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We present a lattice QCD spectroscopy study in the isospin singlet, strangeness −2 sectors relevant for
the conjectured H dibaryon. We employ both local and bilocal interpolating operators to isolate the ground
state in the rest frame and in moving frames. Calculations are performed using two flavors of OðaÞ-
improved Wilson fermions and a quenched strange quark. Our initial point-source method for constructing
correlators does not allow for bilocal operators at the source; nevertheless, results from using these
operators at the sink indicate that they provide an improved overlap onto the ground state in comparison
with the local operators. We also present results, in the rest frame, using a second method based on
distillation to compute a Hermitian matrix of correlators with bilocal operators at both the source and the
sink. This method yields a much more precise and reliable determination of the ground-state energy. In the
flavor-SU(3) symmetric case, we apply Lüscher’s finite-volume quantization condition to the rest-frame
and moving-frame energy levels to determine the S-wave scattering phase shift, near and below the two-
particle threshold. For a pion mass of 960 MeV, we find that there exists a bound H dibaryon with binding
energyΔE ¼ ð19� 10Þ MeV. In the 27-plet (dineutron) sector, the finite-volume analysis suggests that the
existence of a bound state is unlikely.
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I. INTRODUCTION

The strong force between quarks and gluons produces
a rich spectrum of bound states and resonances, the
color-neutral hadrons. Most of these can be described
by constituent quark models as either quark-antiquark
mesons or three-quark baryons. The existence of exotic
hadrons, which cannot be described as such, is an
active field of inquiry. Over the past several years,
the so-called “X, Y, Z” mesons have been studied
intensively, both theoretically and experimentally [1],
and in recent years pentaquark baryons have also gained
attention [2].
More than four decades ago, using the MIT bag

model, Jaffe predicted a deeply bound dibaryon with
quark content uuddss that is a scalar and a flavor
singlet, the H dibaryon [3]. In contrast with the only

known stable dibaryon, the deuteron, which can be well
described as a loosely bound proton-neutron state and is
bound by just 2.2 MeV, the bag model predicted the H
dibaryon as an exotic hexaquark state where all six
quarks are in S wave in the same hadronic bag, bound
by about 80 MeV below the ΛΛ threshold.
Experimental evidence disfavors such a large binding

energy. The strongest constraint is the “Nagara” event
provided by the E373 experiment at KEK [4], which found
a 6

ΛΛHe double hypernucleus with ΛΛ binding energy
BΛΛ ¼ 6.91� 0.16 MeV [5] that decayed weakly. A
deeply bound H dibaryon would enable the strong decay
6

ΛΛHe →
4HeþH; its absence implies mH > 2mΛ − BΛΛ.

There was also no indication of anH dibaryon from a high-
statistics study of upsilon decays at Belle [6].
The first lattice QCD study of the H dibaryon was

performed more than 30 years ago [7], using a quenched
ensemble with lattice size 62 × 12 × 18. Quenched
studies—which all used local interpolating operators with
six quarks at the same point in keeping with the bag
model picture, together with standard lattice spectroscopy
techniques—produced inconclusive results: while some
found a bound state [8–10], others did not [7,11–13].
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Early studies of the H dibaryon using lattice QCD are
summarized in Ref. [14].
Aside from the present work,1 calculations with dynami-

cal fermions have been performed by two collaborations,
both of which reported a boundH dibaryon at heavier-than-
physical quark masses. The NPLQCD Collaboration per-
formed lattice spectroscopy calculations using a setup
based on clover fermions with local hexaquark operators
at the source and bilocal two-baryon operators at the sink.
First results were obtained on anisotropic ensembles with
Nf ¼ 2þ 1 dynamical fermions [14,18,19], followed by
isotropic ensembles with three mass-degenerate (Nf ¼ 3)
quarks [20]. An alternative approach, employed by the
HAL QCD Collaboration, is based on determining baryon-
baryon potentials from Nambu-Bethe-Salpeter wave func-
tions computed on the lattice, followed by solving the
Schrödinger equation to study baryon-baryon scattering
and bound states. This was done on ensembles withNf ¼ 3

clover fermions for a range of quark masses [21–23].
Although these two sets of calculations agreed on the
presence of a bound state, they disagreed significantly on
the binding energy: in the Nf ¼ 3 case with pseudoscalar
meson mass near 800 MeV, the value reported by NPLQCD
was 74.6� 4.7 MeV, whereas HAL QCD reported
37.8� 5.1 MeV. Recently, HAL QCD have published a
Nf ¼ 2þ 1 study of coupled channel (ΛΛ and NΞ)
baryon-baryon interactions with near-physical quark
masses, which claims that the H dibaryon may be a ΛΛ
resonance just below the NΞ threshold [24,25].
Given that there are conflicting results for the binding

energy of the H dibaryon, we have started a new initiative
which may help to resolve the issue. As a first step we
present results from a study in two-flavor QCD, i.e., with a
mass-degenerate doublet of dynamical u and d quarks. The
mass of the (quenched) strange quark is either tuned such
that ms ¼ md ¼ mu or set to a heavier value, implying that
the SU(3) flavor symmetry is broken. Clearly, SU(3)
symmetry is significantly broken at the physical point
[26,27], which allows the three flavor multiplets, i.e., the
singlet, octet, and 27-plet to couple. Therefore, it is
advantageous to study the octet and 27-plet even in the
case of exact SU(3) symmetry. Furthermore, the 27-plet
contains the two-nucleon I ¼ 1 sector which has a possible
dineutron bound state. The nucleon-nucleon sector has
been studied extensively in experiment and may serve as a
benchmark for lattice calculations.
Our work is mainly focused on the methodology of

determining the spectrum and the binding energy via the
computation of correlation matrices and their diagonal-
ization [28–30]. In order to allow for a direct comparison
with the results from older quenched studies and from
NPLQCD we have chosen a similar setup. As we will

describe in more detail in the following sections, we have
used point sources to compute correlator matrices with
local interpolating operators at the source and both local
and bilocal interpolators at the sink. In addition, we report
initial results from a follow-up study in which we, for the
first time, applied the distillation method [31] to the two-
baryon sector. This allowed us to compute a correlator
matrix using operators made from products of two
spatially displaced, momentum-projected baryon interpo-
lators at both the source and the sink. We shall see that this
Hermitian setup leads to a more robust and precise
identification of the spectrum.
Since the strange quark is quenched in our calculation,

one may think that any observed deviation from the findings
of Refs. [14,18–23] should be attributed to the different
treatment of the quark sea. However, the report by the
flavour lattice averaging group (FLAG) [32] provides ample
evidence that observables computed with Nf ¼ 2 or Nf ¼
2þ 1 dynamical quarks differ at the percent level at most.
This paper is organized as follows. Our methodology is

described in Sec. II: this includes the interpolating oper-
ators and our approach for analyzing correlator matrices.
We show our determination of the energy levels using
point-source methods in Sec. III A and using distillation in
Sec. III B. In Sec. IV, we apply Lüscher’s finite-volume
quantization condition to determine scattering phase shifts
at the SU(3)-symmetric point, and we identify the presence
of a bound H dibaryon. Finally, our conclusions are
presented in Sec. V.

II. LATTICE CALCULATION AND SETUP

A. Simulation details

Our study has been performed on a set of ensembles
with two mass-degenerate dynamical flavors of OðaÞ-
improved Wilson quarks [33] and the Wilson plaquette
action, which were generated as part of the Coordinated
Lattice Simulations (CLS) initiative, using the deflation-
accelerated DD-HMC [34,35] and MP-HMC [36] algo-
rithms. The improvement coefficient csw multiplying the
Sheikholeslami-Wohlert term was tuned according to the
nonperturbative determination of Ref. [37]. An overview of
the ensembles can be found in Table I. All our calculations
were performed in the SU(3)-flavor symmetric limit, with
the exception of ensemble E5 for which the valence strange
quark mass was tuned so that the combination ð2m2

K −
m2

πÞ=m2
Ω takes its physical value. The corresponding values

of mπ and mK are provided in the table. The values of the
lattice spacing in physical units were determined using the
kaon decay constant [38].
Quark propagators were computed using the Schwarz

alternating procedure (SAP) domain-decomposed, deflated
generalized conjugate residual (GCR) solver of the DD-
HMC package [34] with smeared point sources on a grid
of source positions that was randomly displaced on each
gauge configuration. For the distillation calculation, we

1Exploratory studies and preliminary results were previously
reported in Refs. [15–17].

A. FRANCIS et al. PHYS. REV. D 99, 074505 (2019)

074505-2



used a similar solver in OpenQCD [39], computed low
modes of the spatial Laplacian using PRIMME [40], and
contracted them to form “perambulators” and mode triplets
using QDPþþ [41]. Baryon and multibaryon correlators
computed in lattice QCD suffer from a severe signal-to-
noise problem, since the noise grows with a rate propor-
tional to expfðmB − 3=2mπÞtg per baryon, where mB
denotes the baryon mass. This makes it difficult to identify
a “window” in which the asymptotic behavior has been
reached while the signal is not yet lost in the statistical noise.
In order to allow for a significant increase in statistics while
keeping the numerical effort at a manageable level, we have
employed the method of all mode averaging (AMA) [42].
This entails computing a high number of samples with
lower-precision propagator solves, followed by applying a
bias correction using a relatively small number of high-
precision solves. We used this for the calculation with point-
source propagators, but obtained only modest cost savings
due to our use of a highly efficient solver.

B. Interpolating operators

Accurate determinations of the spectrum in the H
dibaryon channel require a set of efficient interpolating
operators whose projection properties onto the ground state
may also give qualitative insights into the nature of the H
dibaryon. For instance, the local operators defined in Eq. (2)
below resemble more closely Jaffe’s original interpretation
of the H dibaryon as a deeply bound state of six quarks
forming a color singlet. By contrast, bilocal two-baryon
operators [see Eq. (6)] may be more appropriate to describe
loosely bound states such as the deuteron. While the two
types of operators are defined according to a qualitative
physical picture that is suggestive of the nature of a given
state, this is not a rigorous way to study its properties.

The generic form of a lattice QCD correlation function is
given by

CijðP; τÞ ¼ hOiðP; tÞOjðP; t0Þ†i; τ ¼ t − t0; ð1Þ

where the interpolating operator Oi carries the quantum
numbers of the continuum state under study, and it is
understood thatOi has been projected onto spatial momen-
tum P. When constructing interpolators in the H dibaryon
channel, one can think of two generic configurations.
Jaffe’s original analysis was based on a compact color-
singlet comprising six quarks, which gives rise to a
hexaquark operator composed of flavors uuddss. The
alternative possibility is the product of two individual
color singlets at different positions, i.e., a two-baryon
operator.
The starting point for the construction of local hexaquark

operators is the object

½rstuvw� ¼ ϵijkϵlmnðsiCγ5PþtjÞ
× ðvlCγ5PþwmÞðrkCγ5PþunÞðx; tÞ; ð2Þ

where r; s;…; w denote generic quark flavors and Pþ ¼
ð1þ γ0Þ=2 projects the quark fields to positive parity. One
can form two operators that transform under the singlet
[12,43,44] and 27-plet irreducible representations of flavor
SU(3):

H1 ¼
1

48
ð½sudsud� − ½udusds� − ½dudsus�Þ; ð3Þ

H27 ¼
1

48
ffiffiffi
3

p ð3½sudsud� þ ½udusds� þ ½dudsus�Þ: ð4Þ

TABLE I. Overview of ensemble parameters used in this study. For ensembles N1, E1, and A1 all quark masses
were tuned to realize the SU(3)-flavor symmetric case, while for E5 the quark masses are nondegenerate. Nsrc
denotes the number of sources in the calculation of point-to-all propagators using the AMA method, while Ntsrc is
the number of time slices used to compute time slice to all propagators with the distillation method. For every
configuration and source position we have computed the correlators in the forward and backward directions,
resulting in two independent measurements.

Point-to-all Time-slice-to-all

Label N1 E5 E1 A1 E5 E1

Size 483 × 96 323 × 64 323 × 64 323 × 64 323 × 64 323 × 64
β 5.5 5.3 5.3 5.2 5.3 5.3
a½fm� 0.0486(6) 0.0658(10) 0.0658(10) 0.0755(11) 0.0658(10) 0.0658(10)
mπ½MeV� 858 436 960 744 436 960
mK½MeV� 858 648 960 744 648 960
L½fm� 2.33 2.11 2.11 2.42 2.11 2.11
mπL 10.0 4.7 10.2 9.9 4.7 10.2
Nconf 100 1990 168 286 2000 168
NsrcjNtsrc 128 32 128 128 4 8
Nmeas 25600 127360 43008 73216 16000 2688
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The continuum quantum numbers of these operators are
S ¼ −2, IðJPÞ ¼ 0ð0þÞ, as required by the original bag-
model proposal. Equation (2) is the product of two single-
baryon operators with quark content rst and uvw at the
same point; one could then interpret H1 and H27 as linear
combinations of ΛΛ and pΞ− þ nΞ0. However, as argued
in Ref. [44], this is not meaningful because antisymmet-
rization of the six quarks implies that the operators are also
equal to linear combinations of ΛΛ and ΣΣ. Similarly, H1
could also be written as the product of two color-octet
triquarks [43] or of three diquarks [45]. We stress that it is
the unique SU(3)-singlet scalar operator made from six
positive-parity-projected quarks at the same point. We also
note that an octet state cannot be represented in terms of
this simplest class of hexaquark operators. Finally, we
project onto the momentum of each lattice frame:

Hf1;27gðP; tÞ ¼
X
x

e−iP·xHf1;27gðx; tÞ: ð5Þ

From now on, we will refer to this type of interpolator as a
local hexaquark operator.
An alternative configuration in theH dibaryon channel is

described by the product of two spatially displaced,
momentum-projected single baryon operators [21]:

ðBBÞmðP; tÞ ¼
X
p1; p2

fmðp1; p2Þ
X
x

e−ip1·xB1αðx; tÞðCγ5PþÞαβ

×
X
y

e−ip2·yB2βðy; tÞ; ð6Þ

where

Bα ¼ ½rst�α ¼ ϵijkðsiCγ5PþtjÞrkα; ð7Þ

and the individual baryons have been projected onto spatial
momenta p1 and p2 with total momentum P ¼ p1 þ p2. The
index m labels a particular configuration of momenta p1
and p2. In the rest frame, the momentum combinations have
a particularly simple construction:

fmðp1; p2Þ ¼
�
1 p1 ¼ −p2 and p21 ¼ mð2π=LÞ2
0 otherwise

: ð8Þ

In the remainder of this paper, we refer to the object defined
in Eq. (6) as a bilocal two-baryon operator.
We form dibaryon operators from combinations of octet

baryons with S ¼ −2, I ¼ 0, i.e.,

ðΛΛÞ ¼ 1

12
½sud�½sud�; ð9Þ

ðNΞÞS ¼
1

36
ð½uud�½ssd� − ½dud�½ssu�

þ ½ssd�½uud� − ½ssu�½dud�Þ; ð10Þ

ðΣΣÞ ¼ 1

36
ffiffiffi
3

p ð2½uus�½dds� − ½dus�½uds�

− ½dus�½dus� − ½uds�½dus�
− ½uds�½uds� þ 2½dds�½uus�Þ; ð11Þ

where the subscript S on ðNΞÞ denotes the flavor-
symmetric combination.2

Using the rotation matrices listed in Appendix B of
Ref. [21] we form the appropriate linear combinations of
ðΛΛÞ, ðNΞÞS, and ðΣΣÞ that correspond to different flavor
multiplets, i.e., the singlet, octet, and 27-plet. The projected
operators are then called BBf1;8;27g;m.
In the interpolating operators defined above, we use

smeared quark fields; the smearing helps to increase the
coupling of an operator to the low-lying states. For the
point-source calculation, we usedWuppertal smearing [46],
with the hopping term constructed using spatially APE-
smeared [47] gauge links. To increase the size of our
operator basis, we used two different smearing widths:
“narrow” (70 steps, denoted N) and “medium” (140 steps,
denoted M). The distillation approach makes use of
Laplacian-Heaviside (LapH) smearing [31], in which the
quark fields are smeared by projecting them onto the low-
lying modes of the spatial gauge-covariant Laplacian, itself
constructed using stout-smeared [48] gauge links. We used
56 modes in all cases and label this type of smearing as L.
We include the smearing as part of the label for each
interpolating operator, yielding names such as H1;N

or BB27;L;0.

C. Operator basis and correlation matrices

The determination of hadronic energy levels in lattice
QCD usually proceeds by computing a correlation matrix
CijðtÞ for the chosen basis of interpolating operators [see
Eq. (1)] and solving a generalized eigenvalue problem
(GEVP) [28–30].
In the following the correlation matrices CijðtÞ ¼

Cijðt;PÞ are evaluated at rest, i.e., with total momentum
P ¼ 0, and in moving frames, i.e., P2 > 0. We included
two-baryon operators with individual momenta p1;2 ¼
2πd1;2=L and d2 ¼ 0, 1, 2, 3 in the calculation. The
components were chosen such as to realize a total momen-
tum P ¼ p1 þ p2 ≡ 2πD=L with D2 ¼ 0, 1, 2, 3. For each
D2, we average over all equivalent frames that are related
by a lattice rotation.
Performing the Wick contractions of correlators involv-

ing bilocal two-baryon operators of the type in Eq. (6)

2While one can construct a flavor-antisymmetric combination
ðNΞÞA, one finds that such a state is excluded in infinite volume,
because the overall antisymmetry prevents it from having
JP ¼ 0þ. A more technical reason for ignoring it is the fact that
the state belongs to the flavor octet which we find difficult to
resolve even for the flavor-symmetric combination.
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results in diagrams that contain quark lines that start or end
at two distinct spatial points within a time slice, This has
important consequences for computing correlation matri-
ces, since point-to-all propagators do not allow for the
computation of such diagrams whenever a two-baryon
operator is placed at the source. We therefore opted for
an asymmetric setup in which only hexaquark operators
were put at the source, while at the sink both hexaquark and
two-baryon operators were used; this is illustrated in Fig. 1.
In this setting, the familiar GEVP or, more generally, the
diagonalization procedure must be modified in order to
allow for a non-Hermitian correlator matrix. We select
subsets of Nop source operators and Nop sink operators
and form the corresponding square correlator matrix CðtÞ.
We then perform the following steps, starting from this
Nop × Nop matrix:
(1) Determine the right and left eigenvectors of CðtÞ by

solving

Cðt1Þvnðt1; t0Þ ¼ λnðt1; t0ÞCðt0Þvnðt1; t0Þ; ð12Þ

w†
nðt1; t0ÞCðt1Þ ¼ λnðt1; t0Þw†

nðt1; t0ÞCðt0Þ; ð13Þ

for n ¼ 1;…; Nop, where t0 and t1 denote fixed time
slices in the region where the lowest Nop states are
expected to dominate.

(2) Compute the (approximately) diagonal matrix ΛðtÞ
whose elements are given by3

ΛnmðtÞ ¼ w†
nCðtÞvm: ð14Þ

(3) The effective nth energy level is then obtained from
the diagonal element ΛnnðtÞ via the well-known
formula

Eeff
n ðtÞ ¼ 1

Δt
ln

ΛnnðtÞ
Λnnðtþ ΔtÞ : ð15Þ

We have used a time step of Δt ¼ 3a in our analysis. While
the choice of interpolators at the source is restricted to
hexaquark operators, we can probe a number of different
operators at the sink and study their relevance for deter-
mining the ground state.
Relying on non-Hermitian correlator matrices makes it

more difficult to identify the ground state reliably, owing to
the fact that the diagonalization does not project exactly on
the correlator corresponding to the nth energy eigenstate. It
is then not guaranteed that the effective energies computed
via Eq. (15) approach the asymptotic value monotonically
from above, since the statistical weights of different states
are not strictly positive.
In order to overcome this difficulty we have imple-

mented distillation and LapH smearing [31]. Since this is a
time-slice-to-all rather than point-to-all method (see Fig. 2),
it allows us to compute a Hermitian correlator matrix using
the two-baryon operators listed in Eqs. (9)–(11), both in
the center-of-mass frame and for nonvanishing total
momentum P. The main objects that we compute are the
perambulator, which is the projection of the quark propa-
gator onto the low modes of the spatial Laplacian, and the
mode triplets,

Tlnmðt; pÞ ¼
X
x

e−ip·xϵijku
ðl;tÞ
i ðxÞuðn;tÞj ðxÞuðm;tÞ

k ðxÞ; ð16Þ

where uðl;tÞ is the lth low mode on time slice t. The
correlator matrix is then computed by contracting these
two objects. Further details of our implementation will
appear in future work; here we present initial results in the
rest frame using operators with both baryons at rest, i.e.,
p1 ¼ p2 ¼ 0. For a Hermitian correlator matrix, the right
and left eigenvectors are obviously identical.
In the case of broken SU(3) symmetry, the diagonaliza-

tion method also allows us to associate a state with a
particular multiplet, by identifying which operators couple
most strongly to it. Furthermore, an essential feature of this
method—as will be shown in Sec. III A 2—is that it can
identify the presence of more than one state, even when the

FIG. 1. Quark lines for correlators using point sources. The
vertical lines indicate that either the single or the two different end
points of the quark lines are summed over the sink time slice.

FIG. 2. Quark lines showing an example contraction for
correlators using distillation. The vertical lines indicate that
the two start and two end points for the quark lines are summed
over the source and sink time slices, respectively.3Note that ΛðtÞ is exactly diagonal for t ¼ t0 and t ¼ t1.
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statistical signal is too poor to distinguish the energies of
those states.
We end this section with a remark on SU(3) flavor

symmetry in our setup, in which the strange quark is not
present in the sea. In this case flavor symmetry is realized
by the graded group SUð3j1Þ. SU(3) is a subgroup of
SUð3j1Þ, and the flavor symmetry of our operator con-
struction is exact, even at the level of individual gauge
configurations. We have verified this by computing off-
diagonal correlators between different multiplets and found
them to vanish within errors.

III. ENERGY LEVELS

We now present our results for the ground-state energies
in the dibaryon channel, as determined using either point-
to-all or time-slice-to-all propagators on the ensembles
listed in Table I. For completeness and further reference we
provide also the mass estimates for single baryons (see
Tables II and III, as well as the corresponding effective
mass plots in Fig. 12 in Appendix.)

A. Point-to-all propagators

Correlators based on point-to-all propagators were com-
puted for ensembles A1, E1, E5, and N1. On all four
ensembles we have computed correlators in the rest frame
and in three moving frames. Our main findings are most
easily explained for the data extracted from ensembles E1
and E5 in the rest frame, which show the highest level of
statistical precision.
While A1, E1, and N1 realize an SU(3)-symmetric

situation, SU(3) symmetry is broken for ensemble E5.
Note that the analysis for the SU(3)-symmetric case is
simplified, due to the fact that different flavor multiplets
(singlet, octet, and 27-plet) cannot mix. Therefore, we
discuss the two cases separately.

1. Analysis of the SU(3) symmetric case

As outlined in Sec. II C and illustrated in Fig. 1, our
setup based on point-to-all operators does not allow us to
put two-baryon operators at the source. Hence, we have
constructed 2 × 2 correlator matrices using hexaquark
operators of the two different smearing types (H1;N and
H1;M for the singlet case and similarly for the 27-plet) at the
source, while at the sink we have used either hexaquark or
two-baryon operators. In the latter situation the resulting
correlator matrix is non-Hermitian, as described in
Sec. II C. After applying the appropriate diagonalization
procedure we have studied the behavior of the effective
energies defined according to Eq. (15), as a function of the
Euclidean time separation t.
Results for the ground-state energy of the singlet channel

on ensemble E1 are shown in the top panel of Fig. 3. The
effective energy for the first excited state is too noisy to be
displayed in the plot. We find that the “narrow” smearing

(N) is the most effective in obtaining clean signals, and
therefore we use only narrow-smeared operators at the sink
to determine our final results.
The green, blue, and red filled symbols in Fig. 3 denote

the energy levels extracted from different correlator matri-
ces, whose operator choice at the sink is described in the
legend. The open red circles denote the effective energy
determined from a single correlator, comprising a hexa-
quark operator at the source and a two-baryon operator at
the sink, with the two momenta each set to zero. The
horizontal line and grey band represent the energy level
corresponding to 2mΛ.
Our main observations are as follows: The effective

energy determined via the diagonalization of the Hermitian
2 × 2 hexaquark correlator matrix approaches its plateau
from above. In the plateau region the data are noisy and
compatible with the ΛΛ threshold. By contrast, correlator
matrices including at least one two-baryon operator at the
sink yield effective energies that are below the threshold
and that have smaller uncertainties. However, care must be
taken when deciding at which value of t the asymptotic
behavior has been isolated. Owing to the non-Hermitian
setup, it is possible that residual excited-state contributions
enter the projected ground-state correlator with negative
weights, so that the plateau is approached from below. This
can also cause local minima to appear, which could be
difficult to distinguish from a true plateau. Indeed, we see
evidence for this behavior, with the energies showing a dip
for t ≈ 0.4 fm before moving closer to the threshold for
t≳ 0.9 fm. The effective energy determined from the mixed
single correlator approaches a plateau below the threshold,
but without showing any dip. We conclude that the ground-
state effective energy shows a consistent plateau for
t≳ 0.9 fm, which is interpreted as the ground-state energy.
The 2 × 2 hexaquark correlator matrix yields consistent
results for t≳ 1.0 fm, given the large statistical noise.
Our estimate of the ground-state energy in the singlet

channel on ensemble E1 is obtained from a fit to the
effective energy determined from the diagonalization of the
2 × 2 correlator matrix with one hexaquark and one two-
baryon operator at the sink. The panel on the top right of
Fig. 3 shows a blowup of the plateau region, with the fitted
value of the energy and error displayed as a band across the
fitting interval. Fitting the effective energy for t≳ 0.9 fm
may still seem an optimistic choice, given that the time
slices within the fit interval should satisfy t > 1=Δ, where
Δ is the energy gap to the first excited state. In a finite
volume with spatial length L, the energy gap is approx-
imately given by

Δ ≈
2

E

�
2π

L

�
2

; ð17Þ

where E is the energy of the ground state. Hence, for
ensemble E1 one expects that Δ ≈ 170 MeV, which
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translates into t≳ 1.1 fm for ground-state dominance to be
observed. While this is inside the region where the signal is
lost, we note that our choice of fit interval is confirmed by
our additional calculations employing the distillation tech-
nique (see Sec. III B), which yield statistically much more
precise results. In particular, we refer to Fig. 6 below, which
shows agreement between the energy levels determined
using point sources and distillation, for Euclidean times
t≳ 0.9 fm. A thorough investigation of the low-lying
excitation spectrum, using the variational method in a fully
Hermitian setup, will constitute a major part of our future
work (see Ref. [49] for preliminary results). By applying
the variational method, the gap to the nearest excited energy
level is increased, so that the time slices inside the fit range
easily satisfy the condition t > 1=Δ.
As a result of our fits, we find that the ground state in the

singlet channel lies below the energy of two noninteracting
Λ hyperons by 2.5 standard deviations. Numerical values

for the fitted energies are listed in Tables II and IV, while
the results for the energy difference 2mΛ − E are shown
in Table V.
The qualitative features observed for the 27-plet are very

similar to the singlet channel (see bottom of Fig. 3):
Whereas the effective energy extracted from a correlator
matrix constructed from only hexaquark operators shows
no sign of lying below the ΛΛ threshold, we find that using
two-baryon operators results in significantly lower values.
Fitting the latter in the region where t > 0.9 fm produces
an estimate that lies within 1 standard deviation below the
threshold (see Tables VI and VII).

2. Analysis of the SU(3)-broken case

The breaking of SU(3) symmetry induces mixing
among the relevant multiplets (singlet, octet, and 27-plet),
which makes their identification a more involved task.

FIG. 3. Ground-state effective energy for the singlet (top) and 27-plet (bottom) on ensemble E1. The legend indicates the operators
used at the sink. Solid green diamonds denote the energies determined from the Hermitian 2 × 2 GEVP, while the solid blue and red
circles represent the results extracted from the non-Hermitian 2 × 2matrix. Open red circles correspond to the effective energy obtained
from a single correlation function with a narrow-smeared hexaquark operator at the source and a two-baryon operator with p1 ¼ p2 ¼ 0
at the sink. The plots on the right show the plateau region with the fitted energy levels. The horizontal line represents the value of 2mΛ,
with the uncertainty denoted by the grey band.
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The appropriate strategy is to construct correlator matrices
from operators projected onto all relevant flavor multiplets.
We recall that the octet can only be represented in terms of
two-baryon operators, which, however, cannot be placed at
the source when using point-to-all propagators. Therefore,
the current analysis is focused only on the singlet and
27-plet states. This deficiency will be rectified by the
calculation of Hermitian correlator matrices using distil-
lation, described in the next subsection.
In the presence of mixing among different SU(3)

multiplets, we have constructed 4 × 4 correlator matrices
from the same combinations of operator types as in the
SU(3)-symmetric case, while including both projections
onto the singlet and 27-plet.
The matrix correlator and its diagonalization provides us

with important information for the interpretation of our
results. First, the amount of SU(3) breaking is small, as
evidenced by the fact that the geometric mean of the flavor
off-diagonal correlators is less than 0.5% of that of the
corresponding flavor-diagonal ones. Second, the diagonal-
ization provides clear evidence for the existence of two

different low-lying states, although it is not possible to
resolve their energy difference with the current statistics.
Furthermore, states corresponding to different flavor mul-
tiplets can be identified with the help of the eigenvectors
computed via the diagonalization procedure. We find
that the eigenvectors corresponding to the two low-lying
states are dominated by operators in a single multiplet. In
this way we can unambiguously assign the energy levels to
a particular flavor multiplet.
Results for the effective energies for the SU(3) singlet

and 27-plet are shown in the top and bottom panels of
Fig. 4, respectively. Data points shown in a given color
correspond to a particular choice of sink operators, as
indicated in the legend. For both the singlet and the 27-plet,
results are similar to what was found for ensemble E1.
Effective energies from diagonalizing 4 × 4 correlator
matrices that include two-baryon operators at the sink
(filled red and blue circles) dip below the ΛΛ threshold
before t ¼ 0.5 fm; however, they are in disagreement with
each other for t≲ 1.0 fm. Statistically, the most precise
signal is obtained by considering a 2 × 2 correlator matrix,

FIG. 4. Ground-state effective energy for the singlet (top) and 27-plet (bottom) on ensemble E5 for which SU(3) symmetry is broken.
The assignment of a particular multiplet to the energy levels was done on the basis of the dominant overlaps with the interpolating
operator. The explanation of symbols is similar to that of Fig. 3.
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composed of “narrow” smeared hexaquark interpolating
operators for the singlet and 27-plet at the source and a
corresponding set of two-baryon operators with both
momenta set to zero at the sink. The corresponding
effective energy is represented by the open red circles in
Fig. 4. After fitting the effective energy to a constant in the
interval t ¼ 1.0–1.3 fm we obtain the estimates represented
by the red bands in the right panels. We find that the fitted
ground-state energies of the singlet and 27-plet are of the
order of 1 standard deviation below the ΛΛ threshold (see
Tables II–VII). Note that this analysis is in slight tension
with the effective energy from a 4 × 4 correlator matrix
with only two-baryon operators at the sink (filled red
circles), meaning that the uncertainty may be somewhat
underestimated.
As discussed in Sec. II C we have computed correlation

matrices in frames with total momentum P ¼ 2πD=L with
D2 ¼ 0, 1, 2, 3. Estimates for the corresponding ground-
state energies are listed in Tables IV–VII. The combined
results in all frames have been used to obtain information
on the scattering phase shifts and binding energies in
infinite volume. A detailed discussion is deferred to Sec. IV.

B. Dibaryon analysis with distillation

The distillation technique enables the use of two-baryon
operators at both the source and the sink. This results in a
Hermitian correlator matrix and allows us to properly
account for the mixing between the singlet, octet, and
27-plet states under SU(3) breaking. Within this setup we
do not use hexaquark operators. For our initial study, we
have computed correlation functions on ensembles E1 and
E5 in the rest frame only, which allows for a direct
comparison with results from the previous subsection.
As described in Sec. II B, we start from the two-baryon

interpolating operators of Eqs. (9)–(11), projected on
p1 ¼ p2 ¼ 0. Using the transformation of Appendix B in
Ref. [21] we then perform the rotation to the singlet, octet,
and 27-plet, which yields the operators BB1;L;0, BB8;L;0,
and BB27;L;0, respectively. In each channel we compute the
corresponding correlation functions and determine the
effective energies. Results for the effective energy on E1
are shown in the top left panel of Fig. 5. In all three
channels, the effective energy approaches a plateau
monotonically from above and do not show any of the
irregularities observed in the non-Hermitian setup based on
point-to-all propagators. The top right panel of Fig. 5 shows
the effective energy difference Eeff − 2mΛ;eff .
The plot demonstrates that the statistical precision in

each of the three individual (1 × 1) correlators is sufficient
to separate the energy levels corresponding to the singlet,
27-plet, and octet channels (in ascending order). The fact
that the effective energy differences are nearly constant
over time indicates that excited-state contributions in the
dibaryon correlation functions are very similar to those in
the single Λ correlator. Still, it is important to determine the

energy difference in the regime where the individual
correlators have reached their respective asymptotic behav-
ior. In the singlet channel (color coded in blue), the
effective energy in the plateau region lies significantly
below the noninteracting ΛΛ threshold. The energy level of
the 27-plet is closer to the threshold, while the octet state
lies significantly above.
The results on E5 are shown in the lower half of Fig. 5,

with color coding identical to that of ensemble E1. Due to
the breaking of SU(3) symmetry, the different multiplets
cannot be treated independently anymore and it is here that
the inclusion of the octet operator at the source and sink
allows for a consistent treatment of the relevant flavor
multiplets. In order to take account of the mixing of different
multiplets, we compute a 3 × 3 correlator matrix using
the operators BB1;L;0, BB8;L;0, and BB27;L;0, which is then
subjected to the diagonalization procedure. The resulting
energy levels are identified with a particular multiplet
according to the overlaps with the interpolating operator.
The effective energy of the singlet (blue circles) is below
the ΛΛ threshold and, in contrast to the case of point-to-all
propagators, can be clearly distinguished from the energy
corresponding to two noninteracting Λs. The distillation
technique allows us to distinguish the singlet and 27-plet as
two distinct states with our statistics. The octet, by contrast,
lies far above the threshold. For our final estimates of the
energies of the different states in the SU(3)-symmetric
situation, we have fitted the effective energy to a constant
for t starting from 0.8 fm. In the SU(3)-broken situation, the
plateau starts later and we have fitted from 1.0 fm.
It is instructive to compare the energy levels computed

using point-to-all propagators to the results extracted using
the distillation technique. In Fig. 6 we show the effective
energy gap for the singlet ground state computed on
ensemble E1. The plot demonstrates the dramatic improve-
ment in the overall precision provided by the distillation
technique in conjunction with LapH smearing: The effec-
tive energy gap computed using distillation can be clearly
distinguished from zero owing to its tiny statistical errors.
Furthermore, it exhibits a flat behavior across a wide
range of Euclidean times. While the results obtained using
point-to-all propagators are consistent with distillation for
t≳ 0.9 fm, the larger statistical noise makes it more
difficult to determine a nonvanishing energy gap. Also,
one does not profit from the partial cancellation of
statistical noise in the difference Eeff − 2mΛ;eff when using
point sources compared to using distillation. As with the
point-source method, some caution is required due to the
small energy gap to the first excited state. If we assume that
the states resemble the noninteracting ones, then the two-
baryon operator with both baryons at rest will couple
strongly to the ground state and poorly to the elastic excited
states; this could explain the long plateau in Fig. 6. In fact,
the length of this plateau is comparable to the inverse
energy gap Δ−1 ≈ 1.1 fm.
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We end this section with a discussion of the relative cost
of calculations based on point-to-all propagators and
distillation. A simple and fairly accurate cost estimate is
provided by the number of propagator solves per configu-
ration. For point sources we have to perform

Npt ¼ Nflav · Nsrc · Nsmear · 12 ð18Þ

inversions, where Nflav denotes the number of different
quark flavors, Nsrc is the number of sources, and the
number of different smearings is given by Nsmear. For
distillation the number of propagator solves is given by

Ndist ¼ Nflav · Ntsrc · NLapH · 4; ð19Þ

where Ntsrc denotes the number of time slices used to
compute time-slice-to-all propagators and NLapH is the

number of low-lying modes of the spatial Laplacian.
Using the information from Table I and the fact that we
have used NLapH ¼ 56 modes, we find Npt ¼ 3072 and
Ndist ¼ 1792 for ensemble E1. For E5 the above expres-
sions evaluate to Npt ¼ 1536 and Ndist ¼ 1792. We con-
clude that the better data quality of the distillation technique
is achieved for comparable or even lower cost. For a more
precise cost comparison one should also take into account
that the cost of contractions in the distillation approach is
typically larger. The associated computational overhead
may become significant on large volumes. We will present
a more thorough discussion of this issue in a future
publication.

IV. FINITE VOLUME ANALYSIS

The finite-volume rest frame energy level E, when below
the two-particle threshold, provides a naïve estimate of the

FIG. 5. Top: Effective energies for different multiplets for the SU(3)-symmetric case (ensemble E1). The right panel shows the
effective energy difference relative to the ΛΛ threshold. Bottom: Energy levels and relative difference for the SU(3)-broken case
(ensemble E5). As in Fig. 4, the assignment of flavor multiplets to the energy levels was done by means of the dominant overlaps with
the interpolating operator. All results have been obtained using distillation. Colored bands indicate the fitted values across the relevant
time interval.
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mass of the bound state. However, this can suffer from
significant finite-volume effects that are asymptotically
only suppressed as e−κL, where κ is the binding momentum
defined via E ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Λ − κ2
p

. In addition, there can be an
energy level below threshold without a bound state, in
which case it has a power-law dependence on L that
depends on the scattering length.
For a more careful study of the presence of a bound state

and its mass, we turn to Lüscher’s finite volume quantiza-
tion condition [50] and its extension to moving frames [51].
Below the three-particle threshold, this is a relation
between the two-particle scattering amplitude and the
finite-volume energy levels. In the case of one pair of
identical particles scattering in the S wave, if we ignore the
influence of higher partial waves due to the breaking of
rotational symmetry, the condition takes the form

p cot δðpÞ ¼ 2ffiffiffi
π

p
Lγ

ZD
00

�
1;

�
pL
2π

�
2
�
; ð20Þ

where p is the scattering momentum satisfying Ecm≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − P2

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Λ þ p2
p

, δðpÞ is the scattering phase
shift, γ ¼ E=Ecm is the moving-frame boost factor, and
ZD
00 is a generalized zeta function defined in Ref. [51]. Our

numerical implementation of the zeta function is based
on Ref. [52].
As recently reviewed in Ref. [53], a bound state,

corresponding to a pole in the scattering amplitude on
the real p2 axis below zero, is determined by the condition
p cot δðpÞ ¼ −

ffiffiffiffiffiffiffiffiffi
−p2

p
. That reference also provides a

check that can be applied to lattice data: at the pole, the
slope of p cot δðpÞ (versus p2) must be smaller than that
of −

ffiffiffiffiffiffiffiffiffi
−p2

p
.

For small p2, the phase shift can be described by the
effective range expansion. We use the first two terms,

p cot δðpÞ ¼ −
1

a0
þ r0

2
p2; ð21Þ

where a0 is the scattering length and r0 is the effective
range. Fitting this to lattice data is not a simple linear fit,
since p cot δðpÞ and p2 are not independent variables,
being related by the quantization condition. We choose to
fit to the squared scattering momentum p2 determined from
each lattice energy, in a manner similar to what was done
for fitting to the lattice energies in Ref. [54]. Fitting to the
momentum rather than energy benefits from cancellations
of statistical uncertainties that are correlated between E and
mΛ. Given a set of fit parameters ða0; r0Þ, in each frame the
fit momentum is determined by finding the solution to the
quantization condition that is nearest to the corresponding
momentum determined from the lattice calculation, i.e., by
numerically solving

2ffiffiffi
π

p
Lγ

ZD
00

�
1;

�
pL
2π

�
2
�

¼ −
1

a0
þ r0

2
p2: ð22Þ

We only consider the ensembles with SU(3) symmetry,
since otherwise this is a much more complicated coupled-
channel (ΛΛ, NΞ, and ΣΣ) system.
We are only able to obtain a reliable fit in the flavor

singlet sector on ensemble E1, where the precise energy
level in the rest frame from the distillation method provides
a stronger constraint than the other data. This is shown in
Fig. 7; we find the scattering length to be 1.3(5) fm and
the effective range 0.4(3) fm. There is a clear intersection
with the bound-state curve, which has a slope with the
correct behavior, indicating the presence of a bound H
dibaryon. This intersection yields a binding energy of
ΔE ¼ 19ð10Þ MeV, somewhat smaller in magnitude than
the naïve value obtained from the rest-frame energy differ-
ence 2mΛ − E.
For the ensembles A1 and N1, we are unable to obtain

reliable fits. However, in the flavor singlet sector, the data
in the rest frame and in the higher moving frames sit on
opposite sides of the bound-state curve, which indicates
that there will be an intersection between it and the phase
shift; see Fig. 8. For the frame D2 ¼ 1, the point—together
with its error along the quantization curve—is almost on
top of the bound-state curve, and therefore we make a
conservative estimate of the binding energy. To this end
we consider the interval defined by the maximum and
minimum values of Ecm deduced from the frames with
D2 ¼ 0, 1. The midpoint of this interval is identified with
the central value of the binding energy, while the 1σ error is

FIG. 6. Comparison of the effective energy difference between
the singlet ground state and two noninteracting Λs, computed
with point-to-all propagators and distillation, respectively, for
ensemble E1. Open blue circles derive from the same non-
Hermitian 2 × 2 correlator matrix that was used to determine the
ground state energy in the singlet channel, represented by the blue
points in the top panel of Figure 3.
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defined as the difference with the upper and lower bounds.
For N1, we get aΔE ¼ 0.016ð13Þ, or 65(53) MeV. For A1,
we get aΔE ¼ 0.028ð25Þ, or 73(66) MeV.
In the 27-plet sector, our data are generally not precise

enough to distinguish the energy levels from the non-
interacting ones; this means that the phase shift is
consistent with zero. On E1, where distillation provides
a relatively precise value, the rest-frame energy is slightly
below threshold. Using the quantization condition, we

find that just below threshold, p cot δ is probably positive;
see Fig. 9. This means that a bound state (which would be
a dineutron) is unlikely; however, an intersection with
p cot δ ¼ þ

ffiffiffiffiffiffiffiffiffi
−p2

p
, which corresponds to a virtual bound

state (i.e., a pole on the unphysical sheet), is possible. If
we neglect the dependence on p2, the distillation energy
level implies a scattering length a0 ¼ −0.2þ0.1

−0.2 fm.
However, note that the quantization condition is very
nonlinear and at 3σ the statistical uncertainty on a0
becomes as large as þ0.3

−1.2 , assuming a symmetric
Gaussian uncertainty on the p2 determined from the
energy level.

V. DISCUSSION AND CONCLUSION

We have presented a detailed study of the spectrum of the
H dibaryon in the SU(3) flavor-symmetric and broken
cases, using lattice QCD simulations with dynamical up
and down quarks and a quenched strange quark. We have
analyzed the efficiency of different interpolating operators
in the determination of hadronic finite volume energy
eigenvalues via variational analysis.
Our findings indicate that pointlike hexaquark operators

provide a poor overlap onto the SU(3) singlet ground state.
This becomes evident through the slow convergence to the
ground state plateau seen in the time dependence of the
lowest energy eigenvalue. The inclusion of bilocal two-
baryon operators at the sink improves the overlap consid-
erably, as indicated by an earlier onset of the plateau and a
stronger statistical signal. However, in a setup based on
point-to-all propagators, the improvement comes at the
expense of having to deal with non-Hermitian correlator
matrices. As a consequence, effective energies determined

FIG. 9. SU(3) 27-plet scattering phase shift on ensemble E1.
The legend indicates the moving frame D ¼ L

2π P; the data point
labeled ½000�� was obtained using distillation; and the others were
obtained using point-source data. The orange dashed curve
corresponds to p cot δ ¼ −

ffiffiffiffiffiffiffiffiffi
−p2

p
.

FIG. 7. SU(3) singlet scattering phase shift on ensemble E1.
The legend indicates the moving frame D ¼ L

2π P; the data point
labeled ½000�� was obtained using distillation; and the others were
obtained using point-source data. The grey line and its error band
indicate the effective-range-expansion fit, and the orange dashed
curve corresponds to p cot δ ¼ −

ffiffiffiffiffiffiffiffiffi
−p2

p
. The horizontal error bar

shows the intersection between the grey line and the orange
dashed curve, which is translated to a binding energy in the label
above it.

FIG. 8. SU(3) singlet scattering phase shift on ensemble A1.
The legend indicates the moving frame D ¼ L

2π P, and the orange

dashed curve corresponds to p cot δ ¼ −
ffiffiffiffiffiffiffiffiffi
−p2

p
.
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from the eigenvalues are not guaranteed to approach their
asymptotic behavior from above. In this way an additional
systematic is introduced, as the onset of the plateau is
obscured or can be misidentified.
A fully Hermitian setup with bilocal two-baryon

operators at both the source and the sink can be realized
with the help of the distillation technique which allows for
the calculation of time-slice-to-all propagators. In our
study of the SU(3) symmetric and broken cases we have
been able to determine the energy levels reliably and with
good statistical precision for the flavor singlet, 27-plet,
and octet.
In particular, we could identify a clear gap between the

ground-state singlet energy level and the 2mΛ threshold,
which suggests that there is a bound H dibaryon. The
energy difference provides a naïve estimate of the binding
energy, ΔE≡ 2mΛ − E. For ensembles E1 and E5, which
realize the SU(3) symmetric and broken situations, respec-
tively, the estimates are

E1∶ ΔE ¼ 39.0� 2.2 MeV; mπ ¼ 960 MeV; ð23Þ

E5∶ ΔE ¼ 18.8� 5.5 MeV; mπ ¼ 440 MeV: ð24Þ

However, recalling that finite-volume effects are asymp-
totically suppressed as e−κL, where κ is the binding
momentum, the naïve estimates of the binding energy in
Eqs. (23) and (24) may not be very reliable, given that κL
evaluates to 2.99(8) for E1 and 1.74(25) for E5.
In addition, we have applied Lüscher’s finite-volume

quantization condition to determine the scattering phase
shift, which we use to obtain a more reliable estimate of the
binding energy. Including data from the rest frame as well
as several moving frames in the finite-volume analysis of
the singlet case results in a shallower binding energy
compared to the naïve estimate:

E1∶ ΔE ¼ 19� 10 MeV; mπ ¼ 960 MeV: ð25Þ

Repeating the analysis for the SU(3) 27-plet is made more
difficult through the relative closeness of the energy levels
to the noninteracting levels, and the same is true in the case
of broken SU(3)-flavor symmetry. We expect the situation
to improve in our ongoing work, since we will obtain more
precise results by also using distillation in the moving
frames.
In Fig. 10 we show a compilation of our results for the

binding energy on all our ensembles, plotted against
the pion mass. The comparison with the estimates of
the NPLQCD [14,18,20] and HAL QCD [22,23]
Collaborations is made in Fig. 11. In the SU(3)-symmetric
case we find that our estimate is considerably smaller than
the result quoted by NPLQCD at a similar value of the pion
mass [18]. Potentially, uncontrolled systematics such as the
incorrect identification of the plateau, quenching of the

strange quark or finite-volume effects could be the source
of this discrepancy. We will address these issues in a future
publication based on ensembles with Nf ¼ 2þ 1 flavors of
dynamical quarks.
Our findings suggest that the combination of distillation

and Lüscher’s finite-volume formalism will allow for a
considerably improved calculation of the binding energy.
Thus, there are good prospects for a reliable determination
of this quantity at the physical point.

FIG. 10. Summary of our results for the binding energy of the
H dibaryon. Green and blue colors refer to the SU(3)-symmetric
and broken cases, respectively. Full circles and open diamonds
represent results obtained in the rest frame using point sources
and distillation, respectively. Crosses denote estimates for the
binding energy extracted from the finite-volume analysis of
results in different frames as described in Sec. IV.

FIG. 11. Comparison of our results in Eqs. (23)–(25) to the
estimates quoted by NPLQCD [14,18,20] and HAL QCD
[22,23]. Green and blue symbols refer to the SU(3)-symmetric
and broken cases, respectively. The data point marked by a star
denotes the result in infinite volume.
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APPENDIX: FIT RESULTS

In Tables II and III we provide our mass estimates for
single baryons in the SU(3)-symmetric and broken cases,
respectively. Dibaryon energy levels, as determined from
fits to the effective energy, are listed in Tables IV and VI.

TABLE II. Mass estimates of the Λ hyperon (in lattice units) in
the SU(3)-symmetric case. The rightmost column shows the fit
range. Ensembles marked by an asterisk represent results deter-
mined distillation and LapH smearing.

Ensemble amΛ Fit range

A1 0.6560(23) [16,25]

E1 0.6763(09) [15,20]
E1� 0.6751(09) [12,20]

N1 0.4538(20) [25,38]

TABLE III. Mass estimates of octet baryons on ensemble E5,
which corresponds to the SU(3)-broken situation. We list the
results obtained using point sources and distillation, the latter
being indicated by an asterisk. The estimates are in lattice units
along with the relevant fit ranges.

E5 Fit range E5* Fit range

amN 0.4330(11) [15,25] 0.4302(15) [15,21]
amΛ 0.4727(07) [15,25] 0.4701(10) [15,21]
amΣ 0.4893(08) [15,25] 0.4870(11) [15,21]
amΞ 0.5201(05) [15,25] 0.5181(07) [15,21]

TABLE IV. Fitted energies of the ground state for the singlet. Results determined using distillation are listed in rows labeled E1�
and E5�.

D2 ¼ 0 D2 ¼ 1 D2 ¼ 2 D2 ¼ 3

Ensemble aEsinglet Fit range aEsinglet Fit range aEsinglet Fit range aEsinglet Fit range

E1 1.3358(66) [14,21] 1.3562(58) [13,19] 1.3763(60) [12,19] 1.3985(74) [12,19]
E1� 1.3371(18) [12,20]

A1 1.279(20) [11,16] 1.303(20) [11,17] 1.321(21) [11,15] 1.341(23) [11,15]

N1 0.888(10) [20,27] 0.904(11) [20,27] 0.9170(77) [18,23] 0.9341(53) [16,21]

E5 0.9363(70) [15,19] 0.9659(68) [15,19] 0.974(16) [17,20] 0.985(20) [17,21]
E5� 0.9340(26) [15,20]

TABLE V. Ground-state energy differences að2mΛ − EcmÞ for the singlet. Results determined using distillation are listed in rows
labeled E1� and E5�. The rightmost column contains the results for the binding energy determined via Lüscher’s finite-volume
formalism.

Ensemble D2 ¼ 0 D2 ¼ 1 D2 ¼ 2 D2 ¼ 3 FV analysis

E1 0.0168(66) 0.0107(60) 0.0047(62) −0.0039ð77Þ
0.0062(34)

E1� 0.0130(7)

A1 0.033(20) 0.024(21) 0.020(22) 0.015(24) 0.028(25)

N1 0.019(10) 0.014(11) 0.009(7) 0.001(5) 0.016(13)

E5 0.0091(69) −0.0004ð68Þ 0.0118(164) 0.0214(214)
E5� 0.0063(18)
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The corresponding energy difference with theΛΛ threshold
is shown in Tables V and VII.
The fitted mass estimates for the octet baryons,

obtained using either point sources or distillation, differ
at the level of about 2 standard deviations (see Table III).

As can be inferred easily from Fig. 12, the effective
masses obtained using either type of source agree within
errors, and hence the differences observed among the
estimates in Table III are commensurate with statistical
fluctuations.

TABLE VI. Fitted energies of the ground state for the 27-plet. Results determined using distillation are listed in the row labeled E1�.

D2 ¼ 0 D2 ¼ 1 D2 ¼ 2 D2 ¼ 3

Ensemble aE27-plet Fit range aE27-plet Fit range aE27-plet Fit range aE27-plet Fit range

E1 1.3494(58) [14,20] 1.3761(54) [13,19] 1.4011(51) [12,19] 1.4265(61) [12,16]
E1� 1.3488(19) [12,17]

A1 1.318(11) [12,18] 1.346(12) [12,18] 1.367(12) [10,16] 1.394(15) [10,16]

N1 0.9058(68) [21,29] 0.9205(83) [22,29] 0.9366(93) [22,28] 0.953(11) [22,29]

E5 0.9412(48) [16,20] 0.9843(48) [16,20] 1.0299(66) [16,20] 1.0789(94) [16,20]
E5� 0.9380(25) [15,20]

TABLE VII. Ground-state energy differences að2mΛ − EcmÞ for the 27-plet. Results determined using distillation
are listed in the row labeled E1�.

Ensemble D2 ¼ 0 D2 ¼ 1 D2 ¼ 2 D2 ¼ 3

E1 0.0032(56) −0.0094ð53Þ −0.0207ð51Þ −0.0328ð63Þ
E1� 0.0014(8)

A1 −0.006ð11Þ −0.019ð12Þ −0.027ð13Þ −0.040ð16Þ
N1 0.002(6) −0.004ð7Þ −0.011ð9Þ −0.018ð10Þ
E5 0.0042(46) −0.0191ð47Þ −0.0464ð67Þ −0.0785ð98Þ
E5� 0.0023(17)

FIG. 12. Left: Effective masses for the Λ hyperon in the SU(3)-symmetric case (ensemble E1). Right: Effective masses for octet
baryons, i.e., the nucleon, Λ, Σ, and Ξ in the SU(3)-broken case (ensemble E5). Diamonds and open circles denote results obtained using
distillation and point sources, respectively. For the latter, the narrow smearing width was used (see Sec. II B).
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