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We consider the phase diagram of hadronic matter as a function of temperature, T, and baryon chemical
potential, μ. Currently the dominant paradigm is a line of first order transitions which ends at a critical
endpoint. In this work we suggest that spatially inhomogeneous phases are a generic feature of the hadronic
phase diagram at nonzero μ and low T. Familiar examples are pion and kaon condensates. At higher
densities, we argue that these condensates connect onto chiral spirals in a quarkyonic regime. Both of these
phases exhibit the spontaneous breaking of a global Uð1Þ symmetry and quasilong range order, analogous
to smectic liquid crystals. We argue that there is a continuous line of first order transitions which separate
spatially inhomogeneous from homogeneous phases, where the latter can be either a hadronic phase or a
quark-gluon plasma. While mean field theory predicts that there is a Lifshitz point along this line of first
order transitions, in three spatial dimensions strong infrared fluctuations wash out any Lifshitz point. Using
known results from inhomogeneous polymers, we suggest that instead there is a Lifshitz regime.
Nonperturbative effects are large in this regime, where the momentum dependent terms for the propagators
of pions and associated modes are dominated not by terms quadratic in momenta, but quartic. Fluctuations
in a Lifshitz regime may be directly relevant to the collisions of heavy ions at (relatively) low energies,ffiffiffi
s

p
=A∶1 → 20 GeV.
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I. INTRODUCTION

The phases of quantum chromodynamics (QCD), as a
function of temperature, T, and the baryon (or equivalently,
quark) chemical potential, μ, are of fundamental interest
[1]. At zero chemical potential, numerical simulations on
the lattice indicate that there is no true phase transition, just
a crossover, albeit one where the degrees of freedom
increase dramatically [2–4]. At a nonzero chemical poten-
tial, however, a crossover line may meet a line of first order
transitions at a critical endpoint [5–10]. These lines
separate two phases: a hadronic phase in which chiral
symmetry is spontaneously broken, and a (nearly) chirally
symmetric phase of quarks and gluons.
In condensed matter it is well known that a third

phase can arise, in which spatially inhomogeneous struc-
tures form. If so, the three phases meet at a Lifshitz
point [11–25].

In hadronic nuclear matter the existence of spatially
inhomogeneous phases is familiar, as pionic [26–39] and
kaonic [40–43] condensates. They are ubiquitous in Gross-
Neveu models in 1þ 1 dimensions, which are soluble
either for a large number of flavors [44–49] or by using
advanced nonperturbative techniques [50]. These phases
also arise from analyses of effective models of QCD, where
they have been termed chiral spirals [51–106]. In this paper
we consider especially the role played by fluctuations in
phases with spatially inhomogeneous phases, and show that
they can dramatically affect the phase diagram of QCD.
At densities between a dense hadronic phase and decon-

fined quarks, cool quark matter is quarkyonic: while the
pressure is (approximately) perturbative, the excitations near
the Fermi surface are confined [102]. The Fermi surface of
quarks, which starts out as isotropic, breaks up into a set of
patches, with the longitudinal fluctuations governed by a
Wess-Zumino-Novikov-Witten Lagrangian [103–105]. The
transverse fluctuations, however, are of higher order in
momenta: they are not quadratic, but quartic. Among
condensed matter systems the closest analogy are smectic
liquid crystals, which consist of elongated molecules peri-
odically ordered in just one direction [13]. The color and
flavor quantum numbers which quarks carry makes the
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analogous statemore involved.As for pion/kaon condensates
[34–39,97–100], at nonzero temperature there are long range
correlations in the inhomogeneous phase, and there is no true
order parameter. At nonzero temperature in 3þ 1 dimen-
sions, the fluctuations exhibit complicated patterns. The
propagators of two-quarkoperators decay exponentiallywith
a temperature dependent correlation length, and propagators
of spin and flavor singlet operators, composedof2Nf quarks,
fall off as a power law.
We then consider how a quarkyonic phase matches onto

the usual hadronic phase at low temperature and density.
We first discuss how as the density decreases, the chiral
spirals in a quarkyonic phase transform naturally into the
pion/kaon condensates of hadronic nuclear matter.
We show that the phase diagram valid in mean field
theory—two lines of second order phase transitions, meet-
ing a line of first order transitions at a Lifshitz point—is
dramatically altered by fluctuations. As demonstrated first
by Brazovskii [89,107–109], the line of transitions between
the symmetric phase and that with chiral spirals becomes a
line of first order transitions. Most importantly, the infrared
fluctuations about a Lifshitz point are so strong that there is,
in fact, no true Lifshitz point [15–17,23–25]. This is known
to occur in inhomogeneous polymers, both from experi-
ment and numerical simulations [18–22]. We suggest that
in QCD, infrared fluctuations also wipe out the Lifshitz
point, leaving just a line of first order transitions separating
the region with inhomogeneous phases from those without.
What remains is a Lifshitz regime, which is illustrated in
Figs. 2 and 3 below. The Lifshitz regime is manifestly
nonperturbative, as the momentum dependence for the
propagators for pions (or the associated modes of a chiral
spiral) are dominated by terms quartic, instead of quadratic,
in the momenta. This change in the momentum dependence
generates large fluctuations, which may be related to
known [106,110–115] and possible [116,117] anomalies
in the collisions of heavy ions at center of mass energies per
nucleon

ffiffiffi
s

p
=A∶1 → 20 GeV.

II. THE MODEL OF QUARKYONIC PHASE

A quarkyonic phase only exists when quark excitations
near the Fermi surface are (effectively) confined. While for
three colors numerical simulations of lattice gauge theories
at nonzero quark density are afflicted by the sign problem
for three colors, they are possible for two colors [118–123].
Although the original argument for a quarkyonic phase was
based upon the limit of a large number of colors [102],
these simulations show that even for two colors, the
expectation value of the Polyakov loop is small, indicating
confinement, up to large values of the quark chemical
potential [118–123]. Directly relevant to our analysis are
the results of Bornyakov et al., who find that the string
tension decreases gradually from its value in vacuum, to
essentially zero at μq ∼ 750 MeV: see Fig. 3 of Ref. [123].
This suggests that a quarkyonic phase may dominate for a

wide range of chemical potential, and indeed, for all values
relevant to hadronic stars [124,125].
There is an elementary argument for why there could be

such a large region in which cool quark matter is quar-
kyonic. Consider computing a scattering process in vac-
uum. By asymptotic freedom, this is certainly valid at large
momentum. As the momentum decreases, nonperturbative
effects enter, and a perturbative computation is invalid. This
certainly occurs by momenta Λscat ∼ 1 GeV, if not before.
Now consider computing the pressure perturbatively.

The scattering processes which contribute involve the
scattering of quarks and holes with momenta whose
magnitude is on the order of the Fermi momentum. This
suggests that the pressure can be computed perturba-
tively down to a scale which is typical of that where
perturbative computations are valid: that is, on the order of
Λscat ∼ 1 GeV. This argument is clearly qualitative: the
estimate of Λscat as applying to the perturbative computa-
tion of the pressure could well vary by a factor of two.
Furthermore, our argument applies only to the pressure:
excitations about the Fermi surface involve much smaller
energies than the chemical potential, so that one expects a
transition from the perturbative, to the quarkyonic, regime
[102]. What is important is that the momentum scale Λscat
does not depend strongly upon the number of colors. This
elementary argument may explain why there is a large
quarkyonic regime even for two colors [118–123].
This estimate differs from that at zero quark density and

a nonzero temperature, T. In computing the pressure at
T ≠ 0 and μq ¼ 0, the dominant momentum scale is
naively the first Matsubara frequency, ¼ 2πT [126,127].
Detailed computations to two loop order [128,129] show
that the precise value is a bit larger, but this estimate is
qualitatively correct. At temperatures ∼150 MeV, this is
about ∼1 GeV, which is the same as we estimate for T ¼ 0
and μq ≠ 0.
We note that a quantitative measure of what momentum

scale perturbative computations of the pressure are valid
will be provided by computations to high order, such as
∼g6, as are currently underway [130,131].
Returning to the quarkyonic phase, previously we

assumed that the chiral symmetry was restored [103–105].
However, for the reasons of convenience we will work with
the nonrelativistic limit of the quark Hamiltonian which is
formally justified if the constituent quarkmass is nonzero. At
nonzero quarkmass,weworkwith the nonrelativistic limit of
the quark Hamiltonian:

H ¼
Z

d3x

�
ψþ
α;f;a

�
1

2mf

�
i∇ −

qf
c
A

�
2

þ ðqf=mfc2Þðσ½∇ ×A�Þ

− ðμ −mfc2Þ�ψα;f;a þ V1 þ V2

�
; ð1Þ
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V1 ¼
1

2
ðψþðrÞTAψðrÞÞD00ðjr − r0jÞðψþðr0ÞTAψðr0ÞÞ; ð2Þ

V2¼
1

2
ðψþðrÞσ⊗TAψðrÞÞD⊥ðr−r0Þðψþðr0Þσ⊗TAψðr0ÞÞ;

ð3Þ

whereψþTAψ¼ðψþ
α;f;aðrÞTA

abψα;f;bðrÞÞ andψþ⊗σaTAψ¼
ðψþ

α;f;aðrÞσaαβTA
abψβ;f;bðrÞÞ. We assume that there is single

gluon exchange, where D00 is a confining propagator,

D00ðpÞ ¼
σ0

ðjpj2Þ2 ; ð4Þ

and D⊥ is perturbative,

D⊥ðpÞ ¼
g2

p2
: ð5Þ

Near the Fermi surface antiquarks can be ignored,withψþ
α;f;n

and ψα;f;n being creation and annihilation operators of
nonrelativistic fermions carrying spin (not Dirac spinors)
about the Fermi surface. Here α ¼ �1=2 is a spin projection,
a; b… ¼ 1, 2, 3 color indices, and f ¼ 1;…Nf the flavor
index. (Nf ¼ 2 for up and down quarks, Nf ¼ 3 if we
include the strange quark) qf, mf are electric charges and
masses of the quarks, andA is an external vector potential for
QED. The operators TA are generators of color SUð3Þ group,
σa are Pauli matrices.
In the first approximation we neglect the asymmetry

introduced by differences in qf andmf and by the magnetic
interaction V2. Then we can treat j ¼ ðα; fÞ as a united set
of indices, so the theory (1) is invariant under a larger
symmetry of SUð2NfÞ. Then realistic values are 2Nf ¼ 4

(low density, no strange quarks) or 2Nf ¼ 6 for high
density.
If the chiral symmetry is broken, mf are renormalized

quark masses. In fact, exact definitions of mf do not affect
the qualitative side of our arguments since for excitations
near the Fermi surface the only difference between mass-
less and massive quarks is the difference in the Fermi
velocity, vF, which follows from the relationship between
energy and momentum. We also neglect the frequency
dependence of the gluon propagator D00, and set c ¼ 1.
The extended symmetry of SUð2NfÞ, instead of

SUðNfÞ, is due to a doubling from the spin degrees of
freedom, and is no longer respected once magnetic inter-
actions (3) are included. The same symmetry has been
discussed, both in the hadronic spectrum and at nonzero
quark density, in Refs. [132–135].
As was demonstrated previously [104] the quarkyonic

phase supports a collection of spin-flavor density waves.
Since in the nonrelativistic limit spin and flavor are treated
on equal footing, a wave with wave vector Q is

characterized by the slow order parameter field in the form
of a 2Nf × 2Nf matrix field UQ such that at long distances
the spin-flavor density can be decomposed as

ρjk ¼
XNc

n¼1

ψþ
j;nðrÞψk;nðrÞ − ρ0δjk ¼

X
Q

Ujk
Q ðrÞeiQr; ð6Þ

where ρ0 is the average density. The set of wave vectorsQi
and amplitudes of the matrix fields related to detU are
determined by the matter density, which follows from the
value of the chemical potential. In condensed matter
systems a density wave with wave vector Q usually forms
when the parts of the Fermi surface connected by Q can be
superimposed on each other, which is the nesting condition.
Once this condition is fulfilled, the susceptibility acquires a
singularity at Q signifying a possible instability. However,
for cold quarks a perfect nesting is unnecessary due to the
singular character of the confining potential in Eq. (2)
[104]. As a result quarks can scatter with one another only
at small angles and still remain near the edge of the Fermi
surface. So it is sufficient to fulfill the nesting condition just
on limited patches of the Fermi surface whose area, Λ2, is
determined by the interplay between the string tension σ
and the curvature of the Fermi surface. Within these patches
the problem is essentially one dimensional, and can be
treated by non-Abelian bosonization and conformal embed-
ding [50,136].
In the first approximation when we neglect the magnetic

interaction (3) and maintain the SUð2NfÞ symmetry of the
Hamiltonian the conformal embedding works as follows. In
non-Abelian bosonization the noninteracting one dimen-
sional Hamiltonian can be written as a sum of Wess-
Zumino-Novikov-Witten (WZNW) terms of Uð1Þ for
charge, SU3ð2NfÞ for spin and flavor, and SU2Nf

ð3Þ for
color [103–105,136]. The decomposition is adjusted to the
symmetry of the interaction (2) which is given by the
product of the SU2Nf

ð3Þ Kac-Moody currents which
commute with the first two WZNW Hamiltonians. As a
result only the color sector experiences confinement and
the other two remain massless. They represent Abelian and
non-Abelian Goldstone modes, and so the corresponding
correlators have power law fall off at large distances.
We show that due to the arbitrariness of the choice of

direction of the Q’s, the modes which have a linear
spectrum in one dimension acquire a quadratic dispersion
in the direction along the Fermi surface when transverse
derivatives are included. This coupling together with the
magnetic interaction (3) also breaks the extended symmetry
from SUð2NfÞ down to SUðNfÞ.
The minimal possible number of patches is six, as a cube

embedded into a spherical Fermi surface. When the density
increases it becomes energetically advantageous to form
triangular patches at the corners of the cube, so another
eight patches, with fourteen in all.
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We estimate the number of patches as follows. The
effective current-current interaction in (1) scales to strong
coupling giving rise to a characteristic energy scale,Δ. This
can be estimated from the self-consistency condition in the
rainbow diagram with one gluon and one quark propagator:

ΔðQÞ ¼
Z

dωd3q
ð2πÞ4 D00ðqÞ⟪ψðω;Q=2þ qÞ

× ψþðω;−Q=2þ qÞ⟫ ð7Þ

∼σ0

Z
Δ

d2q⊥dqk
ðq2⊥þq2kÞ2

Z
dωΔ

ω2þðvFqkÞ2
∼
σ0vF
Δ

; ð8Þ

where vF is the Fermi velocity and jQj ¼ 2kF. The size of
the patch is estimated setting the transverse part of the
quarks’ kinetic energy equal to this scale:

p2⊥=2m ¼ Δ; Λ2 ¼ πp2⊥ ∼m
ffiffiffiffiffiffiffiffiffiffi
vFσ0

p
: ð9Þ

From (9) we find the following estimate for the number of
patches:

Npatches ∼
k2F
Λ2

∼
ffiffiffiffiffiffiffiffiffi
n

mσ0

r
; ð10Þ

where n is the density of quarks. Since σ0 is essentially zero
above some value of the chemical potential, for massive
quarks the number of patches first grows and than sharply
decreases with density. The estimate of Eq. (10) also shows
the dependence of the number of patches on the quark mass
m. For massless quarks, p⊥ ∼ Δ, and Λ2 ∼ σ0. Thus chiral
symmetry breaking decreases the number of patches.
The quantum action for an individual patch describes the

baryonic strange metal described in Ref. [50]: the quarks
are confined, but the baryons remain gapless and incoher-
ent. The only coherent excitations are the bosonic collective
modes, so that the corresponding phase can be character-
ized as a Bose metal.

III. GINZBURG- LANDAU DESCRIPTION OF
QUARKIONIC CRYSTAL PHASE

In this section we return to the problem of description of
the quarkyonic crystal phase. We show that at nonzero
temperature there is no long range order and that this state
resembles smectic liquid crystals, which are ordered
periodically only in one direction, although with some
significant caveats.
As we have mentioned above, the action for the

fluctuations normal to the Fermi surface is given by the
sum of WZNW actions for each patch. For the static
components of the order parameter fields one can omit
the Wess-Zumino terms, leaving just terms from the
gradient expansion. The corresponding Ginzburg-Landau
(GL) free energy for the fieldsU was written in [104], but it

requires correction. It is known [34–39,97–100] that the
fluctuations tangential to the Fermi surface must have a
zero stiffness, since the orientation of the entire set of Qi ’s
is arbitrary and for spherical Fermi surface any such
rotation costs zero energy. Therefore at nonzero temper-
ature where all fluctuations are classical, the free energy
density similar to that in smectic liquid crystal [97]:

F=T ¼ 1

2T

X
q

fλ̃1;QTrðq∇UQÞðq∇Uþ
QÞ

þ λ̃2;QTr½ðq×∇Þ2UQÞ�½ðq×∇Þ2Uþ
Q�g þVðUþ;UÞ;

q¼Q=Q; ð11Þ

where U−Q ¼ Uþ
Q and V is the local potential which fixes

the amplitudes of these matrix fields. We normalize theQ’s
as unit vectors. Equation (11) can be formally derived from
Eq. (1). The first term was derived in our previous paper
[104], while the second originates from the fusion of the
two perturbing operators

T̂⊥ ¼ −
vF
2kF

ðRþ∇2⊥Rþ Lþ∇2⊥LÞ; ð12Þ

RðpÞ ¼ ψðQ=2þ pÞ; LðpÞ ¼ ψð−Q=2þ pÞ: ð13Þ

Then the estimates of the parameters: λ1 ∼ vFΛ2,
λ2=λ1 ¼ Ck−2F , where C is a numerical constant and kF
is the Fermi wave vector.
When the Fermi vectors of up, down and strange quarks

are different, the GL theory should be augmented by the
term

ðms −mu;dÞc2
Z

d3xψþ
σ;f;nψσ;f;n

¼ iðms −mu;dÞc2
Z

d3x
Nf

π
Tr½τ̂3UQðq∇ÞUþ

Q�;

τ3 ¼ diagð−1;−1; 2Þ ⊗ Î; ð14Þ

where the first matrix in the tensor product acts in flavor
space, and the second in spin space. This contribution is the
non-Abelian bosonization of the above fermionic term.
This extra contribution can be removed by the redefinition
of the matrix field:

UQ → eiδμτ
3ðQrÞUQ: ð15Þ

So the shift of the Fermi level of strange quarks does not
break the SU(6) symmetry, at least in the leading approxi-
mation in δm. A magnetic field does, which is taken into
account later.
The matrix U can be parametrized as

UQ ¼ AQeiϕQGQ; ð16Þ
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where the amplitude AQ is fixed by the potential V (11), and
GQ is a SUð2NfÞmatrix. Omitting the massive fluctuations
of the amplitude AQ we get from (11) the free energy
density for the soft modes. It is divided into two parts,
Abelian and non-Abelian sigma models:

F
T

¼ SUð1Þ þ SSUð2NfÞ; ð17Þ

SUð1Þ ¼
1

2T

X
Q

½λ1ðq ·∇ϕQÞ2 þ λ2½ðq ×∇Þ2ϕQÞ�2�; ð18Þ

SSUð2NfÞ ¼
1

2T

X
Q

fλ1Trðq ·∇GQÞðq · ∇Gþ
QÞ

þ λ2Tr½ðq ×∇Þ2GQÞ�½ðq ×∇Þ2Gþ
Q�g: ð19Þ

IV. FLUCTUATIONS AND ORDER

We next show that because the transverse stiffness
vanishes, no symmetry is broken at nonzero temperature.
In that respect the quarkyonic phase resembles the lamellar
phases of liquid crystals, which have the same bare
fluctuation spectrum.
Under renormalization, the Abelian, Eq. (18), and non-

Abelian, Eq. (19), parts of the free energy behave very
differently. The Abelian part is just a free theory, since the
effects of vortices in three dimensions can be ignored. On
the other hand, due to the softness of the transverse
fluctuations, the action of Eq. (19) renormalizes to strong
coupling, which generates a finite correlation length. In the
one loop approximation the renormalization group equa-
tions do not differ from those for a two-dimensional
SUð2NfÞ-symmetric principal chiral field model. The
analogy becomes clearer when one uses the saddle point
approximation. A rough estimate for the correlation length
can be obtained if we replace the local constraint for the
matrix field GGþ ¼ I by its average hGGþi ¼ 1. We
enforce the constraint GGþ ¼ I by adding to the action
the term iηðGþG − IÞ, where η is the Lagrange multiplier
field. In the saddle point approximation we replace the
multiplier field η by a constant iη ¼ λ1ξ

−2. Then we extract
the propagator of G from Eq. (19), as the constraint
hGGþi ¼ 1 yields the equation for the inverse correlation
length ξ−1:

1 ¼ 4NfT

ð2πÞ3
Z

dkkd2k⊥
λ1k2k þ λ2k4⊥ þ λ1ξ

−2 ; ð20Þ

where the correlation length ξ is

ξ ∼ vFΛ−1 expðπ
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
=NfTÞ ¼ vFΛ−1 exp

�
C

Λ2

mNfT

�
;

ð21Þ

where C ∼ 1. Thus the non-Abelian sector is disordered,
although at low temperature, the correlation length is
exponentially large. The Abelian action in Eq. (18) is a
free theory. The corresponding observables are complex
exponents of ϕQ and as such are periodic functionals of ϕQ.
In two spatial dimensions vortices of the ϕQ field would
also enter, but in three spatial dimensions these vortices are
extended objects with an energy proportional to their
length, and so can be ignored. Thus at nonzero temperature,
there is a phase transition of second order into a
phase characterized by long range correlations of the
fields ϕQ.
An order parameter can be constructed for this

critical phase. It cannot directly involve correlations of
ρjk, because the correlations of such fields decay exponen-
tially. However, since the charge phase ϕQ is a free field
over large distances, we can construct an operator which
exhibits quasi long range order. Since detG ¼ 1 the order
parameter includes 4Nf fermions:

OQ ¼ det ρ̂Q ¼ e2iNfðQrþϕQÞBQ: ð22Þ

At distances ≫ ξ when fluctuations of G can be treated as
massive one can replace B by some fixed amplitude. The
average hOQi ¼ 0, but its correlations fall off as powers of
the relative distance:

⟪OQðr1ÞOþ
Qðr2⟫ ∼

cos½2NfQr12�
fðqr12Þ2 þ k20½q × r12�4gd

;

d ¼ N2
fTk0=πλ1; k0 ∼ kF: ð23Þ

So at finite temperatures the quarkyonic crystal melts into
an Abelian critical phase with wave vectors 2Nf times
greater than the ones established by the energetics at zero
temperature. It is essentially a density wave of a quasi-
condensate of 4Nf bound states of quarks. These bound
states are spin and flavor singlets.

V. MAGNETIC FIELD

A sufficiently strong magnetic field [137] has a profound
effect on the structure of the quarkyonic phase. For other,
related analyses, see Refs. [138–143].
We start our analysis at zero temperature when the

SUð2NfÞ symmetry is spontaneously broken. In this case
the matrix GQ can be approximated as

GQðrÞ ¼ G0e
itFQðrÞT̂F

≈G0ð1þ itFQðrÞT̂FÞ; ð24Þ
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where G0 is some constant matrix and T̂F are generators of
the SUð4Þ algebra. Then to leading order, instead of
Eq. (19) to quadratic order we obtain

L ¼ V0tFTr½T̂Fq̂ðσBÞT̂F0
q̂ðσBÞ�tF0 þ ∂τtF∂τtF

þ λ1tFTrfT̂F½λ1ðq ·DÞ2 þ λ2½q ×D�4�T̂F0 gtF0
: ð25Þ

V0 ∼ Δ2=μ is proportional to the square of amplitude of AQ

in Eq. (16).
For Nf ¼ 2 it is convenient to represent the generators

Ta in terms of the Pauli matrices acting in the spin and the
flavor spaces:

Ts ¼ ðσa ⊗ IÞ; Tf ¼ ðI ⊗ τaÞ; Tðs;fÞ ¼ ðσa ⊗ τbÞ:
ð26Þ

The magnetic field splits the dispersion of the Goldstone
modes. In particular, the mode ðI ⊗ τzÞ is not affected by
the magnetic field and remains gapless. The three ðσa ⊗ IÞ
modes and three ðτz ⊗ σaÞ are affected only by the Zeeman
term. Their spectrum is

E2 ¼ λ1

�
p2
k þ

p4⊥
k20

�
þ V0

X
f

q2fB
2: ð27Þ

The only modes affected by the orbital magnetic field are
the eight modes with off-diagonal τ� Pauli matrices. To
simplify the discussion of their spectrum we will consider
two limiting cases.
1. BkQkẑ, Ax ¼ By, Ay ¼ Az ¼ 0. Then the spectrum is

determined by the equation

E2t ¼ λ1

�
p2
z þ

1

k20
½∂4

y þ ð�px − ByÞ4�
�
t: ð28Þ

Here the real vector t includes the modes corresponding to
generators ðI ⊗ τ�Þ; ðσa ⊗ τ�Þ. We need just to shift y by
�px=B after which px drops out of the eigenvalue
equation. The general solution of Eq. (28) is given by

t ¼ ℜe½fðyB1=2 � px=B1=2ÞeiðpxxþpzzÞ�;

E2 ¼ λ1

�
p2
z þ

B2ϵ2

k20

�
;

ϵ2fðτÞ ¼ ð∂4
τ þ τ4ÞfðτÞ: ð29Þ

The spectrum is

E2 ¼ λ1

�
p2
z þ

B2g1ðnÞ
k20

�
: ð30Þ

We can determine function g1ðnÞ at large quantization
numbers n ≫ 1 using semiclassical approximation:

f ∼ f0 exp

�
i
Z

τ

−
ffiffi
ϵ

p dtðϵ2 − t4Þ1=4
�
: ð31Þ

Then the spectrum follows from the Bohr-Sommerfeld
quantization condition:

Z ffiffi
ϵ

p

−
ffiffi
ϵ

p dtðϵ2 − t4Þ1=4 ¼ πn; ð32Þ

so that at n ≫ 1

g1ðnÞ ¼ ðγnÞ2; γ ¼ π=
Z

1

−1
ð1 − x4Þ1=2dx: ð33Þ

2. B⊥Q and kŷ, Ax ¼ Bz, Ay ¼ Ax ¼ 0.

E2t ¼ λ1f−∂2
z þ k−20 ½ðpx � BzÞ4 þ p4

y�gt: ð34Þ

The spectrum is given by

E2 ¼ λ1k−20 ½p4
y þ ðk0BÞ4=3g2ðnÞ�; ð35Þ

where using the semiclassical approximation at n ≫ 1
we get

g2ðnÞ ¼ ðηnÞ4=3; η ¼ π=
Z

1

−1
ð1 − x4Þ1=2dx: ð36Þ

To summarize: in the presence of a magnetic field, the
spectrum is divided into three groups. There are eight
gapped modes which include components along the τ�
generators; their gaps depend strongly on the direction of
the magnetic field. The second group consists of the modes
which include only spin operators and τz; they have much
smaller gaps ∼BðΔ=μÞ. The third group includes the mode
ðI ⊗ τzÞ which remains gapless.
Hence there are three regimes of temperature. When

temperature is so high that the correlation length is smaller
than the magnetic length the influence of the magnetic field
is small:

expð−CΛ2=NfmTÞ > BμB=k0vF: ð37Þ

There is an intermediate interval of temperature when the
magnetic field suppresses some modes, leaving as nomi-
nally gapless the modes ðI ⊗ τzÞ; ðσa ⊗ IÞ and ðσa ⊗ τzÞ.
In this region one can approximate the order parameter field
as a product of SUð2Þ matrix g and U(1) matrix V: G ¼
gSUð2ÞV with V ¼ cos αI þ iτz sin α. The SUð2Þ-symmetric
part of the order parameter is disordered by thermal
fluctuations, as was demonstrated in Sec. IV. The action
for the U(1) part is Gaussian and the field α has long range
correlations. This is in addition to the overall U(1) phase ϕ.
At yet smaller temperatures the SUð2Þ part g is gapped

by the magnetic field, through quantum effects. In both
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cases the Abelian modes α, ϕ (the total charge and the
diagonal flavor one) survive as gapless. Being Abelian they
remain long ranged even if fluctuations are taken into
account. As a consequence by gapping out all non-Abelian
modes the magnetic field instigates quasi long range order
in the

P
σρðf;σÞ;ðf;σÞ which is quadratic in quark creation and

annihilation operators.

VI. PHASE DIAGRAMS WITH A LIFSHITZ POINT

A. General effective Lagrangian

In the previous section we considered chiral spirals in a
quarkyonic phase in QCD. This is relevant at chemical
potentials above that for hadronic nuclear matter, but below
those where perturbative QCD applies.
Moving up in chemical potential, the transition from a

quarkyonic phase to the perturbative regime appears
straightforward. The width of a patch with a chiral spiral
is proportional to the square root of the string tension,
Eq. (9). As discussed in Sec. II, numerical simulations for
two colors show that the string tension decreases with
increasing chemical potential, and is essentially zero by
μq ∼ 750 MeV, Fig. 3 of Ref. [123]. In a perturbative
regime the interactions near the Fermi surface lead to color
superconductivity symmetrically over the Fermi surface,
instead of leading to formation of chiral spirals in patches.
On the quarkyonic side the only order parameter is the
Uð1Þ phase of the determinantal operator, det ρ̂Q of
Eq. (22). On the color superconductivity side the broken
symmetry is completely different and therefore it is natural
to expect that the phase transition is of first order, as
between charge density wave and superconductivity in
condensed matter systems. There are also other order
parameters for color superconductivity which may enter
[144]. For three colors the precise value at which this
transition occurs for three colors cannot be fixed by
our qualitative arguments, but following the discussion
at the beginning of Sec. II, it is presumably somewhere
around μq ∼ 1 GeV.
Going down in density, from the quarkyonic phase to

hadronic nuclear matter, there are chiral spirals in the
former, and pion/kaon condensates in the latter. In terms of
the usual chiral order parameter,

ρ ¼ q̄LqR; ð38Þ

the condensate between σ and π3 is given by

ρπcond ¼ ρ0 exp ðiðQ · rþ ϕÞt3Þ; ð39Þ

where ρ0 is a constant ∼fπ , and t3 is a flavor matrix. In
neutron stars, with a charged background of protons the
analogous condensates are along the directions correspond-
ing to π− and K− [26–43].

This suggests that there is a direct relation between the
pion/kaon condensates of hadronic nuclear matter and
those of the quarkyonic regime. We argued previously
that the only true order parameter for the quarkyonic
regime was an overall phase factor of Uð1Þ. Such a phase
clearly arises for the field of Eq. (39), which we denote
by the phase ϕ. The physical origin of this phase is
obvious: at a given point along the Q direction, the
condensate points entirely in a given direction, say along
π3. Where this point is just an overall shift in the phase,
though.
Thus pion/kaon condensates have a Uð1Þ phase, which

is sometimes termed the “phonon” mode [96,98]. This is
then a strict order parameter which distinguished had-
ronic nuclear matter, without a pion/kaon condensate,
from that with. If this transition is not of first order, then
it must be of second order, in the universality class
of Uð1Þ.
As the chemical potential increases further, it is very

plausible that it is not possible to rigorously distinguish
between the pion/kaon condensate of Eq. (39) and chiral
spirals of the quarkyonic regime. The only difference is that
there are N2

f − 1 very light modes for a pion/kaon con-
densates, and 4N2

f − 1 light modes for a quarkyonic chiral
spiral. It is natural to assume that the additional 3N2

f modes
of the latter become lighter as μq increases.
As discussed previously, there may be phase transitions

as the number of patches increases, although this is not
really necessary. In that vein, we note that in the original
discussion of pion condensates by Overhauser [26], it was
explicitly stated that the simplest solution in three dimen-
sions is that with six patches.
The relation between pion/kaon condensates and chiral

spirals also suggests a less trivial speculation. For static
quantities, at high density the effective theory for the light
modes of a chiral spiral is a SUð2NfÞ sigma model. Once
transverse fluctuations (for massless quarks) are included,
or magnetic interactions (for massive), as we argued in
Sec. III, SUð2NfÞ sigma model reduces to a SUðNfÞ
model. This agrees with the effective theory for a pion/kaon
condensate, which is a nonlinear sigma model on SUðNfÞ.
However, we argued that for nonstatic quantities, there is

also a WZNW term, of level 3 for SUð2NfÞ, and level 6 for
SUðNfÞ. This suggests that there might be a WZNW term
for pion/kaon condensates, with level 6. This is not
obvious. The original theory has a WZNW term in four
dimensions, but this involves derivatives in all four dimen-
sions [145]. Perhaps a WZNW term arises in two dimen-
sions from the variation of the patches in the transverse
directions.
The similarity between chiral spirals and pion/kaon

condensates has been recognized previously, at least
implicitly [93–95,97]. The appearance of a Uð1Þ order
parameter, and the possible appearance of a WZNW term,
is novel.
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To support the above considerations we establish a
formal correspondence between the relativistic and the
nonrelativistic versions of the QCD Hamiltonian. We start
with the Dirac Hamiltonian:

H ¼ q̂þðpÞðτ̂z ⊗ σ̂apa þmτ̂x ⊗ Î − μÎ ⊗ ÎÞq̂ðpÞ; ð40Þ
where τa act in the chiral basis ðR; LÞ and σa act in the
spin space. We neglect the quark mass. Then under the
transformation

�
qRσðpÞ
qLσðpÞ

�
¼ 1ffiffiffi

2
p

�
zσðnÞ

ϵσσ0z�σ0 ðnÞ
�
ψþðpÞ þ

1ffiffiffi
2

p
�
ϵσσ0z�σ0 ðnÞ
zσðnÞ

�
ψ−ðpÞ

þ 1ffiffiffi
2

p
�

zσðnÞ
−ϵσσ0z�σ0 ðnÞ

�
ηþ−ðpÞ þ

1ffiffiffi
2

p
�
ϵσσ0z�σ0 ðnÞ
−zσðnÞ

�
ηþþðpÞ; ð41Þ

where

zþσz¼n≡p
p
; zσðnÞ¼ ϵσσ0z�σ0 ð−nÞ;

X
σ¼�1

z�σzσ ¼ 1;

ð42Þ

the Hamiltonian Eq. (40) becomes

H ¼
X
p;τ¼�

½ðjpj − μÞψþ
τ ðpÞψτðpÞ þ ðjpj þ μÞηþτ ðpÞητðpÞ�:

ð43Þ

In what follows we will drop the antiparticles η.
Now let us consider the chiral order parameter ρ

selecting in it only the part associated with particles:

ρ ¼ qþðrÞτxq

¼ 1

2

X
p;p0

eiðp−p0Þrψþ
α ðpÞψβðp0Þðe�αðpÞeβðp0ÞÞ þ � � �

¼ 1

2

X
Q;p

eiQrψþ
α ðQ=2þ pÞψαð−Q=2þ pÞ þ � � � ; ð44Þ

where the basis vectors e are defined in (41) and the ellipses
include the contributions of antiparticles. This shows that
the chiral order parameter ρ, which is uniform at μ ¼ 0,
naturally acquires oscillatory terms at μ ≠ 0. These can be
either pion/kaon condensates or quarkyonic chiral spirals.
As we neglected antiparticles, this only happens for
sufficiently large μq. These arguments do not show how
large μq must be, but they do establish that both chiral
symmetry breaking and the formation of inhomogeneous
phases can be described within the same effective model.
To discuss the phase diagram we then consider a

SUðNfÞ × SUðNfÞ field ρ, taking a customary linear sigma
model,

L¼ 1

2
trj∂0ρj2þ

Z
2
trj∂iρj2þ

1

2M2
trj∂2ρj2

þm2

2
trρ†ρþλ1

4
ðtrρ†ρÞ2þλ2

4
trðρ†ρÞ2þ κ

6
ðtrρ†ρÞ3þ…:

ð45Þ

In four spacetime dimensions ρ has dimensions of mass.
The first two terms are standard kinetic terms. The
coefficient of the second term, with two spatial derivatives,
can have an arbitrary coefficient Z. Implicitly we consider
systems at nonzero temperature and quark density, and so
there is a preferred rest frame. Then Lorentz symmetry is
lost, and Z ≠ 1 is allowed. In particular, we allow Z to be
negative. Stability then requires the addition of a positive
term with four spatial derivatives; the coefficient of that
term is ∼1=M2, whereM is some mass scale derived from
the underlying theory.
While we only consider static quantities, and so can

ignore the first term with two time derivatives, we add it to
emphasize that the only higher derivatives considered are
those in the spatial coordinates. It is well known that higher
order derivatives in time lead to acausal behavior, which
should not occur in an effective theory. This is not
dissimilar to causal theories of higher derivative gravity,
such as Horava-Lifshitz gravity [146–149].
When the coefficient of the term with two spatial

derivatives is positive, Z > 0, the phase diagram is stan-
dard. For positive mass squared, m2 > 0, the theory is in a
symmetric phase, with hρi ¼ 0. For positive quartic cou-
pling, λ > 0, the global flavor symmetry is broken when the
mass squared is negative, m2 < 0, but not the translational
symmetry. At zero mass, m2 ¼ 0, there is a second order
transition in the appropriate universality class.
The hexatic couplings, such as κ, are assumed to be

positive, so the quartic coupling λ can be negative. It is easy
to show that there is then a first order transition at positive
mass squared, m2 > 0.
In the plane of the mass squared, m2, and the quartic

couplings λ, the phase diagram is standard. For positive λ
there is a line of second order transitions whenm2 ¼ 0. For
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negative λ there is a line of first order transition at positive
m2. These two lines meet at the origin, m2 ¼ λ ¼ 0, which
is a tricritical point. In three dimensions the critical
exponents for a tricritical point are those of mean field,
with logarithmic corrections controlled by the hexatic
interactions [150].
Since there is more than one quartic coupling, even if the

quartic couplings are originally positive, in the infrared
limit they can flow to negative values, and so generate a
fluctuation induced first order transition [150–153]. For
this Lagrangian in 4 − ϵ dimensions, to leading order in ϵ
this happens when Nf >

ffiffiffi
2

p
[154]. This is only valid to

leading order in ϵ. For two flavors, the symmetry is
SUð2ÞL × SUð2ÞR ×Uð1ÞA ≡Oð4Þ ×Oð2Þ, then the con-
formal bootstrap program suggests that there is a nontrivial
fixed point in three dimensions, ϵ ¼ 1, which is not present
for small ϵ [155,156]. If true, then in the plane of m2 and λ,
there are two lines of first order transitions which meet at a
tricritical point.
We next consider the corresponding phase diagram in the

plane ofm2 and the wave function renormalization constant
Z. The case of positive Z is a trivial consequence of the
above analysis, with a line of second order transitions
along m2 ¼ 0.
We next turn to the case of m2 < 0, when ρ has an

expectation value ρ0 ≠ 0. Spatially inhomogeneous con-
densates arise when Z is negative. We take

ρCS ¼ ρ0 expðiQ · xÞ; ð46Þ

where Q ¼ Q0ẑ.
The ansatz of Eq. (46) is only a caricature of the full

solution. The detailed form of the condensate differs
depending upon whether the broken symmetry is discrete
or continuous. For a discrete Zð2Þ symmetry, the con-
densate is a kink crystal, where the field oscillates in sign in
one direction, as in Eq. (46). For a continuous symmetry of
Uð1Þ, the condensate is a spiral, where the field oscillates in
two directions, as in Eq. (39). These differences are
illustrated by the exact solutions in 1þ 1 dimensions:
for an infinite number of flavors, at low T and nonzero μ the
Gross-Neveu model develops a kink crystal, while the
chiral Gross-Neveu model has a chiral spiral [44–49].
The condensates for more complicated continuous sym-
metries can be more involved, as for Eq. (6).
For our qualitative analysis, though, the precise form of

the condensate is secondary. We then minimize the terms
with spatial derivatives with respect to Q0,

Q2
0 ¼ −2ZM2: ð47Þ

For Q0 to be real, Z has to be negative. Plugging this back
into the Lagrangian, we obtain

V ¼ 1

2
m2

effρ
2 þ λ

4
ðρ2Þ2; ð48Þ

where λ ¼ N2
fλ1 þ Nfλ2, and

m2
eff ¼ m2 −

Z2

4
M2: ð49Þ

Henceforth we ignore the hexatic coupling ∼κ, as we
uniformly assume that the quartic coupling λ is positive.
Consider a given value ofm2 < 0, crossing from positive

to negative values ofZ. ForZ > 0, the theory is in a broken
phase; for negative Z, in the phase with the chiral spiral of
Eq. (46). Ignoring κ, the potential energy at the minimum is

V ¼ −
1

4λ
m4

eff : ð50Þ

Assuming that the variation in Z is linear in the appropriate
thermodynamic variable, such as the chemical potential or
temperature T,

Z ¼ z0ðT − T0Þ; ð51Þ

then it is trivial to show that while the potential, or free
energy, is continuous at T ¼ T0, the first derivative, related
to the energy density, is discontinuous. This is natural:
except for Goldstone bosons, the correlation lengths are
nonzero in both phases. Further, there is an order parameter
which distinguishes the phases: hϕi is constant when Z is
positive, while with the chiral spiral of Eq. (46), the spatial
average of hϕi vanishes when Z < 0.
Consider next the case when Z is negative and the

original mass squared, m2, is positive. Then the effective
mass meff vanishes when m2 ¼ Z2M2=4, and one expects
a second order phase transition.
It was shown by Brazovskii [89,107–109] that instead

there is a first order transition. For the assumed parameters,
the ϕ propagator is

Δ−1ðkÞ ¼ m2 þ Zk2 þ ðk2Þ2
M2

: ð52Þ

When Z < 0, there is a minimum for nonzero spatial
momentum. Expand

k ¼ ðktr; Q0 þ kzÞ: ð53Þ

Inserting Eq. (53) into Eq. (52) and expanding, the terms
proportional to kz vanish if Q0 satisfies Eq. (47). Then

Δ−1ðkÞ ≈m2
eff − 2Zk2z þ…; ð54Þ

where m2
eff is that of Eq. (49). Notice that the terms

quadratic in the transverse momenta, ktr, vanish, although
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there are terms of higher order in ktr. This is similar to the
behavior of Goldstone bosons in a chiral spiral.
Consequently, an integral over virtual fields is dominated

by fluctuations in the direction of kz. When the effective
mass is small, the correction to the mass term is

Δm2 ∼ λT
Z

d3k
ð2πÞ3

1

m2
eff þ ðk2 −Q2

0Þ2=M2
∼þTλQ0M

meff
:

ð55Þ

Similarly, the correction to the quartic coupling is

Δλ∼−λ2T
Z

d3k
1

ðm2
eff þðk2−Q2

0Þ2=M2Þ2∼−
λ2TQ0M

m3
eff

:

ð56Þ

Both of these results follow because the fluctuations for
smallmeff are those for a theory in one dimension, along kz.
Because the infrared divergences of Eqs. (55) and (56)
bring in powers of 1=meff , a second order transition, where
meff ¼ 0, is not possible. There is a transition between the
two phases, but it is necessarily of first order, where meff is
always nonzero in each phase.
This has been termed a “fluctuation induced first order”

transition [89,107–109], but the terminology is somewhat
misleading. In theories with several coupling constants,
couplings can flow to negative values [150–153], and so
generate a first order transition. This depends upon how the
coupling constants flow under the renormalization group in
the infrared limit, and so depends both upon the symmetry
group, and the dimensionality of space-time.
In contrast, what happens for m2 > 0 and Z < 0 is just

an effective reduction of the fluctuations to one dimension.
It does not depend upon either the global symmetry or the
original dimensionality of spacetime.
This yields the mean field diagram of Fig. 1. In the plane

of m2 and Z, the broken phase with hϕi ≠ 0 in the upper
left hand quadrant; the symmetric phase, hϕi ¼ 0, in the
upper right hand quadrant and part of the lower right
hand quadrant, and the remainder the phase with a chiral
spiral. They meet at the origin, m2 ¼ Z ¼ 0, which is the
Lifshitz point.
Consider the theory at the Lifshitz point. The static

propagator is

ΔðkÞ ¼ M2

ðk2Þ2 : ð57Þ

At leading order the leading correction to the mass is

Δm2 ∼ −λ
Z

ddk
M2

ðk2Þ2 þm2M2
: ð58Þ

This develops a logarithmic divergence in the infrared in
four dimensions, which is then the lower critical dimension

[15–17,23,24]. Corrections to the quartic coupling begin at
one loop order as

Δλ ∼ −λ2
Z

ddk
M4

ðk2Þ2ððk − pÞ2Þ2 : ð59Þ

This is logarithmically divergent in eight dimensions,
which is the upper critical dimension [15–17]. This is in
contrast to an ordinary critical point: for a propagator
ΔðkÞ ¼ 1=k2, where the lower and upper critical dimen-
sions are two and four, respectively.
At the Lifshitz point in four spatial dimensions, in the

infrared the logarithmic divergences always disorder the
theory. This is stronger at nonzero temperature, when d ¼ 3
and the infrared divergences are power like ∼1=m.
Consequently, once fluctuations are included, there cannot
be a true Lifshitz point.
Inhomogeneous polymers provide an example of the

absence of a Lifshitz point in three spatial dimensions
[18–22]. The simplest case is a mixture of oil and water.
These separate into droplets of oil or water, but by adding a
surfacant to alter the interface tension, other phases emerge.
A related example is a mixture of two different polymers,
formed from monomers of type A and type B. To this are
added A-B diblock copolymers, which are long sequences
of type A, followed by type B. These A-B copolymers
localize at the interfacial boundaries separating phases with
only A or B homopolymers, and act to decrease the
interface tension; at sufficiently high concentrations, the
interface tension changes sign, and is negative.
By varying the temperature and the concentration of

diblock copolymers one can form three different phases. At
high temperature A, B, and A-B polymers mingle to form a
homogeneous phase, analogous to the symmetric phase of a
spin system. At low temperature and low concentrations of

FIG. 1. The phase diagram in mean field theory, in the plane of
m2 and Z: a line of second order transitions, meeting two lines of
first order transitions, which meet at the Lifshitz point, where
m2 ¼ Z ¼ 0.

PISARSKI, SKOKOV, and TSVELIK PHYS. REV. D 99, 074025 (2019)

074025-10



A-B copolymers, the system separates into droplets of A, B
and A-B polymers, which is like the broken phase of a spin
system. At low temperature and high concentration of A-B
copolymers, the interface tension becomes negative, and
there is an inhomogeneous phase, as the system forms a
lamellar state with alternating layers of A and B polymers.
This is similar to a smectic liquid crystal, albeit without
orientational order.
Mean field theory predicts that there is a Lifshitz point

where these three phases meet. In contrast, both experiment
and numerical simulations with self-consistent field theory
indicate that there is no Lifshitz point [18–22]: see, e.g.,
Fig. 3 of Ref. [21]. Instead, the symmetric phase enlarges,
and includes a bicontinuous microemulsion, which exhibits
nearly isotropic fluctuations in composition with large
amplitude. In this regime the surface tension is essentially
zero, and there is a spongelike structure with large entropy.
The absence of the Lifshitz point can be understood by

analogy. Consider a spin system, with a continuous
symmetry, in two or fewer dimensions. The symmetry
cannot be spontaneously broken as that would generate
massless Goldstone bosons, which are not possible in such
a low dimensionality. Instead, fluctuations generate a mass
nonperturbatively.
What happens in the Lifshitz regime, when the number

of spatial dimensions is four or less, is similar. We can tune
either the coefficient of the term quadratic in momenta to
vanish, Z ¼ 0, or the mass, m2, to vanish, but not both. If
m2 ¼ 0, then Z ≠ 0 is generated nonperturbatively; alter-
nately, if Z ¼ 0, then m2 ≠ 0 is generated nonperturba-
tively. For the latter, the propagator is not Eq. (57), but

ΔðkÞ ¼ M2

ðk2Þ2 þm2M2
; ð60Þ

where m2 ≠ 0 is nonperturbative. We cannot conclude
anything about the size of the Lifshitz regime, only that
it exists. For inhomogeneous polymers, the Lifshitz regime
includes a bicontinuous microemulsion, where Z ≈ 0 and
m2 ≠ 0; see, e.g., Fig. 2 of Ref. [21].
A possible phase diagram which incorporates fluctua-

tions is that of Fig. 2. There is a strict order parameter
which distinguishes the broken and symmetric homo-
geneous phases, so the line of second order transitions
must intersect the line of first order transitions. They do so
at a Lifshitz critical endpoint C̃. By continuity, as C̃ is
approached along the line of first order transitions, the
latent heat vanishes.
Consider the usual phase diagram where a line of second

order transitions meets a line of first order transitions at a
critical endpoint C. The universality class along the line of
second order transitions is determined by the unbroken
symmetry group and the dimensionality of space, with
nonzero values for the quartic couplings of Eq. (45), λ ≠ 0.
At the critical endpoint C, the quartic couplings vanish,

λ ¼ 0, and the hexatic couplings κ dominate. This changes
the upper critical dimensionality from four to three.
The Lifshitz critical endpoint C̃ is not of this form. The

simplest possibility is that at C̃, a term quadratic in the
momenta, Z > 0, is generated non perturbatively, with
m2 ¼ 0. This implies that the universality class of the
Lifshitz critical endpoint C̃ is the same as along the line of
second order transitions.
Consider moving away from the Lifshitz critical end-

point C̃, down in Z into the inhomogeneous phase. Since
mean field theory indicates that an inhomogeneous phase
only arises when Z is negative, the appearance of an
inhomogeneous phase infinitesimally below C̃ must be due
to strong, nonperturbative fluctuations.
Alternately, consider moving away from the Lifshitz

critical endpoint to the right, for increasing m2. Doing so,
one will enter a region where Z is very small, but the mass
squared m2 is nonzero and positive. This region is directly
analogous to a bicontinuous microemulsion [18–22]. For
inhomogeneous polymers, this region is seen to be an
enlargement of the symmetric phase into the region
between the inhomogeneous and broken phases. This
explains the curvature of the line of second order transitions
in Fig. 2. We do not explicitly indicate the axesZ andm2 in
Fig. 2 because the Lifshitz point of mean field theory,
Z ¼ m2 ¼ 0, is not accessible physically.

FIG. 2. The Lifshitz phase diagram corrected by fluctuations:
the line of second order transitions still intersects the line of first
order transitions, but one cannot reach the Lifshitz point, where
Z ¼ m2 ¼ 0. The shaded region denotes the Lifshitz regime,
where there are large infrared fluctuations. The line of second
order transitions meets the line of first order transitions at the
Lifshitz critical endpoint C̃.
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We note that the phase diagram of mean field theory is
correct in a limit without fluctuations. Examples include
Gross-Neveu type models in two spacetime dimensions,
which are soluble for an infinite number of flavors, N ¼ ∞
[44–49]. At large but finiteN, then, the width of the Lifshitz
regime is automatically ∼1=N. It would be useful to study
the Lifshitz regime in models with a large N expansion,
both in the lower critical dimension of four and below four
dimensions. This would provide a test of the Lifshitz phase
diagram in Fig. 2 and especially of the universality class of
the Lifshitz critical endpoint C̃.
Before continuing to the implications for the phase

diagram of QCD, we remark that our analysis is valid
for nonzero temperature in three spatial dimensions. At
zero temperature, by causality there must always be terms
quadratic in the energy. The integral analogous to Eq. (58)
then becomes

Δm2 ∼ −λ
Z

dω
Z

ddk
1

ω2 þ ðk2Þ2=M2 þm2

∼ −λ
Z

ddk
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2Þ2 þm2M2
p : ð61Þ

As m → 0 this is infrared convergent in more than two
spatial dimensions, d > 2. Thus we expect that the infrared
fluctuations are well behaved at low temperature. Further,
the dynamic behavior near the Lifshitz critical endpoint, C̃,
differs from that for a typical critical endpoint, C.

B. Possible phase diagram of QCD

The above analysis applies to the chiral limit, where
pions are massless in the broken phase and there is a line of
second order phase transitions ending in the Lifshitz critical
endpoint C̃. In QCD, with massive pions the line of second
order transitions becomes a crossover line.
In contrast, the existence of spatially inhomogeneous

phases is not sensitive to moving away from the chiral limit.
This was implicit in Sec. II, where we considered massive
quarks. It is also seen in solutions of effective models, as
demonstrated in effective models [157]. The cleanest
example is given by Bringoltz, who solved the ’t Hooft
model in 1þ 1 dimensions for a heavy quark [60] and
showed there are oscillations about a nonzero value of q̄q.
In general, the phase diagram is a function of at least

three parameters: the mass squared, quartic coupling(s),
and the spatial wave function renormalization Z. For the
purposes of discussion, we assumed previously that the
quartic couplings of the effective model remain positive, so
there is only a Lifshitz point and not a critical endpoint.
Because of the sign problem, at present this cannot be

decided in QCD through numerical simulations. This
leaves us with effective models, where the results are
suggestive, and not definitive. In the Nambu Jona-Lasino
model [95,158] [159], or solutions of Schwinger-Dyson

equations [74], the Lifshitz and critical endpoints coincide:
see, e.g., Fig. 6 of Buballa and Carignano [95]. This phase
diagram is analogous to Fig. 1, where the tricritical point,
m2 ¼ λ ¼ 0, coincides with the Lifshitz point,m2 ¼ Z ¼ 0.
This coincidence is not generic, however. Carignano,

Buballa, and Schaefer [75] showed that in a quark-meson
model, that the critical endpoint and Lifshitz points
coincide when the sigma mass is twice the constituent
quark mass, mσ ¼ 2mqk. In such models it is also possible
to allow mσ ≠ 2mqk; in that case, the Lifshitz and critical
endpoints separate.
There are then two possibilities. Assuming there is a

region with spatial inhomogeneities, either the Lifshitz
point moves into the region with spatial inhomogeneities,
or the critical endpoint does. If the former, fluctuations are
dominated by the critical endpoint, which is the standard
scenario.
If the former, fluctuations are dominated by the Lifshitz

regime, as the would be critical endpoint is in the region
with spatial inhomogeneities. The natural analogy of the
phase diagram in Fig. 2 is that of Fig. 3.
Numerical simulations search for a critical endpoint from

the behavior of the power series in μ about μ ¼ 0 and the
associated singularity in the complex μ plane. For our
proposed phase diagram, though, there is only an unbroken
line of first order transitions, and no associated singularity
[160]. This is in accord with present data from numerical
simulations, which do not find evidence for a critical
endpoint [161–167]. Of course, it is also possible that
the critical endpoint is farther away in the plane of T and μ.
We make one comment about the highest temperature at

which there is a spatially inhomogeneous phase, T0,

∂T
∂μ

				
T0

¼ 0: ð62Þ

T
0

TT
0

FIG. 3. A proposed phase diagram for QCD: the solid line
represents first order transitions which separate homogeneous
from spatially inhomogeneous phases; the dashed line, crossover;
the shaded region, the Lifshitz regime. The highest temperature at
which a spatially inhomogeneous phase occurs defines the point
of equal densities, T0. We assume that the point where the quartic
couplings become negative is in the spatially inhomogeneous
phase, where hq̄qiCS ≠ 0, and so does not generate a critical
endpoint.
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Since the pressure is continuous at a first order phase
transition, by taking derivatives of the pressure with respect
to μ, we find

nþ ¼ ∂pðT; μÞ
∂μ

				
T−
0

¼ n− ¼ ∂pðT; μÞ
∂μ

				
Tþ
0

: ð63Þ

This implies that even though there is a first order transition
at T0, the densities are equal. This is known in thermody-
namics as a point of equal concentration. Since the
transition is of first order, the entropies between the two
phases differ at T0.
We assume that the crossover line terminates at T0, so in

the chiral limit, T0 coincides with the Lifshitz critical
endpoint, C̃. We cannot prove that T0 is the shadow of C̃,
but it is a most natural conjecture.
It is clearly challenging to distinguish the fluctuations of

a critical endpoint [5–10] from those of a Lifshitz regime.
We leave this subject for future study. This is particularly

true for heavy ion collisions, which are limited in both time
and space.
In conclusion, it is surprising that there are such close

analogies between the phase transitions in condensed
matter systems, such as smectics and inhomogeneous
polymers, and those of QCD. While our analysis is a first
step, it may directly impact our understanding of the
collisions of heavy ions at low energies.
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