lattice artifacts. At the same
time we did not apply the improvements (24) and (25) to
the involved physical propagators, as the ones appearing
implicitly in the nonamputated nominator are not directly
accessible to us.
While this improvement program is sufficient for the

3-W vertex it is not for the 3-vector vertex, as was already
the case for the vector propagator in Sec. IVA. As is visible
in Fig. 3, the form factors drop towards zero at the largest
respective physical momenta, i.e., at the same lattice
momenta, irrespective of the lattice spacing. As the
behavior is therefore clearly lattice driven, this is an artifact.
We correct this by the phenomenological correction

Γðp2;q2;k2Þ
→Γðp2;q2;k2ÞcosðjPjÞ−1

2 cosðjQjÞ−1
2 cosðjKjÞ−1

2; ð27Þ

the result of which is also shown in Fig. 3. This yields an
essentially constant behavior at large momenta, within
statistical errors. Note that this does not change the infrared
behavior, and is therefore not affecting the results for the
radius in Sec. V C. Again, a better motivated improvement
could be obtained from lattice perturbation theory [34],
which in the present case involves a 9-point function, and is
thus even more daunting than the 6-point case of the
propagators.
To study the volume dependence of both vertices we

show the full set of results in Figs. 4–8. At large (lattice)
momenta the form factors start to quickly drown in noise,
which was observed for the gauge-dependent one already
previously [15,33]. However, at medium and small
momenta they show comparatively little volume depend-
ence. Thus, in Sec. V B only the largest volume will be
considered.

6Note that this can be substantially improved to reduce lattice
artifacts by having explicit separation of probe time and the times
at which the probed particle is prepared [36,37]. In the current
exploratory study we will not do so, and consider these effects as
a contribution to the finite-volume effects.

7We have also tested what happens if we only use the transverse
part of the vector triplet propagator, and found no significant
quantitative deviations. This can be found explicitly in [38].
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The different momentum configurations differ in some
parts more than the statistical error, but show the same
qualitative momentum dependence. The vertices show on
all sets the same qualitative behavior, but the 3-W vertex
and the physical vertex show pronounced different quali-
tative behavior, independent of the sets. The lattice spacing
also shows no qualitative influence.
Note that the normalization in (15) vanishes when either

all momenta vanish or any of them is the largest momentum
on the lattice [33]. Thus, these momenta are inaccessible.

B. Form factor

The final results for the renormalized form factors in the
symmetric and back-to-back momentum configurations are
shown in Fig. 9. The qualitative behavior is the same for
both momentum configurations, though they differ some-
what quantitatively.
First of all, the 3-W vertex drowns quickly in noise at

the largest (lattice) momenta. This also happens for the

3-vector vertex, but here the much larger statistics counter-
acts the effect somewhat. This effect is stronger for the
symmetric momentum configuration, which extends to
larger (lattice) momenta. Thus, the following will concen-
trate on the low and medium momentum behavior.
The results for the 3-W vertex are essentially indepen-

dent of the parameter sets. They show, as was already
indicated at lower statistics in [15], an almost tree-level
form factor, which slowly decreases in the infrared. This is
surprising as the running coupling for the set A is quite
large, and larger deviations could have been expected.
The situation is somewhat different for the physical form

factor. Here, the results group themselves into two sets for
the stronger and weaker coupling. Both tend towards a
constant at larger momenta, but the weaker interacting case
deviates from this earlier towards the infrared. Still, both
rise substantially in the infrared. As will be discussed in
Sec. V C this can be attributed to the dominating pole at
timelike momentum.

p [GeV]
0 200 400 600 800 1000 1200

Γ

0

2

4

6

8

10

Symmetric point

Vertex set A1

Vertex set A2

Vertex set A3

Vertex set B1

Vertex set B2

Uncorrected vertex

p [GeV]
0 200 400 600 800 1000 1200

Γ

0

2

4

6

8

10

Corrected vertex

p [GeV]
0 200 400 600 800 1000 1200

C
or

re
ct

io
n 

fa
ct

or

2

4

6

8

10

12

14

16

Correction factor

p [GeV]
0 200 400 600 800 1000 1200

Γ

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Corrected

Uncorrected

Corrected vertex - example
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The ratio of both form factors shows that the essential
constant dependency at large momenta is common to both,
within the statistical errors. However, there is some angular
dependence, manifesting itself in the different value of this
constant ratio. At momenta below roughly 300–400 GeV,

depending on the coupling strength, both form factors start
to qualitatively deviate, with the physical rising while the
3-W one slowly dropping. As discussed in Sec. II D this
implies that only the physical 3-vector vertex shows a
behavior which is consistent with the one expected for a
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FIG. 5. The 3-W vertex form factor (left-hand side) and the physical 3-vector vertex form factor (15) (right-hand side) for set A2 for all
volumes and momentum configurations.
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physical particle, while the behavior of the 3-W vertex is
not. Again, this is neither surprising nor problematic, as the
3-W vertex is gauge dependent.
Concerning the primary objective, there is thus a

qualitative and pronounced difference between the
gauge-dependent 3-W vertex and the physical 3-vector

vertex at low momenta. Both are not equivalent
observables.
Concerning the secondary objective, the quality of GIPT

in (12) and (13), this implies that the approximation in this
case gets better at larger momenta, though it does not
capture the angular dependence fully. Here it is not directly
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FIG. 6. The 3-W vertex form factor (left-hand side) and the physical 3-vector vertex form factor (15) (right-hand side) for set A3 for all
volumes and momentum configurations.
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obvious if using the perfect operator Õ rather than (20)
would improve the situation, as the actual behavior for the
optimal case is unknown. Nonetheless, this implies again
that subleading orders in the v expansion can become
relevant in certain momentum regimes, this time at smaller
momenta. The momentum regime where GIPT works
becomes larger at smaller coupling, as it is seen that the
deviation from a constant ratio occurs at higher momenta
for the stronger coupled case.
Still, the behavior can be intuitively understood. At

higher energies, the probe is more sensitive to the structure
of the physical state than the physical state as a whole. At
the same time, the structure of the physical probe itself
becomes more relevant. As both probe and probed state
have to leading order the W-boson as constituent, the
interaction of 3 Ws is probed at high energy, and thus the
leading term in v of GIPT, being just the 3-W interaction, is
indeed giving already a not so bad estimate. On the other
hand, at low momentum the whole state is probed, which,
as seen in the next section, is dominated by the close-by
pole of the physical, stable vector particle at timelike
momenta.

C. Radius

The resulting fit parameters a and b using the fit ansatz8

(18) are shown in Fig. 10. Except for the set B2 all physical
form factors have been fitted with a χ2=d:o:f: of at most 2
for the largest lattice volumes. The situation is not as good

for the 3-W form factor, as the small deviation from tree
level requires large volumes to establish a deviation from
constant beyond statistical error. Thus, only the sets A3 and
B2, with the respective largest physical volumes of the sets
A and B, could be fitted with a χ2 below 2. A comparison of
the fits to less noisy back-to-back data is shown in Fig. 11,
which nicely illustrates how the physical form factor is
affected by the close-by pole at −m2

W .
The fit parameters for the 3-W vertex show substantial

finite-volume effects for small volumes, but eventually
converge to rather similar values. Especially, they ulti-
mately yield an a < 0, and thus a negative residue at the
pole. This is once more a behavior expected for an
unphysical particle. Conversely, the parameters for the
physical vertex show less volume dependence, but a much
wider spread across the different sets.
However, this is dominated by the overall normalization.

This is best seen when considering the derived reduced
effective coupling α and the radius shown in Fig. 12, which
are defined in Sec. V B. They have been obtained from the
fit with errors of a and b propagated.
For the 3-W case the relatively small deviation from a

constant leads to large uncertainties in the derived quan-
tities. However, at large volumes the residue, and thus the
effective reduced coupling, is small. The radius squared is
within errors often compatible with zero. If not, it becomes
at large volumes small and negative, indicative of an
unphysical particle once more. Interpreting this nonetheless
as a size scale a value of 1=r ≈ 200i GeV arises from the
A3 values in Fig. 12. This implies jrjm ≈ 0.4, and thus this
scale is smaller than a Compton wavelength.
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FIG. 8. The 3-W vertex form factor (left-hand side) and the physical 3-vector vertex form factor (15) (right-hand side) for set B2 for all
volumes and momentum configurations.

8For the back-to-back configuration the right-hand momentum
in the fit was chosen to equal the nonzero momentum.
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In the physical case, the derived quantities depend much
less on the parameter set, though they still differ, within
statistical error, slightly between sets and between the
different momentum configuration. Nonetheless, both the
effective reduced coupling and the radius fall into a
relatively narrow range of 0.06� 0.02 for the coupling
and an inverse radius of 36� 3 GeV, and most values
actually cluster even closer together. Thus,mWr ≈ 2, which
in comparison to, e.g., the proton with a value of 5 shows a
rather compact bound state.
This also shows that the elementary size scale is about 5

times smaller than the one of the bound state, which

perfectly fits with the interpretation above that at large
energies the constituents are probed.
The relatively small value of the effective gauge-

invariant coupling constant in contrast to the one in
Table I can be understood in a similar way as in QCD:
The coupling in Table I is obtained from the direct
interaction of the elementary particles, while the reduced
effective coupling in Fig. 12 is the residual interaction
between composite states, which screen the interaction
compared to the ones of the elementary particles. Thus, just
like hadronic couplings are smaller than the proper strong
coupling, so it is the case here. For the elementary states,
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the effective coupling is too wildly fluctuating as to allow
for a coherent interpretation.

D. An experimental setup

While the quantitative results here should be considered
to be rather indications, the qualitative effects are distinct
for the gauge-invariant and gauge-dependent case, and can

be expected to be robust. Also, taking into account the
results from GIPT, it is not expected that the remainder of
the standard model will affect the qualitative outcome. This
is because the remainder is rather affected than the source
of the difference between physical and unphysical d.o.f.
[2,7,9]. Thus, in principle it should be possible to establish
the qualitative behavior in experiments. Measuring form
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FIG. 10. The fit parameters a (top panels) and b (bottom panels) for the 3-W form factor (left panels) and the physical form factor
(right panels) for all lattice setups. Open symbols are from the back-to-back configuration and closed symbols from the symmetric
configuration.
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factors has a long history already in hadron physics
[23–25], but there it was easy to prepare all involved
particles in an experiment. The situation here is different, as
the physical vector bosons inherit the pole structure, and
thus width, from the gauge bosons by virtue of (9), and they
have therefore the observed [11] lifetime.
However, in principle the measurement techniques

developed for ATGC [11,39–41] could be used. For this,
it is necessary to reconstruct in an experiment two weak
vector bosons,9 say the (physical equivalents to) W�. Of
course, they will be needed to be reconstructed from their
decay products, a highly nontrivial challenge. Their invari-
ant mass m2

WþW− must then match the Z mass, showing that
they originate from a three-particle interaction. The corre-
sponding cross section needs then to be reconstructed as a
function of the four-momenta of the three involved particles.
Especially, for a direct comparison this would be needed for
off-shell, spacelike momenta, which will complicate the
reconstruction procedure. But at least in principle, this

should be possible. Alternatively, assuming that (18) faith-
fully captures the timelike domain a comparison to the
obtained fits could bemade at anymomentumconfiguration.
Thus, the interesting process would be, e.g., at LHC,

pp → Wþ�W−� þ X, where X can be anything, and
m2

WþW− ¼ m2
Z. This puts still the Z on shell, but currently

this seems the best possibility to reconstruct the interesting
process. If the four momenta of the W�� can be recon-
structed, this can be used to reconstruct the form factor at
Γð−m2

Z;Q
2þ; Q2

−Þ with ðQþ þQ−Þ2 ¼ −m2
Z, where the

minus comes from the definition that Euclidean momenta
are positive. This can be connected by analytical continu-
ation to the form factor on the lattice or to directly
determine the weak radius.
With respect to searches for new physics, relatively few

scenarios alter the structure of the weak gauge bosons [42],
though Abbott-Farhi-type setups [43] or setups considering
the W� and Z as ρ-like composite states of new fermions
[44] do so.10 Thus, if searching for these types of scenarios,
the investigated effects will add additional standard-model
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9Of course, alternatively a vector-boson fusion process could
be used with a single vector boson in the final state. But for the
momentum resolution it would be better to have direct access to
two of the vector bosons in the final state.

10Note that a full nonperturbative gauge-invariant treatment in
technicolor or compositness scenarios will likely also modify the
W�- and Z-bosons [7,16] and affect their size.
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background. Also, when just studyingmodel-independently
experimentally the form factors the present results constitute
additional standard-model background not covered by
standard perturbation theory.

VI. CONCLUSION

Concluding, we have studied for the first time off-shell
and interaction properties of the physical vector particles in
the weak sector. Fulfilling our primary objective, we do
find that they exhibit physical properties, as is required
on quite general principles [30]. In contrast, the gauge-
dependent correlation functions for the W� and Z gauge
bosons, which we evaluated on the lattice and therefore
automatically include all orders in perturbation theory,
show distinctively unphysical features off shell. This is
true both for the particles themselves as well as their
interactions. We emphasize here that, despite them being
absolutely stable in our simulations, even for unstable
particles their behavior is not consistent with physical
states. At any rate, their instability is only a parametric
effect in the standard model, and not a qualitative one. This
underlines the necessity to consider only gauge-invariant
composite objects [1,2,7,9] as physical d.o.f. The results
indicate that the physical vector boson is indeed an
extended, though still compact, object.
The features of the physical particles, especially their

form factors, should be accessible in experiments, and we
outlined a possible setup where this could be done in
Sec. V D. Our most central result is shown in Fig. 12, which
suggest that the size of the physical weak vector bosons
satisfies roughly mWr ≈ 2, which may be testable in such

experiments. However, an actual comparison to experiment
may require us to access the form factor in the timelike
domain, which is not directly possible on the lattice.
As an alternative approach we studied as our secondary

objective how strongly the physical properties deviate from
the analytical predictions of GIPT. We find that we likely
will need to go beyond leading order in v in GIPT to do so,
especially off shell and at low energies. This gives us an
alternative route for experimental tests, which will also
allow us to include the remainder of the standard model,
which is currently not possible in lattice simulations for
various reasons [7]. Further, analytic calculations in GIPT
should establish how far this needs to be performed by
comparing them to the results here.
Altogether the present results not only lay out the next

steps to experimentally check the necessity of a fully
gauge-invariant prescription of (electro)weak physics, they
also provide the first steps in this direction. However, the
lattice results still require substantial improvements in
terms of systematics and statistics to reach a quantitative
level, rather than the qualitative to semi-quantitative
level here.
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