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We discuss the effective field theory description of bound states composed of a heavy baryon and
antibaryon. This framework is a variation of the ones already developed for heavy meson-antimeson states
to describe the Xð3872Þ or the Zc and Zb resonances. We consider the case of heavy baryons for which the
light quark pair is in S-wave and we explore how heavy quark spin symmetry constrains the heavy baryon-
antibaryon potential. The one pion exchange potential mediates the low energy dynamics of this system.
We determine the relative importance of pion exchanges, in particular the tensor force. We find that in
general pion exchanges are probably nonperturbative for the ΣQΣ̄Q, Σ�

QΣ̄Q, and Σ�
QΣ̄�

Q systems, while for

the Ξ0
QΞ̄0

Q, Ξ�
QΞ̄0

Q, and Ξ�
QΞ̄�

Q cases they are perturbative. If we assume that the contact-range couplings of
the effective field theory are saturated by the exchange of vector mesons, we can estimate for which
quantum numbers it is more probable to find a heavy baryonium state. The most probable candidates to
form bound states are the isoscalar ΛQΛ̄Q, ΣQΣ̄Q, Σ�

QΣ̄Q, and Σ�
QΣ̄�

Q and the isovector ΛQΣ̄Q and ΛQΣ̄�
Q

systems, both in the hidden charm and hidden bottom sectors. Their doubly charmed and doubly bottom

counterparts (ΛQΛQ, ΛQΣ
ð�Þ
Q , Σð�Þ

Q Σð�Þ
Q ) are also good candidates for binding.
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I. INTRODUCTION

Heavy hadron molecules—bound states composed of
heavy hadrons—are a type of exotic hadron. The theoreti-
cal basis for their existence is robust: in analogy with the
nuclear forces that bind the nucleons, heavy hadrons can
exchange light mesons, generating exchange forces that
might be strong enough to bind them [1–5]. The discovery
of the Xð3872Þ more than a decade ago [6] probably
provides the most paradigmatic candidate for a molecular
state. The Xð3872Þ turns out not to be alone: a series of
similarly puzzling hidden charm (hidden bottom) states that
do not fit in the charmonium (bottomonium) spectrum have
been found in different experiments since then. They are
usually referred to as XYZ states and a few are particularly
good candidates for molecular states. In the hidden charm
sector we have the Zcð3900Þ and Zcð4020Þ [7,8], which are
suspected to be DD̄�, D�D̄� molecules [9,10], and the

Pcð4380Þþ and Pcð4450Þþ pentaquark states [11], which
might contain D̄Σ�

c, D̄�Σc, D̄�Σ�
c, and even D̄Λcð2590Þ

molecular components [12–18]. In the hidden bottom
sector we have the Zbð10610Þ and Zbð10650Þ [19,20],
which might be BB̄�, B�B̄� molecules [21,22]. If we
consider the open charm sector, the Ds0ð2317Þ and
Ds1ð2460Þ mesons [23,24] were discovered before the
Xð3872Þ and have been theorized to have a large
DK=D�K molecular component [25–28].
We expect molecular states to be relatively narrow for

states happening above the open charm threshold. For the
moment the masses of the experimentally discovered states
have reached the heavy meson-meson and heavy meson-
baryon threshold (3.7 and 4.1=4.3 GeV for DD̄ and
ΛcD̄=ΣcD̄; respectively), but barely the heavy baryon-
baryon threshold (4.5, 4.7, and 4.9 GeV for ΛcΛ̄c, ΛcΣ̄c,
and ΣcΣ̄c, respectively). A narrow resonance near the heavy
baryon-baryon threshold would be an excellent candidate
for a heavy baryon-antibaryon bound state. Though these
states have not been found yet, it is fairly straightforward to
extend the available descriptions of heavy meson-antimeson
molecules to them and explore the relevant dynamics
behind these states. In a few instances it might be possible
to predict the location of heavy baryonium states, with the
Λcð2590ÞΣ̄c systems being an illustrative example [29].
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Heavy hadron-antihadron molecules are among the most
interesting theoretical objects of hadronic physics. Owing
to their heavy-light quark content, they are simultaneously
subjected to isospin, SU(3)-flavor, chiral and heavy quark
symmetry, a high degree of symmetry that can translate into
a fairly regular spectrum [10,21,30–35]. This spectrum will
not be fully realized in nature: unless these states are
shallow they will be a mixture of molecule, charmonium
and other exotic components. Yet these potential regular-
ities in the molecular spectrum can be successfully
exploited to uncover the nature of a few of the XYZ states.
The most clear example probably is the Zc’s and Zb’s
resonances, which seem to be related by different realiza-
tions of heavy quark symmetry [10].
Heavy hadron molecules possess another interesting

quality: they show a separation of scales. On the one hand
we have the size of the hadrons, which is of the order of
0.5 fm, while on the other we have the size of the bound
state, which should be bigger than the individual hadrons
within it. As a consequence heavy hadron molecules are
amenable to an effective field theory (EFT) treatment,
where all quantities can be expressed as an expansion of a
light over a heavy energy scale. EFT descriptions of heavy
hadron molecules have been exploited successfully in the
past specifically in systems composed of heavy mesons
and antimesons [31,36–38]. In this manuscript we extend
the heavy hadron EFT formulated in Ref. [32] and put to
use in Refs. [10,33,34] in the case of the heavy baryon-
antibaryon molecules. As commented, these types of
molecules might very well be discovered in the next
few years. The purpose of this work is to explore the
symmetry constraints and the kind of EFT that is to be
expected in these systems, rather than to make concrete
predictions of the possible location of these states. Yet we
will speculate a bit about this later issue on the basis of the
relative strength of the long-range pion exchange and the
saturation of the EFT low energy constants by σ, ρ, ω and
ϕ meson exchange.
The manuscript is structured as follows. In Sec. II we

make a brief introduction to the EFT formalism. In Sec. III
we present the leading order EFT potential for heavy
baryon-antibaryon states, which consists of a series of
contact four-baryon vertices plus the time-honored one
pion exchange potential. In Sec. IV we explore the question
of whether pions are perturbative or not for this type of
hadron molecule. In Sec. V we discuss the possible power
countings to describe molecular states. In Sec. VI we
speculate about which heavy baryon-antibaryon molecules
might be more probable. Finally in Sec. VII we present our
conclusions. In Appendix A we present the complete
derivation of the one pion exchange potential, in
Appendix B we briefly explain the one eta and one kaon
exchange potential, and in Appendix C we derive the heavy
quark symmetry constraints for the four-baryon contact
vertices.

II. EFFECTIVE FIELD THEORY FOR HEAVY
BARYON MOLECULES

EFTs are generic and systematic descriptions of low
energy processes. They can be applied to physical systems
in which there is a distinct separation of scales, but where
the underlying high energy theory for that system is
unknown or unsolvable. Hadronic molecules are a good
candidate for the EFT treatment: the separation among the
hadrons forming a hadronicmolecule is expected to be larger
than the size of the hadrons. When the hadrons are close to
each other they overlap and the ensuing description in terms
of quantum chromodynamics (QCD) is unsolvable. But this
is not the case when the hadrons are far away, in which case
their interactions can be described in terms of well-known
physics such as pion exchanges. In the following we will
present a brief introduction to the application of the EFT
framework to heavy baryon-antibaryon systems.

A. The effective field theory expansion

EFTs rely on the existence of a separation of scales,
where a distinction is made between low and high energy
physics and their respective characteristic momentum
scales Msoft and Mhard, which are sometimes called the
soft (or light) and hard (or heavy) scales. The separation of
scales can be used to express physical quantities at low
energies as expansions in terms of the small parameter
Msoft=Mhard. If we consider a system of heavy baryons for
concreteness, there are two possible EFT expansions
depending on which type of low energy symmetry we
are considering:

(i) heavy quark spin symmetry (HQSS) and
(ii) chiral symmetry.

For HQSS the soft and hard scales are ΛQCD ∼ 200 MeV
and the mass of the heavy quark mQ, which is either mc ∼
1.5 GeV ormb ∼ 4.5 GeV. For chiral symmetry we call the
soft and hard scalesQ andM, where if there are no baryons
we have Q ∼mπ ∼ q ∼ 100–200 MeV (with mπ the pion
mass and q the momenta of the pions) and M ∼ 2πfπ∼
1 GeV. If there are baryons, Q includes the soft momenta
of the baryons, while practical calculations in the two-
baryon sector suggest a more conservative value of M ∼
0.5–1.0 GeV for the hard scale.We advance that the scaleQ
can contain more than the pionmass and themomenta of the
pions and baryons, as we will discuss in Sec. II B.
Heavy baryons are nonrelativistic at the soft scales of

either of the two previous symmetries. This implies that
their interactions can be described in terms of an effective
potential VEFT, which admits the double expansion

VEFT ¼
X
μ;ν

V̂ðμ;νÞ
�
ΛQCD

mQ

�
μ
�
Q
M

�
ν

; ð1Þ

where the indexes μ and ν indicate the order in the heavy
quark and chiral expansion, respectively, with μ ≥ 0 and
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ν ≥ −1 (this second point will be explained in Sec. II B).
The HQSS expansion converges remarkably faster than the
chiral expansion, owing to the sizes of the soft and hard
scales involved in each of these expansions. For this reason
from now on we will work in themQ → ∞ limit and ignore
any HQSS breaking effect. With this in mind, the expansion
of the EFT potential simplifies to

VEFT ¼
Xνmax

ν¼ν0

VðνÞ þO
�
Q
M

�
νmaxþ1

; ð2Þ

which converges for Q < M and where we have simplified
the notation with respect to Eq. (1). The expansion begins
at ν ¼ ν0 ≥ −1 and we truncate it at ν ¼ νmax, where the
truncation error gives the uncertainty of a calculation. The
lowest order ν ¼ ν0 is referred to as the leading order (LO).
For a two-heavy-baryon system, the scale Q includes the
external momenta of the hadrons, the pion mass, and the
binding momentum of a potential bound state if there is
any. The rules by which we decide the order of each
contribution are called “power counting.”
The degrees of freedom of the EFT we are constructing

are the heavy baryons and the pion fields [or the pseudo
Nambu-Goldstone boson fields if we consider SU(3) chiral
symmetry]. This choice of light degrees of freedom actually
implies that the EFT potential can be decomposed into two
different contributions,

VEFT ¼ VC þ VF; ð3Þ

where VC and VF are the contact-range and finite-range
potentials. While VC only involves direct interactions
between the heavy baryon fields (thus its contact-range
nature), VF involves the exchange of pions and has a finite
range determined by the inverse of the mass of the pion. We
can expand VC and VF according to power counting

VC ¼
Xνmax

ν¼ν0ðCÞ
VðνÞ
C þO

�
Q
M

�
νmaxþ1

; ð4Þ

VF ¼
Xνmax

ν¼ν0ðFÞ
VðνÞ
F þO

�
Q
M

�
νmaxþ1

; ð5Þ

where the power counting of VC and VF can differ: we
introduce ν0ðCÞ and ν0ðFÞ to indicate that the expansion
may begin at different orders.
For concreteness we will temporarily consider that

(chiral) power counting is given by naive dimensional
analysis (NDA). We warn that NDA is incompatible with
the existence of bound states, but we will address this
problem later. Within NDA the power counting of a
contribution to the potential is determined by the powers
of the heavy baryon momenta, pion momenta, and pion
masses included in a particular contribution. In NDA the

order of the LO contribution to the potential is ν ¼ 0. For
the contact-range potential, this LO contribution is a
momentum- and energy-independent interaction,

hp⃗0jVð0Þ
C jp⃗i ¼ Cð0Þ; ð6Þ

with Cð0Þ a coupling, which will depend on the quantum
numbers of the two-body system under consideration and
will involve spin and isospin operators. The LO piece of the
finite-range potential is given by one pion exchange (OPE),
which we write (again schematically) as

hp⃗0jVLO
F jp⃗i ¼ Fð0ÞI⃗1 · I⃗2

a⃗1 · q⃗a⃗2 · q⃗
q2 þm2

π
; ð7Þ

with I⃗1 and I⃗2 the isospin operators and a⃗1 and a⃗2 the spin
operators of the heavy baryons. The couplingsCð0Þ and Fð0Þ

have dimensions of ½energy�−2, which means that in NDA
their size is given by1

Cð0Þ ∼
1

M2
; Fð0Þ ∼

1

M2
; ð8Þ

for which we have taken into account that the only scale
from which we can construct the couplings isM (otherwise
the counting of the LO potential will change and we will
not be talking about NDA).
Other possible contributions to VC and VF appear at

higher order in the EFT expansion. The subleading terms in
VC are derivative contact-range interactions; i.e., they
involve positive powers of the external heavy baryon
momenta. The subleading terms in VF include multipion
exchanges, by which it is meant irreducible diagrams
involving the exchange of two or more pions. Here it is
important to notice that iterations of the OPE potential
indeed involve the exchange of two or more pions, but
these diagrams are not irreducible: reducible multipion
exchanges (iterated OPE) will be lower order than irre-
ducible multipion exchanges.
We will not consider the subleading terms in this work:

subleading interactions, in particular the contact-range
ones, involve new free parameters which require additional
data to be determined. These additional data are not
expected to be experimentally available in the near future.

B. Bound states and power counting

Power counting is not unique. NDA is simply the most
obvious choice for building a power counting, but not the
only one. In particular, the existence of bound states
requires modifications to the power counting [39–42], as
we will illustrate below. Bound states are solutions of a

1Modulo numerical factors, which for nonrelativistic scattering
will be multiples of 4π. As we are focusing on the scaling only,
we do not include these factors explicitly.
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dynamical equation, such as Schrödinger or Lippmann-
Schwinger, and require nonperturbative physics. We can
see this from the Lippmann-Schwinger equation as applied
to bound states,

jΨBi ¼ G0VjΨBi; ð9Þ

where jΨBi is the bound state wave function and G0 ¼
1=ðE −H0Þ the resolvent operator, with H0 the free
Hamiltonian. When G0 appears in loops it is counted as Q:

Z
d3 ⃗l
ð2πÞ3

1

E − l2
2μ

∼ μQ; ð10Þ

where μ refers to the reduced mass. Generating a bound
state requires the iteration of the potential, which in terms
of power counting is only consistent if

OðVÞ ¼ OðVG0VÞ ¼ OðVG0VG0VÞ ¼ …; ð11Þ

from which V ∼Q−1 is required. To explain why the
potential is counted this way we have to revisit the
estimations of the size of the couplings Cð0Þ and Fð0Þ
contained in Eq. (8). If any of these two couplings contains
a light scale

Cð−1Þ ∼
1

MQ
and=or Fð−1Þ ∼

1

MQ
; ð12Þ

the LO potential will be promoted from Q0 to Q−1,
allowing for the existence of bound states.2 The light
momentum scale that appears in Cð−1Þ can be identified
with the inverse scattering length of the two-body system
[39–42], while the light scale in Fð−1Þ is related with the
strength of the OPE potential [45]. We stress that it is
enough to promote one of the two couplings Cð0Þ and Fð0Þ

from Q0 to Q−1, where for a more detailed discussion we
refer to Sec. V.

C. Coupled channels

Now we consider the power counting of coupled channel
effects. Heavy baryons can come in HQSS multiplets
which are degenerate in the heavy quark limit, e.g., the
Σc and the Σ�

c in the charm sector or the Σb and the Σ�
b in the

bottom sector. If we take the Σc and the Σ�
c heavy baryons

as an example, the two-heavy-baryon system can have
transitions of the type ΣcΣc → ΣcΣ�

c, ΣcΣc → Σ�
cΣ�

c, etc. In
EFT, these transitions have a characteristic momentum
scale,

ΛCC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μΔCC

p
; ð13Þ

with μ the reduced mass of the system and ΔCC the energy
difference of the transition. Coupled channel effects can be
argued to be suppressed by a factor of�

Q
ΛCC

�
2

; ð14Þ

with ΛCC the coupled channel scale. For the ΣcΣc family
of systems, we have that ΛCC ¼ 400=564 MeV depending
on the transition, while for the ΣbΣb case we have
ΛCC ¼ 350=495 MeV. This scale is softer than M, but
not much softer: we can effectively ignore the coupled
channels at the price of reducing the range of applicability
of the EFT.
That is, there are two choices for constructing the EFT in

this case: (i) consider the coupled channel effects to be
subleading (at the price of reducing the convergence radius
of the EFT) or (ii) include them at leading order. Here we
will opt for the first option, owing to its simplicity. Be that
as it may, most of the results of this manuscript can be
easily extended to the coupled channel case.

D. Kaon/eta exchanges and SU(3) symmetry

If we want to preserve SU(3) flavor symmetry, the
exchange of kaons and eta mesons should be treated on
equal footing as the exchange of pions, at least in principle.
But the masses of the kaon and the eta meson are of the
order of 0.5 GeV, which is comparable to the hard scaleM.
We have two choices: (i) ignore kaon and eta exchanges or
(ii) include them explicitly.
In the first option, the contributions from kaon and eta

exchange are implicitly included in the contact-range
potential. There is a disadvantage, though: the contact-
range potential breaks SU(3)-flavor symmetry in this case.
We expect the size of this breaking to be parametrically
small for heavy baryon-baryon and heavy baryon-anti-
baryon systems of the type ΣQΣQ, ΣQΣ̄Q, Ξ0

QΞ0
Q, Ξ0

QΞ̄0
Q,

etc., i.e., systems containing only one species of baryon.
Besides the pion, this type of system only exchanges eta
mesons, where their coupling to the heavy baryons is
considerably weaker than that of the pions. Regarding the
kaons, they are relevant for heavy baryon-baryon systems
that involve different species: ΣQΞ0

Q, Ξ0
QΩQ, etc. But if we

consider instead a heavy baryon-antibaryon system, the
exchange of a single kaon implies a transition between two-
baryon states with different thresholds, which involves
coupled channel effects. For example in the Ξ0

cΣ̄c → ΩcΞ̄0
c

transition mediated by the exchange of a kaon/antikaon, the
energy gap is ΔCC ¼ 240 MeV and the coupled channel
scale is ΛCC ¼ 790 MeV, which is certainly hard.
For these reasons we expect the exchange of kaon and

eta mesons to have a small impact on the description of

2We mention in passing that the promotion can also be
understood in terms of the anomalous dimension of the coupling
C0, i.e., of its scaling with respect to the cutoff [43,44].
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heavy baryon-antibaryon systems in general. This suggests
that ignoring explicit kaon and eta exchange, which
amounts to including them implicitly in the contact-range
couplings, is not likely to generate a sizable breakdown of
SU(3) flavor in the contact-range potential. The implicit
inclusion of eta and kaon effects in the contact-range
couplings will change their values from the ones expected
from exact SU(3)-flavor symmetry, but this change will
probably be numerically smaller than the usual 20%
uncertainty associated with SU(3)-flavor symmetry rela-
tions. This point is supported by an analysis of the strength
of the eta and kaon exchanges in Appendix B, where we
also present the kaon and eta exchange potentials in case
one wants to include them explicitly in the EFT.

III. THE LEADING ORDER POTENTIAL

In this section we write down the heavy baryon-anti-
baryon potential at LO within the EFT expansion. This
potential can contain a contact- and a finite-range piece,

Vð0Þ
EFT ¼ Vð0Þ

C þ Vð0Þ
F ; ð15Þ

where we are assuming NDA for the purpose of fixing the
notation and simplifying the discussion. If there are bound
states, the actual power counting of the heavy baryon-
antibaryon system will differ from NDA; see Sec. II B. But
we will address this problem later in Secs. IV and V.
The LO contact-range potential is a momentum- and

energy-independent potential in momentum space (or a
Dirac delta in coordinate space). The LO finite-range
potential is the OPE potential.3 For the contact-range
component, we cannot determine if it is perturbative or
not a priori without resorting to experimental or phenom-
enological input. For the finite-range components, i.e., the
pion exchanges, the situation is different and we can, in
fact, determine if they are perturbative; see Sec. IV. The
discussion about the possible power countings that arise
depending on which pieces of the EFT potential are
perturbative and nonperturbative will be presented later
in Sec. V.
This section is organized as follows. We begin by

explaining the details of how the heavy baryons are
organized in superfields that are well behaved according
to HQSS in Sec. III A. Next we will consider the C- and G-
parity properties of the heavy baryon-antibaryon system in
Sec. III B. After this, we will first introduce the general
form of the contact-range potential and the constraints
imposed on it by heavy quark spin symmetry, SU(2)-
isospin, and SU(3)-flavor symmetry in Sec. III C. Last, we
will present the general form of the OPE potential and its
partial wave projection in Sec. III D. Owing to the scope of

the discussion, the notation will be complex. We overview
the most used notation in this section in Table I.

A. The heavy baryon superfields

Heavy baryons have the structure

jQðqqÞi; ð16Þ

where Q is the heavy quark and qq the light quark pair,
which is in S-wave. The light quarks can couple their spin

TABLE I. List of the most used symbols in Sec. III.

Symbol Meaning

B3̄ Antitriplet heavy baryon field
B6 Sextet heavy baryon field, ground state (J ¼ 1

2
)

B�
6 Sextet heavy baryon field, excited state (J ¼ 3

2
)

M3̄ Antitriplet heavy baryon mass
M6 Sextet heavy baryon mass, ground state (J ¼ 1

2
)

M�
6 Sextet heavy baryon mass, excited state (J ¼ 3

2
)

T Antitriplet heavy baryon superfield
S Sextet heavy baryon superfield

C (i) C-parity
(ii) Coupling of the momentum- and
energy-independent contact interaction

G G-parity

AðMÞ
SL

Antitriplet-antitriplet (A), antitriplet-sextet (B),
and sextet-sextet (C) contact interactions

BðMÞ
SLD

, BðMÞ
SLD

M refers to the SU(3)-flavor representation,
SL to total light quark spin, and

CðMÞ
SL

D and E to whether it is a direct or
exchange term

I⃗i Generic isospin operator for vertex i ¼ 1, 2
of the two-body potential

⃗ti Isospin-0 to isospin-1 transition matrices
τ⃗i Isospin-1

2
Pauli matrices

T⃗i
Isospin-1 matrices

a⃗i Generic spin operator for vertex i ¼ 1, 2
of the two-body potential

σ⃗i Spin-1
2
Pauli matrices

S⃗i, S⃗
þ
i

Spin-1
2
to spin-3

2
transition matrices

Σ⃗i
Spin-3

2
angular momentum matrices

C12 Spin-spin operator (a⃗1 · a⃗2)
S12 Tensor operator (3a⃗1 · r̂a⃗2 · r̂ − a⃗1 · a⃗2)
2Sþ1LJ Spectroscopic notation for partial waves

with S the spin,
L the orbital angular momentum, and J the total
angular momentum

C12 Matrix elements of the spin-spin operator in the
partial wave basis

S12 Matrix elements of the tensor operator in the
partial wave basis

3Regarding the exchange of the other SUð3Þ Nambu-
Goldstone bosons, we refer to the discussion in Sec. II D.
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to SL ¼ 0, 1. If the light spin is SL ¼ 0, we have a JP ¼ 1
2
þ

heavy baryon:

B3̄ ¼ jQðqqÞSL¼0i: ð17Þ

This type of heavy baryon belongs to the 3̄ representation
of the SUð3Þ flavor group. If the light spin is SL ¼ 1, we
have instead a JP ¼ 1

2
þ or a JP ¼ 3

2
þ baryon,

B6 ¼ jQðqqÞSL¼1ijJ¼1=2; ð18Þ

B�
6 ¼ jQðqqÞSL¼1ijJ¼3=2; ð19Þ

which belong to the 6 representation of SUð3Þ.
If the heavy quark within the heavy baryons is a charm

quark, Q ¼ c, the flavor components of the B3̄ field are

B3̄ ¼

0
B@

Ξ0
c

−Ξþ
c

Λþ
c

1
CA; ð20Þ

where we follow the convention of Cho [46]. For the B6

field, the flavor components are

B6 ¼

0
BBB@

Σþþ
c

1ffiffi
2

p Σþ
c

1ffiffi
2

p Ξþ
c
0

1ffiffi
2

p Σþ
c Σ0

c
1ffiffi
2

p Ξ0
c
0

1ffiffi
2

p Ξþ
c
0 1ffiffi

2
p Ξ0

c
0 Ω0

c

1
CCCA: ð21Þ

For the B�
6 baryons we have exactly the same components

as for B6, but with a star to indicate that they are spin-3=2
baryons. Depending on the case, it can be practical to
simply consider the SUð2Þ-isospin structure rather than the
complete SUð3Þ-flavor one.
The fields B3̄, B6, and B�

6 can be organized into the
superfields T and S, which have good transformation proper-
ties under the rotation of the heavy quark. For nonrelativistic
heavy baryons we write the superfields as [46]

T ¼ B3̄; S⃗ ¼ 1ffiffiffi
3

p σ⃗B6 þ B⃗�
6; ð22Þ

where the letters T and S stands for (anti-)triplet and sextet.
The definition of the nonrelativistic superfieldT is redundant
(it acts merely as a second name forB3̄), but we include it for
completeness. Notice that we have written the spin-3=2
heavy baryon field as a vector: B⃗�

6. The reason is that this is a
Rarita-Schwinger field, where the spin-3=2 nature of this
field is taken into account by coupling a spatial vector with a
Dirac spinor and then projecting to the spin-3=2 channelwith
the condition σ⃗ · B⃗�

6 ¼ 0. Under rotations of the heavy quark
spin, the superfields behave as

T → e
i
2
ϵ⃗·σ⃗QT; S⃗ → e

i
2
ϵ⃗·σ⃗QS⃗: ð23Þ

For a more complete account of the heavy baryon fields and
superfields, we refer to Appendix A.

B. C- and G-parity

We are considering heavy baryon-antibaryon states. If a
state is electrically neutral and does not have strangeness,
then C-parity will be a well-defined quantum number. If the
heavy baryon and antibaryon have identical SL and JP, i.e.,
if they have the structure

jB3̄B̄3̄i; jB6B̄6i; jB�
6B̄

�
6i; ð24Þ

then the C-parity of the system is

C ¼ ð−1ÞLþS; ð25Þ
with L and S the orbital angular momentum and spin.4

Examples of this type of heavy baryon-antibaryon system
are Λþ

c Λ−
c , Σ0

cΣ̄0
c, and Σ�þ

c Σ�−
c .

If the light quark spin SL and spin-parity JP of the heavy
baryon and antibaryon are not identical, we first have to
choose a C-parity convention, for instance,

CjB3̄i ¼ þjB̄3̄i; ð26Þ

CjB6i ¼ þjB̄6i; ð27Þ

CjB�
6i ¼ −jB̄�

6i; ð28Þ

where there is a relative minus sign for the C-parity
transformation of the spin-3

2
fields with respect to the

spin-1
2
fields. With this convention we define the states

jB3̄B̄6ðηÞi ¼
1ffiffiffi
2

p ½jB3̄B̄6i þ ηjB6B̄3̄i�; ð29Þ

jB3̄B̄
�
6ðηÞi ¼

1ffiffiffi
2

p ½jB3̄B̄
�
6i þ ηjB�

6B̄3̄i�; ð30Þ

jB6B̄�
6ðηÞi ¼

1ffiffiffi
2

p ½jB6B̄�
6i þ ηjB�

6B̄6i�; ð31Þ

where η ¼ �1, for which the C-parity is

C ¼ ηð−1ÞLþS; ð32Þ
where L (S) is the total orbital angular momentum (spin) of
the heavy baryon-antibaryon pair.5 Examples of this type of
molecule include Λþ

c Σ−
c , Ξ00

c Ξ̄0
c, and Ξ0þ

c Ξ�−
c .

4This comes from multiplying the intrinsic C-parity of a
fermion-antifermion system with the symmetry factors of
exchanging the particles, i.e., C ¼ ð−1Þ × ð−1ÞL × ð−1ÞSþ1.

5The C-parity is the product of the intrinsic C-parity and
the symmetry factor of exchanging the particles, which now
includes a contribution from η, i.e., C ¼ ðþηÞ × ð−1Þ × ð−1ÞL ×
ð−1ÞSþ1 for B3̄B6 and C ¼ ð−ηÞ × ð−1Þ × ð−1ÞL × ð−1ÞS for
B3̄B

�
6=B6B�

6.
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For a heavy baryon-antibaryon state that is not electri-
cally neutral but has no strangeness and belongs to the same
SUð2Þ isospin representation as a neutral state, C-parity is
not a well-defined quantum number but there exists an
extension that includes isospin. This extension is G-parity
[47], which can be defined as follows:

G ¼ CeiπI2 ; ð33Þ

that is, a C-parity transformation combined with a rotation
in isospin space.6 For an electrically charged state, the G-
parity is well defined and its eigenvalues are

G ¼ Cð−1ÞI; ð34Þ

where I is the isospin of the electrically charged state
and C is the C-parity of the electrically neutral component
of the isospin multiplet. For example, if we consider
Σþþ
c Σ̄0

c, its isospin is I ¼ 2 and the neutral component
of its isospin multiplet is a linear combination of
Σ0
cΣ̄0

c, Σþ
c Σ−

c , and Σþþ
c Σ−−

c : the G-parity of Σþþ
c Σ̄0

c is then
G ¼ ð−1ÞIC ¼ ð−1ÞLþS.

C. The contact-range potential

The LO contact-range potential takes the generic form

hp0jVð0Þ
C jpi ¼ C; ð35Þ

with C a coupling constant and where p (p0) is the center-
of-mass momentum of the incoming (outgoing) heavy
baryon-antibaryon pair. In principle, there should be one
independent coupling C for each JPC quantum number and
type of heavy baryon-antibaryon molecule. But the contact-
range potential is constrained by HQSS and SUð3Þ-flavor
symmetry, which greatly reduces the number of possible
couplings. We first consider the HQSS structure of the
contact-range potential and then the SUð3Þ flavor one.

1. HQSS structure

The application of HQSS to the heavy baryon-antibaryon
system implies that the contact-range coupling does not
depend on the heavy quark spin, only on the light quark
spin. This means that the coupling C can be decomposed in
terms of light quark components,

C ¼
X

dSLCSL; ð36Þ

where SL is the total light quark spin of the heavy baryon-
antibaryon system. The dSL’s are coefficients that depend
on the heavy and light quark decomposition of the specific
heavy baryon-antibaryon molecule; see Appendix C for
details.
The contact-range couplings of the TT̄, ST̄, and

SS̄ molecules are independent and we will use a
different notation for each case: A, B, and C respec-
tively. For the TT̄ system we write the contact-range
potential as

hTT̄jVð0Þ
C jTT̄i ¼ A0; ð37Þ

where we are already taking into account that the total
light quark spin is always SL ¼ 0 (we also ignore the
coefficient because there is actually no decomposition).
For the ST̄ system we write

hST̄jVð0Þ
C jST̄i ¼ d1DB1D; ð38Þ

hST̄jVð0Þ
C jTS̄i ¼ d1EB1E; ð39Þ

where the total light spin is always SL ¼ 1, but where
we have to make the distinction between a diagonal and
nondiagonal potential. For the SS̄ system we have

hSS̄jVð0Þ
C jSS̄i ¼ d0C0 þ d1C1 þ d2C2; ð40Þ

where the total light spin is SL ¼ 0, 1, 2. We list the
contact-range potential for heavy baryon-antibaryon
molecules with well-defined C-parity in Table II, which
also applies by extension to the molecules with well-
defined G-parity.
If the molecules do not have well-defined C- or G-parity

(i.e., molecules with strangeness), the form of the contact-
range potential depends on the particular case. For the
family of molecules

jB3̄B̄3̄i; jB6B̄6i; jB�
6B̄

�
6i ð41Þ

(e.g., ΛcΞ̄c, ΣcΞ̄0
c, Σ�

cΞ̄�
c), the contact-range couplings

are exactly as shown in Table II for the case in which
C-parity is well defined. For the molecules involving
different types of heavy hadrons, the contact-range poten-
tials are defined in coupled channels. If we consider the
bases

B1 ¼ fjB3̄B̄6i; jB6B̄3̄ig; ð42Þ

B2 ¼ fjB3̄B̄
�
6i; jB�

6B̄3̄ig; ð43Þ

B3 ¼ fjB6B̄�
6i; jB�

6B̄6ig; ð44Þ

6Notice that the G-parity transformation is sometimes defined
as G ¼ Ce−iπI2 with a minus sign. For particles with integer
isospin, this is equivalent to the definition with a plus sign,
G ¼ CeþiπI2 . For particles with half-integer isospin, each of
these conventions generates antiparticle states that differ by a
sign. This has no observable consequence, as it amounts to a
global redefinition of the amplitudes by a phase.
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we end up with the following contact-range potentials:

VB1
ð0−Þ ¼

�
B1D −B1E

−B1E B1D

�
; ð45Þ

VB1
ð1−Þ ¼

�
B1D

1
3
B1E

1
3
B1E B1D

�
; ð46Þ

VB2
ð1−Þ ¼

�
B1D − 1

3
B1E

− 1
3
B1E B1D

�
; ð47Þ

VB2
ð2−Þ ¼

�
B1D −B1E

−B1E B1D

�
; ð48Þ

VB3
ð1−Þ ¼

 
16C0þ33C1þ5C2

54
16C0−21C1þ5C2

54

16C0−21C1þ5C2

54
16C0þ33C1þ5C2

54

!
; ð49Þ

VB3
ð2−Þ ¼

 
1
6
C1 þ 5

6
C2

1
6
C1 − 1

6
C2

1
6
C1 − 1

6
C2

1
6
C1 þ 5

6
C2

!
: ð50Þ

Examples of bases 1, 2, and 3 are the ΞcΣ̄c − Ξ0
cΛ̄c,

ΞcΣ̄�
c − Ξ�

cΛ̄c, and Ξ0
cΣ̄�

c − Ξ�
cΣ̄c systems.

2. SU(3)-flavor structure

Besides HQSS, heavy baryon-antibaryon systems also
have SU(3)-flavor symmetry. In SU(3) flavor, the T and S
heavy baryons belong to the antitriplet and sextet repre-
sentation (3̄ and 6), respectively. For the TT̄, the HQSS
coupling is further divided into the SU(3)-flavor represen-
tations 3̄ ⊗ 3 ¼ 1 ⊕ 8, a singlet and an octet. That is, there
are two independent SU(3)-flavor contact interactions

A0 → fAð1Þ
0 ; Að8Þ

0 g: ð51Þ

For the ST̄ case, we have 6 ⊗ 3 ¼ 8 ⊕ 10:

B1D → fBð8Þ
1D; B

ð10Þ
1D g; ð52Þ

B1E → fBð8Þ
1E ; B

ð10Þ
1E g: ð53Þ

Finally for the SS̄ case we have 6 ⊗ 6̄ ¼ 1 ⊕ 8 ⊕ 27:

CSL → fCð1Þ
SL
; Cð8Þ

SL
; Cð27Þ

SL
g: ð54Þ

The decomposition for a specific molecule can be found in
Table III, which has been obtained from the SU(3) Clebsch-
Gordan coefficients for the 3̄ ⊗ 3, 6 ⊗ 3, and 6 ⊗ 6̄ of
Ref. [48]. Notice that we are not explicitly considering the
SU(2)-isospin structure as it is a subgroup of SU(3) flavor.

TABLE II. HQSS decomposition of the contact-range cou-
plings for heavy baryon-antibaryon molecules with well-defined
C-parity. A, B, and C refer to the couplings of the TT̄, ST̄, and SS̄
systems, respectively, with the subscript indicating the light quark
spin decomposition. For the cases where C-parity is not well
defined, we refer to the explanations in the main text.

System JP=JPC VC (HQSS)

B3̄B̄3̄ 0−þ A0

B3̄B̄3̄ 1−− A0

B3̄B̄6 0−þ B1D − B1E

B3̄B̄6 0−− B1D þ B1E

B3̄B̄6 1−þ B1D − 1
3
B1E

B3̄B̄6 1−− B1D þ 1
3
B1E

B3̄B̄
�
6

1−þ B1D þ 1
3
B1E

B3̄B̄
�
6

1−− B1D − 1
3
B1E

B3̄B̄
�
6

2−þ B1D − B1E

B3̄B̄
�
6

2−− B1D þ B1E

B6B̄6 0−þ 1
3
C0 þ 2

3
C1

B6B̄6 1−− 1
27
C0 þ 6

27
C1 þ 20

27
C2

B6B̄�
6

1−þ C1

B6B̄�
6

1−− 16
27
C0 þ 6

27
C1 þ 5

27
C2

B6B̄�
6

2−þ 1
3
C1 þ 2

3
C2

B6B̄�
6

2−− C2

B�
6B̄

�
6

0−þ 2
3
C0 þ 1

3
C1

B�
6B̄

�
6

1−− 10
27
C0 þ 15

27
C1 þ 2

27
C2

B�
6B̄

�
6

2−þ 2
3
C1 þ 1

3
C2

B�
6B̄

�
6

3−− C2

TABLE III. SU(3)-flavor decomposition of the contact-range
couplings depending on the type heavy baryon-antibaryon
molecule. Notice that the HQSS structure of the couplings is
independent of the SU(3) one, which is why we do not show the
light spin indices for the couplings. For the S heavy baryons we
show the decomposition for the lightest member of the HQSS
multiplet only.

System Type Isospin VC

ΛcΛ̄c TT̄ 0 1
3
Að1Þ þ 2

3
Að8Þ

ΞcΞ̄c TT̄ 0 2
3
Að1Þ þ 1

3
Að8Þ

ΞcΞ̄c TT̄ 1 Að8Þ

Ξ0
cΞ̄c ST̄ 0 Bð8Þ

Ξ0
cΞ̄c ST̄ 1 1

3
Bð8Þ þ 2

3
Bð10Þ

ΣcΛ̄c ST̄ 1 2
3
Bð8Þ þ 1

3
Bð10Þ

ΩcΩ̄c SS̄ 0 1
6
Cð1Þ þ 8

15
Cð8Þ þ 3

10
Cð27Þ

Ξ0
cΞ̄0

c SS̄ 0 1
3
Cð1Þ þ 1

15
Cð8Þ þ 3

5
Cð27Þ

ΣcΣ̄c SS̄ 0 1
2
Cð1Þ þ 2

5
Cð8Þ þ 1

10
Cð27Þ

Ξ0
cΞ̄0

c SS̄ 1 1
5
Cð8Þ þ 4

5
Cð27Þ

ΣcΣ̄c SS̄ 1 4
5
Cð8Þ þ 1

5
Cð27Þ

ΣcΣ̄c SS̄ 2 Cð27Þ
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Finally, we remind the reader that the SU(3)-flavor
structure of the contact-range potential can be broken if
the finite-range potential is not SU(3)-flavor symmetric.
Whether this happens depends on two factors. The first is
the particular power counting we are using and the order we
are considering within the EFT expansion, e.g., if the
contact-range interaction is leading, but the exchange of
pions, kaons, and etas is subleading, the violations of SU(3)-
flavor symmetry if we ignore kaon and eta exchangeswill be
subleading. The second factor is that kaon and eta exchanges
are parametrically small, as was explained in Sec. II D, and a
more detailed derivation can be found in Appendix B.

D. The one pion exchange potential

The OPE potential in momentum space reads

hT1T̄2jVð0Þ
F jT 0

1T̄
0
2i ¼ 0; ð55Þ

hT1S̄2jVð0Þ
F jS01T̄ 0

2i ¼ −R1R̄2

g23
2f2π

I⃗1 · I⃗2
a⃗1 · q⃗a⃗2 · q⃗
q2 þ μ2π

; ð56Þ

hS1S̄2jVð0Þ
F jS01S̄02i ¼ −R1R̄2

g22
2f2π

I⃗1 · I⃗2
a⃗1 · q⃗a⃗2 · q⃗
q2 þ μ2π

; ð57Þ

where we have chosen the specific notation above to cover
all the possible combinations. The subscripts 1 and 2 are
used to denote the vertices 1 and 2 in the diagrams of Fig. 1.
In the equation above, R1 and R̄2 are numerical factors
which depend on the transition we are considering; see
Table IV (the bar indicates an antibaryon to antibaryon
transition). I⃗1 and I⃗2 are isospin matrices, while a⃗1 and a⃗2
spin matrices. For the couplings we have that g2 is the axial
coupling for the SL ¼ 1 heavy baryon, g3 the coupling
involved in T → Sπ transitions, and fπ the pion decay
constant. μπ is the effective pion mass for the vertices
involved in the particular channel considered. Finally we
notice that OPE vanishes for the TT̄ molecules, which can

be described solely in terms of contact interactions at
lowest order.
Regarding the isospin structure of the OPE potential, we

have that I⃗1 and I⃗2 are the isospin matrices corresponding
to vertex 1 and 2. If we have a heavy baryon with isospin
1=2 at vertex i, we can simply make the substitution I⃗i ¼ τ⃗i

2
,

where τ⃗ are the Pauli matrices. If the heavy baryon at vertex
i has isospin 1, we use the J ¼ 1 angular momentum
matrices in isospin space, for which we use the notation T⃗i;
i.e., we make the substitution I⃗i ¼ T⃗i. The exact isospin
factor for each type of vertex can be found in Table IV.
Regarding the spin structure, we note that the spin

operators a1 and a2 depend on which is the initial and
final spin of the heavy baryons at vertex 1 and 2. If the
initial and final heavy baryons at vertex 1(2) have spin 1=2,
we have a⃗1 ¼ σ⃗1 (a⃗2 ¼ σ⃗2). If the initial and final heavy
baryons at vertex 1 (2) have spin 3=2, we have a⃗1 ¼ Σ⃗1

(a⃗2 ¼ Σ⃗2), where Σ⃗ are the S ¼ 3=2 spin matrices. If the
initial and final heavy baryons at vertex 1 (2) switch from
spin 1=2 to spin 3=2 (or vice versa), then a⃗1 ¼ S⃗1
(a⃗2 ¼ S⃗2), where S⃗ are special 2 × 4 spin matrices that
describe the transition from a different initial to final spin
(see their definition in Appendix A). As with isospin, the

FIG. 1. Diagrams for OPE potential between two heavy
hadrons. On the left we show the TS potential and on the right
the SS potential, where T (S) is the heavy baryon with light spin
SL ¼ 0 (SL ¼ 1).

TABLE IV. Numerical, isospin, and spin factors associated
with each vertex in the hST̄jVjTS̄i and hSS̄jVjSS̄i heavy baryon-
antibaryon potential. The arrows are used to indicate the final
baryon state in the vertex. The symbols τ⃗i and T⃗i represent the
Pauli matrices (in isospin space) and the isospin I ¼ 1 matrices,
respectively, while ti is a special isospin matrix for connecting the
isoscalar Λc with the isovector Σc and the pion. The symbols σ⃗i
and Σ⃗i are the Pauli matrices and the spin S ¼ 3=2matrices, while
S⃗i is a 2 × 4 matrix that is used for the transitions involving a
spin-1=2 and spin-3=2 baryon. Notice that this table can also be
used to compute the heavy baryon-baryon potential.

Vertex Ri R̄i I⃗i a⃗i

Λc → Σc
ffiffi
2
3

q
−

ffiffi
2
3

q
⃗ti σ⃗i

Λc → Σ�
c

ffiffiffi
2

p ffiffiffi
2

p
⃗ti S⃗†i

Ξc → Ξ0
c

ffiffi
2
3

q
−

ffiffi
2
3

q
1
2
τ⃗i σ⃗i

Ξc → Ξ�
c

ffiffiffi
2

p ffiffiffi
2

p
1
2
τ⃗i S⃗†i

Σc → Σc
2
3

− 2
3 T⃗i

σ⃗i
Σ�
c → Σc

1ffiffi
3

p 1ffiffi
3

p T⃗i S⃗i
Σc → Σ�

c
1ffiffi
3

p 1ffiffi
3

p T⃗i S⃗†i
Σ�
c → Σ�

c
2
3

− 2
3 T⃗i Σ⃗i

Ξ0
c → Ξ0

c
2
3

− 2
3

1
2
τ⃗i σ⃗i

Ξ�
c → Ξ0

c
1ffiffi
3

p 1ffiffi
3

p 1
2
τ⃗i S⃗i

Ξ0
c → Ξ�

c
1ffiffi
3

p 1ffiffi
3

p 1
2
τ⃗i S⃗†i

Ξ�
c → Ξ�

c
2
3

− 2
3

1
2
τ⃗i Σ⃗i
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exact spin matrix to use in each type of vertex can be
checked in Table IV.
Regarding the axial couplings g2 and g3, we notice that

the value of g3 can be extracted from the Σþþ
c → Λþ

c π
þ

decay measured by Belle in Ref. [49], yielding g3 ¼
0.973þ0.019

−0.042 [50] (notice that the previous reference
originally uses the convention of Yan et al. [51] to define
the axial couplings, instead of the one by Cho [46,52] that
we employ here, and we have consequently adapted the
numbers of Ref. [50] to our convention). In contrast, g2 is
experimentally unavailable, but on the basis of quark model
relations one can estimate it to be g2 ¼ −

ffiffiffi
2

p
g3 ¼ −1.38.

If we consider the values of g2 and g3 from the lattice
QCD calculation of Ref. [53], we obtain instead g2 ¼
−0.84� 0.20 and g3 ¼ 0.71� 0.13, where it is important
to mention that they are calculated in the mQ ¼ ∞ limit
(notice again that our convention for g2 differs from the
definition used in Ref. [53] by a sign, which has been taken
into account). Had we applied the quark model relations to
the lattice QCD value of g3, we would have obtained
g2 ¼ −1.00, which is considerably larger than the lattice
QCD determination but yet within its error bar.
For the effective pion mass, we have that if the particles

in the vertex 1 and 2 have the same mass, then μπ ¼ mπ . On
the other hand if they have different masses (e.g., S1 ¼ B,
S01 ¼ B0) and the mass splitting is given by Δ, then we have
that μ2π ¼ m2

π − Δ2 (a relation that assumes heavy, non-
relativistic baryons).
Finally we notice that we can also compute the heavy

baryon-baryon potential by making the change

R1R̄2 → R1R2 ð58Þ

in Eqs. (56) and (57) and checking the proper values in
Table IV.
The most explicit way to construct the potential for one

particular channel is to make use of Table IV, where all the
factors are listed. For instance if we are considering the
Ξ�
cΣ̄c → Ξ0

cΣ̄�
c potential, we can see that it contains a Ξ�

c →
Ξ0
c transition in vertex 1 and a Σ̄c → Σ̄�

c transition in vertex
2. If we use Table IV we find R1 ¼ 1=

ffiffiffi
3

p
, I1 ¼ τ⃗1=2, a⃗1 ¼

S⃗1 for vertex 1 and R̄2 ¼ 1=
ffiffiffi
3

p
, I2 ¼ T⃗1, a⃗2 ¼ S⃗†2 for

vertex 2. Putting the pieces together, the potential reads

hΞ�
cΣ̄cjVð0Þ

F jΞ0
cΣ̄�

ci ¼ −
1

3

g23
2f2π

τ⃗1 · T⃗2

2

S⃗1 · q⃗S⃗
†
2 · q⃗

q2 þ μ2π
; ð59Þ

where μ2π¼m2
π−Δ2, with Δ≃ ðmðΞ�

cÞ−mðΞ0
cÞÞ≃ ðmðΣ�

cÞ−
mðΣcÞÞ≃70MeV and μπ ∼ 120 MeV. The other cases can
be obtained analogously.

1. The OPE potential in coordinate space

If we Fourier-transform the potential into coordinate
space we obtain

hT1S̄2jVð0Þ
F ðr⃗ÞjS01T̄ 0

2i

¼ −R1R̄2I⃗1 · I⃗2
g23
6f2π

C12δ
3ðr⃗Þ þ R1R̄2I⃗1 · I⃗2½C12WCðrÞ

þ S12ðr̂ÞWTðrÞ�; ð60Þ

hS1S̄2jVð0Þ
F ðr⃗ÞjS01S̄02i

¼ −R1R̄2I⃗1 · I⃗2
g22
6f2π

C12δ
3ðr⃗Þ þ R1R̄2I⃗1 · I⃗2½C12WCðrÞ

þ S12ðr̂ÞWTðrÞ�; ð61Þ

where C12 and S12 are the spin-spin and tensor operators,
defined as

C12 ¼ a⃗1 · a⃗2; ð62Þ

S12ðr̂Þ ¼ 3a⃗1 · r̂a⃗2 · r̂ − a⃗1 · a⃗2: ð63Þ

The OPE potential contains a Dirac-delta contribution
which can be reabsorbed into the contact-range potential
if one wishes to. The spin-spin and tensor pieces of the
potential WC and WT can be written as

WC ¼ g2i μ
3
π

24πf2π

e−μπr

μπr
; ð64Þ

WT ¼ g2i μ
3
π

24πf2π

e−μπr

μπr

�
1þ 3

μπr
þ 3

ðμπrÞ2
�
; ð65Þ

where gi ¼ g2 or g3 depending on the case and μπ is the
effective pion mass for the channel under consideration.
The spin-spin piece of the OPE potential is often referred to
as “central” OPE, a naming convention that often appears
in nuclear physics for historical reasons and which per-
meates the notation WC and WT . Central is used in
opposition to tensor to convey the idea that the central
piece carries no orbital angular momentum (while the
tensor piece carries two units of orbital angular momen-
tum). The term “central OPE” is indeed convenient and we
will use it in what follows (instead of the more accurate
spin-spin OPE). We notice that the OPE potential also
contains a contact-range contribution, which is mostly
harmless: it can be reabsorbed into the EFT contact-range
contribution to the potential by a redefinition of the
couplings. Hence it can be simply ignored.

2. Partial wave projection of the OPE potential

We consider now the projection of the coordinate space
potential into the partial wave basis. For that we work with
baryon-antibaryon states with well-defined total angular
momentum and parity JP. If the total strangeness of the
baryon-antibaryon state is zero, we will consider states with
well-defined C-parity (for neutral systems) or G-parity (if
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the system is not electrically neutral). Also, we will only
consider states that contain an S-wave, as they are the more
likely to form a bound state. If we use the spectroscopic
notation 2Sþ1LJ to denote the partial waves, we have the
following combinations:

jBQB̄6ð0−Þi ¼ f1S0g; ð66Þ

jBQB̄6ð1−Þi ¼ f3S1; 3D1g; ð67Þ

jBQB̄�
6ð1−Þi ¼ f3S1; 3D1; 5D1g; ð68Þ

jBQB̄�
6ð2−Þi ¼ f3D2; 5S2; 5D2; 5G2g; ð69Þ

jB�
6B̄

�
6ð0−Þi ¼ f1S0; 5D0g; ð70Þ

jB�
6B̄

�
6ð1−Þi ¼ f3S1; 3D1; 7D1; 7G1g; ð71Þ

jB�
6B̄

�
6ð2−Þi ¼ f1D2; 5S2; 5D2; 5G2g; ð72Þ

jB�
6B̄

�
6ð3−Þi ¼ f3D3; 3G3; 7S3; 7D3; 7G3; 7I3g; ð73Þ

with BQ ¼ B3̄ or B6. The calculation of the matrix elements
is in general straightforward, where we refer to Appendix A
for the details. The result of these calculations is that the
C12 and S12ðr̂Þ operators can be expressed as matrices,
which we denote with theC12 and S12 notation. With this in
mind for r > 0 we write the OPE potential as

Vð0Þ
F ðrÞ ¼ R1R̄2I⃗1 · I⃗2½C12WCðrÞ þ S12WTðrÞ�; ð74Þ

where the dimension of the matrices is set by the number of
partial waves. The explicit matrices that apply in each case
can be found in Appendix A, where it is also explained how
they are calculated.

IV. HOW TO COUNT THE ONE PION
EXCHANGE POTENTIAL

The LO EFT heavy baryon-antibaryon potential can in
principle contain a contact- and a finite-range piece, where
the latter is the well-known OPE potential. While there is
no a priori way to determine if the contact-range potential
is perturbative, this is not the case for the OPE potential
where there exists a series of theoretical developments to
evaluate its strength. In this section wewill check how these
ideas apply to the central and tensor pieces of the OPE
potential. Before starting the discussion it is important
to stress that we make a very explicit distinction
between iterated OPE (or reducible multipion exchange)
and irreducible multipion exchanges. The former is merely
the outcome of iterating the EFT potential within the
Schrödinger or Lippmann-Schwinger equations while the
latter is a genuine contribution to the EFT potential, though
a subleading one: the lowest order two pion exchange

irreducible diagrams enter at order Q2 in the chiral
expansion.

A. The central potential

The perturbative nature of the central piece of OPE can
be determined from the comparison of tree-level versus
once-iterated central OPE, i.e., V and VG0V in operator
form. This type of comparison was made in Ref. [54] in the
context of nucleon-nucleon scattering.7 Here we are merely
adapting it to the particular case of the heavy baryon-
antibaryon system. The ratio of iterated vs tree-level OPE
can be expressed as a ratio of scales,

hpjVG0Vjpi
hpjVjpi ¼ Q

ΛC
; ð75Þ

whereQ is a light scale (either the external momentum p or
the pion mass mπ) and ΛC is a scale that characterizes
central OPE. The evaluation of this ratio at p ¼ 0 leaves the
pion mass as the only light scale left, in which case we
obtain the following value for the central scale:

ΛC ¼ 1

jστj
24πf2π

μjR1R̄2jg2i
; ð76Þ

with μ the reduced mass of the system, σ and τ the
evaluation of the spin and isospin operators corresponding
to the particular case under consideration and where R1 and
R̄2 can be found in Table IV. For the charm and bottom
sectors the values are, respectively,

ΛCðQ ¼ cÞ ¼ 1060 MeV
jστjjR1R̄2jg2i

; ð77Þ

ΛCðQ ¼ bÞ ¼ 450 MeV
jστjjR1R̄2jg2i

; ð78Þ

which depend on the value of the couplings g2 and g3.
The discussion about the values of the axial couplings,

and in particular g2, is important because it can change the
value of ΛC by a large factor. For the TS̄ and SS̄ molecules,
the value of ΛC in the charm sector is

ΛTS̄
C ðQ ¼ cÞ ∼ 1120þ100

−40 MeV
jστjjR1R̄2j

; ð79Þ

ΛSS̄
C ðQ ¼ cÞ ∼ ð560 − 1500Þ MeV

jστjjR1R̄2j
; ð80Þ

where ΛSS̄
C can change almost by a factor of 3 owing to the

uncertainty of g2 (notice that instead of a number with an

7Recently a more sophisticated method for determining the
perturbativeness of OPE has been developed in Ref. [55] for
peripheral waves with L ≥ 1. Unfortunately it has not been
extended yet to S-waves.
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error, we have simply indicated a range of possible values).
In the bottom sector it is instead more advisable to use the
lattice QCD determination for g2 and g3, leading to

ΛTS̄
C ðQ ¼ bÞ ∼ 900þ440

−260 MeV
jστjjR1R̄2j

; ð81Þ

ΛSS̄
C ðQ ¼ bÞ ∼ 660þ440

−220 MeV
jστjjR1R̄2j

: ð82Þ

The previous values have to be combined with the
jστjjR1R̄2j factor. The maximum value of this factor
happens for the channels with lowest spin and isospin.
In Table V we list the scale ΛC for a few representative
heavy baryon-antibaryon molecules. In general ΛC ∼
0.5 GeV (if not harder) in most cases, which means that
we expect central OPE to be perturbative. The exceptions
are the isoscalar 0−þ ΣQΣ̄Q and 0−þ, 1−− Σ�

QΣ̄�
Q molecules,

at least in the bottom sector. In the charm sector the scale

ΛC varies considerably as a consequence of the uncertainty
of the axial coupling g2. In particular if the absolute value of
the axial coupling jg2j is on the high end, i.e., the value
g2 ¼ −1.38 deduced from the quark model, central
OPE will be important for certain molecules in the hidden
charm sector. In the bottom sector the situation is more
clear: central OPE will be nonperturbative for the afore-
mentioned ΣQΣ̄Q and Σ�

QΣ̄�
Q molecules. Finally for having

a comparison with a well-known state, we mention that
the central scale for OPE in the two-nucleon system
is ΛC ≃ 590 MeV.

B. The tensor potential

The tensor piece of the OPE potential requires a more
involved analysis. A direct comparison of V and VG0V is
not possible. The reason is that the iteration of the tensor
piece of OPE diverges; see, for instance, Refs. [32,55] for
a detailed explanation. Thus we must resort to a method
that does not involve the direct evaluation of the iterated
tensor OPE.
The type of power-law behavior of the tensor OPE

potential is analogous to the behavior of a few physical
systems studied in atomic physics. The potential between
two dipoles is of the 1=r3 type, just like the tensor force.
The failure of standard perturbation theory for these
systems is well known in atomic physics, where alternative
techniques have been developed to deal with this type of
potential. The work of Cavagnero [56] explains that the
divergences of perturbation theory in these types of systems
is similar to the role of secular perturbations in classical
mechanics, i.e., a type of perturbation that is small at short
timescales but ends up diverging at large timescales. The
solution is to redefine (or, loosely speaking, renormalize8)
some quantity in order to obtain a finite result again. For the
perturbative series of the 1=r3 potentials, the quantity we
renormalize is the angular momentum. The zeroth order
term in the perturbative expansion of the wave function
is now

Ψð0Þ
l ðr; kÞ ¼ Jνðka3ÞðkrÞffiffiffi

r
p ; ð83Þ

instead of the standard Jlþ1=2ðkrÞffiffi
r

p , where JνðzÞ refers to the

Bessel function of order ν. In the expression above, ν is the
renormalized angular momentum, which happens to be a
function of the momentum k and a length scale a3 that is
related to the strength of the potential (it will be defined
later). The secular series is built not only by adding higher
order terms but also by making νðxÞ depend on κ ¼ ka3. If

TABLE V. The central scale ΛC (in units of MeV) for a few
selected heavy baryon-antibaryon molecules. For momenta above
this scale, p > ΛC, the central force becomes nonperturbative.
The scale ΛC is inversely proportional to στ, reaching its
minimum for the channels with the lowest total spin and isospin
and growing quickly for other configurations. The selection
includes the heavy baryon-antibaryon states for which

ΛC < 0.5 GeV, most of which are of the Σð�Þ
Q Σ̄ð�Þ

Q type. In

addition we include the Ξð0=�Þ
Q Ξ̄ð0=�Þ

Q molecule for which the
central force is strongest and the antitriplet-sextet molecules.
The uncertainty in the antitriplet-sextet case comes from the axial
coupling, which is taken to be g3 ¼ 0.973þ0.019

−0.042 in the charm
sector [50] and g3 ¼ 0.71� 0.13 in the bottom one [53]. For the
sextet-sextet case in the charm sector, the axial coupling is not
well determined and we take it in the range jg2j ∼ 0.84–1.38,
while in the bottom sector we have g2 ¼ −0.84� 0.20 [53]. For
comparison, in the deuteron channel of the two-nucleon system,
the central scale is ΛC ≃ 590 MeV.

Channel I Sign ΛC Channel I Sign ΛC

ΞcΞ̄0
cð0−�Þ 0 ∓ 720þ70

−30 ΞbΞ̄0
bð0−�Þ 0 ∓ 580þ290

−170
ΛcΣ̄cð0−�Þ 1 � 580þ50

−20 ΛbΣ̄bð0−�Þ 1 � 450þ220
−130

Ξ0
cΞ̄0

cð0−þÞ 0 − 530–1420 Ξ0
bΞ̄0

bð0−þÞ 0 − 620þ450
−210

ΣcΣ̄cð0−þÞ 0 − 210–560 ΣbΣ̄bð0−þÞ 0 − 240þ170
−80

Ξ�
cΞ̄0

cð1−þÞ 0 − 580–1560 Ξ�
bΞ̄0

bð1−þÞ 0 − 680þ490
−230

Σ�
cΣ̄cð1−þÞ 0 − 230–610 Σ�

bΣ̄bð1−þÞ 0 − 260þ190
−90

Σ�
cΣ̄cð1−−Þ 0 − 280–750 Σ�

bΣ̄bð1−−Þ 0 − 320þ230
−110

Σ�
cΣ̄cð2−−Þ 0 þ 280–750 Σ�

bΣ̄bð2−−Þ 0 þ 320þ230
−110

Ξ�
cΞ̄�

cð0−þÞ 0 − 410–1100 Ξ�
bΞ̄�

bð0−þÞ 0 − 490þ350
−170

Σ�
cΣ̄�

cð0−þÞ 0 − 160–440 Σ�
bΣ̄�

bð0−þÞ 0 − 190þ140
−70

Σ�
cΣ̄�

cð1−−Þ 0 − 220–590 Σ�
bΣ̄�

bð1−−Þ 0 − 260þ190
−90

Σ�
cΣ̄�

cð3−−Þ 0 þ 270–740 Σ�
bΣ̄�

bð3−−Þ 0 þ 320þ230
−110

8We simply adopt the terminology in use in the field of atomic
physics for these redefinitions in secular perturbation theory,
though it does not exactly correspond with the standard meaning
of renormalization.
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we switch off the potential and take ka3 ¼ 0, we have
νð0Þ ¼ lþ 1

2
and we recover the free wave function. For

small enough values of κ we expect νðκÞ to be expansible in
powers of x, i.e., to be perturbative. By reexpanding the
secular series and the renormalized angular momentum we
can recover the original perturbative series. However, the
interesting feature of the series above is that we can
determine the values of κ for which νðκÞ is analytic.
When νðκÞ is not analytic, it does not admit a power series
in κ anymore. This in turn means that there is no way to
rearrange the secular series into the standard perturbative
series, leading to its failure.
For the 1=r3 potential, which is equivalent to the tensor

force for distances mπr < 1, the secular series has been
studied in detail by Gao [57] for the uncoupled channel
case. Birse [45] extended the previous techniques for the
coupled channel case and particularized them for the
nucleon-nucleon system. In a previous publication by
one of the authors [32], the analysis of Birse was applied
to the heavy meson-antimeson system. In this work we
extend it to the heavy baryon-antibaryon system.
We will consider the tensor force in the limitmπ → 0, for

which the OPE potential can be written as

2μVðrÞ ¼ a3
r3

Sj; ð84Þ

where the potential is a matrix in the coupled channel space
and Sj is the tensor operator (in matrix form, as written in
Sec. III D), with j referring to the total angular momentum.
We have that μ is the reduced mass of the heavy baryon-
antibaryon system and a3 is the length scale that determines
the strength of the tensor piece of the potential. The
potential in this limit is amenable to the secular perturbative
series developed in Refs. [32,45,57]. The corrections
stemming from the finite value of mπ were considered in
Ref. [32] and will be discussed later on in this section.

C. The renormalized angular momentum

Now we explain how the secular perturbation theory
looks like and most importantly, how to calculate the
renormalized angular momenta ν. We begin by writing
the reduced Schrödinger equation in coupled channels (the
uncoupled channel can be found in Ref. [32]) for the
particular case of a pure 1=r3 potential,

−u00
k;j þ

�
Sj

a3
r3

þL2
j

r2

�
uk;jðrÞ ¼ k2uk;jðrÞ; ð85Þ

where we are considering N angular momentum channels.
Notice that we have taken the chiral limit mπ → 0, which
means that only the tensor piece of the OPE potential
survives; see Eq. (84). In the equation above, Sj is the
tensor operator matrix, while Lj is a diagonal matrix

representing the angular momentum operator L⃗2:

L2
j ¼ diagðl1ðl1 þ 1Þ;…; lNðlN þ 1ÞÞ: ð86Þ

The reduced wave function uk;j is an N × N matrix, where
column j represents a solution that behaves as a free wave
with angular momentum lj when we take a3 → 0. The
solution of the Schrödinger equation is a linear combina-
tion of the functions ξ and η:

uk;jðrÞ ¼
X
fljg

½αljξljðr; kÞ þ βljηljðr; kÞ�; ð87Þ

where we sum over the possible values of the angular
momenta and with ξ and ηN-component vectors that can be
written as sums of Bessel functions:

ξljðr; kÞ ¼
X∞

m¼−∞
bmðνljÞ

ffiffiffi
r

p
Jmþνlj

ðkrÞ; ð88Þ

ηljðr; kÞ ¼
X∞

m¼−∞
ð−1Þmb−mðνljÞ

ffiffiffi
r

p
J−m−νlj

ðkrÞ; ð89Þ

where the νlj ’s are functions of κ ¼ ka3, i.e., νlj ¼ νljðκÞ.
The νlj’s are the renormalized angular momenta that we
previously introduced in Eq. (83). In turn the expansion of
the reduced wave functions ξ and η in Eqs. (88) and (89) is
simply the extension of Eq. (83) to arbitrary orders.9 We
have N different solutions for ξ and η that we have labeled
with the subscript lj to indicate that for κ ¼ 0 they behave
as a free wave of angular momentum lj. The recursive
relation from which one can compute bmðνljÞ can be found
in Ref. [45] but is of no concern if we are only interested in
the νli’s. For κ ¼ 0, only the bmðνljÞ coefficient for m ¼ 0

survives.
The renormalized angular momenta νli ¼ νliðκÞ (with

κ ¼ ka3) can be calculated as follows. First we define the
following N × N matrix:

Fjðν; κÞ≡ fjðνÞ −
κ2

ν
½R1ðνÞ −R1ð−νÞ�; ð90Þ

which depends on two other matrices, fjðνÞ and R1ðνÞ;
fjðνÞ is a diagonal matrix defined as

fjðνÞ
2ν

¼diag

�
ν2−

�
l1þ

1

2

�
2

;…;ν2−
�
lNþ

1

2

�
2
�
; ð91Þ

while R1ðνÞ is given by the recursive relation

RnðνÞ ¼ ½fjðnþ νÞ − κ2SjRnþ1ðνÞSj�−1; ð92Þ

9We note that Eq. (83) is written in terms of the standard wave
function, while Eqs. (88) and (89) use the reduced wave function
instead.
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which can be accurately solved with between 20 and 30
iterations [45] (that is, one takes RN ¼ 0 for large enough
N, e.g., 20–30, and solves the recursion relation back-
wards). Once we have the matrix Fj, we obtain νli ¼ νliðκÞ
by finding the zeros of

det ðFjðν; κÞÞ ¼ 0: ð93Þ

This equation admits N solutions, one for each value of the
angular momentum. For κ ¼ 0 these solutions behave as

νliðκ ¼ 0Þ ¼ li þ
1

2
; ð94Þ

with i ¼ 1;…; N. As κ increases νliðκÞ moves slowly
downwards. Once we reach νli ¼ li at the critical value
κ ¼ κc, we have that νli splits into the complex conjugate
solutions νliðκÞ ¼ li � iρliðκÞ. This is a nonanalyticity
which marks the point above which νliðκÞ cannot be
expressed as a perturbative series. This in turn defines
κc, the critical value of κ for which there is a νliðκÞ that
becomes nonanalytic in κ. Usually the first νlj to split is the
one that corresponds to the smallest angular momentum
and also the one that determines the breakdown of the
perturbative series.
For computing the critical momenta we need first the

matrix elements of the tensor operator in the channel under
consideration. For the B3̄B̄3̄, B6B̄6, and B�

6B̄
�
6 molecules

this is trivial: first we take the tensor force matrix Sj, which
can be found in Eq. (138) and Eqs. (A147)–(A150) of
Appendix A, and then we plug this matrix into Eq. (92),
from which finally we solve Eq. (93) to obtain κc. For the
B3B̄�

6 molecules the procedure is the same, with the tensor
force matrices defined in Eqs. (A167) and (A168). The
B6B̄�

6 molecules are the most complicated because they
contain both a direct and exchange tensor operators, which
mediate the B6B̄�

6 → B6B̄�
6 and B6B̄�

6 → B�
6B̄6 potential,

respectively. In addition the effective pion masses are
different for the direct and exchange tensor operators.
Here we ignore this effect: in the present calculation we
are making the approximation that HQSS is exact and
therefore there is no mass splitting between the B6 and B�

6

heavy baryons. However, the length scale a3 is different for
the direct and exchange operators, i.e.,

2μVB6B̄�
6
ðrÞ ¼ aD3

r3
SD
j þ aE3

r3
SE
j : ð95Þ

It happens that both scales are proportional to each other,

aE3 ¼ −
3

4
aD3 ; ð96Þ

as can be checked by inspecting the coupled-channel form
of the potential in Eq. (A106) from Appendix A. Thus in

the B6B̄�
6 system we will be computing the critical values of

the matrix

Sj ¼ SD
j −

3

4
SE
j : ð97Þ

D. Critical momenta

The critical κc values for which the convergence criterion
fails are listed in Table VI for the different possible heavy
baryon-antibaryon states that contain an S-wave. The
previous values have been obtained under the assumption
that the effective pion mass can be taken to be zero. The
effect of finite pion mass was considered in Ref. [32],
where it was found that it increases the range of momenta
where the tensor part of OPE is perturbative by the
following factor,

κcðmπÞ ¼ κceþmπRc ; ð98Þ

where Rc is the radius below which we do not expect the
OPE potential to be valid. The value of this radius is rather
ambiguous. In Ref. [32] the estimation Rc ¼ 0.5–0.8 fm
was proposed, yielding

κcðmπÞ ≃ 1.5κc: ð99Þ

Higher values might be more appropriate indeed, but here
we will stick to this value.
To obtain the critical momenta we multiply κcðmπÞ by

the relation kc ¼ κcðmπÞ=ja3j, where a3 is the tensor length
scale. If we match the mπr → 0 limit of the OPE potential
to the 1=r3 form we have used to derive κc, we find that

ja3j ¼ jR1R̄2τj
μg2i
4πf2π

; ð100Þ

TABLE VI. Reduced critical momenta κc for the different S-
wave heavy baryon-antibaryon systems B0B̄.

Channel κc

B3B̄6ð0−Þ=B6B̄6ð0−Þ …

B3B̄6ð1−Þ=B6B̄6ð1−Þ 0.6835

B3B̄�
6ð1−Þ 1.412

B3B̄�
6ð2−Þ 1.934

B6B̄�
6ð1−þÞ 0.8533

B6B̄�
6ð1−−Þ 0.7264

B6B̄�
6ð2−þÞ 0.5784

B6B̄�
6ð2−−Þ 0.6998

B�
6B̄

�
6ð0−þÞ 0.6378

B�
6B̄

�
6ð1−−Þ 0.6674

B�
6B̄

�
6ð2−þÞ 0.6833

B�
6B̄

�
6ð3−−Þ 0.5922
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where τ ¼ T⃗1 · T⃗2 and gi ¼ g2, g3 depending on whether
we are considering the SS̄ or the TS̄ potential. The factors
R1 and R̄2 and the proper isospin operator to use can be
checked in Table IV. For the B6B̄�

6 case we will use the
factors corresponding to the direct channels, i.e., B6 → B6

and B�
6 → B�

6, in agreement with the convention that we
have used in Eq. (97) for writing their tensor matrices.
From the previous, we can define the tensor scale as

ΛTðmπÞ ¼
κðmπÞ
ja3j

¼ κðmπÞ
jR1R̄2τj

4πf2π
μg2i

; ð101Þ

which is useful because it allows a direct comparison with
the central scale ΛC that we defined in Eq. (76). If we
particularize for the TS̄ and SS̄ in the charm sector,

ΛTS̄
T ðmπ; Q ¼ cÞ ≃ κcðmπÞ

186þ18
−8 MeV
jR1R̄2τj

; ð102Þ

ΛSS̄
3 ðmπ; Q ¼ cÞ ≃ κcðmπÞ

90 − 250 MeV
jR1R̄2τj

; ð103Þ

while for the bottom sector we obtain

ΛTS̄
T ðmπ; Q ¼ bÞ ≃ κcðmπÞ

140þ80
−40 MeV
jR1R̄2τj

; ð104Þ

ΛSS̄
T ðmπ; Q ¼ bÞ ≃ κcðmπÞ

100þ80
−40 MeV
jR1R̄2τj

; ð105Þ

where we have used the lattice QCD values of g2 and g3
[53]. These scales look rather soft at first sight but the
factors R1, R̄2, and τ will increase the values of ΛT
considerably in most cases. A few representative values
of ΛT are compiled in Table VII both for the chiral limit and
the physical pionmass. In general we find that tensor OPE is
considerably stronger than central OPE. For the ΞQΞ̄0

Q and
ΛQΣ̄Qmoleculeswe find thatΛT is markedly softer thanΛC,
and in the bottom sector the tensor force probably requires a
nonperturbative treatment. For the isoscalar ΣQΣ̄Q, Σ�

QΣ̄Q,
Σ�
QΣ̄�

Q molecules the tensor scale ΛT is moderately soft,
particularly in the bottom sector. We notice that the same
comments are also valid in the two-nucleon system, inwhich
ΛTð0Þ ¼ 66 MeV in the chiral limit [45] and ΛðmπÞ ¼
99 MeV for the physical pion mass.

V. POWER COUNTING FOR HEAVY BARYON
MOLECULES

In this section we discuss the different possible power
counting rules for the heavy baryon-antibaryon states. We
are interested in the case where there are bound states. This
excludes NDA, for which

TABLE VII. The tensor scale ΛT (in units of MeV) for a series of heavy baryon-antibaryon molecules. For momenta above this scale,
p > ΛT , the tensor force becomes nonperturbative. The tensor scale depends on the pion mass: ΛTð0Þ and ΛTðmπÞ represent the value in
the chiral limit and physical pion mass, respectively. The values of ΛT are shown for the antitriplet-sextet and sextet-sextet molecules. In

the latter case we concentrate on the isoscalar Σð�Þ
Q Σ̄ð�Þ

Q molecules, for which pion exchanges are stronger (for the isovector case, the value

of ΛT is twice that of the isoscalar case). For the Ξð0=�Þ
Q Ξ̄ð0=�Þ

Q molecules we only show the channel in which the tensor force is strongest.
For comparison purposes, in the deuteron channel of the two-nucleon system the tensor scale is ΛTð0Þ ¼ 66 MeV and
ΛTðmπÞ ¼ 99 MeV, respectively.

Channel I ΛTð0Þ ΛTðmπÞ Channel I ΛTð0Þ ΛTðmπÞ
ΞcΞ̄0

cð1−�Þ 0 246þ23
−10 368þ34

−14 ΞbΞ̄0
bð1−�Þ 0 200þ100

−60 300þ150
−90

ΛcΣ̄cð1−�Þ 1 196þ18
−7 295þ27

−11 ΛbΣ̄bð1−�Þ 1 150þ80
−40 230þ110

−70

Ξ0
cΞ̄0

cð1−−Þ 0 180–490 270–740 Ξ0
bΞ̄0

bð1−−Þ 0 210þ160
−70 320þ230

−110

ΣcΣ̄cð1−−Þ 0 70–190 110–290 ΣbΣ̄bð1−−Þ 0 80þ60
−30 120þ90

−40

Ξ�
cΞ̄0

cð2−þÞ 0 150–410 230–610 Ξ�
bΞ̄0

bð2−þÞ 0 180þ130
−60 270þ200

−90

Σ�
cΣ̄cð1−þÞ 0 90–240 130–350 Σ�

bΣ̄bð1−þÞ 0 100þ80
−30 150þ110

−50

Σ�
cΣ̄cð1−−Þ 0 70–200 110–300 Σ�

bΣ̄bð1−−Þ 0 90þ60
−30 130þ90

−40

Σ�
cΣ̄cð2−þÞ 0 60–160 90–240 Σ�

bΣ̄bð2−þÞ 0 70þ50
−20 100þ80

−30

Σ�
cΣ̄cð2−−Þ 0 70–190 110–290 Σ�

bΣ̄bð2−−Þ 0 80þ60
−30 130þ90

−50

Ξ�
cΞ̄0

cð3−−Þ 0 160–420 230–630 Ξ�
bΞ̄0

bð3−−Þ 0 190þ130
−70 280þ200

−100

Σ�
cΣ̄�

cð0−þÞ 0 60–170 100–260 Σ�
bΣ̄�

bð0−þÞ 0 80þ50
−30 110þ80

−40

Σ�
cΣ̄�

cð1−−Þ 0 70–180 100–270 Σ�
bΣ̄�

bð1−−Þ 0 80þ60
−30 120þ90

−40

Σ�
cΣ̄�

cð2−þÞ 0 70–190 100–280 Σ�
bΣ̄�

bð2−þÞ 0 80þ60
−30 120þ90

−40

Σ�
cΣ̄�

cð3−−Þ 0 60–160 90–240 Σ�
bΣ̄�

bð3−−Þ 0 70þ50
−20 100þ80

−40
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VLO
C ðq⃗Þ ∼Q0; VLO

F ∼Q0; ð106Þ

as this counting leads to purely perturbative heavy baryon-
antibaryon interactions. The existence of bound states
requires that at least one of the components of the potential
is promoted to Q−1; see the discussion in Sec. II B for
details. There are different choices depending on which
piece of the interaction is promoted. We will consider three
scenarios:
(a) promotion of the contact terms,
(b) promotion of central OPE, and
(c) promotion of tensor OPE.
Each scenario represents a different binding mechanism:
(a) short range,
(b) long range, and
(c) a combination of both,
where we notice that (c) is not obvious but a consequence
of the technicalities of power counting, as we will explain.
We present an overview of these scenarios in Table VIII.
But we stress that the discussion here will be theoretical: in
the absence of experimental data it is not particularly useful
to consider the subleading orders of the EFT expansion.
The exploration in this section provides information about
the theoretical uncertainties that are to be expected from a
LO calculation in each scenario,
(a) (Q=M),
(b) (Q=M),
(c) ðQ=MÞ52,
where we will explain in detail how we obtain these
uncertainties and also what is the general form of the first
subleading corrections, which can actually be found in
Table VIII. For a more in-depth discussion of the power
counting of heavy meson-antimeson in particular and two-
body systems in general we refer the reader to Refs. [32,44].

A. Counting with perturbative pions

The first possibility—scenario (a)—is that the binding
mechanism for heavy baryon-antibaryon molecules is of a

short-range nature. Within the EFT language this amounts
to the promotion of the contact-range potential from Q0 to
Q−1. Within this power counting, the leading order
(LO≡Q−1 in this case) potential will be composed of
contact terms, while the next-to-leading order potential
(NLO≡Q0) will contain the OPE potential plus a few
additional contact interactions:

VLO ¼ Vð−1Þ
C ; ð107Þ

VNLO ¼ Vð0Þ
C þ VOPE: ð108Þ

We do not have to promote all the possible contact
interactions that we obtain from the heavy-light spin
decomposition: in general a subset of it will be enough.
There is one important detail with this counting. If we

consider the S-wave contact-range interactions in EFT, they
admit the momentum expansion

hp0jVCjpi ¼ CþDðp02 þ p2Þ þ…; ð109Þ

where the dots denote couplings involving more derivatives
of the baryon fields. Here we use C and D as a generic
notation for the couplings of a contact-range potential with
no derivatives (C) or with two derivatives (D). The naive
expectation for the scaling of the C and D couplings is

C ∼
1

M2
; D ∼

1

M4
: ð110Þ

But if we promote the coupling C to LO, the coupling D
must also be promoted [39–41]:

C ∼
1

MQ
; D ∼

1

M2Q2
: ð111Þ

As a consequence the ordering of the contact-range
potential will be

TABLE VIII. Possible power countings for the heavy baryon-antibaryon system: NDA and the three scenarios (a), (b), (c) that we
consider in Sec. V.Q refers to the soft scales in each power counting, which include the momenta p of the heavy baryons and pions, the
mass mπ of the pions, the binding momentum

ffiffiffiffiffiffiffiffiffiffi
2μB2

p
of a heavy baryon-antibaryon bound state (with μ the reduced mass and B2 the

binding energy) and the central and tensor scales ΛC and ΛT defined in Eqs. (76) and (101) and listed in Tables Vand VII for a series of
heavy baryon-antibaryon systems. The LO and NLO columns indicate the counting Qν of the leading order and first subleading
correction. In the VLO and VNLO columns we write the contributions to the EFT potential in each case. C and Dðp2 þ p02Þ refer to a
contact-range potential without derivatives and with two derivatives of the heavy baryon field, respectively. VOPE is the OPE potential,
VOPEðCÞ its central piece, and VOPEðTÞ its tensor piece. Finally VTPE refers to the two pion exchange potential (i.e., irreducible diagrams
containing two pions), which we have not considered in this work.

Power counting Q LO VLO NLO VNLO

NDA p, mπ Q0 C, VOPE Q2 Dðp2 þ p02Þ, VTPE

(a) p, mπ ,
ffiffiffiffiffiffiffiffiffiffi
2μB2

p
Q−1 C Q0 Dðp2 þ p02Þ, VOPE

(b) p, mπ , ΛC Q−1 VOPEðCÞ Q0 C, VOPEðTÞ
(c) p, mπ , ΛT Q−1 C, VOPE Q3=2 Dðp2 þ p02Þ
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hp0jVLO
C jpi ¼ C; ð112Þ

hp0jVNLO
C jpi ¼ Dðp02 þ p2Þ: ð113Þ

That is, the NLO potential will contain a contact-range
interaction with two derivatives on the baryon fields. As a
consequence if we promote a particular C coupling to Q−1,
the corresponding derivative coupling with D will be
promoted to Q0. We notice that in this work we have
not explicitly considered a contact-range potential with
derivatives. The take-home message is that in this scenario
the theoretical uncertainty of the calculations is Q=M
because the first correction to a LO calculation is sup-
pressed by one order in the EFT expansion.

B. Counting with nonperturbative central OPE

The second possibility is that the binding mechanism
depends also on the attraction provided by the central OPE.
We can distinguish two cases: (i) the binding depends on
central OPE alone, i.e., scenario (b), and (ii) the binding
depends on the interplay of the contact terms and central
OPE, i.e., scenario (aþ b).
In the first case—scenario (a)—we have a relatively

simple power counting in which

VLO ¼ VOPEðCÞ; ð114Þ

where OPEðCÞ means the central piece of OPE. The
NLO potential contains the tensor OPE and the contact
interactions

VNLO ¼ VOPEðTÞ þ Vð0Þ
C ; ð115Þ

where

hp0jVð0Þ
C jpi ¼ C0: ð116Þ

Contacts with 2n derivatives on the baryon fields will enter
at order Q2n. In this scenario the relative uncertainty of a
LO calculation is Q=M because the first correction to the
EFT potential enters at NLO.
The second case—scenario (aþ b)—is identical to the

power counting of scenario (a) except for the fact that we
include OPE in the LO:

VLO ¼ VLO
C þ VOPEðCÞ; ð117Þ

VNLO ¼ VNLO
C þ VOPEðTÞ; ð118Þ

where VOPEðTÞ is the tensor piece of OPE, while VLO
C and

VNLO
C are the contact-range potentials of Eqs. (112) and

(113). The uncertainty of the LO calculation is Q=M.

C. Counting with nonperturbative tensor OPE

The third possibility—scenario (c)—arises when tensor
OPE is nonperturbative. This is the most involved of the
three power countings considered. Tensor OPE is a singular
potential, which means that it diverges as fast as (or faster
than) 1=r2 for r → 0. Singular potentials in general lead to
nontrivial consequences in EFT [58–63]. The tensor force
is not only singular, but also attractive for the case at hand:
for an S-wave heavy baryon-antibaryon state that mixes
with a D-wave, there is always a configuration for which
the tensor force is attractive.10 For attractive singular
potentials short-range physics is enhanced: the nonpertur-
bative treatment of attractive singular potentials requires the
inclusion of a contact-range interaction at LO [60,61].
The application of these ideas for a heavy baryon-

antibaryon S-wave molecule implies that a nonperturbative
tensor force requires a nonperturbative contact potential. As
a consequence, the LO potential will be

VLO ¼ VOPE þ V−1
C ; ð119Þ

with Vð−1Þ
C the lowest order contact-range potential.11

The counting of the contacts will be modified as
follows [44,45]:

C ∼
1

MQ
; D ∼

1

M7=2Q1=2 ; ð120Þ

or equivalently we can write

hp0jVð−1Þ
C jpi ¼ C; ð121Þ

hp0jVð3=2Þ
C jpi ¼ Dðp02 þ p2Þ; ð122Þ

where the contacts with derivatives get promoted by half an
order. Thus the theoretical uncertainty of a LO calculation
is ðQ=MÞ5=2 (the first subleading correction, a derivative
contact interaction, enters Q5=2 orders after LO), which is
considerably better than for the other scenarios.
The previous analysis is a simplification though: tensor

forces mix channels with different orbital angular momen-
tum, which might lead to complications in certain cases (in
particular the power counting of contact interactions mix-
ing partial waves). We have not addressed these problems
here: they depend on the particular system under consid-
eration and the aim of the present discussion is to provide

10This can be seen by inspecting the partial wave projection of
the tensor operator S12, which can be found in Appendix A. It
happens that for these matrices there is always at least one
positive and one negative eigenvalue.

11We have simply included the full OPE potential in LO
because the addition of central OPE does not further modify the
power counting induced by tensor OPE.
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an overview of power counting rather than a detailed
account.

VI. PREDICTING HEAVY BARYON MOLECULES

In this section we investigate the question of whether we
can predict heavy baryon molecules. The answer to this
question depends on which is the binding mechanism. If the
binding mechanism is of a short-range nature, the pre-
diction of bound states will rely on phenomenology. Within
the EFT framework this is illustrated by the fact that the
contact-range couplings are free parameters. If there is no
preexisting experimental information about the heavy
baryon-antibaryon system, we will have to determine the
contact-range couplings by matching to a phenomenologi-
cal model. Conversely if the binding mechanism is of a
long-range nature, the prediction of bound states is possible
within EFT. Examples are theΛc1Σ̄c [29] andDD�

s0=D
�D�

s1
[64] systems, which interact via a long-range Yukawa
potential that is strong enough to bind. This is not the
standard situation though and more often than not we will
need phenomenological input.
At this point it is interesting to notice the relation

between power counting and the predictability of heavy
baryon-antibaryon molecules. In Sec. V we proposed three
power counting scenarios: (a), (b), and (c). Scenario
(a) corresponds to a short-range binding mechanism, which
requires phenomenological input. Scenario (b) corresponds
to a long-range binding mechanism, which allows for EFT
predictions. Finally scenario (c) is a mixture of short- and
long-range binding, which in a few cases will lead to
predictions. The heavy baryon-antibaryon system belongs
to scenario (a) or (c) depending on the particular state and
quantum numbers considered.
Theoretical studies of hadronic molecules have attributed

the binding mechanism to either short- or long-range
causes. In the pioneering work of Voloshin and Okun
[1] it is the exchange of light mesons (π, σ, ρ, and ω) which
generates heavy hadron molecules, i.e., a mixture of short-
and long-range physics. Early speculations [2–5] often
predicted binding from the OPE potential (long-range
physics) alone. It is notable to mention that Ericson and
Karl [4] indicated that hadronic molecules should be
possible in the charm sector and that Törnqvist [5]
predicted the existence of an isoscalar 1þþ D�D̄ bound
state. The experimental discovery of the Xð3872Þ a decade
after [6] suggests that these theoretical speculations were
on the right track. At this point we find it interesting to
notice that a molecular Xð3872Þ also arises naturally from
short-range physics [65]. Before the discovery of the
Pcð4450Þ by the LHCb [11], which is suspected (but not
confirmed) to be a D̄�Σc molecule [14,16–18], there were
theoretical predictions of its existence too. The authors of
Refs. [66,67] used contact-range interactions derived from
vector meson exchange saturation to make quantitative
predictions of an I ¼ 1

2
, JP ¼ 3

2
− D̄�Σc molecule (among

others). Meanwhile the authors of Ref. [68] used the OPE
potential instead to make qualitative predictions about
probable hadronic molecules, including a possible I ¼ 1

2
,

JP ¼ 3
2
− D̄�Σc molecule. Finally EFT and EFT-inspired

works have explained the properties of shallow molecular
states solely on the basis of short-range interactions
[31,36,69], without making explicit assumptions about
the binding mechanism.
In this section we will examine the short- and long-range

binding mechanisms for heavy baryon-antibaryon mole-
cules. The most obvious short-range mechanism is the
saturation of the EFT contact-range couplings from scalar
and vector meson exchange, while the most important long-
range mechanism is the OPE potential. Now we will
explain these binding mechanisms in detail.

A. Short-range binding dynamics

First we explore the short-range dynamics, in particular
scalar and vector meson exchange. For taking this effect
into account we saturate the contact-range couplings of the
EFT with the exchange of a meson with mass mS of the
order of the hard scale of the EFT (mS ∼M); see Ref. [70]
for a detailed exposition of this idea. For this we expand the
exchange potential VS for momenta q⃗2 ≪ mS and match it
with the expansion of the EFT contact-range potential

VSðq⃗Þ ¼ V0 þ V2q⃗2 þ…; ð123Þ

VCðq⃗Þ ¼ CþDq⃗2 þ…; ð124Þ

from which we arrive to

CðΛ ∼mSÞ ∼ V0 ¼ VSðjq⃗j ¼ 0Þ; ð125Þ

where Λ is the cutoff. Notice that we take Λ ∼mS: this is
because the saturation hypothesis is only expected to work
if the cutoff is of the order of the mass of the exchange
meson [70]. For a Yukawa-like meson exchange potential

VSðq⃗Þ ¼
g2S

q⃗2 þm2
S
; ð126Þ

the saturated contact-range coupling is proportional to

C ∝
g2S
m2

S
; ð127Þ

where the proportionality constant will depend on the
details of the regularization process. This argument is
independent of the nature of the exchanged meson; it only
matters that the mass of this meson is of the order of the
hard scale.
Next we calculate the scalar and vector meson exchange

contribution to the saturation of the EFT coupling. We
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begin by considering scalar meson exchange. The sigma
meson exchange potential is

Vσðq⃗Þ ¼ −
g2σ

q⃗2 þm2
σ
; ð128Þ

with gσ the sigma coupling. We can determine gσ from the
quark model, in which gσ is simply proportional to the
number of u and d quarks in the hadron. Here we take
the sigma-nucleon-nucleon coupling as input, which in the
nonlinear sigma model [71] is gσNN ¼ ffiffiffi

2
p

MN=fπ ∼ 10.2,
where MN is the nucleon mass and fπ the pion decay
constant. From this we have gσ ¼ gσNN=3 ∼ 3.4 for ΞQ, Ξ0

Q,
and Ξ�

Q and gσ ¼ 2gσNN=3 ∼ 6.8 for ΛQ, ΣQ, and Σ�
Q. The

contributions of the scalar meson to the saturation of the
contact-range couplings are listed in Table IX.

We continue with the vector meson exchange potential,
for which the starting point is the heavy baryon-vector-
meson Lagrangian for the SSV and TTV vertices (where V
represents the vector meson). If we consider interactions
with no derivatives, which allow for saturation of the lowest
order EFT couplings, we can write the following
Lagrangians:

LTTV ¼ λTϵiklϵjkmT̄l
QvμðVμÞijTQm; ð129Þ

LSSV ¼ λSS̄QνikvμðVμÞijSνjkQ ; ð130Þ

where the latin indices indicate the sum over the SU(3)
components.12 The vector meson nonet field is given by

V ¼

0
BBB@

ρ0ffiffi
2

p þ ω0ffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ω0ffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA; ð131Þ

where the Lorentz index μ is implicitly understood. The
vector meson exchange contribution to the potential can be
worked out along the lines of Appendix A. A few
representative examples are

hΞQΞ̄QjVjΞQΞ̄Qi ¼
λ2T

q⃗2 þm2
V

ðτ⃗1 · τ⃗2 − 3Þ
2

; ð132Þ

hΞ0
QΞ̄QjVjΞ0

QΞ̄Qi ¼
λSλT

q⃗2 þm2
V

ðτ⃗1 · τ⃗2 − 3Þ
4

; ð133Þ

hΞ0
QΞ̄0

QjVjΞ0
QΞ̄0

Qi ¼
λ2S

q⃗2 þm2
V

ðτ⃗1 · τ⃗2 − 3Þ
8

; ð134Þ

hΣQΣ̄QjVjΣQΣ̄Qi ¼
λ2S

q⃗2 þm2
V

ðT⃗1 · T⃗2 − 1Þ
2

; ð135Þ

which have been calculated in the SU(3) limit. We have
taken mρ ¼ mω ¼ mϕ ¼ mV with mV the vector meson
mass. Notice that we do not have to write explicitly the
potential for the sextet spin-3=2 heavy baryons: the vector
meson potentials for the Σ�

Q, Ξ�
Q, andΩ�

Q are identical to the
ones for ΣQ, Ξ0

Q, and ΩQ. The couplings λS and λT are not
arbitrary: they can be determined from the universality of
the ρ coupling constant [72]. If we consider the ρ-meson
exchange potential between two isospin-1=2 baryons

Vρðq⃗Þ ¼
g2ρ

q⃗2 þm2
ρ
τ⃗1 · τ⃗2; ð136Þ

TABLE IX. Contact-range coupling from saturation of vector
and scalar meson exchange in units proportional to g2ρ=m2

V and
gσqq=m2

σ , with gρ ≃ 2.9 and gσqq ≃ 3.4. Scalar and vector meson
exchange saturations of the spin-3

2
sextet heavy baryons (Σ�

Q, Ξ�
Q,

Ω�
Q) are identical to their spin-

1
2
partners (ΣQ, ΞQ,ΩQ) and are not

listed independently. The contributions to vector meson exchange
are also listed separately as CV ¼ Cρ þ Cω þ Cϕ. Though not
listed, the saturation for the heavy baryon-baryon system can be
obtained from the heavy baryon-antibaryon case by changing the
sign of the ω and ϕ contributions. For comparison purposes we
also include the NN (two-nucleon), D�D̄, and D̄�Σc systems,
which are related to the deuteron, the Xð3872Þ, and the Pcð4450Þ,
respectively.

System Isospin CS CV Cρ Cω Cϕ

NN 0 −9 þ6 −3 þ9 0
NN 1 −9 þ10 þ1 þ9 0

DD̄ 0 −1 −4 −3 −1 0
DD̄ 1 −1 0 þ1 −1 0

ΣcD̄ 1
2

−2 −2 −4 þ2 0

ΣcD̄ 3
2

−2 þ4 þ2 þ2 0

ΛQΛ̄Q 0 −4 −4 0 −4 0

ΞQΞ̄Q 0 −1 −6 −3 −1 −2
ΞQΞ̄Q 1 −1 −2 þ1 −1 −2

Ξ0
QΞ̄Q 0 −1 −6 −3 −1 −2

Ξ0
QΞ̄Q 1 −1 −2 þ1 −1 −2

ΣcΛ̄Q 1 −4 −4 0 −4 0

ΩQΩ̄Q 0 0 −8 0 0 −8
ΞQΞ̄Q 0 −1 −6 −3 −1 −2
ΞQΞ̄Q 1 −1 −2 þ1 −1 −2
ΣQΣ̄Q 0 −4 −12 −8 −4 0

ΣQΣ̄Q 1 −4 −8 −4 −4 0

ΣQΣ̄Q 2 −4 0 þ4 −4 0

12Notice that we are not considering TSV vertices because they
involve derivatives and do not saturate the LO contact-range
couplings.
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with mρ ¼ 770 MeV, the universality of the ρ coupling
implies that gρ ¼ mρ=2fπ ≃ 2.9. If we match to the
potentials in Eqs. (132) to (135), we find

λT ¼
ffiffiffi
2

p
gρ and λS ¼ 2

ffiffiffi
2

p
gρ: ð137Þ

The saturation of the EFT contact couplings by the vector
mesons is easy to obtain and can be found in Table IX. We
mention that it is possible to consider the contributions of
the different vector mesons separately:

CV ¼ Cρ þ Cω þ Cϕ: ð138Þ
This form is interesting because it makes it easy to deduce
the strength of the heavy baryon-baryon short-range
interaction from the heavy baryon-antibaryon one. This
merely involves changing the sign of the contributions from
the negative G-parity mesons, the ω and the ϕ, yielding
C0
V ¼ Cρ − Cω − Cϕ. Though the vector meson saturations

of the heavy baryon-baryon system is not listed here, they
can be obtained from Table IX where the Cρ, Cω, and Cϕ

contributions are listed.
Finally we add the contribution to the EFT contact

couplings from scalar and vector meson exchange satu-
ration, that is,

CðΛ ∼mV;mσÞ ∼ CS þ CV; ð139Þ
where CS and CV are the scalar and vector meson
contributions. At this point it is interesting to compare
saturation in the heavy baryon-antibaryon system with the
heavy meson-antimeson and heavy meson-antibaryon
cases. The Xð3872Þ and Pcð4450Þ are D�D̄ and D̄�Σc
molecular candidates for which we can apply the saturation
argument as well, as can be seen in Table IX. If we compare
the saturated contact-range couplings of the Xð3872Þ and
Pcð4450Þ with the ones for the heavy baryon-antibaryon
system, we can identify the most promising molecular
candidates. Heavy baryon-antibaryon systems for which
the short-range interaction is expected to be more attractive
than the Xð3872Þ include

ΛQΛ̄Q; ΞQΞ̄QðI ¼ 0Þ; Ξ0
QΞ̄QðI ¼ 0Þ;

ΣQΛ̄Q; Ξ0
QΞ̄0

QðI ¼ 0Þ; ΣQΣ̄QðI ¼ 0; 1Þ; ð140Þ

to which we have to add the molecules containing the
excited sextet baryons, i.e., the molecules we obtain from
the substitutions ΞQ → Ξ�

Q and ΣQ → Σ�
Q. The systems for

which there is more short-range attraction than for the
Pcð4450Þ include

ΛQΛ̄Q; ΣQΛ̄Q; ΣQΣ̄QðI ¼ 0; 1Þ; ð141Þ

where we notice that they are a subset of Eq. (140). The
obvious conclusion is that the heavy baryon-antibaryon

pairs listed in Eq. (141) are the strongest candidates
to bind. The particular case of ΛcΛ̄c has been recently
studied in Ref. [73], leading to binding in agreement with
our conclusions.
If we consider the heavy baryon-baryon system instead,

the contribution of the ω and ϕ mesons is repulsive and in
general there is less attraction than in the heavy baryon-
antibaryon case. Yet for the following heavy baryon-baryon
system,

ΣQΣQðI ¼ 0Þ; ð142Þ

there is more short-range attraction than in the Xð3872Þ and
the Pcð4450Þ. Further candidates for binding can be
inferred from a comparison with the deuteron, for which
the short-range interaction is repulsive. In Table IX we see
that for the nucleon-nucleon system there is a strong short-
range repulsion from the exchange of the ω meson but also
a strong attraction coming from the exchange of the σ
meson. The existence of the deuteron indicates that
attraction wins in this case. This is not surprising if we
notice that mσ < mω and ðgσNN=3Þ > gρ, which suggests
that σ meson saturation overcomes ω meson saturation
(jCSj > jCωj). Here it is worth noticing that binding in
nonrelativistic systems depends on the reduced potential,
the product of the potential by twice the reduced mass of
the system. This in turn implies that for the following
systems,

ΛQΛQ; ΣQΛQ; ΣQΣQðI ¼ 0; 1Þ; ð143Þ

the net effect of the short-range attraction from the σ meson
will be larger than in the two-nucleon system, i.e.,

2μjCSj > 2μNNjCNN
S j; ð144Þ

with μ and μNN the reduced masses of the systems listed in
Eq. (143) and the two-nucleon system, respectively, and CS

and CNN
S their σ-saturated couplings. But we warn that this

argument is incomplete: common wisdom in nuclear
physics attributes binding in the deuteron to the interplay
of short- and long-range physics, in particular the short-
range repulsion from the ωmeson, the attraction from the σ
meson, and the tensor force from OPE. This suggests that,
with the exception of the isoscalar ΣcΣc system, the other
molecular candidates listed in Eq. (143) require a more
thorough theoretical exploration to determine if there is
binding.
The saturation argument probably provides incomplete

information about the LO contact-range couplings. The
saturated couplings are independent of the total light spin of
the heavy hadron-antihadron system. This is compatible
with HQSS—it represents a subset of the possible inter-
actions that respect HQSS—but not necessarily with
experiments. If we review the heavy meson-antimeson
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system, to which the Xð3872Þ is suspected to belong, scalar
and vector meson exchange saturation predicts exactly the
same potential for DD̄, D�D̄, DD̄�, and D�D̄� irrespec-
tively of the spin and C-parity quantum numbers. That is,
the saturation argument leads to the prediction of six
isoscalar heavy meson-antimeson molecules. This is to
be compared with only one obvious molecular candidate,
the Xð3872Þ. Analogously, the application of this argument
to the heavy meson-antibaryon molecules leads to the
prediction of seven D̄Σc, D̄Σ�

c, D̄�Σc, and D̄�Σ�
c molecules

but only one experimental candidate, the Pcð4450Þ. This
situation also happens in other theoretical approaches that
derive heavy hadron interactions from vector meson
saturation [65–67]. The probable conclusion is that we
are probably missing something in the resonance saturation
arguments we are using to derive the LO couplings. Be that
as it may, for the set of molecules in Eq. (141) the short-
range attraction is expected to be remarkably stronger than
in the Xð3872Þ and Pcð4450Þ.

B. Long-range binding dynamics

The long-range dynamics of the heavy baryon-anti-
baryon system is driven by OPE. We assess the relative
strength of the OPE potential for each channel in the
following way: first we modify the OPE potential by
including a cutoff

VOPEðr; rcÞ ¼ VOPEðrÞθðr − rcÞ; ð145Þ

where rc is the cutoff. Then we calculate the largest rc for
which OPE alone is able to bind a molecule. We call this
radius rc ¼ Rc the “critical radius.” Notice that we are in
fact assuming that (i) OPE is valid from infinity till the
critical radius and (ii) there is no short-range physics. If this
critical radius turns out to be large enough, we will

consider that the system is likely to bind. By large enough
we mean for instance that the critical radius is larger than
the size of the hadrons or the range of other contributions to
the hadron-hadron potential that have not been taken into
account (e.g., two pion exchange).
It is important to notice that most heavy baryon-anti-

baryon molecules bind if rc is sufficiently small because of
the tensor force. Thus the crucial factor is not whether there
is a critical radius for which the molecule binds, but
whether the critical radius Rc is reasonable or not. The
reason why the tensor force is able to bind in most cases is
because for S-wave molecules it behaves as an attractive
singular potential; see the discussion in Sec. V C. This is
why it is important to consider whether the distance at
which OPE binds is reasonable or not.
We list the critical radii for the Σð�Þ

Q Σ̄ð�Þ
Q molecules in

Table X. We have chosen the Σð�Þ
Q Σ̄ð�Þ

Q system because this is
the case in which the OPE potential is expected to be
stronger owing to the higher isospin of the ΣQ’s. Besides,
from scalar and vector meson exchange saturation we
expect a very strong short-range attraction. The isoscalar
molecules are the ones showing more attraction and higher
critical radii, reaching in a few cases 1 fm. For the hidden
charm molecules the uncertainty is really big as the value of
g2 is not experimentally known. To give a sense of scale we
mention that for the deuteron the critical radius is 1.00 fm.
For the Pcð4450Þ pentaquarklike state as a ΣcD̄� molecule,
the critical radius is 0.30–0.49 fm (where the uncertainty is
again a consequence of g2). In comparison, for the heavy
meson-antimeson molecular candidates, the radii are 0.30,
0.10, and 0.26 fm for the Xð3872Þ, Zcð3900Þ, and
Zbð10610Þ, respectively. The rather small critical radii of
the X, the Zc, and the Zb suggest that these hadron
molecules depend on the short-range attraction (instead
of OPE) to bind. For the deuteron the critical radius is

TABLE X. Critical radius Rc for which OPE is able to bind certain heavy baryon-antibaryon molecules, where I refers to the isospin of
the system. For the ΣQΣ̄Cð0−þÞ, where there is no tensor force, the notation 0þ0.23 indicates that there is only binding for Rc ≤ 0.23 fm if
the coupling g2 lies on the high end of the lattice calculations. For comparison purposes, the critical radius for the deuteron and the
Pþ
c ð4450Þ pentaquark are 1.00 fm and 0.30–0.49 fm, respectively. If the system does not bind, we indicate it with the “…” notation.

Channel I ¼ 0 I ¼ 1 I ¼ 2 Channel I ¼ 0 I ¼ 1 I ¼ 2

ΣcΣ̄cð0−þÞ … … … ΣbΣ̄bð0−þÞ 0þ0.23 … …

ΣcΣ̄cð1−−Þ 0.42–0.94 0.22–0.55 0.19–0.48 ΣbΣ̄bð1−−Þ 0.86þ0.30
−0.31 0.49þ0.21

−0.19 0.43þ0.21
−0.18

ΣcΣ̄�
cð1−þÞ 0.39–1.00 0.19–0.53 0.15–0.36 ΣbΣ̄�

bð1−þÞ 0.88þ0.38
−0.35 0.46þ0.23

−0.20 0.32þ0.13
−0.12

ΣcΣ̄�
cð1−−Þ 0.44–1.11 0.22–0.59 0.18–0.44 ΣbΣ̄�

bð1−−Þ 0.99þ0.40
−0.39 0.52þ0.26

−0.22 0.39þ0.16
−0.15

ΣcΣ̄�
cð2−þÞ 0.46–1.01 0.24–0.59 0.25–0.64 ΣbΣ̄�

bð2−þÞ 0.91þ0.31
−0.32 0.51þ0.21

−0.21 0.56þ0.24
−0.22

ΣcΣ̄�
cð2−−Þ 0.39–0.85 0.21–0.50 0.20–0.55 ΣbΣ̄�

bð2−−Þ 0.77þ0.27
−0.27 0.45þ0.18

−0.17 0.48þ0.23
−0.21

Σ�
cΣ̄�

cð0−þÞ 0.56–1.36 0.27–0.75 0.18–0.41 Σ�
bΣ̄�

bð0−þÞ 1.20þ0.46
−0.46 0.64þ0.32

−0.27 0.36þ0.14
−0.30

Σ�
cΣ̄�

cð1−−Þ 0.52–1.24 0.26–0.68 0.18–0.42 Σ�
bΣ̄�

bð1−−Þ 1.09þ0.42
−0.41 0.59þ0.29

−0.25 0.37þ0.15
−0.14

Σ�
cΣ̄�

cð2−þÞ 0.44–1.02 0.22–0.57 0.20–0.50 Σ�
bΣ̄�

bð2−þÞ 0.91þ0.34
−0.34 0.50þ0.23

−0.20 0.43þ0.18
−0.17

Σ�
cΣ̄�

cð3−−Þ 0.45–0.91 0.25–0.55 0.28–0.69 Σ�
bΣ̄�

bð3−−Þ 0.82þ0.27
−0.28 0.48þ0.20

−0.18 0.60þ0.28
−0.25

HEAVY BARYON-ANTIBARYON MOLECULES IN EFFECTIVE … PHYS. REV. D 99, 074026 (2019)

074026-21



significantly larger, indicating that OPE is an important
component of the binding mechanism. Lastly, the situation
for the Pcð4450Þþ pentaquark seems to be in the middle.
From Table X it is apparent that for the heavy baryon-
antibaryon system OPE can provide as much attraction as
in the deuteron. If we combine this observation with what
we know about short-range physics according to Table IX,

the conclusion is that there will be a rich Σð�Þ
Q Σ̄ð�Þ

Q molecular
spectrum, particularly in the I ¼ 0, 1 configurations.

VII. CONCLUSIONS

In this work we have presented a general EFT framework
for the heavy baryon-antibaryon system. EFTs exploit the
existence of a separation of scales to express the observable
quantities of a low energy system as a power series. In the
case at hand the size of a hadron molecule is expected to be
larger than the hadrons forming it. As a consequence this
type of system is amenable to an EFT description. Also,
heavy hadron molecules are constrained by chiral, SU(2)-
isospin, SU(3)-flavor, and HQSS symmetries. This degree
of symmetry translates into a few interesting regularities in
their spectrum.
EFT explains the heavy baryon-antibaryon interaction in

terms of contact-range interactions and pion exchanges.
The relative importance of these two contributions changes
from system to system. In general the LO EFT description
involves four-baryon contact-range interactions and pion
exchanges (OPE), but this depends on the molecule. Pion
exchanges are expected to be particularly important in the
isoscalar ΣQΣ̄Q, Σ�

QΣ̄Q, and Σ�
QΣ̄�

Q molecules (but less
important for other configurations). In contrast, OPE
vanishes in the ΞQΞ̄Q and ΛQΛ̄Q molecules, which can
be described in terms of a contact theory at LO. For the
Ξ0
QΞ̄0

Q, Ξ�
QΞ̄0

Q, and Ξ�
QΞ̄�

Q molecules, particularly in the
hidden charm sector, OPE is probably a NLO effect. We
warn that the conclusions about the relevance of the OPE
potential are only well established for the bottom sector. In
the charm sector, the value of the g2 axial coupling that
appears in the Σc → Σcπ amplitude is not known exper-
imentally, and a determination either in a future experiment
or in the lattice will be welcomed. Particle coupled
channels, i.e., transitions in which a heavy baryon changes
from the ground to the excited state (B6 → B�

6), are
subleading if the molecules are not too tightly bound,
i.e., for binding momenta γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M6jEBj
p

≤ 350–400 MeV.
The previous findings regarding pion exchanges and
coupled channels are analogous to the ones in the heavy
meson-antimeson molecules [32]. It is also worth mention-
ing that right now the LO EFT is more than enough for the
description of heavy hadron-antihadron molecules, where
the scarcity of experimental data makes it superfluous to
calculate subleading orders.
The EFT potential is constrained by HQSS. This is

particularly evident for S-wave interactions, such as the LO

contact-range potential and central OPE. Symmetries in the
S-wave interaction are likely to translate into symmetries in
the spectrum. For the TT̄ case, the LO EFT potential does
not depend on the total spin of the system:

hTT̄jVsð0−ÞjTT̄i ¼ hTT̄jVsð1−ÞjTT̄i; ð146Þ

where the subscript s is used to indicate S-wave. That is, the
TT̄ heavy baryon molecules are expected to come in pairs.
For the TS̄=ST̄ molecules we have the following two
relations:

hTS̄jVsð0−�ÞjTS̄i ¼ hTS̄jVsð2−�ÞjTS̄i; ð147Þ

hTB̄6jVsð1−�ÞjTB̄6i ¼ hTB̄�
6jVsð1−∓ÞjTB̄�

6i; ð148Þ

where in the second line we have explicitly indicated
whether the sextet heavy baryon is in the ground or excited
state. The conclusion is again that TS̄ molecules appear in
pairs. For SS̄ molecules the contacts have a far richer
structure, with only one obvious symmetry relation:

hSS̄jVsð2−−ÞjSS̄i ¼ hSS̄jVsð3−−ÞjSS̄i: ð149Þ

Tensor OPE mixes partial waves and will induce deviations
from the previous relations, which will be moderate if the
bound states are shallow. At this point it is worth noticing
the analogy with the heavy meson-antimeson case, where
this type of twin structure also happens for (i) the 1þ− D�D̄
and 1þ− D�D̄� and (ii) the 1þþ D�D̄ and 2þþ D�D̄�
molecules. The first of these relations explains why the Zc’s
and Zb’s resonances appear in pairs [31,74], while the latter
predicts that the Xð3872Þ should have a 2þþ partner, the
Xð4012Þ [32,33]. In the heavy meson-antimeson system
there is a series of dynamical effects (besides the afore-
mentioned tensor OPE) that might break these patterns,
which include decays into nearby channels [75], coupled
channel dynamics [76], the existence of nearby quarkonia
[77], and annihilation [78]. Though they have not been
studied in the heavy baryon-antibaryon case, these effects
could be relevant.
Finally there is the important question of whether the

existence of heavy baryon molecules can be predicted.
EFTs are generic frameworks that usually require preexist-
ing experimental input to make predictions. The EFT
potential is composed of a long-range and short-range
piece. The short-range piece involves unknown couplings,
which have to be determined from external information. In
the absence of experimental data, there is the possibility of
using phenomenological arguments to estimate the contact-
range couplings. If we assume the saturation of these
couplings from ρ-, ω-, ϕ-, and σ-meson exchange, the most
probable candidates for a heavy baryon-antibaryon bound
state are the isoscalar ΛcΛ̄c, ΣcΣ̄c, Σ�

cΣ̄c, and Σ�
cΣ̄�

c
molecules, located at 4573, 4906, 4970, and 5035 MeV
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and the isovector ΛcΣ̄c and ΛcΣ̄�
c molecules at 4740

and 4805 MeV. If we consider the heavy baryon-baryon
system instead, saturation indicates that the isoscalar,
doubly-charmed ΣcΣc, Σ�

cΣc, and Σ�
cΣ�

c molecules are
good candidates for binding, followed by their isovector
counterparts, the isoscalar ΛcΛc and isovector ΛcΣc and
ΛcΣ�

c systems. For the heavy baryon-antibaryon system we
supplement the saturation argument with an estimate of
the relative strength of the OPE potential, which we assess
by calculating the radius for which OPE would be able
to bind the system by itself. This second argument also
points to isoscalar molecules as the most likely to bind. It
might be possible to observe these heavy baryon-anti-
baryon molecules in experiments such as LHCb and
PANDA, which is expected to be particularly suited for
the precision study of hidden charm exotic states [79], or
alternatively in the lattice.
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APPENDIX A: THE ONE PION EXCHANGE
POTENTIAL IN HEAVY HADRON CHIRAL

PERTURBATION THEORY

The OPE potential is the LO piece of the finite-range
EFT potential. In this Appendix we explain how to
compute it. The idea is to obtain nonrelativistic amplitudes
for processes involving an incoming and outgoing heavy
baryon and a pion, which we write as

AðB → B0π; q⃗Þ; ðA1Þ

where BðB0Þ are the initial/final baryon and q⃗ the momen-
tum of the pion if outgoing (if incoming we change the
momentum to −q⃗). If written in a suitable normalization
these amplitudes can be combined to compute the OPE
potential (or for that matter any one boson exchange
potential) as follows:

hB0
1B

0
2jVjB1B2i ¼

A1ðq⃗ÞA2ð−q⃗Þ
q⃗2 þ μ2π

; ðA2Þ

where 1 and 2 refer to the pion vertices 1 and 2 and μπ is
the effective pion mass for this particular transition (which
is not necessarily the physical pion mass because
mB0

1
−mB1

≠ 0 and gives the pion a nonvanishing zeroth

component to its 4-momentum). The amplitudesA1 andA2

may refer to baryons or antibaryons indistinctively. In the
following lines we will explain how to do the derivation in
detail.

1. The heavy baryon field

Heavy baryons contain a heavy quark and two light
quarks; i.e., they have the structure jQqqi. The total spin of
the light quark pair is SL ¼ 0, 1. If the light quark spin is
SL ¼ 0, we have an antitriplet spin-1=2 heavy baryon,
which we denote by the Dirac field

Ψ3̄Q: ðA3Þ

If the light quark spin is SL ¼ 1, we have spin-1=2 and
spin-3=2 heavy baryons which we denote by the Dirac and
Rarita-Schwinger fields

Ψ6Q; Ψ�
6Qμ: ðA4Þ

Notice that the Rarita-Schwinger field contains a Lorentz
index: it is the external product of a Minkowsky vector and
a Dirac spinor. The product contains a spurious spin-1

2

component that can be removed with the condition

γμΨ�
6Qμ ¼ 0: ðA5Þ

Within heavy hadron EFT it is customary to use the fields
TðvÞ and SμðvÞ instead, which have good transformation
properties under rotations of the spin of the heavy quark
(where v refers to the velocity of the heavy quark). For the
Ψ3̄Q heavy baryon, the definition is

TQðvÞ ¼
1þ =v
2

Ψ3̄Q; ðA6Þ

T̄QðvÞ ¼ Ψ̄3̄Q
1þ =v
2

: ðA7Þ

The superfield TQðvÞ transforms as

TQðvÞ → e−iϵ⃗·S⃗vTQðvÞ; ðA8Þ

where S⃗v is related to SUð2Þv, the SUð2Þ spin group of the
heavy quark Q moving at velocity v. For the Ψ6Q and Ψ�

6Qμ

sextet heavy baryons, the definition is

SQμðvÞ ¼
1ffiffiffi
3

p ðγμ þ vμÞγ5
1þ =v
2

Ψ6Q þ 1þ =v
2

Ψ�
6Qμ; ðA9Þ

S̄QμðvÞ ¼ −
1ffiffiffi
3

p Ψ̄6Q
1þ =v
2

γ5ðγμ þ vμÞ þ Ψ̄�
6Qμ

1þ =v
2

;

ðA10Þ
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where γμ, γ5 are the Dirac matrices. The SQμðvÞ superfield
contains a Lorentz index that comes from the Rarita-
Schwinger field Ψ�

6Qμ. It obeys a constraint analogous to
Eq. (A5):

vμSQμðvÞ ¼ 0 and =vSQμðvÞ ¼ SQμðvÞ: ðA11Þ

The SQμðvÞ superfield transforms as

SQμðvÞ → e−iϵ⃗·S⃗vSQμðvÞ: ðA12Þ

In general we take the velocity parameter to be v ¼ ð1; 0⃗Þ.
We are interested in heavy baryon-antibaryon molecules;

i.e., we need the antibaryon fields. Here it is important to
notice that

T̄QðvÞ ¼ T†
QðvÞγ0; ðA13Þ

S̄QμðvÞ ¼ S†QμðvÞγ0; ðA14Þ

are the operators for creating heavy baryons, which are
unrelated to the antibaryon fields. Heavy antibaryons
require the definition of new TQ̄ðvÞ, T̄Q̄ðvÞ, SQ̄ðvÞ, and
S̄Q̄ðvÞ fields. We will not need to define them explicitly
though. Instead we will use C- and G-parity transforma-
tions to deduce the interactions of the heavy antibaryons
with the pions.
The heavy baryon fields have SU(2)-isospin and SU(3)-

flavor structure. If we add SU(3)-flavor indices for the
heavy baryons with Q ¼ b and SL ¼ 0, we have

Ψ3̄b ¼

0
BB@

Ξ−
b

−Ξ0
b

Λ0
b

1
CCA ðA15Þ

while for Q ¼ b, SL ¼ 1 we have

Ψ6̄b ¼

0
BBB@

Σþ
b

1ffiffi
2

p Σ0
b

1ffiffi
2

p Ξ0
b
0

1ffiffi
2

p Σ0
b Σ−

b
1ffiffi
2

p Ξ−
b
0

1ffiffi
2

p Ξ0
b
0 1ffiffi

2
p Ξ−

b
0 Ω−

b

1
CCCA; ðA16Þ

where the corresponding expressions for the spin-3
2
heavy

baryonsΨ�
6c are identical. For the SUð3Þ-flavor structure of

the Q ¼ c charmed baryons we refer to Eqs. (20) and (21).
In the following we will mostly consider the SUð2Þ-isospin
structure: when we talk about the TQ we could either be
referring to ΛQ (isoscalar) or ΞQ (isospinor), while when
we talk about SQ it could be ΣQ (isovector), Ξ0

Q (isospinor),
or ΩQ (isoscalar).

Notice that we are interested in the OPE potential: the
isoscalar ΩQ cannot exchange a single pion and will not be
further considered here. The isoscalar ΛQ and the isospinor
ΞQ can only exchange pions in vertices involving a Ξ0

Q and

a Σð�Þ
Q respectively; i.e., there is no ΞQΞQπ or ΛQΛQπ

vertex but there are ΞQΞ
ð�Þ0
Q π and ΛQΣ

ð�Þ
Q π vertices.

2. The heavy baryon chiral Lagrangian at LO

The interaction of heavy baryons and pions can be
written as [46,52]

LTTπ ¼ 0; ðA17Þ

LSTπ ¼ g3½ϵijkT̄i
QðAμÞjlSklQμ þ ϵijkS̄μQklðAμÞljTQi�; ðA18Þ

LSSπ ¼ ig2ϵμνσλS̄
μ
Qikv

νðAσÞijðSλÞjkQ ; ðA19Þ

where the latin indices i, j, k, l indicate either the SU(2)-
isospin or the SU(3)-flavor components; g2, g3 are coupling
constants; and ϵμνσλ is the four-dimensional Levi-Cività
symbol. In the equation above, Aμ is the pseudo Goldstone
boson field,

Aμ ¼ i
2
ðξ†∂μξ − ξ∂μξ†Þ; ðA20Þ

where ξ is defined as

ξ ¼ e
i
fπ
M; ðA21Þ

with the matrix M

M ¼

0
BBBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCCA; ðA22Þ

which entails that we are taking the normalization
choice fπ ≃ 132 MeV.
If we consider the SUð2Þ subgroup of SUð3Þ, the Aμ field

reduces to the following expansion in the pion field:

Aμ ¼ −
1

fπ
∂μπ þ 1

6f3π
½π; ½π; ∂μπ�� þ…; ðA23Þ

where π refers to the SUð2Þ submatrix in the equation
above (after removing the contribution from the η), i.e.,

π ¼
 π0ffiffi

2
p πþ

π− − π0ffiffi
2

p

!
: ðA24Þ
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3. The nonrelativistic limit

The potential is well defined in the nonrelativistic limit,
where the heavy baryon fields reduce to

Ψ3̄Q →
ffiffiffiffiffiffiffiffiffi
2M3̄

p �
χ0s
0

�
; ðA25Þ

Ψ6Q →
ffiffiffiffiffiffiffiffiffi
2M6

p �
χs

0

�
; ðA26Þ

Ψ�
6Qμ ¼ fΨ�

6Q0; Ψ⃗
�
6Qg →

ffiffiffiffiffiffiffiffiffi
2M�

6

p ��
0

0

�
;

�
χ⃗s

0

��
; ðA27Þ

where χ0s, χs are standard spinors, while χ⃗s ¼ ðχs1; χs2; χs3Þ
is a vector in which each component is a spinor. The vector
χ⃗s fulfills the condition

σ⃗ · χ⃗s ¼ 0; ðA28Þ

i.e., the nonrelativistic version of Eq. (A5), which ensures
that Ψ�

6Qμ is a genuine spin-
3
2
field. We have that M3̄ is the

SL ¼ 0 heavy baryon mass, while M6, M�
6 are the SL ¼ 1

heavy baryon masses. In the heavy quark limit the SL ¼ 1
baryon masses are identical:

M6 ¼ M�
6 for mQ → ∞: ðA29Þ

However, this does not happen with the M3̄ mass, which
remains different fromM6 andM�

6 in the heavy quark limit.
Putting all the pieces together, in the nonrelativistic limit
the SL ¼ 0 heavy field reduces to

1ffiffiffiffiffiffiffiffiffi
2M3̄

p TQðvÞ →
�
B3̄

0

�
; ðA30Þ

1ffiffiffiffiffiffiffiffiffi
2M3̄

p T̄QðvÞ →
�
B†
3̄

0

�
; ðA31Þ

while the SL ¼ 1 heavy fields read

1ffiffiffiffiffiffiffiffiffi
2M6

p S⃗QðvÞ →
 ffiffi

1
3

q
σ⃗B6 þ B⃗�

6

0

!
; ðA32Þ

1ffiffiffiffiffiffiffiffiffi
2M6

p ¯S⃗QðvÞ →
� ffiffi

1
3

q
σ⃗B†

6 þ B⃗�†
6 0

�
; ðA33Þ

with B3̄, B6, and B�
6 the nonrelativistic heavy baryon fields.

The notation can be further simplified (i) by noticing that
there is no difference between the T̄Q=S̄Q and T†

Q=S
†
Q fields

in the nonrelativistic limit, (ii) by ignoring the antibaryon
components and (iii) by absorbing the normalization
factors

ffiffiffiffiffiffiffiffiffi
2M3̄

p
and

ffiffiffiffiffiffiffiffiffi
2M6

p
in a field redefinition. In this

case we end up with

TQ ¼ B3̄; ðA34Þ

T†
Q ¼ B†

3̄
; ðA35Þ

S⃗Q ¼
ffiffiffi
1

3

r
σ⃗B6 þ B⃗�

6; ðA36Þ

S⃗†Q ¼
ffiffiffi
1

3

r
B†
6σ⃗ þ B⃗�†

6 : ðA37Þ

The pion field Aμ reduces in the heavy baryon non-
relativistic limit to

A⃗ ¼ −
1

fπ
∇⃗ π⃗þO

�
π3

f3π

�
; ðA38Þ

where we ignore the zeroth component of Aμ because it
couples to the zeroth component of SQμðvÞ, which vanishes
in the nonrelativistic limit. From this we can rewrite the
Lagrangian as

LSTπ ¼ −g3½ϵijkTi†
QðA⃗Þjl · S⃗klQ þ ϵijkS⃗†Qkl · ðA⃗ÞljTQi�; ðA39Þ

LSSπ ¼ −ig2Tr½S⃗†Q · ðA⃗ × S⃗QÞ�; ðA40Þ

where the trace is over isospin space. Alternatively we can
expand the Lagrangian in terms of the fields B3̄, B6, and B�

6:

LSTπ ¼
g3ffiffiffi
3

p
fπ

B†
3̄
σ⃗ · ∇⃗πB6 þ

g3ffiffiffi
3

p
fπ

B†
6σ⃗ · ∇⃗πB0

6

þ g3
fπ

B†
3̄
∇⃗π · B⃗�

6 þ
g3
fπ

B⃗�†
6 · ∇⃗πB3̄ ðA41Þ

LSSπ ¼ i
g2
3fπ

B†
6σ⃗ · ð∇⃗ π⃗ ×σÞB6 þ i

g2
fπ

B⃗�†
6 · ð∇⃗ π⃗ ×B⃗�

6Þ

þ i
g2ffiffiffi
3

p
fπ

B†
6σ⃗ · ð∇⃗ π⃗ ×B⃗�

6Þ

þ i
g2ffiffiffi
3

p
fπ

B⃗�†
6 · ð∇⃗ π⃗ ×σ⃗ÞB6; ðA42Þ

where we have removed the isospin/flavor indices to make
the expressions shorter.

4. The spin and isospin factors

Now we calculate the matrix elements of the different
vertices, which depend on a series of spin and isospin
factors. In the charm sector (Q ¼ c), the relations between
the isospin and particle basis are

B3̄ðΛcÞ ¼ Λþ
c ; ðA43Þ

B3̄ðΞcÞ ¼
�
Ξþ0
c

Ξ00
c

�
; ðA44Þ
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B6ðΞ0
cÞ ¼

�
Ξþ0
c

Ξ00
c

�
; ðA45Þ

B6ðΣcÞ ¼
0
@ Σþþ

c
1ffiffi
2

p Σþ
c

1ffiffi
2

p Σþ
c Σ0

c

1
A; ðA46Þ

for the Λc, Ξc, Ξ0
c, and Σc baryons, respectively. The

relations for the excited Ξ0�
c and Σ�

c sextet baryons are
identical to those of the Ξ0

c and Σc baryons. Alternatively if
we consider isospin vectors we can write

Λþ
c ¼ j00iI; ðA47Þ

fΞþ
c ;Ξ0

cg ¼
�				 12 ; 12



I
;

				 12 ;− 1

2



I

�
; ðA48Þ

fΞþ0
c ;Ξ00

c g ¼
�				 12 ; 12



I
;

				 12 ;− 1

2



I

�
; ðA49Þ

fΣþþ
c ;Σþ

c ;Σ0
cg ¼ fj1; 1iI; j1; 0iI; j1;−1iIg: ðA50Þ

The isospin factors can be extracted by first expanding the
isospin/flavor indices in the particle basis and later rein-
terpreting the result in terms of matrices in the isospin
space. We begin with the STπ Lagrangian, for which

Λ†
cπaΣc ¼ ta; ðA51Þ

Ξ†
cπaΞ0

c ¼
τa

2
; ðA52Þ

where πa is the pion field in the Cartesian basis, τa are the
Pauli matrices, and ta are given by

t1 ¼

0
BB@

1ffiffi
2

p

0

− 1ffiffi
2

p

1
CCA; ðA53Þ

t2 ¼

0
BB@

iffiffi
2

p

0

iffiffi
2

p

1
CCA; ðA54Þ

t3 ¼

0
B@

0

1

0

1
CA: ðA55Þ

In the SSπ case we have

Ξ0†
c πaΞ0

c ¼
τa

2
ffiffiffi
2

p ; ðA56Þ

Σ†
cπaΣc ¼

Taffiffiffi
2

p ; ðA57Þ

where Ta are the J ¼ 1 angular momentum matrices in
isospin space. The isospin factors for the Ξ�

c and Σ�
c baryons

are identical to those of the Ξc and Σc baryons.
Next we factor out the spin in terms of angular

momentum matrices or equivalent expressions. For the
STπ vertices the factors are

B†
3̄
σ⃗ · q⃗B6 ¼ σ⃗ · q⃗; ðA58Þ

B†
3̄
q⃗ · B⃗�

6 ¼ S⃗ · q⃗; ðA59Þ

while for the SSπ vertices we have

B†
6σ⃗ · ðq⃗ × σ⃗ÞB6 ¼ −i2σ⃗ · q⃗; ðA60Þ

B⃗�†
6 · ðq⃗ × B⃗�

6Þ ¼ −i
2

3
Σ⃗ · q⃗; ðA61Þ

B†
6σ⃗ · ðq⃗ × B⃗�

6Þ ¼ −iS⃗ · q⃗; ðA62Þ

B⃗�†
6 · ðq⃗ × σ⃗ÞB6 ¼ −iS⃗† · q⃗; ðA63Þ

where σ⃗ are the Pauli matrices, Σ⃗ are the J ¼ 3
2
angular

momentum matrices, and S⃗ are 2 × 4 matrices that connect
the spin- 1

2
and spin- 3

2
baryons. These S⃗ matrices read

S1 ¼
 1ffiffi

2
p 0 − 1ffiffi

6
p 0

0 1ffiffi
6

p 0 − 1ffiffi
2

p

!
; ðA64Þ

S2 ¼
 iffiffi

2
p 0 iffiffi

6
p 0

0 iffiffi
6

p 0 iffiffi
2

p

!
; ðA65Þ

S3 ¼

0
B@ 0 −

ffiffi
2
3

q
0 0

0 0 −
ffiffi
2
3

q
0

1
CA; ðA66Þ

which are normalized as follows:

SiS
†
j ¼

2δij − iϵijkσk
3

: ðA67Þ

Now we define the nonrelativistic amplitudes as

AðB → BπaÞ ¼ −ihBπajLjBi; ðA68Þ

with B ¼ B3̄, B6, B�
6. For the transitions involving Λc we

have
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AðΛc → Σcπ
aÞ ¼ g3ffiffiffi

3
p

fπ
taσ⃗ · q⃗; ðA69Þ

AðΛc → Σ�
cπ

aÞ ¼ g3
fπ

taS⃗† · q⃗; ðA70Þ

AðΣ�
c → Λcπ

aÞ ¼ g3
fπ

taS⃗ · q⃗: ðA71Þ

For the transitions involving Ξc we have

AðΞ0
c → Ξcπ

aÞ ¼ g3ffiffiffi
3

p
fπ

τa

2
σ⃗ · q⃗; ðA72Þ

AðΞ0
c → Ξ�

cπ
aÞ ¼ g3

fπ

τa

2
S⃗† · q⃗; ðA73Þ

AðΞ�
c → Ξ0

cπ
aÞ ¼ g3

fπ

τa

2
S⃗ · q⃗: ðA74Þ

For the ones with the Ξ0
c and Ξ�

c, the amplitudes read

AðΞ0
c → Ξ0

cπ
aÞ ¼ 2g2

3fπ

τa

2
ffiffiffi
2

p σ⃗ · q⃗; ðA75Þ

AðΞ0�
c → Ξ0�

c π
aÞ ¼ 2g2

3fπ

τa

2
ffiffiffi
2

p Σ⃗ · q⃗; ðA76Þ

AðΞ0�
c → Ξ0

cπ
aÞ ¼ g2ffiffiffi

3
p

fπ

τa

2
ffiffiffi
2

p S⃗ · q⃗; ðA77Þ

AðΞc → Ξ0�
c π

aÞ ¼ g2ffiffiffi
3

p
fπ

τa

2
ffiffiffi
2

p S⃗† · q⃗: ðA78Þ

Finally for the transitions with the Σc and Σ�
c, we have the

following amplitudes:

AðΣc → Σcπ
aÞ ¼ 2g2

3fπ

Taffiffiffi
2

p σ⃗ · q⃗; ðA79Þ

AðΣ�
c → Σ�

cπ
aÞ ¼ 2g2

3fπ

Taffiffiffi
2

p Σ⃗ · q⃗; ðA80Þ

AðΣ�
c → Σcπ

aÞ ¼ g2ffiffiffi
3

p
fπ

Taffiffiffi
2

p S⃗ · q⃗; ðA81Þ

AðΣc → Σ�
cπ

aÞ ¼ g2ffiffiffi
3

p
fπ

Taffiffiffi
2

p S⃗† · q⃗: ðA82Þ

5. G-parity and heavy antibaryons

The amplitudes in Eqs. (A69)–(A82) are for the heavy
baryons. Here we deduce the amplitudes for the heavy
antibaryons by working in the isospin basis and applying
a G-parity transformation, which is a combination of
a C-parity transformation and a rotation in isospin
space [47]:

G ¼ CeiπI2 ; ðA83Þ

with I2 the second Cartesian component of the isospin
matrix. Now we will determine how G operates on the
different fields we consider here. For instance, pions have
well-defined G-parity:

Gjπi ¼ −jπi: ðA84Þ
We can write it in terms of the components of the pion field
for completeness:

G

0
BB@

jπþi
jπ0i
jπ−i

1
CCA ¼ −

0
BB@

jπþi
jπ0i
jπ−i

1
CCA: ðA85Þ

If we consider baryons instead, G will transform a baryon
into an antibaryon in the same isospin state. If we consider
nucleons or other isospin- 1

2
baryons, the G-parity trans-

formation works as follows:

G

 
jpi
jni

!
¼
 

jn̄i
−jp̄i

!
: ðA86Þ

Now we can identify antiparticle states with isospinors as
follows:

jn̄i ¼
				 12þ 1

2



I
; ðA87Þ

jp̄i ¼ −
				 12 − 1

2



I
; ðA88Þ

where we use the subscript I to indicate that we are indeed
referring to isospinors. From the nucleon/antinucleon
example we can appreciate that the idea of a G-parity
transformation is to have a good mapping between the
isospin and the particle/antiparticle basis. The crucial point
in the G-parity transformation for the baryons is the relative
minus sign between the isospin vectors of the antineutron
and antiproton, which in turn allows for the use of the same
SU(2) Clebsch-Gordan coefficients in the baryon and
antibaryon cases.
For the heavy baryons the idea is the same as for the

nucleons. But there is a subtlety: we are considering different
C-parity conventions for the spin- 1

2
and spin- 3

2
fields,

CjBi ¼ jB̄i; ðA89Þ

CjB�
6i ¼ −jB̄�

6i; ðA90Þ

whereB ¼ B3̄; B6. For the antitriplet and sextet spin-
1
2
heavy

cascades, the transformation works exactly as in nucleons,
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G

 
jΞþð0Þ

c i
jΞ0ð0Þ

c i

!
¼
 

jΞ̄0ð0Þ
c i

−jΞ−ð0Þ
c i

!
; ðA91Þ

while for the sextet spin-3=2 heavy cascades we have

G

� jΞþ�
c i

jΞ0�
c i

�
¼ −

� jΞ̄0�
c i

−jΞ−�
c i

�
: ðA92Þ

For the isotriplet heavy baryons fΣþþ
c ;Σþ

c ;Σ0
cg, we have

instead

G

0
BB@

jΣþþ
c i

jΣþ
c i

jΣ0
ci

1
CCA ¼

0
BB@

jΣ̄0
ci

−jΣ−
c i

jΣ−−
c i

1
CCA; ðA93Þ

plus the transformation for the excited isotriplet heavy
baryons, which will carry an extra minus sign.
With the G-parity transformation we can deduce the

amplitudes for the antibaryons from the ones we already
know for the baryons:

AðB̄ → B̄πaÞ ¼ −AðB → BπaÞ; ðA94Þ

AðB̄ → B̄�
6π

aÞ ¼ þAðB → B�
6π

aÞ; ðA95Þ

AðB̄�
6 → B̄πaÞ ¼ þAðB�

6 → BπaÞ; ðA96Þ

AðB̄�
6 → B̄�

6π
aÞ ¼ −AðB�

6 → B�
6π

aÞ; ðA97Þ

where B ¼ B3̄; B6. The signs simply reflect the sign for the
G-parity transformation of the pion, plus the extra sign
involved in the B3̄=B6 → B�

6 and B�
6 → B3̄=B6 transitions.

For a detailed example we consider

AðB̄6 → B̄6π
aÞ ¼ ihB̄6π

ajLjB̄6i
¼ −ihGðB6π

aÞjLjGB6i
¼ −ihB6π

ajG†LGjB6i
¼ −ihB6π

ajLjB6i
¼ −AðB6 → B6π

aÞ; ðA98Þ

where we have used that G2jB6i ¼ �1 (−1 for Ξ0
Q, þ1 for

ΣQ), G2jπi ¼ þ1, and G†LG ¼ L.

6. The OPE potential

With the amplitudes of Eqs. (A69)–(A82) we can derive
the potential by using Eq. (A2). For simplicity we will
consider the heavy quark limit, in which the B6 and B�

6

heavy baryons are degenerate. For the TS̄ ¼ ΛcΣ̄c;ΛcΣ̄�
c

and TS̄ ¼ ΞcΞ̄0
c;ΞcΞ̄�

c potentials, we write the potential in
the bases,

BΛcΣ̄c
¼ fΛcΣ̄c;ΣcΛ̄c;ΛcΣ̄�

c;Σ�
cΛ̄cg; ðA99Þ

BΞ0
cΞ̄c

¼ fΞcΞ̄0
c;Ξ0

cΞ̄c;ΞcΞ̄�
c;Ξ�

cΞ̄cg; ðA100Þ

in which the potential reads as

VST̄
OPEðq⃗Þ ¼

g23
f2π

τ
1

q⃗2 þ μ2π

0
BBBBBBBB@

0 1
3
σ⃗1 · q⃗σ⃗2 · q⃗ 0 1ffiffi

3
p S⃗1 · q⃗σ⃗2 · q⃗

1
3
σ⃗1 · q⃗σ⃗2 · q⃗ 0 1ffiffi

3
p σ⃗1 · q⃗S⃗2 · q⃗ 0

0 1ffiffi
3

p σ⃗1 · q⃗S⃗
†
2 · q⃗ 0 S⃗†1 · q⃗S⃗

†
2 · q⃗

1ffiffi
3

p S⃗†1 · q⃗σ⃗2 · q⃗ 0 S⃗†1 · q⃗S⃗2 · q⃗ 0

1
CCCCCCCCA

þO
�

1

mQ

�
; ðA101Þ

where the isospin factor τ is

τðΛcΣ̄cÞ ¼ 1; ðA102Þ

τðΞcΞ̄0
cÞ ¼

τ⃗1 · τ⃗2
4

: ðA103Þ

The effective pion mass in the heavy quark limit is given by μ2π ¼ m2
π − ðmΣc

−mΛc
Þ2 or μ2π ¼ m2

π − ðmΞ0
c
−mΞc

Þ2,
respectively. For the SS̄ potential we use the bases

BΞ0
cΞ̄0

c
¼ fΞ0

cΞ̄0
c;Ξ0

cΞ̄�
c;Ξ�

cΞ̄0
c;Ξ�

cΞ̄�
cg; ðA104Þ

BΣcΣ̄c
¼ fΣcΣ̄c;ΣcΣ̄�

c;Σ�
cΣ̄c;Σ�

cΣ̄�
cg; ðA105Þ

in which the potential reads
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VSS̄
OPEðq⃗Þ ¼

2g22
9f2π

τ
1

q⃗2 þm2
π

0
BBBBBB@

þσ⃗1 · q⃗σ⃗2 · q⃗ −λσ⃗1 · q⃗S⃗2 · q⃗ þλS⃗1 · q⃗σ⃗2 · q⃗ −λ2S⃗1 · q⃗S⃗2 · q⃗

−λσ⃗1 · q⃗S⃗2 · q⃗ þσ⃗1 · q⃗Σ⃗2 · q⃗ −λ2S⃗1 · q⃗S⃗
†
2 · q⃗ þλS⃗1 · q⃗Σ⃗2 · q⃗

þλS⃗†1 · q⃗σ⃗2 · q⃗ −λ2S⃗†1 · q⃗S⃗2 · q⃗ þΣ⃗1 · q⃗σ⃗2 · q⃗ −λΣ⃗1 · q⃗S⃗2 · q⃗

−λ2S⃗†1 · q⃗S⃗
†
2 · q⃗ þλS⃗†1 · q⃗Σ⃗2 · q⃗ −λΣ⃗1 · q⃗S⃗

†
2 · q⃗ þΣ⃗1 · q⃗Σ⃗2 · q⃗

1
CCCCCCA

þO
�

1

mQ

�
; ðA106Þ

where λ ¼
ffiffi
3

p
2
and where the isospin factor is

τðΞ0
cΞ̄0

cÞ ¼
τ⃗1 · τ⃗2
4

; ðA107Þ

τðΣcΣ̄cÞ ¼ T⃗1 · T⃗2: ðA108Þ

7. Coordinate space

The general form of the ST̄ and SS̄ potential in
momentum space can be written as

VTS̄
OBE ¼ −R1R̄2

g23
2f2π

I⃗1 · I⃗2
a⃗1 · q⃗a⃗2 · q⃗
q2 þ μ2π

; ðA109Þ

VSS̄
OPE ¼ −R1R̄2

g22
2f2π

I⃗1 · I⃗2
a⃗1 · q⃗a⃗2 · q⃗
q2 þ μ2π

; ðA110Þ

where R1 and R̄2 are numerical factors; μπ is the effective
pion mass at the vertices (as explained in the previous
section); I1, I2 the appropriate isospin matrices; and a⃗1, a⃗1
are the spin matrices acting on vertex 1 and 2. The specific
factors can be worked out easily from Eqs. (A101) and
(A106) to obtain the results of Table IV. The coordinate
space potential is obtained by Fourier transforming the
momentum space potential:

Vð0Þðr⃗Þ ¼
Z

d3q
ð2πÞ3 V

ð0Þðq⃗Þe−iq⃗·r⃗

¼ R1R̄2

g2i
2f2π

I⃗1 · I⃗2ða⃗1 · ∇Þða⃗2 ·∇Þ e
−μπr

4πr
; ðA111Þ

where gi ¼ g2 or g3 depending on the case. From this we
obtain the expressions we already wrote in Eqs. (61)–(65).

Here we will write the coordinate space potential in coupled
channels, in which case we obtain

Vð0Þ
ST̄ ðr⃗Þ ¼ τ

g23
3f2π

CST̄
12 δ

3ðr⃗Þ − τ½CST̄
12WCðrÞ þ SST̄

12 ðr̂ÞWTðrÞ�;

ðA112Þ

Vð0Þ
SS̄
ðr⃗Þ ¼ τ

2g23
27f2π

CSS̄
12δ

3ðr⃗Þ

− τ
2

9
½CSS̄

12WCðrÞ þ SSS̄
12ðr̂ÞWTðrÞ�; ðA113Þ

where WC and WT are defined in Eqs. (64) and (65), and
with the central and tensor matrices given by

CST̄
12 ¼

0
BBBBBBBB@

0 1
3
σ⃗1 · σ⃗2 0 1ffiffi

3
p S⃗1 · σ⃗2

1
3
σ⃗1 · σ⃗2 0 1ffiffi

3
p σ⃗1 · S⃗2 0

0 1ffiffi
3

p σ⃗1 · S⃗
†
2 0 S⃗†1 · S⃗

†
2

1ffiffi
3

p S⃗†1 · σ⃗2 0 S⃗†1 · S⃗2 0

1
CCCCCCCCA
;

ðA114Þ

CSS̄
12 ¼

0
BBBBB@

þσ⃗1 · σ⃗2 −λσ⃗1 · S⃗2 þλS⃗1 · σ⃗2 −λ2S⃗1 · S⃗2
−λσ⃗1 · S⃗2 þσ⃗1 · Σ⃗2 −λ2S⃗1 · S⃗

†
2 þλS⃗1 · Σ⃗2

þλS⃗†1 · σ⃗2 −λ2S⃗†1 · S⃗2 þΣ⃗1 · σ⃗2 −λΣ⃗1 · S⃗2

−λ2S⃗†1 · S⃗
†
2 þλS⃗†1 · Σ⃗2 −λΣ⃗1 · S⃗

†
2 þΣ⃗1 · Σ⃗2

1
CCCCCA;

ðA115Þ

SST̄
12 ðr̂Þ ¼

0
BBBBBBBB@

0 1
3
S12ðσ⃗1; σ⃗2; r̂Þ 0 1ffiffi

3
p S12ðS⃗1; σ⃗2; r̂Þ

1
3
S12ðσ⃗1; σ⃗2; r̂Þ 0 1ffiffi

3
p S12ðσ⃗1; S⃗2; r̂Þ 0

0 1ffiffi
3

p S12ðσ⃗1; S⃗†2; r̂Þ 0 S12ðS⃗†1; S⃗†2; r̂Þ
1ffiffi
3

p S12ðS⃗†1; σ⃗2; r̂Þ 0 S12ðS⃗†1; S⃗2; r̂Þ 0

1
CCCCCCCCA
; ðA116Þ
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SSS̄
12ðr̂Þ ¼

0
BBBBB@

þS12ðσ⃗1; σ⃗2; r̂Þ −λS12ðσ⃗1; S⃗2; r̂Þ þλS12ðS⃗1; σ⃗2; r̂Þ −λ2S12ðS⃗1; S⃗2; r̂Þ
−λS12ðσ⃗1; S⃗2; r̂Þ þS12ðσ⃗1; Σ⃗2; r̂Þ −λ2S12ðS⃗1; S⃗†2; r̂Þ þλS12ðS⃗1; Σ⃗2; r̂Þ
þλS12ðS⃗†1; σ⃗2; r̂Þ −λ2S12ðS⃗†1; S⃗2; r̂Þ þS12ðΣ⃗1; σ⃗2; r̂Þ −λS12ðΣ⃗1; S⃗2; r̂Þ
−λ2S12ðS⃗†1; S⃗†2; r̂Þ þλS12ðS⃗†1; Σ⃗2; r̂Þ −λS12ðΣ⃗1; S⃗

†
2; r̂Þ þS12ðΣ⃗1; Σ⃗2; r̂Þ

1
CCCCCA: ðA117Þ

8. The partial wave projection

Heavy baryon-antibaryon bound states have well-
defined JP quantum numbers. Hence we can simplify
the OPE potential by projecting it into partial waves with
well-defined parity and angular momentum. For this we
define the states

jST̄ðjmÞi ¼
X
lmlsms

Ylml
ðr̂Þjsmsihlmlsmsjjmi; ðA118Þ

jSS̄ðjmÞi ¼
X
lmlsms

Ylml
ðr̂Þjsmsihlmlsmsjjmi; ðA119Þ

where j, m is the total angular momentum and its third
component for the heavy baryon-antibaryon pair, while
l; ml and s;ms refer to the angular momentum and spin of
the pair. The product hlmlsmsjjmi is the Clebsch-Gordan
coefficient for that particular combination of total, orbital,
and spin angular momentum (notice that, when applied to
the coupling of angular momentum, the Clebsch-Gordan
coefficients are independent of whether we have particles
or antiparticles). The spin wave function can be further
decomposed as

jsmsi ¼
X
m1m2

js1m1ijs2m2ihs1m1s2m2jsmsi; ðA120Þ

with s1 and s2 the spin of the heavy baryon 1 and 2 (either
1
2
or 3

2
).

In this basis we can compute the partial wave projection
of C12 and S12 as

hðs0l0Þj0m0jO12jðslÞjmi

¼
Z

d2r̂hðs0l0Þj0m0jO12ðr̂ÞjðslÞjmi

¼ δjj0δmm0Oj
ss0ll0 ; ðA121Þ

where the total angular momentum and its third component
are conserved. The central force C12 conserves in addition
the orbital angular momentum and the spin:

Cj
ss0ll0 ¼ δss0δll0C

j
ls: ðA122Þ

The tensor force is more involved. Owing to conservation
of parity, jl − l0j must be an even number. The spin

transitions are more complicated because in the general
case js − s0j can be even or odd. The exceptions are the
B3̄B̄3̄, B6B̄6, and B�

6B̄
�
6 systems: these systems usually have

well-defined C- or G-parity, which implies that js − s0j is
even. Even when C-/G-parity is not well defined, like in the
Ξ�
cΣ̄�

c system, the tensor operator involves identical spin-
matrices and is symmetrical under the exchange of particles
1 and 2:

SB3̄B̄3̄

12 ¼ SB6B̄6

12 ¼ 3σ⃗1 · r̂σ⃗2 · r̂ − σ⃗1 · σ⃗2; ðA123Þ

S
B�
6
B̄�
6

12 ¼ 3Σ⃗1 · r̂Σ⃗2 · r̂ − Σ⃗1 · Σ⃗2: ðA124Þ

As a consequence, the matrix elements for the tensor
operator vanish for odd js − s0j. But if we consider the
B3̄B̄

�
6 and B6B̄�

6 systems (for example, the ΞcΞ̄�
c and Σ0

cΣ̄�
c

systems), it is perfectly possible to have a mix of even
and odd spin. The odd js − s0j transitions have a
particularity that it is worth mentioning. The matrix
element for the tensor operator for odd js − s0j changes
sign as follows:

hBB̄�
6jSj

sðs�1Þll0 jBB̄�
6i ¼ −hB�

6B̄jSj
sðs�1Þll0 jB�

6B̄i; ðA125Þ

hBB̄�
6jSj

sðs�1Þll0 jB�
6B̄i ¼ −hB�

6B̄jSj
sðs�1Þll0 jBB̄�

6i; ðA126Þ

with B ¼ B3̄ or B6. In fact, the previous two equations
indicate that it is actually a good idea to take explicitly
into account the particle coupled channel structure. Now
if we consider the bases

B0 ¼ fB3̄B̄
�
6; B

�
6B̄3̄g; ðA127Þ

B ¼ fB6B̄�
6; B

�
6B̄6g; ðA128Þ

then for B0 we can write the central and tensor operators
as

C0
12 ¼

�
0 S⃗†1 · S⃗2

S⃗1 · S⃗
†
2 0

�
; ðA129Þ

S012ðr̂Þ ¼
 

S12ðS⃗†1; S⃗2; r̂Þ
S12ðS⃗1; S⃗†2; r̂Þ 0

!
; ðA130Þ
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while for B they read

C12 ¼
�
σ⃗1 · Σ⃗2 S⃗†1 · S⃗2

S⃗1 · S⃗
†
2 Σ⃗1 · σ⃗2

�
; ðA131Þ

S12ðr̂Þ ¼
 
S12ðσ⃗1; Σ⃗2; r̂Þ S12ðS⃗†1; S⃗2; r̂Þ
S12ðS⃗1; S⃗†2; r̂Þ S12ðΣ⃗1; ·σ⃗2; r̂Þ

!
: ðA132Þ

This increases the complexity of the partial wave pro-
jection. However, in most cases we can define states with
good C- or G-parity, which effectively amounts to
reducing the previous coupled channel systems to a
single channel problem.
The calculation of the matrix elements is straightforward

in most cases. We begin with the BB̄ system (with B ¼ B3̄

or B6), for which we have the partial waves

jBB̄ð0−Þi ¼ f1S0g; ðA133Þ

jBB̄ð1−Þi ¼ f3S1;3D1g; ðA134Þ

which lead to the matrix elements

CBB̄
12 ð0−Þ ¼ −3; ðA135Þ

CBB̄
12 ð1−Þ ¼

�
1 0

0 1

�
; ðA136Þ

SBB̄
12 ð0−Þ ¼ 0; ðA137Þ

SBB̄
12 ð1−Þ ¼

 
0 2

ffiffiffi
2

p

2
ffiffiffi
2

p
−2

!
: ðA138Þ

In terms of complexity, the next case is the B�
6B̄

�
6 system,

for which the partial waves are

jB�
6B̄

�
6ð0−Þi ¼ f1S0; 5D0g; ðA139Þ

jB�
6B̄

�
6ð1−Þi ¼ f3S1;3D1; 7D1; 7G1g; ðA140Þ

jB�
6B̄

�
6ð2−Þi ¼ f1D2;5S2; 5D2; 5G2g; ðA141Þ

jB�
6B̄

�
6ð3−Þi ¼ f3D3; 3G3; 7S3; 7D3; 7G3; 7I3g; ðA142Þ

which translate into the following matrices:

C
B�
6
B̄�
6

12 ð0−Þ ¼
�− 15

4
0

0 − 3
4

�
; ðA143Þ

C
B�
6
B̄�
6

12 ð1−Þ ¼

0
BBBBB@

− 11
4

0 0 0

0 − 11
4

0 0

0 0 þ 9
4

0

0 0 0 þ 9
4

1
CCCCCA; ðA144Þ

C
B�
6
B̄�
6

12 ð2−Þ ¼

0
BBBBB@

− 15
4

0 0 0

0 − 3
4

0 0

0 0 − 3
4

0

0 0 0 − 3
4

1
CCCCCA; ðA145Þ

C
B�
6
B̄�
6

12 ð3−Þ ¼

0
BBBBBBBBBB@

− 11
4

0 0 0 0 0

0 − 11
4

0 0 0 0

0 0 þ 9
4

0 0 0

0 0 0 þ 9
4

0 0

0 0 0 0 þ 9
4

0

0 0 0 0 0 þ 9
4

1
CCCCCCCCCCA
;

ðA146Þ

S
B�
6
B̄�
6

12 ð0−Þ ¼
�

0 −3
−3 −3

�
; ðA147Þ

S
B�
6
B̄�
6

12 ð1−Þ ¼

0
BBBBBBBB@

0 17

5
ffiffi
2

p − 3
ffiffi
7

p
5

0

17

5
ffiffi
2

p − 17
10

3
5

ffiffi
2
7

q
− 9

5

ffiffi
6
7

q
− 3

ffiffi
7

p
5

3
5

ffiffi
2
7

q
− 108

35
9
ffiffi
3

p
35

0 − 9
5

ffiffi
6
7

q
9
ffiffi
3

p
35

− 45
14

1
CCCCCCCCA
;

ðA148Þ

S
B�
6
B̄�
6

12 ð2−Þ ¼

0
BBBBBBBBB@

0 − 3ffiffi
5

p 3
ffiffi
2
7

q
−9

ffiffiffiffi
2
35

q
− 3ffiffi

5
p 0 3

ffiffiffiffi
7
10

q
0

3
ffiffi
2
7

q
3
ffiffiffiffi
7
10

q
9
14

18

7
ffiffi
5

p

−9
ffiffiffiffi
2
35

q
0 18

7
ffiffi
5

p − 15
7

1
CCCCCCCCCA
;

ðA149Þ

HEAVY BARYON-ANTIBARYON MOLECULES IN EFFECTIVE … PHYS. REV. D 99, 074026 (2019)

074026-31



S
B�
6
B̄�
6

12 ð3−Þ ¼

0
BBBBBBBBBBBBBB@

− 17
35

51
ffiffi
3

p
35

− 3
ffiffi
3

p
5

36
35

− 3
ffiffiffiffi
66

p
35

0

51
ffiffi
3

p
35

− 17
14

0 − 3
ffiffi
3

p
35

9
7

ffiffiffiffi
2
11

q
−3

ffiffiffiffi
3
11

q
− 3

ffiffi
3

p
5

0 0 9
ffiffi
3

p
5

0 0

36
35

− 3
ffiffi
3

p
35

9
ffiffi
3

p
5

99
70

9
ffiffiffiffi
66

p
35

0

− 3
ffiffiffiffi
66

p
35

9
7

ffiffiffiffi
2
11

q
0 9

ffiffiffiffi
66

p
35

− 27
77

9
11

ffiffi
3
2

q
0 −3

ffiffiffiffi
3
11

q
0 0 9

11

ffiffi
3
2

q
− 63

22

1
CCCCCCCCCCCCCCA

: ðA150Þ

We will continue with the B3̄B̄6 system, where we have
the partial waves

jB3̄B̄6ð0−Þi ¼ f1S0g; ðA151Þ

jB3̄B̄6ð1−Þi ¼ f3S1;3D1g: ðA152Þ

For these systems OPE is nondiagonal: the B3̄B3̄π vertex is
zero and OPE involves the B3̄B̄6 → B6B̄3̄ transition. In fact
there is only one case, the ΞcΞ0

c system, in which OPE does
not cancel. For this system either C- or G-parity is well
defined, for which we define the standard states

jB3̄B̄6ðηÞi ¼
1ffiffiffi
2

p ½jB3̄B̄6i þ ηjB6B̄3̄i�; ðA153Þ

with C ¼ ηð−1ÞLþS. With this definition in mind, the
projection of the central and tensor operators read

CB3̄B̄6

12 ð0−Þ ¼ −3η; ðA154Þ

CB3̄B̄6

12 ð1−Þ ¼ η

�
1 0

0 1

�
; ðA155Þ

SB3̄B̄6

12 ð0−Þ ¼ 0; ðA156Þ

SB3̄B̄6

12 ð1−Þ ¼ η

�
0 2

ffiffiffi
2

p

2
ffiffiffi
2

p
−2

�
: ðA157Þ

The next case is the B3̄B̄
�
6 system. As happened with the

B3̄B̄6 case, the B3̄B̄
�
6 system involves only nondiagonal

OPE transitions, i.e., B3̄B̄
�
6 → B̄3̄B6. We have the partial

waves

jB3̄B̄
�
6ð1−Þi ¼ f3S1; 3D1; 5D1g; ðA158Þ

jB3̄B̄
�
6ð2−Þi ¼ f3D1; 5S2; 5D2; 5G2g: ðA159Þ

If we are considering states with well-defined C-parity

jB3̄B̄
�
6ðηÞi ¼

1ffiffiffi
2

p ½jB3̄B̄
�
6i þ ηjB�

6B̄3̄i�; ðA160Þ

where C ¼ ηð−1ÞLþS, we find the combinations

jB3̄B̄
�
6ð1−þÞi ¼ f3S1ð−Þ; 3D1ð−Þ; 5D1ðþÞg; ðA161Þ

jB3̄B̄
�
6ð2−þÞi ¼ f3D2ð−Þ; 5S2ðþÞ; 5D2ðþÞ; 5G2ðþÞg;

ðA162Þ

jB3̄B̄
�
6ð1−−Þi ¼ f3S1ðþÞ; 3D1ðþÞ; 5D1ð−Þg; ðA163Þ

jB3̄B̄
�
6ð2−−Þi¼f3D2ðþÞ;5S2ð−Þ;5D2ð−Þ;5G2ð−Þg; ðA164Þ

where the number in parentheses is the value of η ¼ �1.
That is, there is the complication that each partial wave in a
particular channel can have a different η. Concrete calcu-
lations yield the following matrices:

CE
12ð1−�Þ ¼ �

0
B@

− 1
3

0 0

0 − 1
3

0

0 0 1

1
CA; ðA165Þ

CE
12ð2−�Þ ¼ �

0
BBB@

− 1
3

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA; ðA166Þ

SE
12ð1−�Þ ¼ �

0
BBB@

0 5

3
ffiffi
2

p 1ffiffi
2

p

5

3
ffiffi
2

p − 5
6

1
2

1ffiffi
2

p 1
2

1
2

1
CCCA; ðA167Þ

SE
12ð2−�Þ¼�

0
BBBBBBBBB@

5
6

−
ffiffiffiffi
3
10

q
1
2

ffiffi
3
7

q
2
ffiffiffiffi
3
35

q
−

ffiffiffiffi
3
10

q
0 −

ffiffiffiffi
7
10

q
0

1
2

ffiffi
3
7

q
−

ffiffiffiffi
7
10

q
− 3

14
− 6

7
ffiffi
5

p

2
ffiffiffiffi
3
35

q
0 − 6

7
ffiffi
5

p 5
7

1
CCCCCCCCCA
: ðA168Þ
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Here we have departed from the previous notation of
indicating the channel with a superindex. Instead, we
use the superindex E to indicate that it is exchange or
nondiagonal OPE.
Lastly, the most complex cases are the B6B̄�

6 system. The
partial wave and C-parity structure is identical to the B3̄B̄

�
6

case, but now there is also a diagonal or direct piece of OPE
(besides the nondiagonal piece). The vertex factors R1 and
R̄2 are different for the direct and exchange pieces, which
has to be taken into account when writing down the
potential:

VOPE ¼ VD
OPE þ VE

OPE

¼ RD
1 R̄

D
2 I⃗1 · I⃗2½CD

12WC þ SD
12WT �

þ RE
1 R̄

E
2 I⃗1 · I⃗2½CE

12WC þ SE
12WT �: ðA169Þ

If we ignore the fact that the direct and exchange pieces can
have a different effective pion mass μπ , we can merge
together the direct and exchange central and tensor matri-
ces. For this we notice the relation

RE
1 R̄

E
2 ¼ −

3

4
RD
1 R̄

D
2 : ðA170Þ

This implies that we can reexpress the OPE potential as

VOPE ¼ VD
OPE þ VE

OPE

¼ RD
1 R̄

D
2 I⃗1 · I⃗2½C12WC þ S12WT �; ðA171Þ

where the central and tensor matricesC12 and S12 are a sum
of the direct and exchange pieces

C12ðJPCÞ ¼ CD
12ðJPCÞ −

3

4
CE

12ðJPCÞ; ðA172Þ

S12ðJPCÞ ¼ SD
12ðJPCÞ −

3

4
SE
12ðJPCÞ: ðA173Þ

The CD
12 and SE

12 are identical to the ones we discussed in
the B3̄B̄

�
6 case; see Eqs. (A165)–(A168). The direct

matrices are given by

CD
12ð1−�Þ ¼

0
BB@

− 5
2

0 0

0 − 5
2

0

0 0 3
2

1
CCA; ðA174Þ

CD
12ð2−�Þ ¼

0
BBBBB@

− 5
2

0 0 0

0 þ 3
2

0 0

0 0 þ 3
2

0

0 0 0 þ 3
2

1
CCCCCA; ðA175Þ

SD
12ð1−�Þ ¼

0
BBB@

0 − 1ffiffi
2

p 3ffiffi
2

p

− 1ffiffi
2

p 1
2

3
2

3ffiffi
2

p 3
2

− 3
2

1
CCCA; ðA176Þ

SD
12ð2−�Þ ¼

0
BBBBBBBBB@

− 1
2

−3
ffiffiffiffi
3
10

q
3
2

ffiffi
3
7

q
6
ffiffiffiffi
3
35

q
−3

ffiffiffiffi
3
10

q
0 3

ffiffiffiffi
7
10

q
0

3
2

ffiffi
3
7

q
3
ffiffiffiffi
7
10

q
9
14

18

7
ffiffi
5

p

6
ffiffiffiffi
3
35

q
0 18

7
ffiffi
5

p − 15
7

1
CCCCCCCCCA
:

ðA177Þ

Now there is a B6B̄�
6 system for which good G-parity

states cannot be defined, which is

B00 ¼ fΞ0
cΣ̄�;Ξ�

cΣ̄cg: ðA178Þ

This system is more involved than usual because we have to
consider the two particle channels α ¼ ΞcΣ̄�

c and β ¼ Ξ�
cΣ̄c

separately. We can define the central and tensor matrices in
the particle basis as

C12¼
�
Cαα

12 Cαβ
12

Cβα
12 Cββ

12

�
and S12¼

�
Sαα
12 Sαβ

12

Sβα
12 Sββ

12

�
: ðA179Þ

In this particle basis, the diagonal central matrices are

Cαα
12ð1−Þ ¼ Cββ

12ð1−Þ ¼ CD
12ð1−�Þ; ðA180Þ

Cαα
12ð2−Þ ¼ Cββ

12ð2−Þ ¼ CD
12ð2−�Þ; ðA181Þ

while the nondiagonal are given by

Cαβ
12ð1−Þ ¼ Cβα

12ð1−Þ ¼

0
BB@

1
3

0 0

0 1
3

0

0 0 1

1
CCA; ðA182Þ

Cαβ
12ð2−Þ ¼ Cβα

12ð2−Þ ¼

0
BBBBB@

1
3

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCCCA: ðA183Þ

For the tensor matrices we have
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Sαα
12ð1−Þ ¼

0
BBB@

0 − 1ffiffi
2

p 3ffiffi
2

p

− 1ffiffi
2

p 1
2

3
2

3ffiffi
2

p 3
2

− 3
2

1
CCCA; ðA184Þ

Sαβ
12ð1−Þ ¼

0
BBB@

0 − 5

3
ffiffi
2

p 1ffiffi
2

p

− 5

3
ffiffi
2

p 5
6

1
2

− 1ffiffi
2

p − 1
2

1
2

1
CCCA; ðA185Þ

Sβα
12ð1−Þ ¼

0
BBB@

0 − 5

3
ffiffi
2

p − 1ffiffi
2

p

− 5

3
ffiffi
2

p 5
6

− 1
2

1ffiffi
2

p 1
2

1
2

1
CCCA; ðA186Þ

Sββ
12ð1−Þ ¼

0
BBB@

0 − 1ffiffi
2

p − 3ffiffi
2

p

− 1ffiffi
2

p 1
2

− 3
2

− 3ffiffi
2

p − 3
2

− 3
2

1
CCCA; ðA187Þ

Sαα
12ð2−Þ ¼

0
BBBBBBBBBB@

− 1
2

−3
ffiffiffiffi
3
10

q
3
2

ffiffi
3
7

q
6
ffiffiffiffi
3
35

q
−3

ffiffiffiffi
3
10

q
0 3

ffiffiffiffi
7
10

q
0

3
2

ffiffi
3
7

q
3
ffiffiffiffi
7
10

q
9
14

18

7
ffiffi
5

p

6
ffiffiffiffi
3
35

q
0 18

7
ffiffi
5

p − 15
7

1
CCCCCCCCCCA
;

ðA188Þ

Sαβ
12ð2−Þ¼

0
BBBBBBBBB@

−5
6

−
ffiffiffiffi
3
10

q
1
2

ffiffi
3
7

q
2
ffiffiffiffi
3
35

q
ffiffiffiffi
3
10

q
0 −

ffiffiffiffi
7
10

q
0

−1
2

ffiffi
3
7

q
−

ffiffiffiffi
7
10

q
− 3

14
− 6

7
ffiffi
5

p

−2
ffiffiffiffi
3
35

q
0 − 6

7
ffiffi
5

p 5
7

1
CCCCCCCCCA
; ðA189Þ

Sβα
12ð2−Þ¼

0
BBBBBBBBB@

−5
6

ffiffiffiffi
3
10

q
−1

2

ffiffi
3
7

q
−2

ffiffiffiffi
3
35

q
−

ffiffiffiffi
3
10

q
0 −

ffiffiffiffi
7
10

q
0

1
2

ffiffi
3
7

q
−

ffiffiffiffi
7
10

q
− 3

14
− 6

7
ffiffi
5

p

2
ffiffiffiffi
3
35

q
0 − 6

7
ffiffi
5

p 5
7

1
CCCCCCCCCA
; ðA190Þ

Sββ
12ð2−Þ¼

0
BBBBBBBBB@

−1
2

3
ffiffiffiffi
3
10

q
−3

2

ffiffi
3
7

q
−6

ffiffiffiffi
3
35

q
3
ffiffiffiffi
3
10

q
0 3

ffiffiffiffi
7
10

q
0

−3
2

ffiffi
3
7

q
3
ffiffiffiffi
7
10

q
9
14

18

7
ffiffi
5

p

−6
ffiffiffiffi
3
35

q
0 18

7
ffiffi
5

p −15
7

1
CCCCCCCCCA
: ðA191Þ

APPENDIX B: THE ONE PSEUDOSCALAR
MESON EXCHANGE POTENTIAL IN HEAVY
HADRON CHIRAL PERTURBATION THEORY

1. General form of the potential

The potential generated from the exchange of the kaon
and the eta can be derived from the same rules we have used
to calculate the OPE potential. We will not present a
complete derivation here, but simply a quick overview. The
one pseudoscalar meson exchange (OME) potentials are
formally identical to the OPE potential. For a general
pseudo Nambu-Goldstone boson P we can write

VTS̄
OME ¼ −RP

1 R̄
P
2

g23
2f2P

FP
1F

P
2

a⃗1 · q⃗a⃗2 · q⃗
q2 þ μ2P

; ðB1Þ

VSS̄
OME ¼ −RP

1 R̄
P
2

g22
2f2P

FP
1F

P
2

a⃗1 · q⃗a⃗2 · q⃗
q2 þ μ2P

; ðB2Þ

with fP the weak decay constant for the meson P; RP
1 , R̄

P
2

numerical factors that depend on the meson P; FP
1 and FP

2

flavor factors (which for P ¼ π are the isospin factors
we have previously used for OPE); a⃗1 and a⃗1 spin
operators; and μP the effective mass of the meson P,
which is μ2P ¼ m2

P − Δ2, where mP is the mass of the
meson. Notice the analogy between Eqs. (B1) and (B2) and
Eqs. (A109) and (A110) of Appendix A.
The numerical, flavor, and isospin factors of the one eta

exchange potential are listed in Table XI for all vertices in
which eta exchange is allowed. The format is similar to
Table IV, which was dedicated to OPE. There is a difference
worth mentioning: the G-parity of the η meson is positive
(in contrast to the negative G-parity of the pion), which
implies that the signs of the numerical factors Rη

i and R̄
η
i are

not the same as for the pion factors Ri and R̄i of Table IV. In
particular we have that

Rη
i R̄

η
i > 0 ⇒ RiR̄i < 0; ðB3Þ

and vice versa. Besides this, it is easy to see that the
strength of the flavor factors Fη

1F
η
2 is in general much

weaker than the corresponding isospin factors for OPE. For
example, in the ΣcΣ̄c system we have that Fη

1F
η
2 ¼ 1=3 for
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eta exchange in contrast to T⃗1 · T⃗2 ¼ −2, −1 and 1 for
I ¼ 0, 1, 2 with the OPE potential.
For the one kaon exchange potential we list the different

factors in Table XII for half the nonvanishing vertices. We
write the vertices in order of decreasing strangeness for the
heavy baryons, with a final kaon. The vertices with an
initial antikaon are indeed identical:

AðB → B0KÞ ¼ AðK̄B → B0Þ; ðB4Þ

where B and B0 denote the initial and final heavy baryons.
The flavor factors in Table XII are listed as numbers, or as
the symbol θai , which is a matrix in isospin space. When the
flavor factor is a number, it is implicitly understood that
they are multiplied by the identity in isospin space (all
vertices conserve isospin). The matrices θai , where a ¼ � 1

2

refers to the isospin state of the kaon, mediate the
transitions from isospin-1 to isospin- 1

2
baryons (e.g.,

Σc → Ξ0
cK). Their explicit expressions are

θþ1=2
i ¼

�
1 0 0

0 1ffiffi
2

p 0

�
; θ−1=2i ¼

�
0 1ffiffi

2
p 0

0 0 1

�
: ðB5Þ

The evaluation of the product of two θai matrices can be
done in terms of isospin matrices

X
a

θa†1 θa2 ¼
1

2
½τ⃗1 · T⃗2 þ 1�; ðB6Þ

where τ⃗1 and T⃗2 refer to the isospin matrices as evaluated
for the initial or final state.

2. Strength of the eta and kaon exchange potentials

The strength of eta and kaon exchange can be compared
to that of OPE using the techniques of Sec. IV. The central
scale ΛP

C for the OME potential can be defined as follows:

ΛP
C ¼ 1

jσFP
1F

P
2 j

24πf2P
μjRP

1 R̄
P
2 jg2i

; ðB7Þ

TABLE XI. Numerical, isospin, and spin factor associated with
each vertex of the one eta exchange potential for the ST̄ and SS̄
systems. The arrows are used to indicate the final baryon state in
the vertex and P indicates the pseudo Goldstone meson in that
vertex. The numerical factors RP

i and R̄P
i are for baryons and

antibaryons respectively, while FP
i are the flavor factors. σ⃗i are

the Pauli matrices, Σ⃗i are the spin S ¼ 3=2 matrices, and S⃗i are
the 2 × 4matrices that are used for the transitions from a spin-1=2
to a spin-3=2 baryon.

Vertex P RP
i R̄P

i I⃗i a⃗i

Ξc → Ξ0
c η

ffiffi
2
3

q ffiffi
2
3

q
1
2

ffiffiffi
3

p
σ⃗i

Ξc → Ξ�
c η

ffiffiffi
2

p
−
ffiffiffi
2

p
1
2

ffiffiffi
3

p
S⃗†i

Σc → Σc η 2
3

2
3

1ffiffi
3

p σ⃗i

Σ�
c → Σc η 1ffiffi

3
p − 1ffiffi

3
p 1ffiffi

3
p S⃗i

Σc → Σ�
c η 1ffiffi

3
p − 1ffiffi

3
p 1ffiffi

3
p S⃗†i

Σ�
c → Σ�

c η 2
3

2
3

1ffiffi
3

p Σ⃗i

Ξ0
c → Ξ0

c η 2
3

2
3

1

2
ffiffi
3

p σ⃗i

Ξ�
c → Ξ0

c η 1ffiffi
3

p − 1ffiffi
3

p 1

2
ffiffi
3

p S⃗i
Ξ0
c → Ξ�

c η 1ffiffi
3

p − 1ffiffi
3

p 1

2
ffiffi
3

p S⃗†i
Ξ�
c → Ξ�

c η 2
3

2
3

1
2
ffiffi
3

p Σ⃗i

Ωc → Ωc η 2
3

2
3

2ffiffi
3

p σ⃗i

Ω�
c → Ωc η 1ffiffi

3
p − 1ffiffi

3
p 2ffiffi

3
p S⃗i

Ωc → Ω�
c η 1ffiffi

3
p − 1ffiffi

3
p 2ffiffi

3
p S⃗†i

Ω�
c → Ω�

c η 2
3

2
3

2ffiffi
3

p Σ⃗i

TABLE XII. Numerical, isospin, and spin factor associated
with each vertex of the one kaon exchange potential for the ST̄
and SS̄ systems. The arrows are used to indicate the final baryon
state in the vertex and P indicates the pseudo Goldstone meson in
that vertex. The numerical and spin factors (RP

i , R̄
P
i and σ⃗i, Σ⃗i, S⃗i)

are as in Table XI. The flavor factors FP
i are in most cases a

number (implicitly multiplied by the identity in isospin space to
guarantee isospin conservation). The exceptions are the Σc → Ξc
family of transitions in which the flavor factors are 2 × 3matrices
θai , with a denoting which of the two isospin states of the kaon
have been exchanged.

Vertex P RP
i R̄P

i FP
i a⃗i

Λc → Ξ0
c K

ffiffi
2
3

q ffiffi
2
3

q
1 σ⃗i

Λc → Ξ�
c K

ffiffiffi
2

p
−
ffiffiffi
2

p
1 S⃗†i

Σc → Ξc K
ffiffi
2
3

q ffiffi
2
3

q
−θi σ⃗i

Σ�
c → Ξc K

ffiffiffi
2

p
−
ffiffiffi
2

p
−θi S⃗i

Ξc → Ωc K
ffiffi
2
3

q ffiffi
2
3

q
1 σ⃗i

Ξc → Ωc K
ffiffiffi
2

p
−
ffiffiffi
2

p
1 S⃗†i

Σc → Ξ0
c K 2

3
2
3

θi σ⃗i

Σ�
c → Ξ0

c K 1ffiffi
3

p − 1ffiffi
3

p θi S⃗i
Σc → Ξ�

c K 1ffiffi
3

p − 1ffiffi
3

p θi S⃗†i
Σ�
c → Ξ�

c K 2
3

2
3

θi Σ⃗i

Ξ0
c → Ωc K 2

3
2
3

1 σ⃗i

Ξ�
c → Ωc K 1ffiffi

3
p − 1ffiffi

3
p 1 S⃗i

Ξ0
c → Ω�

c K 1ffiffi
3

p − 1ffiffi
3

p 1 S⃗†i
Ξ�
c → Ω�

c K 2
3

2
3

1 Σ⃗i

HEAVY BARYON-ANTIBARYON MOLECULES IN EFFECTIVE … PHYS. REV. D 99, 074026 (2019)

074026-35



which is analogous to Eq. (76), except for the changes

fπ → fP and τ → FP
1F

P
2 ; ðB8Þ

while jR1R̄2j ¼ jRP
1 R̄

P
2 j. The comparison is in fact direct if

we write it as

ΛP
C ¼

� jτj
jFP

1F
P
2 j
�
×

�
f2P
f2π

�
× ΛC; ðB9Þ

which merely involves the evaluation of a few numerical
factors. For the eta meson we have

jτj
jFη

1F
η
2j
¼ 3; 6; 9 and

f2η
f2π

∼ 1.5; ðB10Þ

where we have taken fη ≃ fK ∼ 160 MeV. By multiplying
these factors it is apparent that Λη

C is considerably harder
than ΛC. The conclusion is that one eta exchange is very
suppressed with respect to OPE. For one kaon exchange the
factors are

jτj
jFK

1 F
K
2 j

¼ 1; 2 and
f2K
f2π

∼ 1.5; ðB11Þ

which are not particularly large. The flavor factor suppres-
sion is larger for the lower isospin states, for which the OPE
is stronger. The outcome is that the one kaon exchange
potential is perturbative.
The comparison of the tensor scales ΛP

T and ΛT is similar
except for the existence of factors of the type emPRc and
emπRc that are included to take into account that the OME
and OPE potentials cease to be valid below a certain
distance; see Eq. (98). If we add these factors, we end up
with

ΛP
TðmPÞ¼

� jτj
jFP

1F
P
2 j
�
×

�
f2P
f2π

�
×

�
emPRc

emπRc

�
×ΛTðmpÞ;

ðB12Þ

where eðmP−mπÞRc ∼ 3–5 and 2.5–4 for the eta and kaon,
respectively. The addition of this factor means that the
tensor scale ΛP

T is in general considerably larger than the
one for OPE. In particular it can be regarded as a hard scale.

APPENDIX C: THE CONTACT-RANGE
POTENTIAL

The calculation of the contact-range potential will use a
different set of techniques than the one of the OPE
potential. While we derived the OPE potential from the
lowest-dimensional Lagrangian compatible with HQSS and
chiral symmetry, for the contact-range potential we will use
HQSS without any explicit reference to a Lagrangian. We
will first take into account that the lowest order contact-
range potential is simply a constant in momentum space,

hp⃗0jVð0Þ
C jp⃗i ¼ C; ðC1Þ

where p⃗ and p⃗0 are the initial and final center-of-mass
momentum of the heavy baryon-antibaryon pair and C a
coupling. In principle the coupling C depends on a specific
baryon-antibaryon system and its quantum numbers. But
HQSS precludes C to depend on the heavy quark spin,
which will translate into a reduction of the number of
couplings. We will explain in the following lines how to
do that.
Heavy baryons are jQqqi states with the structure

B3̄ ¼ jQðqqÞsL¼0ij¼1
2
; ðC2Þ

B6 ¼ jQðqqÞsL¼1ij¼1
2
; ðC3Þ

B�
6 ¼ jQðqqÞsL¼1ij¼3

2
; ðC4Þ

with sL ¼ 0, 1 the light quark pair spin and j the total spin.
The application of HQSS to the contact-range couplings C
implies that they depend on the total light spin
S⃗L ¼ s⃗L1 þ s⃗L2, but not on the total spin J⃗ ¼ j⃗1 þ j⃗2 or
the total heavy spin S⃗H ¼ s⃗H1 þ s⃗H2. To determine the
exact structure we have to study the coupling of the light
quark spin for different types of heavy baryon-antibaryon
molecules. In the following lines we will explain how to do

this for the Bð�Þ
6 B̄ð�Þ

6 , B3̄B̄
ð�Þ
6 systems, ordered by decreasing

degree of complexity. We did not list the system

B3̄B̄3̄ ⇒ SL ¼ 0; ðC5Þ

for which the light spin structure is trivial because
sL1 ¼ sL2 ¼ 0.

1. The SS̄ contact potential

For a heavy SS̄ baryon-antibaryon system (i.e., SL ¼ 1
for both baryons) we can decompose the spin wave
function into heavy and light components as follows:

jBð�Þ
6 B̄ð�Þ

6 ðJ−Þi ¼
X
SH;SL

DSH;SLðJÞSH ⊗ SLjJ; ðC6Þ

where D are the coefficients for this change of basis. They
fulfill the conditionX

SH;SL

jDSH;SLðJÞj2 ¼ 1: ðC7Þ

From this decomposition we can calculate the light spin
components of the contact-range potential:

hS0H ⊗ S0LjVjSH ⊗ SLi ¼ δSHS0HδSLS0LVSL; ðC8Þ

where the light and heavy spin decouple.
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The general way to carry on the heavy-light spin
decomposition is to consider the spin wave function of
the heavy hadrons

jH1i ¼ jsH1
sL1

j1i; jH2i ¼ jsH2
sL2

j2i; ðC9Þ

where sH1
, sH2

is the heavy spin; sL1
, sL2

the light spin; and
j1, j2 the angular momenta of the two hadrons. When we
couple the two hadrons, we have:

jH1H2i¼ jsH1
sL1

j1ijsH2
sL2

j2i
¼
X
SH;SL

DSH;SLðJÞjðsH1
sH2

ÞSHðsL1
sL2

ÞSLðj1j2ÞJi;

ðC10Þ

which is merely a detailed version of Eq. (C6), where
the notation indicates that the heavy spins coupled to SH,
the light spins to SL, and the angular momenta to J. The
coefficients DSH;SLðJÞ can in fact be expressed in terms of
9-J symbols:

DSH;SLðJÞ
¼hsH1

sL1
j1sH2

sL2
j2jjðsH1

sH2
ÞSHðsL1

sL2
ÞSLðj1j2ÞJi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j1þ1Þð2j2þ1Þð2SHþ1Þð2SLþ1Þ

p 8<
:
sH1 sL1

j1
sH2 sL2

j2
SH SL J

9=
;:

ðC11Þ

Finally if we are considering antihadrons, we should
consider their behaviors under C-parity to define their spin
wave functions consistently: they might differ by a sign
from the ansatz jsHsLji.
If we go back to the SS̄ heavy baryon-antibaryon system,

for the B6B̄6 case we find the following:

jB6B̄6ð0−Þi ¼
1ffiffiffi
3

p 0H ⊗ 0L þ
ffiffiffi
2

3

r
1H ⊗ 1L

				
J¼0

; ðC12Þ

jB6B̄6ð1−Þi¼
ffiffiffi
2

p

3
0H ⊗ 1L−

1

3
ffiffiffi
3

p 1H ⊗ 0L

þ2

3

ffiffiffi
5

3

r
1H ⊗ 2L

				
J¼1

: ðC13Þ

For the B6B̄�
6 and B�

6B̄6 cases, we include a minus sign in
front of the states containing a B̄�

6 to highlight the C-parity
convention that we employ here:

−jB6B̄�
6ð1−Þi¼þ1

3
0H ⊗ 1L−

2

3

ffiffiffi
2

3

r
1H ⊗ 0L

þ 1ffiffiffi
2

p 1H ⊗ 1L

				
J¼1

−
1

3

ffiffiffi
5

6

r
1H ⊗ 2L

				
J¼1

;

ðC14Þ

þjB�
6B̄6ð1−Þi¼−

1

3
0H⊗1Lþ

2

3

ffiffiffi
2

3

r
1H⊗0L

þ 1ffiffiffi
2

p 1H⊗1L

				
J¼1

þ1

3

ffiffiffi
5

6

r
1H⊗2L

				
J¼1

;

ðC15Þ

−jB6B̄�
6ð2−Þi ¼ þ 1ffiffiffi

3
p 0H ⊗ 2L −

1ffiffiffi
6

p 1H ⊗ 1L

				
J¼2

þ 1ffiffiffi
2

p 1H ⊗ 2L

				
J¼2

; ðC16Þ

þjB�
6B̄6ð2−Þi ¼ −

1ffiffiffi
3

p 0H ⊗ 2L þ 1ffiffiffi
6

p 1H ⊗ 1L

				
J¼2

þ 1ffiffiffi
2

p 1H ⊗ 2L

				
J¼2

: ðC17Þ

Finally, for the B�
6B̄

�
6 case we have

−jB�
6B̄

�
6ð0−Þi ¼

ffiffiffi
2

3

r
0H ⊗ 0L −

1ffiffiffi
3

p 1H ⊗ 1L

					
J¼0

; ðC18Þ

−jB�
6B̄

�
6ð1−Þi ¼

ffiffiffi
5

p

3
0H ⊗ 1L þ 1

3

ffiffiffiffiffi
10

3

r
1H ⊗ 0L

−
1

3

ffiffiffi
2

3

r
1H ⊗ 2L

					
J¼1

; ðC19Þ

−jB�
6B̄

�
6ð2−Þi ¼

1ffiffiffi
3

p 0H ⊗ 2L þ
ffiffiffi
2

3

r
1H ⊗ 1L

				
J¼2

; ðC20Þ

−jB�
6B̄

�
6ð3−Þi ¼ 1H ⊗ 2LjJ¼3; ðC21Þ

where we have included the minus sign to stress the
convention.
Finally for the B6B̄�

6 we can also write the decomposition
in the basis with well-defined C-parity for those cases
where it applies:

jB�
6B̄6ð1−þÞi ¼ 1H ⊗ 1LjJ¼1; ðC22Þ

jB�
6B̄6ð1−−Þi ¼

ffiffiffi
2

p

3
0H ⊗ 1L −

4

3
ffiffiffi
3

p 1H ⊗ 0L

−
1

3

ffiffiffi
5

3

r
1H ⊗ 2L

				
J¼1

ðC23Þ
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jB�
6B̄6ð2−þÞi ¼

ffiffiffi
2

3

r
0H ⊗ 2L −

1ffiffiffi
3

p 1H ⊗ 1L

				
J¼2

:

jB�
6B̄6ð2−−Þi ¼ 1H ⊗ 2LjJ¼2: ðC24Þ

From the previous decomposition and applying Eq. (C8)
we obtain the contact-range potentials of Sec. III.

2. The TS̄=ST̄ contact potential

For a heavy TS̄=ST̄ baryon-antibaryon system we have
to pay attention to the fact that one baryon has SL ¼ 0 and
the other SL ¼ 1. The expectation is that there will be a
direct (exchange) contact term for the transition TS̄ → TS̄
(TS̄ → ST̄). The heavy-light decomposition of the potential
is in this case

hS0H ⊗ ðS0L1
⊗ S0L2

ÞS0L jVjSH ⊗ ðSL1
⊗ SL2

ÞSLi
¼ δSHS0HδSLS0LhS0L1

S0L2
jVSL jSL1

SL2
i; ðC25Þ

where now we have take into account that the light quark
spin of particles 1 and 2 is different. If we have a particle-
antiparticle system, C-parity implies

hS0L1
S0L2

jVSL jSL1
SL2

i ¼ hS0L2
S0L1

jVSL jSL2
SL1

i: ðC26Þ

As a consequence, for the TS̄=ST̄ case there are two contact
couplings corresponding to

h01jV1j01i ¼ h10jV1j10i; ðC27Þ

h01jV1j10i ¼ h10jV1j01i: ðC28Þ

That is, a contact term that conserves the spin of particles 1
and 2 and a contact that exchanges it. For the B3̄B̄6 and
B6B̄3̄ the heavy-light spin decomposition reads

jB3̄B̄6ð0−Þi ¼ þ1H ⊗ 1q̄ q̄jJ¼0; ðC29Þ

jB6B̄3̄ð0−Þi ¼ −1H ⊗ 1qqjJ¼0; ðC30Þ

jB3̄B̄6ð1−Þi¼−
1ffiffiffi
3

p 0H ⊗ 1q̄ q̄þ
ffiffiffi
2

3

r
1H ⊗ 1q̄ q̄

				
J¼1

; ðC31Þ

jB6B̄3̄ð1−Þi¼þ 1ffiffiffi
3

p 0H ⊗ 1qqþ
ffiffiffi
2

3

r
1H ⊗ 1qq

				
J¼1

; ðC32Þ

while for the B3̄B̄
�
6 and B�

6B̄3̄ we include the minus sign in
front of the states to make the C-parity convention manifest:

−jB3̄B̄
�
6ð1−Þi¼

ffiffiffi
2

3

r
0H ⊗ 1q̄ q̄þ

1ffiffiffi
3

p 1H ⊗ 1q̄ q̄

				
J¼1

; ðC33Þ

þjB�
6B̄3̄ð1−Þi ¼

ffiffiffi
2

3

r
0H ⊗ 1qq −

1ffiffiffi
3

p 1H ⊗ 1qq

				
J¼1

; ðC34Þ

−jB3̄B̄
�
6ð2−Þi ¼ 1H ⊗ 1q̄ q̄jJ¼2; ðC35Þ

þjB�
6B̄3̄ð2−Þi ¼ 1H ⊗ 1qqjJ¼2: ðC36Þ

In the decomposition above only the quark pair with SL ¼ 1
is written. The other quark pair is implicitly understood, i.e.,

1qq ¼ 1qq ⊗ 0q̄ q̄; ðC37Þ

1q̄ q̄ ¼ 0qq ⊗ 1q̄ q̄: ðC38Þ

From the decomposition and the definitions

BD1 ¼ h1qqjVj1qqi ¼ h1q̄ q̄jVj1q̄ q̄i; ðC39Þ

BE1 ¼ h1qqjVj1q̄ q̄i ¼ h1q̄ q̄jVj1qqi; ðC40Þ

we obtain the contact-range potentials of Sec. III.
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