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We present a tensor formulation for free compact electrodynamics in three Euclidean dimensions and use
this formulation to construct a quantum Hamiltonian in the continuous-time limit. Gauge-invariance is
maintained at every step and ultimately the gauge fields are integrated out, removing all initial gauge
freedom. The resulting Hamiltonian can be written as a rotor model. The energy eigenvalues for this
Hamiltonian are computed using the tensor renormalization group, and are compared with perturbation
theory. We find good agreement between the calculations, demonstrating a smooth passage from the
statistical lattice Lagrangian description to the quantum Hamiltonian description.
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I. INTRODUCTION

In the last decade there has been an effort in the
development and application of tensor real-space renorm-
alization group methods for the lattice (for instance [1–6])
or TRG. The TRG allows one to carry out genuine real-
space renormalization group steps exactly as Kadanoff [7]
and Wilson [8] prescribed, and many approximation
schemes have been invented within this framework.
These methods present a number of advantages over
traditional sampling (Monte Carlo or MC) methods, most
notably an indifference to the sign problem [9], and when
translation invariance holds the infinite-volume limit is
easily achieved. However, it has been difficult to construct
efficient TRG methods in spacetime dimensions larger
than two.
An additional pleasant feature of the TRG formalism is

the typical reformulation of the model of interest in terms of
discrete fields, which are easier to accommodate computa-
tionally. These discrete fields are convenient for re-writing
the partition function as a contraction over local tensors
which, when done exactly, reproduces the partition func-
tion. This is a tensor network representation, or tensor
formulation, of the model. These discrete variables have not
only been useful in tensor formulations, but also in
sampling methods [10,11]. This discreteness has been
found to be advantageous for making contact with quantum
computation, specifically analogue quantum computing

[12–14]. There, one works with atomic species whose
Hamiltonian descriptions are in terms of creation and
annihilation operators and whose occupations are discrete
[15]. The discrete nature of the tensor indices comes about
from the reformulation of the model using dual variables, in
this case, from the compact nature of the original variables.
Once the model has been written in terms of a local tensor
whose indices are these discrete dual variables, this tensor
formulation allows one to identify a transfer matrix for the
physical degrees of freedom (d.o.f.) as simply a contraction
of these local tensors along a timeslice. Tensor formulations
then elucidate the relationships between different d.o.f.
through their nonzero elements, and seeing these relation-
ships helps construct models for the discrete d.o.f. used in
quantum computation, e.g., quantum simulation.
Here we use a particular TRG scheme, the higher-order

tensor renormalization group (HOTRG) [2], to study the
continuous-time behavior of three-dimensional compact
free electrodynamics. By reformulating this model in terms
of its dual variables, we are able to rewrite the partition
function as a spin-model while removing the initial gauge
freedom from the final result. This is consistent with
Ref. [16] where a gauge-spin duality for three dimensional
Abelian models is worked out in detail. Here, the duality
between the Uð1Þ gauge theory and its corresponding spin
system is used as a path to the continuous-time Hamiltonian
formulation for this model.
A similar approach to constructing spin systems from

gauge models (although accomplished completely in the
Hamiltonian formulation) for general SUðNÞ groups was
considered in Ref. [17]. The Hamiltonian constructed there
reduce to the Hamiltonian constructed here for the case of
the gauge group Uð1Þ. In Ref. [18], duality also plays a
similar role in restricting the physical state space and
enforcing Gauss’s law.
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Here the duality transformation is carried out entirely in
the original statistical mechanics model, treating Euclidean
time identically to space. We then take the continuous-time
limit of this formulation as worked-out in Refs. [19,20].
The integer dual variables on the fully discrete lattice
theory can be interpreted as the z-component angular
momentum quantum numbers in the continuous-time limit,
and we construct a rotor Hamiltonian for this model.
Because the original gauge model can be recast as a spin

model, the tensor formulation of this model is simplified
and it can be written in terms of a single local tensor. This
allows the use of approximate tensor renormalization group
methods to coarse grain. Using the HOTRG, we are able to
coarse grain the system, and construct an approximate
transfer matrix in terms of the physical d.o.f., and by tuning
the bare parameters we can study the continuous-time limit.
We are then able to diagonalize this approximate transfer
matrix and obtain the approximate energy eigenvalues
for the continuous-time limit Hamiltonian. Comparison
between numerical and perturbative analytical results
shows good agreement.
The rest of the paper is organized as follows: In Sec. II

we introduce the model and reformulate it in terms of its
dual variables. Then using the dual variables we rewrite the
partition function as a sum of local tensor contractions.
We compare with Monte Carlo to check the validity of the
description. In Sec. III we use the tensor formulation of
the model to construct a transfer matrix and take the
continuous-time limit. In this limit we extract a quantum
Hamiltonian from the transfer matrix and interpret the
Hamiltonian as a rotor model. With this Hamiltonian we
compare calculations of its energy eigenvalues using the
HOTRG with calculations done with perturbation theory
and find good agreement. Finally in Sec. IV we give
concluding remarks about the work and possible future
directions.

II. DUAL VARIABLES OF 3D U(1)
GAUGE THEORY

The starting action for Uð1Þ lattice gauge theory in three
Euclidean dimensions on a cubic lattice of spatial dimen-
sions Nx × Ny ¼ Ns, and temporal extent Nτ, is

S ¼ −β
X
x

X3
μ>ν¼1

ℜ½Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν� ð1Þ

¼ −β
X
x;μν

cosðAx;μ þ Axþμ̂;ν − Axþν̂;μ − Ax;νÞ ð2Þ

¼ −β
X
x;μν

cosðFx;μνÞ; ð3Þ

where x denotes the lattice site location, and μ, ν denote the
direction so that xþ μ̂ denotes a unit step in the μ̂ direction.

The gauge fields,Ux;μ ¼ eiAx;μ , are associated with the links
of the lattice, and β ¼ 1=g2 with g the gauge coupling. The
action consists of a product of gauge fields around an
elementary square (plaquette) of the lattice, reproducing the
curl of the vector potential in the continuum. The partition
function is

Z ¼
Z

D½Ax;μ�e−S; ð4Þ

where the vector potential is periodic Ax;μ ∈ ½0; 2π�.
The Boltzmann weight can be expanded using the

conjugate Fourier variables as one does in the tensor
formulation, or duality transformation [4,16],

e−S ¼
Y
x;μν

X∞
nx;μν¼−∞

Inx;μνðβÞeinx;μνFx;μν : ð5Þ

Here there is an antisymmetric nx;μν field, where nx;μν is an
integer associated with each plaquette on the lattice, and the
InðzÞ are the modified Bessel functions. They are sym-
metric under n → −n for z ≥ 0. Each link is shared by four
plaquettes in three dimensions. The integration over the
vector potential now factorizes and we find for each link,

Z
dAx;μ

2π
eiAx;μðn1þn2−n3−n4Þ ¼ δn1þn2−n3−n4;0; ð6Þ

where the four ns correspond to the four plaquettes in the
coboundary of the link. The partition function can now be
written

Z ¼
X
fng

�Y
x;μν

Inx;μνðβÞ
��Y

x;μ

δΔνnx;νμ;0

�
; ð7Þ

where Δν is the lattice forward derivative, Δνfx ¼
fxþν̂ − fx.
The nx;μν variables are associated with plaquettes of the

lattice, and the Kronecker deltas enforce relations between
ns associated with different spacetime slices. These rela-
tions are just Maxwell’s equations, where nx;μν are the
discrete components of the electric and magnetic fields.
At this point the Kronecker deltas enforcing a zero-

divergence constraint can be solved identically using the
curl [16],

Δμnx;μν ¼ 0 ⇒ nx;μν ¼ ϵμνρΔρmx� : ð8Þ

Thems are located at the centers of the cubes of the original
lattice (the dual lattice sites, x�) which is necessary in order
to simultaneously satisfy all the surrounding constraints
associated with the links. Inserting this into the partition
function we get,
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Z ¼
X
fmg

�Y
x;μν

IϵμνρΔρmx� ðβÞ
�
: ð9Þ

At this point it is convenient to switch to the dual lattice. At
the center of each cube we assign a site, and for each
plaquette we assign a link connecting two dual sites. The
partition function is essentially identical,

Z ¼
X
fmg

�Y
x�;μ

IΔμmx� ðβÞ
�

ð10Þ

except the sites are the dual sites, and the product is over
dual links. We will drop the asterisk from now on and only
work in the dual. This can be split into dual time and space
links,

Z ¼
X
fmg

�Y
x;τ

Im−m0 ðβsÞ
��Y

x;i

Im−m0 ðβτÞ
�
: ð11Þ

We have relaxed the notation surrounding the ms since the
Bessel functions are symmetric in their order, and their
order is the difference between m values at adjacent sites.
The partition function in Eq. (11) is similar to the dual
partition function for the Abelian Higgs model in Ref. [14],
although they are in two different spacetime dimensions
and one model includes scalar matter. This similarity is due
to the fact that both models have discrete fields associated
with their dual links, and these fields are constrained to be
divergenceless at either the sites (in the 2D case), or the
links (in the 3D case). Notice the temporal coupling is
associated with the dual spatial links and the spatial
coupling is associated with the dual temporal links.
In arriving at this final form of the partition function,

gauge invariance is maintained at each step until the gauge
fields are completely integrated out, arriving at a model
with no remaining gauge freedom. In fact, even if the sum
over n in Eq. (5) is truncated, the local invariance is
unaffected and one is simply left with an effective model
with the same symmetries. This is because the expansion is
in terms of the gauge-invariant quantity Fμν, and so if one
were to make a gauge transformation in the truncated form
of Eq. (5), the expansion would be unaffected. After Eq. (5)
all configurations of the gauge field are integrated over.

A. Tensor formulation of the model

The dual variables from the previous section can be used
straightforwardly to construct a local tensor from which the
entire partition function can be reconstructed. Similar
tensor constructions as well as dual-variable formulations
for other models can be found in Refs. [4,14,16,21]. This
formulation is not unique, and a tensor formulation for 3D
Uð1Þ was put forth in Ref. [4]. However, the U(1) gauge
tensor constructed in Ref. [4] has indices, which corre-
spond to different directions in spacetime, that lack

symmetry under transposition. In contrast, the tensor
constructed here is symmetric under any transposition of
its indices. To form a tensor we first notice that the partition
function from Eq. (11) describes a theory of integer fields
located on the sites of a lattice with nearest neighbor
interactions. To isolate the integer fields on the sites, we
interpret the Bessel function weights as matrices in their m
indices, and factorize them as,

Im−m0 ðβÞ≡ Amm0 ðβÞ ¼
X∞
α¼−∞

LmαðβÞLT
αm0 ðβÞ: ð12Þ

This decomposition is not unique, and is simply the matrix
square root. This decouples the integer fields at the sites
from their nearest neighbor interaction, and replaces it with
an intermediate sum over states. To form a local tensor we
define,

Tαβγδλσ ¼
X∞

m¼−∞
LmαLmβLmγLmδLmλLmσ ð13Þ

which is a function of both the spatial and temporal gauge
couplings. The symmetry mentioned above corresponding
to the symmetry in tensor indices is completely manifest in
Eq. (13). An illustration of this tensor can be seen in Fig. 1.
Note that contracting the tensor indices—with each index
representing a direction in spacetime—in the shape of the
cubic lattice reconstructs the partition function exactly,
since through each contraction the Bessel function weights
are reconstructed. Therefore one is to think of each Greek

FIG. 1. An illustration of the fundamental local tensor as
defined in Eq. (13). Here it is drawn inside of a basic cell of
the original lattice, and a blue cross at the center shows the dual
site associated with this cell.
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index in Eq. (13) as being associated with one of the six
directions of a cubic lattice.
In order to check the validity of the tensor formulation

presented here, we compared calculations of the average
action per plaquette between Monte Carlo and the HOTRG,

hSi ¼ −
β

3V
∂ lnðZÞ
∂β ; ð14Þ

where V is the spacetime volume. The Monte Carlo
calculations implemented the heat bath algorithm on the
weights from Eq. (11). These calculations were compared
with Monte Carlo calculations done in the original field
variables from Eq. (4). A comparison between Monte Carlo
calculations and the HOTRG can be seen in Fig. 2. The
HOTRG data was extracted from the numerical derivative
with respect to β of lnðZÞ, which is straight forward to
calculate using the HOTRG. The error bars on the HOTRG
data were calculated using three different final bond
dimensions: 15, 17, and 19; however, these calculations
were done by restricting the bond dimension to three states
in the initial tensor.
An initial five state truncation was tested and found not

to make a noticeable difference leading us to believe that
the final truncation is responsible for most of the informa-
tion loss. The three state truncation allows for weights up to
order nx;μν ¼ j2j in the partition function. With weights up
to this order, we can compare with Monte Carlo, as well as
strong and weak coupling expansions, up to β ≃ 4 and find
good agreement. In order to compare with even larger
values of β one must keep more initial states in the initial
tensor. We used the largest difference in the average action
between the three data sets to estimate the error and

assumed that this largest difference was a good approxi-
mation for the error for all points, with the addition of the
error from the numerical derivative. Overall we find good
agreement between the two methods, which lends support
to the validity of the tensor formulation and calculations.

III. CONTINUOUS-TIME LIMIT

Using the tensor formulation of the model, we can
construct a transfer matrix. Similar approaches to the
continuous-time limit, and a transfer matrix construction
were put forward in Refs. [12–14,16,19,22]. The construc-
tion of the transfer matrix is accomplished by contracting
local tensors together along a time-slice. Using periodic
boundary conditions, this leaves only tensor indices in the
positive and negative time directions. This construction can
be seen in Fig. 3. In the figure, the tensor contractions have
been drawn to represent the ideal case; however, in practice
one must truncate and approximate the local basis using
some approximation scheme. In numerical calculations
here we used the HOTRG.
The essence of the HOTRG is that one attempts to

approximate a tensor with another tensor with smaller
dimensional indices, but that has a similar norm. The
HOTRG algorithm keeps linear combinations of states
from the original tensor such that the norm of the difference
between the final tensor and the approximate tensor is
minimized [2]. This is the sense in which a tensor analog
for the singular value decomposition is used. In practice, it
has been found that the HOTRG algorithm picks states that
lead to a good approximation of the transfer matrix
[12,13,21], while the HOTRG does not necessarily attempt
to optimize in this respect.
In order to build an approximate transfer matrix from the

fundamental tensor, we contract the initial tensor with itself
along a single, say the x, direction and truncate in the
orthogonal directions. This allows the x direction to be
contracted exactly. The y and τ directions are truncated
using the HOTRG procedure. An illustration of this process

FIG. 2. A comparison between Monte Carlo and HOTRG
calculations of the average action per plaquette for a 163 lattice.
Here an initial bond dimension, Dbond, of three was used, and a
final Dbond of 19. The error for the HOTRG was estimated from
the largest difference in three different bond dimensions: 15, 17,
and 19. The Monte Carlo calculation averaged over 10 000
configurations and the errors were estimated through jack-knife
binning.

FIG. 3. An illustration of the transfer matrix as constructed by
local tensors. Each complete A matrix is orange, while each open
index is green. The remaining open indices are either pointing
forward, or backwards in time. Here it is assumed the lattice
continues in both spatial directions.
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is shown in Fig. 4(a). After the desired lattice size is
achieved in the x direction, the two hanging indices in the
positive and negative x directions are contracted to have
periodic boundary conditions. The tensor is now a four-
index tensor, each index representing the positive and
negative directions of the y and τ axes. We then contract
this tensor with itself along the y axis and, using the
HOTRG, truncate in the τ direction. This step is shown in
Fig. 4(b). When the desired lattice size in the y direction is
achieved, we contract the two hanging indices in the
positive and negative y directions to enforce period
boundary conditions. The final two-index tensor is the
approximate transfer matrix whose only two remaining
indices point in the positive and negative τ directions.
A graphic of this final matrix can be seen in Fig. 4(c).
We would now like to identify the matrix elements of the

transfer matrix. Hereinafter we will work with normalized
Bessel functions, tnðzÞ≡ InðzÞ=I0ðzÞ, unless otherwise
mentioned. The tn have the following behavior for large
and small arguments,

tnðzÞ ≃ 1 −
n2

2z
þOðz−2Þ for z → ∞ ð15Þ

tnðzÞ ≃
zn

2
þOðznþ2Þ for z → 0: ð16Þ

To identify the matrix elements of the transfer matrix we
rewrite the action of the model in a slightly different way
than before as [23]

S ¼ −
X
t

LðtÞ ð17Þ

with

LðtÞ ¼ 1

2

X
hiji

ln tmiðtÞ−mjðtÞðβτÞ

þ 1

2

X
hiji

ln tmiðtþ1Þ−mjðtþ1ÞðβτÞ

þ
X
i

ln tmiðtÞ−miðtþ1ÞðβsÞ: ð18Þ

Here the sums,
P

hiji and
P

i are over nearest neighbor
pairs, and all sites, respectively, and the sum

P
t is over all

time slices. This form is useful since the action has now
been written as a sum of terms associated with different
time slices. Each of these different time-slice terms shares a
collection of common m variables with two other terms in
the sum. The m variables associated with time slice t are
shared and contracted with the m variables on the previous
time slice, t − 1, and the next time slice, tþ 1. Now the
partition function can be written,

Z ¼ C
X
fmg

e−S ð19Þ

¼ C
�Y

t

X
fmðtÞg

��Y
t

ðeLÞfmðtÞgfmðtþ1Þg

�
ð20Þ

¼ CTr
�Y

t

T

�
: ð21Þ

with C ¼ ðI0ðβsÞÞNsNτðI0ðβτÞÞ2NsNτ . Here fmðtÞg denotes
the product state of m variables along a time slice t.

(a) (b) (c)

FIG. 4. An illustration of the contractions used to build the approximate transfer matrix. (a) The contraction along the x direction. The
original tensor is shown here as in Fig. 1, and an A matrix is shown in orange. Here the initial tensor is contracted with itself along a
single direction, and the two perpendicular directions are truncated using the HOTRG algorithm [2], shown in purple (we only show
truncation in the positive directions to avoid cluttering the diagram, but in practice one truncates in both positive and negative
directions). After the lattice reaches the desired size in the x direction, the final two indices in the x direction are traced over to enforce
periodic boundary conditions. (b) The contraction along the y direction. Here the resulting tensor from (a) is contracted with itself along
a single direction. The single perpendicular direction (here τ) is truncated using the HOTRG algorithm, shown in black. After reaching
the desired size in the y direction, the remaining indices in the y direction are traced over to enforce periodic boundary conditions.
(c) The final approximate transfer matrix with indices only in the positive and negative τ directions.
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Note how in the second product in Eq. (20) over t, each
fmðtÞg appears twice just as matrix indices should. Then
the partition function is written as a product of transfer
matrices, T , each of which is associated with a time slice,
and whose indices are the m variables which are traced
over.
First consider the diagonal entries of the transfer matrix.

In that case we find

LðtÞ ¼
X
hiji

ln tmi−mj
ðβτÞ: ð22Þ

Next, consider a single change of either�1 in anm variable
between two time slices,

LðtÞ ¼ 1

2

X
hiji

ln tmiðtÞ−mjðtÞðβτÞ

þ 1

2

X
hiji

ln tmiðtþ1Þ−mjðtþ1ÞðβτÞ þ ln t1ðβsÞ: ð23Þ

This is the first off-diagonal contribution. One then
proceeds systematically through all possible changes in
the ms to identify the matrix elements.
In order to relate this model to a quantum Hamiltonian in

two spatial dimensions we must find a limit for this transfer
matrix where,

T ≃ 1 − aH þ… ð24Þ

with a the temporal lattice spacing, and H a Hamiltonian.
This is a limit where the temporal lattice spacing becomes
small, and the time direction resembles continuous evolu-
tion. To take this continuous-time limit we imagine forcing
the temporal couplings to be very strong so to force
uniformity in the time direction and simultaneously we
make the temporal lattice spacing very small to approach
continuity. To that end we take βτ → ∞, and βs → 0, and
the temporal lattice spacing, a → 0 such that

U≡ 1

βτa
; and X ≡ βs

a
ð25Þ

are kept constant, and we keep terms in the expansion of the
normalized Bessel functions that are of OðβsÞ and Oðβ−1τ Þ.
Looking at Eq. (22) we see that, to leading order, the
diagonal part of the transfer matrix has the form

T diag ¼ exp

�
−

1

2βτ

X
hiji

ðmi −mjÞ2
�
: ð26Þ

While keeping to leading order in βs, we find for a single
change of �1 in the ms from Eq. (23),

T single flip ¼
βs
2
× exp

�
−

1

2βτ

X
hiji

ðmiðtÞ −mjðtÞÞ2−

1

2βτ

X
hiji

ðmiðtþ 1Þ −mjðtþ 1ÞÞ2
�
: ð27Þ

Keeping more spin-flips means keeping higher orders in βs.
In order to match the form T ≃ eaH we multiply by 1 such
that we introduce a factor of 1=a in the exponential in
Eq. (26) and out front of Eq. (27), while simultaneously
multiplying by a factor of a. We see only the OðβsÞ and
Oð1=βτÞ terms will survive, and the definitions in Eq. (25)
come about.
This gives a transfer matrix that implies a Hamiltonian of

the form

H ¼ U
2

X
hiji

ðLz
i − Lz

jÞ2 − X
X
i

Ux
i ; ð28Þ

with the sum hiji over nearest-neighbor pairs. The oper-
ators in this Hamiltonian are defined as follows in the
z-component of angular momentum basis, as they are in
Refs. [21,22],

Lzjmi ¼ mjmi ð29Þ

Ux ¼ 1

2
ðUþ þ U−Þ ð30Þ

U�jmi ¼ jm� 1i: ð31Þ

These operators satisfy the commutation relations
½Lz;U�� ¼ �U�, ½Uþ; U−� ¼ 0. We see the first term
favors “aligning” adjacent rotors, while the second term
attempts to disorder and scramble the rotors.

A. Calculations of the ground state energy

For small systems it is possible to calculate the approxi-
mate energy eigenvalues of Hamiltonian (28) accurately
using the HOTRG, and compare with perturbation theory
calculations. First we compute the perturbative expansion
analytically up to quartic order, and then compute the
approximate energy eigenvalues of the Hamiltonian
directly from the approximate transfer matrix eigenvalues
using the approximate transfer matrix constructed from
the HOTRG.
For the perturbation theory we begin by rescaling, and

using

H0 ¼
1

2

X
hiji

ðLz
i − Lz

jÞ2 ð32Þ

V ¼ −x
X
i

Ux; ð33Þ
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with x ¼ X=U ¼ βsβτ. We see the ground state for the
unperturbed Hamiltonian is infinitely degenerate. We add a
term to break this degeneracy, and then remove this
contribution at the end if the answer permits. Then,

H0 ¼
1

2

X
hiji

ðLz
i − Lz

jÞ2 þ h
X
i

ðLz
i Þ2; ð34Þ

which picks out the m ¼ 0 state as the ground state for H0.
Note that in the case of spatial open boundary conditions
(surrounding the spatial ends of the lattice in the m ¼ 0
state) this state is picked out automatically since at the
spatial boundary in x we have ðLz

Nx;y
− Lz

Nxþ1;yÞ2 →
ðLz

Nx;y
Þ2, while at the y spatial boundary we have

ðLz
x;Ny

− Lz
x;Nyþ1Þ2 → ðLz

x;Ny
Þ2. Then a degeneracy break-

ing term is not needed since in this case H0 would be
minimized by all rotors in the m ¼ 0 state. We can use the
perturbative formulas for the nth energy eigenvalue [23],

En ¼ ε0 þ xε1 þ x2ε2 þ… ð35Þ

with

xε1 ¼ hnjVjni ð36Þ

x2ε2 ¼ hnjVgVjni ð37Þ

x3ε3 ¼ hnjVgVgVjni − hnjVjnihnjVg2Vjni ð38Þ

x4ε4 ¼ hnjVgVgVgVjni − hnjVgVjnihnjVg2Vjni
þ hnjVjnihnjVjnihnjVg3Vjni
− hnjVjnihnjVgVg2V þ Vg2VgVjni
..
. ð39Þ

and g ¼ ð1 − jnihnjÞ=ðε0 −H0Þ to compute the different
energy states.
Consider the perturbative corrections for the ground state

energy, i.e., n ¼ 0. Wewill restrict the local Hilbert space to
three states, a “spin-1” system, with m ¼ �1, 0 possible at
each site. Noticing that the perturbation V raises or lowers
the angular momentum by one, the first contribution must
be at second order. We find,

ε2 ¼ −
1

4
NxNy: ð40Þ

Similarly, the next contribution must be at quartic order,

ε4 ¼ −
NxNy

16

�ðNxNy − 5Þ
2

þ 32

15

�
þ 1

32
N2

xN2
y: ð41Þ

The unperturbed ground state energy, ε0 is simply zero.

Using the HOTRG to compare, we can explicitly take the
continuous-time limit described in the previous section in
the local tensor, and perform the tensor contractions as
described before to approximate the transfer matrix. We
then extrapolate the βτ → ∞, βs, a → 0 results to the
continuous-time limit. To match with perturbation theory,
the initial tensor is restricted to three states, however the
final bond dimension varied depending on the spatial
volume. The three state truncation used in the HOTRG
is valid when X=U ≪ 1. Because U is relatively large
compared to X, it is energetically expensive to excite rotor
differences greater than j1j, since such an excitation is a
factor of four larger. Therefore as the rotors disorder at
larger X, the three-state approximation breaks down.
In the continuous-time limit, we expect that if we find the

eigenvalues of the transfer matrix, λn, they are related to the
energy eigenvalues of the Hamiltonian through the relation,

T ¼ e−aH: ð42Þ

We conclude that for finite βτ, in units of U, the energy
eigenvalues are given by,

En ¼ −βτ lnðλnÞ: ð43Þ

This is because Eq. (25) dictates that the temporal lattice
spacing is inversely proportional to βτ, and in units of
U, a ¼ 1=βτ.
A comparison between calculations of the ground state

energy using HOTRG, and using perturbation theory can be
seen in Fig. 5. Here the two leading-order contributions are
plotted, along with data obtained from the HOTRG
calculations extrapolated to the a → 0 limit. We find good
agreement between the analytic calculation and the numeri-
cal calculation with the HOTRG, indicating that the
quantum Hamiltonian does in fact correctly model the
Uð1Þ gauge theory with which we started.

FIG. 5. The ground state energy computed using the HOTRG in
the continuous-time limit compared with a perturbation theory
(PT) calculation of the same quantity to order x2 and x4. This is
on a 4 × 4 spatial lattice.
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IV. CONCLUSION

We have presented a tensor formulation for compact 3D
free electrodynamics based on a dual variables formulation
for the model. In order to check this formulation we
compared with Monte Carlo calculations done in the dual
variables, and the original variables, and found good
agreement between the methods. We used this tensor
formulation to extract a quantum Hamiltonian in the
continuous-time limit. At each step in this formulation,
gauge-invariance is maintained until the gauge fields are
integrated over with no gauge freedom remaining. The
discrete integer fields from the duality transformation can
be interpreted as angular momentum quantum numbers in
the continuous-time limit, giving a rotor Hamiltonian
description for the model. To check this description, we
calculated the approximate ground state energy using the
HOTRG and compared it with a perturbative calculation
done with the Hamiltonian, and found good agreement.
The Hamiltonian formulation here could be amenable to

quantum simulation. Since the final result here has no
remaining gauge freedom, there would be no need to
enforce Gauss’s law by hand in experiment. Instead, one
is left with local on-site and nearest neighbor interactions,
and one must suppress longer distance interactions, e.g.,
next-to-nearest neighbor interactions, etc. In addition,
optical lattice set-ups tailored for Hamiltonians in this
basis have already been put forward [21] and modifications
could be straight forward. We are currently investigating
the promise of this approach.

In addition, it would be interesting to explore the extent
to which the TRG can accurately describe the phase
diagram of the model. This would involve a more system-
atic and careful exploration of thermodynamic quantities,
and understanding in detail the role that truncation would
play in attempts to accurately calculate observables. This is
left as future work.
Finally, one would hope to extend this analysis to non-

Abelian gauge groups, however solving for dual variables
is difficult in that case. This makes following the steps here
in the non-Abelian case unlikely. However, alternate tensor
constructions have been put forward in Ref. [4] and could
be used if efficient algorithms could be devised.
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