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Given an observable and its operator product expansion, we present expressions that carefully
disentangle truncated sums of the perturbative series in powers of α from the nonperturbative (NP)
corrections. This splitting is done with NP power accuracy. Analytic control of the splitting is achieved and
the organization of the different terms is done along an super/hyperasymptotic expansion. As a test we
apply the methods to the static potential in the large β0 approximation. We see the superasymptotic and
hyperasymptotic structure of the observable in full glory.
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I. INTRODUCTION

Nonperturbative (NP) effects are dominant for QCD
phenomena with characteristic energy of OðΛQCDÞ. Con-
sequently, the absence of analytic tools for dealing with NP
effects in QCD makes impossible to produce quantitative
semianalytic predictions in terms ofΛQCD and renormalized
quark masses for most low energy observables.
On the other hand, there are observables for which their

perturbative expansions in powers of α are reasonable
approximations. This typically happens when there is a
large scale, generically referred as Q (≫ΛQCD), in the
process. In principle, it is then possible to perform pertur-
bative calculations up to any finite order in α. Nevertheless,
such perturbative expansions are expected to be asymptotic
and divergent. Such divergent behavior is not arbitrary.
Besides the perturbative series in powers of α, one also
expects the observable to depend on, nonanalytic, NP,

functions of order e−A
2π

β0αðQÞ ∼ ðΛQCD=QÞA. These NP effects
and the perturbative series in powers of α are not indepen-
dent of each other. Indeed the former determines the late-
term behavior of the latter. Leaving aside instantons, that we
will neglect in what follows (as they yield smaller NP
corrections than those we consider in this paper), such

relation can be quantified using the operator product
expansion (OPE) of the observable for largeQ. The allowed
operators determine the allowed corrections in powers of
ΛQCD (up to logarithms), and, therefore, the large order
behavior of the perturbative expansion, since the latter can
be related with singularities in the Borel plane (located in
the positive real axis), which mix with the NP corrections.
To these singularities (and the associated asymptotic per-
turbative expansion) we generically refer to as infrared
renormalons [1].
In a more general scenario one can consider more than

one large scale: Q1 ≫ Q2 ≫ ΛQCD. Then the use of the
OPE and the factorization between the different scales
makes the perturbative expansions associated with each
scale to be asymptotic. In some cases one has renormalon
singularities associated with the scales Q1 and Q2 that
cancel among themselves. This is indeed the case for the
leading renormalon singularity of the pole mass and the
static potential, as first found in [2], and later in [3,4]. We
name these renormalon singularities spurious.
So, in general, we want to:
(1) Predict observables with e−A

2π
β0αðQÞ precision.

(2) Avoid spurious renormalon problems.
In this paper we focus on (1), though our results will be
relevant for (2) too.
Besides its intrinsic theoretical interest, the asymptotic

behavior of perturbative expansions in QCD is starting to
be seen in a series of observables, in particular, in heavy
quark physics. In this case, in order to handle the renor-
malon problem associated with the pole mass, different
threshold masses have been introduced [4–9]. Some of
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these threshold masses introduce (explicitly or implicitly) a
scale νf that acts as an infrared cutoff. Such infrared cutoff
kills the renormalon behavior of the perturbative series
producing a convergent perturbative series and introducing
a linear powerlike dependence in νf. In practice these
threshold masses work quite well. The error associated to
the fact that we have this linear cutoff is typically small
(see, for instance, [10–12]). Still, it is not optimal con-
ceptually.1 Other of these threshold masses use approxi-
mate expressions for the Borel transform of the pole mass
that partially incorporate the renormalon singularities in the
Borel plane. The inverse of the Borel transform (which we
will name Borel sum or Borel integral in the following) is
then ill defined. This requires using some prescription to
regulate the Borel integral. In this last case the perturbative
series is typically abandoned and one directly works with
the Borel integral expression. In this approach it is not
quantified what is the error made by using (the unavoid-
ably) approximated expressions for the Borel transform.
This discussion leads us to consider an alternative

method that is also often used to tame the asymptotic
behavior of the perturbative series: truncating the pertur-
bative sum at the minimal term. In mathematical literature,
such approximation is often named the superasymptotic
approximation of the original function (see [13]), which is a
name we will also use in the following. This procedure has
long since been used (see [14], or [15], for references),
mainly in the context of solutions to one-dimensional
differential equations. Nevertheless, in that context, renor-
malons do not show up, nor it does the issue of scheme/
scale dependence.
In the context of four dimensional quantum gauge field

theories, truncation of the perturbative sum in different
formulations or using approximated expressions for the
Borel integrals has also been considered since the early
days of OPE/renormalon analyses to determine observables
with NP accuracy (see for instance, [15–22]). However, it
was not possible to make quantitative analyses beyond the
large-β0 approximation, since the existing perturbative
series were only known to low orders. More recently,
perturbative expansions have been obtained to high enough
orders for some observables in the lattice scheme [23–26].
This has allowed us to quantitatively use perturbative sums
truncated at the minimal term and successfully determine
the gluon condensate and Λ̄ in the quenched approximation
[27]. This success motivates us to try to improve this
approach, and to revisit with it observables already com-
puted in the MS scheme, even if only few coefficients are
known, since in the MS scheme (and in particular in heavy

quark physics) renormalon dominance shows up at rela-
tively low orders.
Whereas, by construction, the superasymptotic approxi-

mation does not explicitly introduce the factorization scale
νf, the dependence on the renormalization scale ν remains
to be assessed. Therefore, to push this method forward we
need to get a quantitative understanding of the error on the
truncation of the sum and of its remaining scheme and scale
dependence. Similarly, the NP power corrections are
potentially dependent on how the divergent perturbative
series is regulated and on the renormalization scheme/scale
used to define the strong coupling: αXðμÞ. A major point of
this paper is to be able to control (in an analytic way) the
dependence of the power corrections in this generalized
scheme dependence. We will only then be able to add NP
power corrections to the perturbative series in a systematic
way, since the mixing between the perturbative series and
the leading NP terms (or between the perturbative series
associated to the scales Q1 and Q2) makes it impossible to
determine them independently. An unambiguous definition
of the NP power corrections requires defining the pertur-
bative series with power accuracy. Such combined expan-
sion of perturbative series and NP terms will be called
hyperasymptotic expansion as in [13]. Organizing the
computation in this way allows us to precisely state the
parametric accuracy of the result at each step.
The mixing between perturbative and NP effects may

hinder estimating the real size of the NP effects. This
happens when using threshold masses. In this case the
problem is not severe. A more extreme example of this
problem appears in lattice regularization. The gluon con-
densate is, up to a factor, the expectation value of the
plaquette:

hG2ilatt ¼
36

π2
C−1
G ðαÞ 1

a4
hPiMCðαÞ ≃

36

π2
1

a4
p0α; ð1Þ

where p0 ¼ 4π=3. For β ¼ 3=ð2παÞ ¼ 6.65 we have
hG2ilatt ∼ 3.3 × 104r−40 , whereas the NP gluon condensate
is ∼3.2r−40 [27]. We see that the perturbative contribution
overwhelms the NP contribution by orders of magnitude.
Therefore, it is convenient to devise schemes where one has
extracted asmuch information as possible from perturbation
theory in such a way that the remaining NP object has a
minimal mixing with perturbation theory. This scheme
would provide a natural place to estimate the real size of
the NP corrections without the distortion due to perturbative
effects. We believe that in this scheme one could get a better
understanding of the real structure (size) of the NP effects.
This could be important, once the precision increases and to
set a standard for the future.
It is also our aim to relate the hyperasymptotic expansion

with the previously mentioned methods used to handle the
pole mass renormalon. This will allow us to parametrically

1In the same way that there is nothing conceptually wrong in
using cutoff regularization in perturbative computations, but
regularizations that kill spurious powerlike divergences, like
dimensional regularization, and preserve more symmetries are
much more convenient.
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quantify the error those methods have, in particular those
using approximate expressions for the Borel transform.
Finally, it is also worth mentioning that truncating the

perturbative series at the minimal term can be motivated in
the context of factorization of scales and effective field
theories, where onewants to factor out the physics associated
toQ from the physics associatedwithΛQCD. The point is that
in n-loop diagrams, new scales are effectively generated.
These scales are proportional to Q, but are modulated by
small factors ∼e−n

k, where k is an integer. The dominant
contribution to the n-loop diagram is not then due toQ but to
Qe−

n
kmin , where kmin is the smallest possible k for the process

at hand. For the case of the polemass kmin ¼ 1 andQ ¼ m. In
this case, for small n, we still have that me−n ≫ ΛQCD.
Nevertheless, for n ∼ 2π

β0α
, we have me−n ∼ ΛQCD. Doing

perturbation theory for n≳ 2π
β0α

would simply mean treating

me−n as much bigger than ΛQCD, which is incorrect.
The structure of the paper will be as follows. In Sec. II

we discuss the general case when there are no ultraviolet
renormalons. In Sec. III we discuss the QCD static potential
in the large β0 approximation. We use this quantity as a toy
model NP observable to test our methods. The inclusion of
ultraviolet renormalons and real QCD examples will be
discussed in followup papers.

II. DETERMINATION OF POWER CORRECTIONS
AND SUMMATION SCHEME DEPENDENCE

The generic form of the OPE of a dimensionless
observable is the following:

Observable

�
Q

ΛQCD

�
¼ SðαXðQÞÞþ

X
d

CO;dðαXðQÞÞhOdi
Qd :

ð2Þ

For observables that live in the Euclidean (like the Adler
function or the plaquette), Od generically represents a local
operator, but not necessarily so if the OPE is applied to EFTs
in the Minkowski (as it could be the case for the B meson
mass). In any case, the expectation values hOdi, are of order
Λd
QCD (up to some anomalous dimension). On the other hand

SðαXðQÞÞ can be computed as a Taylor expansion in powers
ofαXðQÞ. This series is assumed tobeasymptotic.Up to some
anomalous dimension,CO;dðαXðQÞÞ can also be computed as
a Taylor expansion in powers of αXðQÞ and the generated
series is also assumed to be asymptotic (wewill not explicitly
elaborate much on this fact though, since this leads us to
consider subleading corrections in the OPE expansion, which
can be handled in an analogous way). Then, the observable is
often represented in the following way:

Observable

�
Q

ΛQCD

�
¼

X∞
n¼0

pðXÞ
n αnþ1

X ðQÞ þ
�
K þ

X∞
n¼0

pðX;dÞ
n αnþ1

X ðQÞ
�
αγXðQÞΛ

d
X

Qd þ � � �

¼
X∞
n¼0

pðXÞ
n αnþ1

X ðQÞ þ
�
K0 þ

X∞
n¼0

p‘ðX;dÞ
n αnþ1

X ðQÞ
�
αγ−dbX ðQÞe−d 2π

β0αX ðQÞ þ � � �

¼
X∞
n¼0

pðXÞ
n

�
μ

Q

�
αnþ1
X ðμÞ þ

�
K0 þ

X∞
n¼0

p‘ðX;dÞ
n

�
μ

Q

�
αnþ1
X ðμÞ

�
αγ−dbX ðμÞ μ

d

Qd e
−d 2π

β0αX ðμÞ þ � � � ; ð3Þ

where the dots stand for terms suppressed by higher powers of ΛQCD=Q, β0 ¼ 11
3
CA − 4

3
TFNf, γ is the anomalous

dimension of the operator Od, and

ΛX ¼ μ exp

�
−
�

2π

β0αXðμÞ
þ b ln

�
1

2

β0αXðμÞ
2π

�
þ
X
j≥1

sðXÞj ð−bÞj
�
β0αXðμÞ

2π

�
j
��

; ð4Þ

with

b ¼ β1
2β20

; sðXÞ1 ¼ β21 − β0β
ðXÞ
2

4bβ40
;

sðXÞ2 ¼ β31 − 2β0β1β
ðXÞ
2 þ β20β

ðXÞ
3

16b2β60
; ð5Þ

and so on. Obviously, the three equalities in Eq. (3) are
symbolic representations of the observable, as the pertur-
bative series are asymptotic. We need to define first the
perturbative series with ΛQCD power accuracy. This defi-
nition of the perturbative series will, in turn, define

unambiguously the NP power correction. In realistic cases,
the only information that we will have of the OPE of the
observable will be:
(1) The exact knowledge of the coefficients pn up to

n ¼ N, where N ≫ 1 is large enough such that pn is
well approximated by its asymptotic behavior2;

2Otherwise the perturbative expression is not accurate enough
(in principle) to be sensitive to NP corrections and it does not
make much sense the consideration of NP power corrections,
which is the aim of this paper.
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(2) The knowledge of the structure of the leading NP
power corrections: values of d, γ and the very first

few terms of pðdÞ
n ;

(3) The knowledge of the asymptotic behavior of pn
(which relies on the previous item and demanding
consistency to the OPE):

pðasÞ
n

�
μ

Q

�
¼ ZX

Od

μd

Qd

Γð1þ db − γ þ nÞ
Γð1þ db − γÞ

×

�
β0
2πd

�
n
�
1þO

�
1

n

��
; ð6Þ

(4) The knowledge of the μ dependence of pn and p‘ðdÞ
n

dictated by the renormalization group invariance. In
realistic cases, only to some order.

Therefore, we will devise definition methods that only use
this information. This naturally leads us to consider the
perturbative series truncated at the minimal term N� (or
close by):

ðN� þbd− γÞβ0αXðμÞ
2πd

¼ e−
1

2ðN�þbd−γÞþOð 1

N�2Þ

→N� ¼ d2π
β0αXðμÞ

−
1

2
−dbþ γþOðαXðμÞÞ: ð7Þ

Note that N� depends on μ and on the renormalization
scheme X used to define the strong coupling constant:
αXðμÞ.
Therefore, we define

STðQÞ≡ SðX;N;μÞðQÞ≡XN
n¼0

pðXÞ
n

�
μ

Q

�
αnþ1
X ðμÞ: ð8Þ

After truncating, STðQÞ depends on small variations of N
aroundN�, on μ, and on the scheme X (in this paper we will
consider perturbative expansions either in the lattice or in
the MS scheme but the expressions are valid for general
renormalization schemes). Overall, we generically label all
the summation scheme dependence by T. The ambiguity
(freedom) of the truncated perturbative series is “of-the-
order” of the power correction. By this we mean that small

variations in N around N� are of Oðe−d 2π
β0αX ðμÞÞ. We also

assume that the truncated sum ST for N ∼ N� to be
asymptotic to the full result in the following way

Observable

�
Q

ΛQCD

�
− STðQÞ ¼ O

�
e−d

2π
β0αX ðμÞ

�
; ð9Þ

where d is the dimension of the leading NP term of
the OPE.
As the observable is summation scheme independent, the

T-scheme dependence of STðQÞ should cancel with the
scheme dependence of the NP power corrections. We

would like to determine Eq. (9) with higher precision.
As we have mentioned, one can get right the dimension d of
the NP power correction by approachingN to N�. It is more
complicated to fix the overall coefficient (and its structure
in powers of α and ln α) that modulates the NP power
correction. This will heavily depend on the freedom in
truncating the perturbative series. It also needs some extra
information in the relation between the perturbative series
and the observable.
In order to quantify this difference, we first search for

generalized summation schemes of the perturbative sum
that are T-scheme independent, i.e., that they are indepen-
dent of μ, X and N. The Borel integral of the Borel
transform is a natural candidate. In our case the inverse of
the Borel transform needs regularization, as it has singu-
larities in the real axis at positive values of the integration
variable. Here we take the principal value (PV) prescription
of the perturbative expansion:

SPVðQÞ≡
Z

∞

0;PV
dte−t=αXðμÞB½S�ðtÞ; ð10Þ

where one takes the arithmetic average of the integral above
and below the real axis and

B½S�ðtÞ ¼
X∞
n¼0

pðXÞ
n ðμQÞ
n!

tn: ð11Þ

For values of t larger than the radius of convergence of this
series, we take the analytic continuation of this function.
For instance (this function will be useful later on),

IðdbÞ≡
Z

∞

0;PV
dte−t=α

1

ð1 − 2u=dÞ1þdb−γ

¼ αDdb−γð−ð2πdÞ=ðβ0αÞÞ ð12Þ

∼
X∞
n¼0

Γð1þ db − γ þ nÞ
Γð1þ db − γÞ

�
β0
2πd

�
n
αnþ1ðμÞ; ð13Þ

where u≡ β0t=ð4πÞ. For this and related equations we
collect a useful set of equalities in the Appendix.
Now, our first task is to show that SPV is indeed T-

scheme independent.
In the large β0 approximation the PV Borel integral can

be shown to be factorization-scale and scheme independent
(actually in the large β0 approximation both things are the
same) [28]. Beyond the large β0 approximation things are
more complicated. Nevertheless, we can still show the
factorization and scheme independence of SPV under some
assumptions. We first consider the renormalization scale
dependence. We restrict the discussion to the inclusion of β1
to the running of α. Then, renormalization scale independ-
ence gives the following relation between coefficients [28]:
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μ
d
dμ

p0 ¼ 0; μ
d
dμ

p1 ¼
β0
2π

p0;

μ
d
dμ

pk ¼
β0
2π

kpk−1 þ
β1
8π2

ðk − 1Þpk−2; k ≥ 2: ð14Þ

Using these relations we can deduce that

μ
d
dμ

SPV ¼ −α
β1
8π2

Z
∞

0;PV
du

d
du

X∞
j¼0

�
4π

β0

�
jþ2

×
1

jþ 2

1

j!
pjðτÞe−4πu=ðβ0αXðμÞÞujþ2: ð15Þ

This is a total derivative and vanishes. It is possible to
include β2 to the running of α. Renormalization scale
independence of the perturbative series now gives the
following relation between the coefficients of the perturba-
tive expansion

μ
d
dμ

pk ¼
β0
2π

kpk−1þ
β1
8π2

ðk−1Þpk−2

þ β2
32π3

ðk−2Þpk−3; k≥ 3: ð16Þ

Though much lengthier expressions show up, it is still
possible to deduce that

μ
d
dμ

SPV ∝A1β1

Z
∞

0;PV
du

d
du

g1ðuÞþA2β2

Z
∞

0;PV
du

d
du

g2ðuÞ:

ð17Þ

These are total derivatives. The behavior of giðuÞ for small u
is giðuÞ ∼ uα with α > 0. For large u, giðuÞ ∼ e−u=αhðuÞ,
where hðuÞ does not grow exponentially. Therefore,
gð0Þ ¼ 0 and gð∞Þ ¼ 0, proving the renormalization scale
independence of SPV. The inclusion of higher order terms
seems to produce also total derivatives that vanish. Note that
our conclusion disagrees with [28].
We now turn to the scheme dependence. Given the

perturbative series in a given scheme:

X∞
k¼0

pkα
kþ1
X ; ð18Þ

we consider a general change of scheme (but regular
enough, such that, for instance, do not introduce spurious
singularities in the Borel plane):

αX ¼ αX0 þ d1α2X0 þ d2α3X0 þ d3α4X0 þ � � � : ð19Þ

The independence on the coefficients di of Eq. (18)
produces the following relation

X∞
k¼0

��
d
ddi

pk

�
αkþ1
X þ pkðkþ 1ÞαkX

d
ddi

αX

�
¼ 0: ð20Þ

Note also that

d
ddi

αX ¼ αiþ1
X ð1þOðαXÞÞ: ð21Þ

Overall we get

d
dd1

pk ¼ −kpk−1 þ 2d1ðk − 1Þpk−2

− ð5d21 − 2d2Þðk − 2Þpk−3 þ � � � ð22Þ

d
dd2

pk ¼ −ðk − 1Þpk−2 þ 3d1ðk − 2Þpk−3

− ð9d21 − 3d2Þðk − 3Þpk−4 þ � � � : ð23Þ

For simplification one could work in schemes that make
higher order terms (the dots) vanish. Then, making a similar
computation to the one we did to get the scale dependence,
we get that the PV integral does not change under these
variations, as we get total derivatives, which vanish:

d
dd1

SPV ¼ 0
d
dd2

SPV ¼ 0: ð24Þ

Therefore, SPV is T-scheme independent.
We do not enter in this paper into global definitions of

the Borel integral of the observable itself, which may not
exist [1]. For the purposes of this paper, it is enough that we
can define the Borel transform of the perturbative series and
its Borel sum (with the PV prescription). We then assume
that difference between the Borel sum regulated using the
PV prescription and the complete NP result obtained from
full QCD can be absorbed in the NP terms of the OPE. An
analytic proof (of disproof) of that is tantamount to given a
NP proof of the OPE in QCD, which is, at present, beyond
reach. Since we assume that such generalized resummation
scheme preserves the structure of the NP OPE, the differ-
ence with the observable has to exactly scale as the NP
corrections of the OPE:

Observable

�
Q

ΛQCD

�

¼ SPVðαðQÞÞ þ KðPVÞ
X αγXðQÞΛ

d
X

Qd ð1þOðαXðQÞÞÞ

þO
�
Λd0
X

Qd0

�
; ð25Þ

where the last term refers to higher order terms in the OPE
(d0 > d). KðPVÞ

X is independent of μ andQ. We also demand

KðPVÞ
X to transform as Λ−d

X under changes of scheme of the
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strong coupling, αX, i.e., the combinationKPV
X Λd

X is scheme
independent. Indeed, since the structure of the NP OPE
should be preserved, alternative generalized summation
schemes should be different from the SPV by a term exactly
proportional to the μ and scheme independent quantity

∝ KðPVÞ
X αγXðQÞΛ

d
X

Qd ð1þOðαXðQÞÞÞ: ð26Þ

Note also that the exponent γ and the OðαXðQÞÞ can be
determined by RG analyses. In some cases RG analysis
says that there is no OðαXðQÞÞ corrections (the Wilson
coefficient is identically 1). This indeed would be the case
of the B-meson mass.
SPV has the handicap, though, that it needs the full

analytic structure of the Borel transform in the Borel
plane, i.e., it requires the knowledge of the perturbative
series to all orders. This can make them unpractical.3

Remarkably enough, however, this problem can be
bypassed by relating SPV with truncated versions of
the perturbative series. This is the strategy we follow:
devising truncated sums that we can relate with the PV
result. This allows us to control the scheme dependence
and error of using ST . Quite remarkably, this approach
also allows us to quantify the error of using approximate
expressions for SPV, since we do not know the complete
perturbative series.
For fixed μ, the N → ∞ limit of STðQÞ diverges, since

the perturbative series is divergent. Therefore, if we want to
keep μ finite, we have to keep N finite as well.
Alternatively, if we want to take N → ∞, then we should
as well send μ → ∞. Therefore, we explore two possibil-
ities. One is to take μ ∼Q in N ∼ N�, the other is to take
μ → ∞ (correlated with N ∼ N� → ∞):
(1) N and μ ∼Q large but finite:

N ¼ NPðαÞ≡ d
2π

β0αXðμÞ
ð1 − cαXðμÞÞ; ð27Þ

(2) N → ∞ and μ → ∞ in a correlated way. We con-
sider two options:

AÞ Nþ1¼NSðαÞ≡d
2π

β0αXðμÞ
;

BÞ N¼NAðαÞ≡d
2π

β0αXðμÞ
ð1−c0αXðQÞÞ; ð28Þ

where c0 > 0 but c is arbitrary otherwise. Note that in case
(1), c can partially simulate changes on the scale and
scheme of αX.
We will study case (1) and (2) in the following two

subsections.

A. N large and μ ∼ Q ≫ ΛQCD. Eq. (27). Case (1)

We first study option (1). Now the truncated sum reads
[NP is defined in Eq. (27)]

SPðQÞ≡XNP

n¼0

pðXÞ
n

�
μ

Q

�
αnþ1
X ðμÞ: ð29Þ

We want to estimate what is the leading contribution
to the difference between the PV sum and its truncated
sum. This difference is dominated by the leading renor-
malon. Therefore, we focus on the contribution associated
with it:

δSPV ¼ ZX
Od

μd

Qd ½IðdbÞ þ b1Iðdb − 1Þ þ � � ��

¼ ZX
Od

μd

Qd

XN
n¼0

Γð1þ db − γ þ nÞ
Γð1þ db − γÞ

�
1þ b1

db − γ

db − γ þ n

þ b2
ðdb − γÞ2

ðnþ db − γÞðnþ db − γ − 1Þ þ � � �
�

×

�
β0
2πd

�
n
αnþ1
X ðμÞ þΩ; ð30Þ

where I is defined in Eq. (12). The finite sum stands for the
contribution to SPðQÞ associated with the leading renor-
malon. Ω is the terminant [14] of the asymptotic series
when we truncate at αNþ1:

Ω¼ΔΩðdbÞþb1ΔΩðdb−1Þþw2ΔΩðdb−2Þþ��� ð31Þ

where

w2 ¼
b2ðdb − γÞ
db − γ − 1

ð32Þ

and ΔΩ admits the following integral (but not a Borel
integral) representation

ΔΩðdbÞ≡ ZX
Od

μd

Qd

1

Γð1þ db − γÞ
�

β0
2πd

�
Nþ1

αNþ2
X ðμÞ

×
Z

∞

0;PV
dx

xdb−γþNþ1e−x

1 − x β0αXðμÞ
2πd

: ð33Þ

With these definitions Ω has the desired asymptotic
expansion:

3In the resolution of one-dimensional differential equations
this cannot be much of a problem, since it is possible to compute
perturbation series to very high orders, and one has good analytic
control on the NP corrections, as they can be evaluated via
instantons. Nevertheless, this is much of an issue for us where in
realistic scenarios we will only have approximated evaluations of
the leading singularity in the Borel plane.
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Ω∼ZX
Od

μd

Qd

X∞
n¼Nþ1

Γð1þ db− γþ nÞ
Γð1þ db− γÞ

�
1þ b1

db− γ

db− γþ n
þ b2

ðdb− γÞ2
ðnþ db− γÞðnþ db− γ − 1Þ þ � � �

��
β0
2πd

�
n
αnþ1
X ðμÞ: ð34Þ

Even if Eq. (33) is not in a Borel integral form, this integral is amenable for a saddle approximation analysis (still, note also
that we can evaluate it numerically exactly). We consider the integral

H ¼
Z

∞

0;PV
dx

xdb−γþNþ1e−x

1 − x β0αXðμÞ
2πd

¼ Γðdb − γ þ N þ 1ÞDdb−γþNþ1

�
2πd

β0αXðμÞ
�
; ð35Þ

whereDbðxÞ is defined in the Appendix. Setting (to avoid considering noninteger values of N, for a given value of μwewill
restrict to values of c that ensures that NP is integer)

N ¼ NP ¼ 2πd
β0αXðμÞ

−
2πdc
β0

; ð36Þ

the integral H has the following expansion (this result is obtained by explicit computation and checked with an alternative
computation using the recursion relations one can find in [14])

H ¼ −
�

2πd
β0αXðμÞ

�
2þbd−γþ 2πd

β0αX ðμÞ−
2πdc
β0 e

−2πd
β0αX ðμÞα1=2X ðμÞ

�
β1=20

d1=2

�
−ηc þ

1

3

�
þ αXðμÞ

β3=20

πd3=2

�
−

1

12
η3c þ

1

24
ηc −

1

1080

�

þ α2XðμÞ
β5=20

π2d5=2

�
−

1

160
η5c −

1

96
η4c þ

1

144
η3c þ

1

96
η2c −

1

640
ηc −

25

24192

�
þOðα3XðμÞÞ

�
;

where ηc ≡ −bdþ 2πd
β0

cþ γ − 1. Thus

ΔΩðbdÞ¼−
ZX
Od
μd

Γð1þbd− γÞQd

�
2πd
β0

�
bd−γþ1

e
−2πd

β0αX ðμÞα1=2−bdþγ
X ðμÞ

�
β1=20

d1=2

�
−ηcþ

1

3

�

þαXðμÞ
β3=20

πd3=2

�
−

1

12
η3cþ

1

24
ηc−

1

1080

�
þα2XðμÞ

β5=20

π2d5=2

�
−

1

160
η5c−

1

96
η4cþ

1

144
η3cþ

1

96
η2c−

1

640
ηc−

25

24192

�

þOðα3XðμÞÞ
�
;

and Ω reads

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
αXðμÞ

p
KðPÞ

X
μd

Qd e
− d2π
β0αX ðμÞ

�
β0αXðμÞ

4π

�
−db

αγXðμÞð1þ K̄ðPÞ
X;1αXðμÞ þ K̄ðPÞ

X;2α
2
XðμÞ þOðα3XðμÞÞÞ; ð37Þ

or in terms of ΛQCD,

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
αXðμÞ

p
KðPÞ

X
Λd
X

Qd α
γ
XðμÞð1þ KðPÞ

X;1αXðμÞ þ KðPÞ
X;2α

2
XðμÞ þOðα3XðμÞÞÞ; ð38Þ

where

KðPÞ
X ¼ −ZX

Od

Γð1þ bd − γÞ
�
2πd
β0

�
bd−γþ1

�
β0
4π

�
bd
�
β0
d

�
1=2

�
−ηc þ

1

3

�
ð39Þ

K̄ðPÞ
X;1 ¼

β0=ðπdÞ
−ηc þ 1

3

�
−b1ðbd − γÞ

�
1

2
ηc þ

1

3

�
−

1

12
η3c þ

1

24
ηc −

1

1080

�
ð40Þ

KðPÞ
X;1 ¼ K̄ðPÞ

X;1 −
bβ0ds1
2π

ð41Þ
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K̄ðPÞ
X;2 ¼

β20=ðπdÞ2
−ηc þ 1

3

�
−w2ðbd − γ − 1Þðbd − γÞ

�
1

4
ηc þ

5

12

�
þ b1ðbd − γÞ

�
−

1

24
η3c −

1

8
η2c −

5

48
ηc −

23

1080

�
−

1

160
η5c

−
1

96
η4c þ

1

144
η3c þ

1

96
η2c −

1

640
ηc −

25

24192

�
ð42Þ

KðPÞ
X;2 ¼

1

8π2
ð8π2K̄ðPÞ

X;2 − 4bdπs1β0K̄
ðPÞ
X;1 þ b2d2s21β

2
0 þ 2b2ds2β20Þ: ð43Þ

Let us note that Eq. (38) also has a factor αγðμÞ besides the prefactor ffiffiffiffiffiffiffiffiffi
αðμÞp

. In this paper we will only consider situations
where γ ¼ 0. To properly account for this factor one has to perform a resummation of lnðμ=QÞ terms that effectively
transform αγðμÞ into αγðQÞ in Eq. (38). For one example of a case with γ ≠ 0 where this is done, see, for instance, [29].
In the large β0 it is possible to write Ω in a Borel integral form. It reads

Ω ¼ ZX
Od

μd

Qd

1

Γð1 − γÞ
�
4π

β0

�
−γþ1

αγXðμÞ
�
2

d

�
Nþ1

Z
∞

0;PV
du e

−4πu
β0αX ðμÞ u

−γþNþ1

1 − 2u
d

: ð44Þ

After integration we obtain (ηðβ0Þc ≡ 2πd
β0

cþ γ − 1)

Ω ¼ −
ZX
Od
Λd
X

Γð1 − γÞQd

�
2πd
β0

�
−γþ1

α1=2þγ
X ðμÞ

�
β1=20

d1=2

�
−ηðβ0Þc þ 1

3

�
þ αXðμÞ

β3=20

πd3=2

�
−

1

12
ηðβ0Þ3c þ 1

24
ηðβ0Þc −

1

1080

�

þ α2XðμÞ
β5=20

π2d5=2

�
−

1

160
ηðβ0Þ5c −

1

96
ηðβ0Þ4c þ 1

144
ηðβ0Þ3c þ 1

96
ηðβ0Þ2c −

1

640
ηðβ0Þc −

25

24192

�
þOðα3XðμÞÞ

�
:

Obviously this result coincides with the full result when setting b1 ¼ β1 ¼ � � � ¼ 0.
Subleading NP renormalons give subleading power corrections. A function with a finite radius of convergence in the α

plane yields a Borel transform that is an analytic function in the whole complex u plane. Such function generates corrections

smaller than any NP correction (i.e., of order ðK=NÞN ∼ e−K
2π

β0αX ðμÞ lnð 2π
β0αX ðμÞÞ)

Since Ω gives the leading NP correction to SPV we can write

SPV ¼ SP þΩþ � � � : ð45Þ

Overall we obtain

SPVðQÞ ¼ SPðQ; μÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
αXðμÞ

p
KðPÞ

X
Λd
X

Qd α
γ
XðμÞ

	
1þ KðPÞ

X;1αXðμÞ þ KðPÞ
X;2α

2
XðμÞ þOðα3XðμÞÞ



þ NPpower corrections

ð46Þ
or

SPVðQÞ ¼ SPðQ; μÞ þ ffiffiffiffiffiffiffiffiffiffiffiffi
αXðμÞ

p
KðPÞ

X
μd

Qd e
− d2π
β0αX ðμÞ

�
β0αXðμÞ

4π

�−db
αγXðμÞ

× ð1þ K̄ðPÞ
X;1αXðμÞ þ K̄ðPÞ

X;2α
2
XðμÞ þOðα3XðμÞÞÞ þ NPpower corrections

ð47Þ

Note that with this method we do not expect a bad behavior when we take c → 0: The result is smooth, unlike
what will happen with method 2B). Remarkable enough, this result quantifies the error of determinations of NP corrections
obtained by truncating the sum at (or around) the minimal term, which is of Oð ffiffiffiffiffiffiffiffiffi

αðμÞp
Λd
QCDÞ irrespective of the scale and

scheme (in particular this applies to the analysis in [27]). We now can do better, as we now can compute these subleading
terms that before went into the error. Therefore, we can increase the precision with which the genuine NP term can be
determined.
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If the precision of the computation is high enough one
may consider going beyond the leading power accuracy and
include the first correction to the above equations in the
hyperasymptotic expansion. It would read

SPVðQÞ¼SPðQ;μÞþΩðμÞ

þ
XN0

P

n¼NPþ1

ðpn−pðasÞ
n Þαnþ1

X ðμÞþΩ0ðμÞþ��� ; ð48Þ

where N0
P stands for the power in α where the pertur-

bative series will mix with the subleading renormalon
and Ω0 can be easily deduced from Eq. (37) adapting
dimension and anomalous dimension to the next
renormalon.
The truncated sum SPðQ; μÞ depends on μ but not SPV.

This has the important consequence that we can determine
the μ dependence of SPðQ; μÞ with ΛQCD power accuracy,
and also to control the scheme dependence. We obtain

μ
d
dμ

SPðQ; μÞ ¼ −KðPÞ
X

Λd
X

Qd α
3
2
þγ
X ðμÞ

�
−
β0
4π

ð1þ 2γÞ þ αXðμÞ
1

16π2
ð−12πβ0KðPÞ

X;1 − 8πβ0γK
ðPÞ
X;1 − β1 − 2β1γÞ

þ α2XðμÞ
1

64π3
ð−2β2γ − β2 − 8πβ1γK

ðPÞ
X;1 − 12πβ1K

ðPÞ
X;1 − 32π2β0γK

ðPÞ
X;2 − 80π2β0K

ðPÞ
X;2Þ þOðα3XðμÞÞ

�

− μ
d
dμ

XN0
P

n¼NPþ1

ðpn − pðasÞ
n Þαnþ1

X ðμÞ þ � � � : ð49Þ

We will typically take μ ¼ kQ, where k is a constant of
order 1 to avoid large factors. Note also that the Taylor
expansion in powers of α of the last term in Eq. (48) starts at
n ¼ NP þ 1. This effectively transform this term in a NP
power correction. Moreover, the fact that the leading
renormalon is subtracted from the perturbative series
expansions further suppress this contribution. A naive
estimate can be obtained by saturating the coefficients
by the next renormalon. For the case of the static potential,
the next renormalon is located at u ¼ 3=2. This produces
that the series roughly scales as

∼
�
1

3

� 2π
β0αX ðμÞ

e−
2π

β0αX ðμÞ ¼ e−
2π

β0αX ðμÞð1þlnð3ÞÞ; ð50Þ

which is obviously subleading, but still more important
than the next NP correction. We will visualize the size of
the different terms of the hyperasymptotic expansion in
more detail in Sec. III B for the case of the static potential in
the large β0 approximation.
The correction associated with an analytic function in the

whole complex Borel plane (of order αN ∼ e−#N lnðNÞ) is
smaller than any NP correction (of order e−#

0N, where #0 is
finite and bigger the further away the renormalon singu-
larity is from the origin). Still, one can also worry about
the role played by the logs generated in the perturbative
computation: lnðμ=QÞ. Assuming they are large, the lead-
ing contribution to the orderαN is ofOðαN lnNðμ=QÞÞ. Since
it is still 1=N! suppressed compared with the renormalon
contributions, it can bewritten as e−#N lnðN=ðμ=QÞÞ. Obviously
if k is made parametrically big it could jeopardize the
hierarchy of the corrections that we have here. Therefore, we
will always keep k parametrically of Oð1Þ.

We now illustrate the above general discussion
using the particular case of the heavy quark mass (we
neglect ultraviolet renormalons). We then have mPV ¼
m̄½1þ SPðm̄; μÞ þ ΩmðμÞ þ � � ��, where m̄≡mMSðmMSÞ,
we set d ¼ 1, and also set the Wilson coefficient of the
nonperturbative correction to 1 [30] in SP and Ωm.
We now compare our analysis with existing threshold

masses. We focus on the RSmass [6] and relatives.4 The RS
mass is defined in the following way:

mRSðνfÞ ¼ mOS − δmð0Þ
RS ≡ m̄þ

XN
n¼0

rRSn ðμ; νfÞαnþ1ðμÞ;

ð51Þ

where

mOS ¼ m̄þ
XN
n¼0

rnðμÞαnþ1ðμÞ; ð52Þ

and (in [6] ZX
m was named Nm)

δmðnÞ
RS ¼

XN
s¼n

rðasÞs ðνfÞαsþ1
s ðνfÞ;

rðasÞs ðνfÞ ¼ ZX
mνf

�
β0
2π

�
sX∞
k¼0

ck
Γðsþ 1þ b − kÞ
Γð1þ b − kÞ ; ð53Þ

4Conceptually they are equivalent to the kinetic [5] or PS mass
[4], as they have an explicit cutoff as well. These other schemes
are different at low orders but they share the same asymptotic
behavior.
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where one typically takesN ¼ Nmax≡ the maximal number
of coefficients of the perturbative expansion that are known
exactly (we assume that Nmax is not that high that we have
to worry about subleading renormalon). In order to lessen
the νf scale dependence, the RS’≡RSð1Þ was also defined:

mRS0 ðνfÞ ¼ mOS − δmRS0

¼ m̄þ r0αðμÞ þ
XN
n¼1

rRS
0

n ðμ; νfÞαnþ1ðμÞ: ð54Þ

It is obvious that one could generalize to RSðnÞ where the
subtraction starts at order αnþ1:

mRSðnÞ ðνfÞ¼mOS−δmRSðnÞ

¼m̄þ
Xn
s¼0

rsðμÞαsþ1ðμÞþ
XN
s¼n

rRS
ðnÞ

s ðμ;νfÞαsþ1ðμÞ:

ð55Þ

Nevertheless, we can not increase n arbitrarily, otherwise
the renormalon is not canceled. Moreover, the value of n for
which there is no cancellation of the renormalon will
depend on μ. Therefore, when including higher orders
one should do it with care once approaching to the minimal
term. Another issue is the νf dependence. To connect with
the approach used in this paper we should take νf ¼ μ.

Note that then rRS
ðnÞ

s ðμÞ ¼ rsðμÞ − rðasÞs ðμÞ. In the original
applications of the RS schemes this could be a problem,
since the natural scale in the pole mass is different from the
natural scale in the static potential.5 To connect with the
approach used in this paper, we control the scale depend-
ence by fixing n ¼ N ¼ NPðμÞ. This smoothly connect the
RS schemes with the schemes where the series is truncated
at the minimal term. One can then add Ωm and higher
orders terms in the hyperasymptotic expansion of mPV.
We now consider the threshold mass named mBR,

defined in [7] (see also [32]). The author directly works
with the Borel transform and then regulate the Borel
integral using the PV prescription. The complete expres-
sion of the Borel transform is not known. Therefore, in
practice, an approximated expression is used that agrees
with the known terms of the pole mass perturbative
expansion till N ¼ Nmax ¼ 2 (the known coefficients at
that time) and incorporates the leading singularity in the
Borel plane. The author also makes a conformal mapping
of the Borel transform. The μ dependence of mBR was
usually fixed to μ ¼ m, except in [33]. To make a
quantitative comparison with our analysis, we leave aside
the conformal mapping and make explicit the μ scale

dependence in mBR. The key point then is the comparison
of Nð¼ 2Þ with NP. If N < NPðμÞ there is powerlike μ
dependence that gets uncanceled with the contribution of
SP. In other words

m̄

�
mðNÞ

BR ðμÞ
m̄

−1−SPðm̄;μÞ−ΩðμÞ
�
¼
XNP

Nþ1

rðasÞn ðμÞαnþ1ðμÞ:

ð56Þ

Note that this produces an strong (linear) renormalization

scale dependence (rðasÞn ∼ μ) that is missed if one sets
μ ¼ m̄. This problem is potentially more severe in top
physics (see for instance [34]), since one includes orders in
perturbation theory beyond those presently known if the
perturbative expansion is made with αðmtÞ.
For N ¼ NP we exactly have that

m̄

�
mðNÞ

BR ðμÞ
m̄

− 1 − SPðm̄; μÞ −ΩðμÞ
�
¼ 0: ð57Þ

For N > NP we have

m̄

�
mðNÞ

BR ðμÞ
m̄

− 1 − SPðm̄; μÞ − ΩðμÞ
�

¼
XN

n¼NPþ1

ðrn − rðasÞn Þαnþ1ðμÞ: ð58Þ

Overall, the only problematic situation would be if
N < NP. For N ≥ NP, mBR and mPV are equal within
the approximation used, and our analysis reorganizes the
result within a hyperasymptotic expansion. This allows us
to quantitatively control the μ dependence, and to para-
metrically state the error, of the result (for a given
truncation) with NP power accuracy using a hyperasymp-
totic counting.
We can also connect our results with mMRS, defined in

[9], in the following way (the expression of J can be found
in Eq. (2.17) of [9]).

mMRS¼mRSðm̄ÞþJ ðm̄Þ

¼m̄þ
XN
n¼0

ðrnðm̄Þ−rðasÞn ðm̄ÞÞαnþ1ðm̄ÞþJ ðm̄Þ: ð59Þ

In this definition, μ has been fixed to m̄. By doing so we
cannot estimate the error associated with the μ dependence
of mMRS. Therefore, we introduce it and generalize the
definition of mMRS in the following way [we could indeed
write a more general definition by putting a different scale
for the renormalon term: mMRSðνfÞ ¼ mRSðνfÞ þ J ðνfÞ.
This would still achieve renormalon cancellation]:

5If the scales are widely separated, this problem could be
overcome using the resummation of logarithms of νf , as first
worked out in [31].
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mMRSðμÞ ¼ m̄þ
XN
n¼0

ðrn − rðasÞn Þαnþ1ðμÞ þ J ðμÞ; ð60Þ

which makes explicit the μ scale dependence of the
definition. In principle one could think that, since it is
related with RS mass, this would make a linear dependence
in μ appear. Remarkably enough this is not the case. We can
relate this expression with the quantities defined above.

Indeed the difference between mðNÞ
MRSðμÞ and mðNÞ

BR ðμÞ is
proportional to ΛQCD:

mðNÞ
BR ðμÞ −mðNÞ

MRSðμÞ ¼ − cosðπbÞ 4πΓð−bÞ
21þbβ0

ZX
mΛX: ð61Þ

This quantity diverges in the large β0 limit, which makes it

not possible to take the large β0 limit of mðNÞ
MRSðμÞ (alter-

native definitions were then proposed in [9]). The pos-
sibility to subtract this term from the PV regulated Borel
integral was also considered in [32], though with a different
(but related) motivation. In this respect, we note that
subtracting this quantity from the PV result has been
criticized in [35], on the basis of analytic properties of
the observable. Nevertheless, this discussion is not directly
relevant for us,6 as adding or subtracting this term would
just be equivalent to a change of resummation scheme that
can be absorbed in the genuine NP power correction. Note
though that this difference is parametrically bigger than
m̄Ωm, since the latter scales like Oð ffiffiffi

α
p

ΛQCDÞ. In any case,
since the difference with the PV result is a scale/scheme
independent quantity proportional to ΛQCD, the comparison
with our analysis runs in complete parallel to the previous

discussion of mðNÞ
BR with respect to N. Again, problems will

show up if N < NP, but for N ≥ NP, mMRS is equal to mPV
within the accuracy of the computation, except for Eq. (61).
Therefore, it can be written in terms of a modified version
of the hyperasymptotic expansion discussed in this section.
A more extensive discussion and a quantitative analysis

for the case of the top, bottom and charm quark masses will
be carried out in [36].

B. (N;μ) → ∞. Eq. (28). Case (2A)

As promising as method (1) is, it is worth it to explore
alternatives that yield results that are explicitly N (and
therefore μ) independent. They may also lead to a better
analytic understanding of the observable. This can be
achieved by taking μ and N going to infinity in a correlated
way. The simplest possibility one may consider is taking
the limit as in 2A) in Eq. (28).
The case (2A) was studied in the large β0 limit in [37,38]

for the case of the static potential (a more general case,

including subleading corrections to the running of α, was
also considered in [38]). It was observed that ST was
logarithmically divergent in N and the proportionality
coefficient found. Nevertheless, it was not possible to get
a direct connection of this coefficient with the normalization
of the leading renormalon in the Borel plane. This problem
has been solved in [39], where it has been shown how to
relate the coefficient of the lnN term with the normalization
of the renormalon. This analysis has also been done for the
Adler function. Unfortunately, the validity of these findings
is restricted to the large β0 approximation.
Beyond the large β0 approximation only the static

potential has been studied [37,38]. Remarkably enough
the lnN [and an associated lnðln rΛQCDÞ] behavior survives,
albeit with different coefficients. This may point to a certain
universality (beyond large β0) of this result. Unfortunately, it
is not known now how to relate such coefficient with the
normalization of the renormalon. This would be very useful
for analyses beyond the large β0.
Wewill discuss all this inmore detail in Sec. III C 1where

we study the static potential in the large β0 approximation in
this limit.

C. (N;μ) → ∞. Eq. (28). Case (2B)

We have seen that ST was logarithmic divergent in N
when taking the limit (2A). It was also not possible to
connect ST with its Borel sum. We now consider the limit
(2B). In this case one truncates before reaching the
minimum, i.e., for N < N� ¼ d2π

β0αXðμÞ. This will yield a

finite result. The other point we address is the relation
of ST in the limit (2B) with its Borel sum.
For some specific models of sign alternating perturbative

series, it was soon realized that the N → ∞ limit of their
associated truncated sums could be related with a modified
version of the Borel integral [40,41], if suchN → ∞ limit is
performed in an specific way. For instance, it was shown that

lim
N→∞

XN−1

k¼0

pkðτðNÞÞαkþ1ðτðNÞÞ ¼
Z

4π
β0χ0

0

e−t=α

π þ t
dt; ð62Þ

where

τ≡ β0
2
lnðμ=ΛÞ ¼ π

α
τðNÞ ¼ β0

4
χ0N þOðlnNÞ ð63Þ

with

χ0 ¼
4

β0
0.278 pkðτ0Þ ¼ ð−1Þk 1

πkþ1
k!: ð64Þ

Later work generalized this result to a more general
series expansions, even to some that show a nonsign
alternating series (but assuming that their Borel transform
has a finite radius of convergence), and for arbitrary χ (as
far as it satisfies some conditions). Their results can be
summarized in the following equation:

6It would be if we were able to relate the PV Borel integral with
a NP definition of the observable.
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lim
N→∞

XN−1

k¼0

pkðτðNÞÞαkþ1ðτðNÞÞ

¼
Z 4π

β0χ

0

e−t=αðτ0Þ
X∞
j¼0

pjðτ0Þ
j!

tjdt; ð65Þ

where

αðτÞ
π

¼ 1=ðτðNÞ þ τ0Þ τðNÞ ¼ β0
4
χN; ð66Þ

and we require χ to be such that
P∞

j¼0

pjðτ0Þ
j! tj is analytic for

jtj < 4π
β0χ

. Therefore, we can indeed sum the Borel series
unambiguously inside the disc.
This was originally proven in [28,42] by brute force

computation. It was also proven using a different method
(integration in the complex plane) in [43] (in this last
reference the Oð1= ffiffiffiffi

N
p Þ corrections were also computed).

In both cases the running of the strong coupling is restricted
to follow the large β0 approximation.
Whereas the above result applies to arbitrary perturbative

series (with the qualifications mentioned above), the run-
ning of α is constrained to follow the large β0 approxima-
tion. This is an important constraint if we want to consider
the case of QCD, where the perturbative expansion of the
beta function is not a monomial but has more terms. One
can bypass this constraint if Eq. (2) in [43] is understood as
a change of scheme instead of a change of a renormaliza-
tion scale. It is also possible to generalize the derivation of
[43] for a strong coupling with a general beta function. In
this generalization new 1=N terms are generated.
Alternatively, one can slightly modify how the μ → ∞ is
taken in Eq. (28). Instead of case (2B) one can take

N0
AðαÞ≡ d

2π

β0αXðμÞ
ð1 − c0αXðQÞÞ

− d
2π

β0αXðQÞ ð1 − c0αXðQÞÞ: ð67Þ

The difference with NA vanishes when μ → ∞. With this
modified scaling it is possible to show that Eq. (5) in [43]
holds taking k ¼ Nχ with χ ¼ d=ð1 − c0αðQÞÞ. The deri-
vation is then analogous to the derivation in [43]. Overall,
we are then able to obtain [taking the μ → ∞ limit
according to (2B) of Eq. (28)]

lim
μ→∞;2BÞ

STðQÞ≡ SAðQÞ≡
Z

4π
β0χ

0

dte−t=αXðQÞB½S�ðtÞ ð68Þ

beyond the large β0 approximation, where 1
χ <

d
2
. In

particular, we will take 1=χ close to d=2, and parametrize
it in the following way:

1

χ
¼ d

2
−
d
2
c0αðQÞ; ð69Þ

where c0 > 0 [this is the reason we took c0 > 0 in Eq. (28)].
The reason for the sign of c0 is that we have to approach to
the closest singularity to the origin in the Borel plane from
the left. Indeed, in [28,42], in the context of the large β0
approximation, it was shown that in order for the integral to
be well defined one needed 1

χ <
d
2
. It was also noticed that

by taking the limit 1
χ →

d
2
the correct exponent (of the NP

power correction) is obtained, i.e., the difference is of the
order of the leading NP term of the OPE. Nevertheless, one
does not get the right prefactor. This was quantified in [43],
where it was first shown that using Eq. (69), and expanding
in α, the ambiguity is of the order of the higher order
condensate with the right α dependence of the prefactor.
The leading renormalon (the singularity in the Borel

plane closest to the origin) gives the main contribution to
the difference between SPV and SA:

SPV−SA ¼
Z

∞

4π
β0χ

;PV
dte

−t
αX ðQÞZX

1

ð1− β0
2πdtÞ1þdb−γ

þ�� � : ð70Þ

This yields

SPV ¼ SA þ KðAÞ
X

Λd
X

Qd α
γ
XðQÞð1þOðαXÞÞ ¼ SA þ KðAÞ

X e−
2πd

β0αX ðQÞ

�
β0αXðQÞ

4π

�−db
αγXðQÞð1þOðαXÞÞ ð71Þ

where

KðAÞ
X ¼ 2πd

β0
ZX

�
β0
4π

�
bd
Z

∞

−c0;PV
dxe

−2πdx
β0

1

ð−xÞ1þdb−γ : ð72Þ

Subleading corrections to the leading renormalon are of the form (1þ n > 0)

Z
∞

4π
β0χ

;PV
dte

−t
αX ðQÞ 1

ð1 − β0
2πd tÞdb−γ−n

∼ e−
d2π

β0αX ðQÞ

�
β0αXðQÞ

4π

�
−db

αγþ1þn
X ðQÞ: ð73Þ

This gives Oðα1þnÞ corrections.
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All subleading renormalons potentially contribute to the
same order:

∝ e−
d2π

β0αX ðQÞαXðQÞ: ð74Þ

This contribution isOðα1þdb−γÞ suppressed with respect the
leading term. This is a problem if one wants to obtain
subleading corrections to the leading NP term, as one
would need to know the normalization coefficient of all
subleading renormalons.
An issue observed in [43], in the context of the large β0

approximation, was that when 1=χ → d=2, i.e., when the
integrand approaches the singularity of the Borel transform,
the truncated PV integral diverges, and it is not a good
approximation of the PV integral (for instance see Figs. 2
and 3 in [43]). Therefore, it is better not to make the
combination c0αðQÞ very small. We study this problem in
the example we will consider in the following section.
This observation also makes that we can not use the

results obtained in this section to the case (2A) obtained in
the previous section, as it means setting χ ¼ 2=d, i.e.,
exactly at the singularity in the Borel plane. (Yet it would
be very interesting a dedicated study to see if the analysis of
this section can be generalized to the case χ ¼ 2=d).

D. Strategy

In summary, we have two alternative expressions
[Eqs. (46) and (71)] to determine SPVðQÞ with ΛQCD
powerlike precision. Remarkably enough, we can achieve
such precision even though we do not know the complete
perturbative series expansion. The reason is that we can
relate SPVðQÞ with the truncated sum of the perturbative
series for both methods. We also obtain an analytic
expression for the leading power correction that accounts
for the difference between the truncated sum and the PV
result. One important feature of this result is that, in both
cases, the leading power correction can be determined if the
strength and structure of the leading singularity in the Borel
plane is known. This result is also true beyond the large β0
approximation. Such results are scheme independent.
There are important differences between both methods

beyond the above general properties. The first one is that
the method (2B) (the “μ → ∞ method”) yields a finite
NP correction in the limit Q → ∞. This is not so for the
method 1) (the “μ ¼ Qmethod”). For the latter, the leading
NP correction gets multiplied by the small factor

ffiffiffiffiffiffiffiffiffiffiffi
αðQÞp

,
which vanishes (albeit weakly) in the Q → ∞ limit. In
principle, this makes the second method better.
Nevertheless, one should also keep in mind that, in order
to profit from this property, one needs to have physical data
for as large as possible Q. Since in both cases the leading
corrections are known analytically this could not make a
practical difference. A numerical analysis can check which
one is better. A more serious problem with the “μ → ∞
method” is that, in order to take the μ → ∞ limit, one needs

the running of α with higher and higher precision. In the
large β0 limit, the running of α is known exactly, so this is
not a problem, but it will be once we move beyond this
approximation. One also needs higher and higher order
coefficients of the perturbative expansion as one takes
the μ → ∞ limit. Again in the large β0 limit the coefficients
can be generated to any arbitrary finite order7 but not
beyond the large β0 limit. In the real case, the most we
will have is the asymptotic behavior of the high order
coefficients.
Another important issue is that with the “μ ¼ Qmethod”

we are potentially capable of computing corrections to the
leading NP effect. The OðΛdαÞ corrections are still related
with the leading renormalon and can be computed. The
effect of subleading renormalons give power suppressed
corrections. For the “μ → ∞ method” the OðΛdαÞ correc-
tions receive corrections from all subleading renormalons.
In practice, this makes it impossible to compute these
corrections in a controlled way.
In general it is impossible to obtain closed results for the

PV regulated perturbative sum on which to test the above
results. This is only possible in the large β0 approximation
for a few cases. Here, we use one of them as a laboratory to
check the methods we will apply to physical cases. The
question here is to quantify the difference between the
PV result (which we take as a “fake” NP data), and the
truncated perturbative expansions (for large values of N).
Obviously such comparison is made in the short distance
limit where the OPE should apply. In Sec. III, we check our
formulas (in the large β0 approximation) for the case of the
static potential. This example will allow us to quantify
(in practice) when the complete result is well approximated
by Eqs. (46) and (71). In particular, we try to answer the
following questions: How large Q has to be in both cases,8

how large μ has to be for Eq. (71) to hold. We also study the
dependence of the answer to the scale/scheme used for the
strong coupling (we use lattice and MS scheme).
The method that leads to Eq. (71) requires μ → ∞.

Formally, this means that we need all the coefficients pn.
As in realistic cases we do not have this information, we
check the dependence on approximating the exact pertur-
bative coefficients (starting at different orders) by their
asymptotic expansions in the large β0 approximation. In
this case we will be able to see the error introduced by
considering different orders from which one approximates
the coefficients by the asymptotic behavior. What we will
not be able to test in the large β0 approximation is the
dependence on the higher order coefficients of the beta

7For the static potential this is indeed so, but even for the pole
mass this is numerically demanding.

8This is expected to be dependent on nf. The bigger nf the
smaller the renormalon effect. Therefore, any discussion with
nf ¼ 0 should be understood as an upper bound of the impor-
tance of renormalons.
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function, which are needed for Eq. (71) (since we need to
run αðμÞ to μ ¼ ∞). This is relegated to subsequent work.
Note that all the scheme dependence (in the broad sense:

T ¼ fN;X; μg) has disappeared up to terms beyond the

accuracy we achieve. We also obtain expressions for the
difference between different truncation schemes.
Overall, we express the observable in the following two

alternative ways

Obervable

�
Q

ΛQCD

�
¼ SPðQ; μÞ þ KðPVÞ

X αγXðQÞΛ
d
X

Qd ð1þOðαXðQÞÞÞ þ ΩðμÞ þ
XN0

P

n¼NPþ1

ðpn − pðasÞ
n Þαnþ1ðμÞ þ… ð75Þ

Observable

�
Q

ΛQCD

�
¼ SAðQ; χÞ þ ðKðPVÞ

X þ KðAÞ
X ÞαγXðQÞΛ

d
X

Qd ð1þOðαXðQÞÞÞ þ � � � ð76Þ

up to exponentially suppressed terms.Note thatΩ scales like

Oð ffiffiffiffiffiffiffiffiffiffiffiffiffi
αXðQÞp Λd

X
QdÞ. Both methods have ΛQCD power accuracy

but with themethod 1) we have enough theoretical precision
to determine the subleading OðαXÞ corrections or even
subleading terms in the OPE (hyperasymptotic) expansion
(provided the “experimental” data is precise enough).

III. THE STATIC POTENTIAL IN THE
LARGE β0 APPROXIMATION

The large β0 approximation cannot be obtained from a
well defined limit of the parameters of QCD. Still, it is
useful to test techniques that can be used beyond the large
β0 approximation in a place where we know the exact
solution. In this respect the static potential is an ideal
object, since we have a lot of analytic control for it.

A. VPV(r)

The QCD static potential is written in terms of its Fourier
transform as

VðrÞ ¼ −
2CF

π

Z
∞

0

dq
sin qr
qr

αvðqÞ: ð77Þ

This equation defines αvðqÞ in the V-scheme. In the large-
β0 approximation, we know the behavior of αvðqÞ as a
series in powers of αX ≡ αXðμÞ

αvðqÞ ¼ αX
X∞
n¼0

Ln ¼ αX
1

1 − L
; ð78Þ

where L ¼ β0αX
2π lnðμe−cX=2

q Þ. If X ¼ MS then cMS ¼ −5=3 (in
the large β0 approximation). If X ¼ V then cV ¼ 0. If
X ¼ latt, we take the nf ¼ 0 number for a Wilson action:
clatt ¼ −8.38807 [44], as we will only use this scheme for
checking the consistency between the results obtained with
different schemes. We also define Λ̃ ¼ ΛXe−cX=2 and
ρ ¼ Λ̃r. Note that Λ̃ is scheme independent.

Equation (77) is ill defined but not its Borel transform. It
reads [45]

B½V�ðtðuÞÞ ¼ BðtðuÞÞ ¼ −CF

π1=2
1

r
e−cXu

�
μ2r2

4

�
u Γð1=2 − uÞ

Γð1þ uÞ ;

ð79Þ

which is a meromorphic function in the u complex plane.
We then define (where the single poles of the Borel

transform are regulated using the PV prescription)

VPVðrÞ ¼
Z

∞

0;PV
dte−t=αðμÞB½V�ðtðuÞÞ: ð80Þ

We can also regulate Eq. (77) via

VPVðrÞ ¼ −
2CF

π

Z
∞

0;PV
dq

sin qr
qr

αvðqÞ: ð81Þ

We have checked that the numerical determinations of
both definitions give the same. We can then use this PV
prescription as a NP definition of the observable, to which
to test our methods and approximations. Note that this
definition is indeed scheme independent. On the other hand
the result is an oscillating function of r, which violates
general properties of the static potential (energy) of two
static sources in the fundamental representation [46]. These
state that the potential should be concave (we should also
keep in mind that we are working in the large β0 limit,
which is not a well-defined limit of QCD).
We now consider the short distance limit (r → 0) of

VPVðrÞ. In other words, we analyze its OPE. First, we study
how well we can approximate VPVðrÞ by its perturbative
expansion at weak coupling. Thus, we approximate the
potential by the truncated perturbative sum:

VN ≡XN
n¼0

Vnα
nþ1: ð82Þ

AYALA, LOBREGAT, and PINEDA PHYS. REV. D 99, 074019 (2019)

074019-14



For fixed μ, the N → ∞ limit of VN diverges since the
perturbative expansion is asymptotic. Therefore, we have to
be careful in the definition used for the truncated sum. For
such object, we use the two definitions discussed in Sec. II
(with Q ¼ 1=r). For both of them we will need the
normalization of the leading renormalon. In the large β0
it reads

ZV ¼ −2
CF

π
e−

cX
2 : ð83Þ

It agrees with the result from the pole mass [47] after using
that the renormalon of the pole mass cancels with the
renormalon of the static potential [2].
We will perform computations with nf ¼ 0 and nf ¼ 3.

In the first case we will work in lattice units (aiming to
compare with quenched lattice simulations) and use
ΛMSðnf ¼ 0Þ ¼ 0.602r−10 ≈ 238 MeV [48]. In the large
β0 approximation (with nf¼0), this yields αðMτÞ ≈ 0.29.
In the second case we take ΛMSðnf ¼ 3Þ ¼ 174 MeV. This
last number we fix such that it gives a reasonable value at the
τ mass in the large β0 approximation: αðMτÞ ≈ 0.3 (see for
instance [49]).
We then confront VPV with the results obtained with

these methods.

B. N large and μ ∼ 1=r ≫ ΛQCD. Eq. (27). Case (1)

We truncate at N ¼ NP [NP is defined in Eq. (27)] in
Eq. (82).

VP ≡XNP

n¼0

Vnα
nþ1: ð84Þ

Applying Eq. (48) to the static potential in the large β0
approximation, the relation between VPV and VP reads

VPV ¼ VP þ 1

r
ΩV þ

X3NP

n¼NPþ1

ðVn − VðasÞ
n Þαnþ1

þ 1

r
Ω0

V þ oðΛ3
QCDr

2Þ; ð85Þ

where ΩV reads for this case

ΩV ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
αXðμÞ

p
KðPÞ

X rΛXð1þ KðPÞ
X;1αXðμÞ þOðα2XÞÞ; ð86Þ

with

KðPÞ
X ¼

4CFe−cX=2ð− 6πc
β0

þ 4Þ
3β1=20

;

KðPÞ
X;1 ¼

β0ð− 2πc
β0

þ 1Þ3 þ β0
2
ð2πcβ0 − 1Þ − β0

90

4πð− 6πc
β0

þ 4Þ ; ð87Þ

and so on. Note that in the large β0 we identically have

ΛX ¼ μe−2π=ðβ0αXðμÞÞ. This makes that KðPÞ
X;i ¼ K̄ðPÞ

X;i . A

similar expression applies to Ω0
V ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
αXðμÞ

p ðrΛQCDÞ3.
By incorporating the last two terms in Eq. (85) we are

sensitive to the next renormalon. Note that subleading
renormalons give ΛQCD power-suppressed corrections. The
further away the singularity in the Borel plane, the more
suppressed the correction is. For the next-to-leading sin-
gularity we have

δV ∼
Z

∞

0;PV
due−

4π
β0αð1=rÞ

ð2
3
uÞN

1 − 2
3
u
∼ Zð3=2;XÞ

V ΛXe−4π=ðβ0αXð1=rÞÞ:

ð88Þ
Unlike in the limit (2) (see expressions in Sec. III C), in

the limit case (1), Eq. (27), we do not have direct analytic
control in the relation between VPV and VP [unlike what
will happen in Sec. III C when using the limit case (2),
Eq. (28)]. Nevertheless, we can numerically compute both
and check that their difference complies with the theoretical
expectations. We can study (even if in the large β0
approximation) up to which values of r the OPE is a good
approximation of VPV. Remarkably enough we can actually
check more than one term of the OPE (hyperasymptotic)
expansion. We also explore the scheme dependence by
performing the computation in the lattice and theMS scheme
(actually in the large β0 approximation this is equivalent to a
change of scale).Wewill do these analyses for the cases with
nf ¼ 0 and nf ¼ 3. The first in view of comparing with
quenched lattice simulations, the second to simulate a
more physical scenario, for which we can draw some
conclusions that could be applied beyond the large-β0 limit.
In Figs. 1–3 we plot VPV, VPV − VP, VPV − VP − 1

rΩV ,

VPV−VP−1
rΩV−

P3NP
n¼NPþ1ðVn−V

ðasÞ
n Þαnþ1, and VPV −

VP − 1
rΩV −

P3NP
n¼NPþ1ðVn −VðasÞ

n Þαnþ1 − 1
rΩ

0
V with nf¼0

light flavors. We do such computation in the lattice (Fig. 1)
and the MS (Fig. 2). In Fig. 3 we compare the results in the
lattice and MS scheme. We observe a very nice convergent
patter in all cases down to surprisingly small scales. To
visualize the dependence on c for each case, we show the
band generated by the smallest positive and negative possible
values of c that yields integer values for NP. The size of the
band generated by the different values of c (the c depend-
ence) decreases as we introduce more terms in the hyper-
asymptotic expansion. This is particularly sowhen including
ΩV (Ω0

V) to its associated sum.
Let us discuss the results in more detail. We first observe

that the r dependence of VPV is basically eliminated in
VPV − VP, as expected. This happens both in the lattice and
MS scheme. The latter shows an stronger c dependence.
This is to be expected, as in the MS, we truncate at smaller
orders in N. This makes the truncation error bigger. Note
that the lattice scheme can be understood (in the large β0
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approximation) as the MS scheme with a larger factoriza-
tion scale. As we can see in the upper panel of Fig. 3, both
schemes yield consistent predictions for VPV − VP. We can
draw some interesting observations out of this analysis. For
VPV − VP it is better to choose a larger factorization scale,
if we have enough coefficients of the perturbative expan-
sion. This is particularly so at large distances: We can still
get sound results up to very large distances in the lattice
scheme.
We now turn to VPV − VP − 1

rΩV . Adding the new
correction produces a better agreement with expectations
(which we recall is to get zero). After the introduction of
1
rΩV , the MS scheme yields more accurate results than the
lattice scheme. This can already be seen in the upper panel
of Fig. 3, and in greater detail in the lower panel of Fig. 3.
VPV − VP − 1

rΩV shows some dependence on 1=r,
which is more pronounced in the lattice than in the MS

scheme. As in the large β0 the difference between both
schemes is equivalent to a change of scale, this results
points to that μ ¼ 1=r in MS is close to the natural scale
and minimize higher order corrections. Note that the lattice
scheme computation is equivalent to the MS scheme

choosing μlatt ¼ μMSe
−clatt

2 e
c
MS
2 . This gives around a factor

30(!). Once
P3NP

n¼NPþ1ðVn − VðasÞ
n Þαnþ1 is incorporated in

the prediction most of the difference disappears and the
lattice scheme is marginally better. Nevertheless, after
introducing Ω0

V , the MS becomes marginally better again.
In any case, the difference between schemes gets smaller
and smaller as we go to higher orders in the hyper-
asymptotic expansion, in particular at short distances.
We also want to stress that this analysis opens the

window to apply perturbation theory at rather large dis-
tances. Note that in the upper panel plots in Figs. 1–3, we
have gone to very large distances.
As some concluding remarks let us emphasize the

following points. The truncated sum is more or less
constant with relatively large uncertainties. This is to be
expected, as the next correction in magnitude is ΩV which
is approximately constant [mildly modulated by

ffiffiffiffiffiffiffiffiffi
αðμÞp

].
After introducing this term the error is much smaller and we
can see more structure. In particular we are sensitive to
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FIG. 2. As in Fig. 1 but in the MS scheme.
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FIG. 1. Upper panel: We plot VPV (black line) and the
differences: (a) VPV − VP (cyan), (b) VPV − VP − 1

rΩV (orange),

(c) VPV − VP − 1
rΩV −

P3NP
n¼NPþ1ðVn − VðasÞ

n Þαnþ1 (green), and

(d) VPV − VP − 1
rΩV −

P3NP
n¼NPþ1ðVn − VðasÞ

n Þαnþ1 − 1
rΩ

0
V (blue)

in the lattice scheme with nf ¼ 0 light flavors. For each differ-
ence, the bands are generated by the difference of the prediction
produced by the smallest positive or negative possible values of c
that yields integer values for NP. Lower panel: As in the upper
panel but in a smaller range. r−10 ≈ 400 MeV.
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P3NP
n¼NPþ1ðVn − VðasÞ

n Þαnþ1. Here we find (at the level of
precision we have now) a sizable difference between

lattice and MS. This can be expected.
P3NP

n¼NPþ1ðVn −

VðasÞ
n Þαnþ1 is the object we expect to be more sensitive to

the scale.
In the lattice and MS scheme, we observe a very nice

convergence pattern up to (surprisingly) rather large scales.
The agreement with the theoretical prediction (which is
zero) is perfect at short distances. The estimated error is
also expected to be small. It would be interesting to see if
this also happens beyond the large β0.
Another interesting observation is that truncated sums

behave better in the lattice scheme than in the MS scheme.
Nevertheless, this could be misleading. The sums are
truncated at the minimal term. Therefore, one needs more
terms in the lattice scheme. If the number of terms is not an
issue (which could be the case with dedicated numerical
stochastic perturbation theory (NSPT) [50,51] computa-
tions in the lattice scheme) then the lattice scheme looks
better. But as soon as ΩV is introduced in the computation
MS behaves better (at least in the large β0 approximation).

We now turn to the nf ¼ 3 case. We note that ΛQCD for
the physical case (nf ¼ 3) is smaller than for the nf ¼ 0

case (if one sets the physical scale according to
r−10 ≈ 400 MeV). On top of that the running is less
important. All this points to that the convergence should
be even better than in the nf ¼ 0 case (and it was quite
good already there). We show our results in Figs. 4–6 (these
are the analogous of Figs. 1–3 but with nf ¼ 3). These
plots confirm our expectations. Down to scales as low as
667 MeV we see no sign of breakdown of the hyper-
asymptotic expansion. This is so in both the lattice and the
MS schemes. Note that the precision we get is extremely
high as we go to small scales: Using truncation (c):

VP þ 1
rΩV þP3NP

n¼NPþ1ðVn − VðasÞ
n Þαnþ1, one gets VPV in

both schemes with a precision well below 1 MeV at scales
of the order of the mass of the bottom. Using truncation (d):

VP þ 1
rΩV þP3NP

n¼NPþ1ðVn − VðasÞ
n Þαnþ1 þ 1

rΩ
0
V , the error

is astonishingly small (see Fig. 8 for an extra zoom in this
region). The rest of the discussion follows parallel the one
for nf ¼ 0. In the above numerics, we have used the exact
expression for ΩV and Ω0

V . In full QCD, we will not know
the exact expression. Therefore, it makes sense to study
how well the exact result is reproduced by the semiclassical
expansion obtained in Eq. (37). We compare in Tables I
and II for an illustrative set of values the exact result and the
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FIG. 4. As in Fig. 1 but with nf ¼ 3 light flavors.

VPV

(aMS)
(alatt)

(blatt)
(bMS)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

–6

–4

–2

0

2

4
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

–6

–4

–2

0

2

4

r in r0 units

(clatt)

(cMS)

(bMS)
(blatt)

(dMS)(dlatt)

0.0 0.1 0.2 0.3 0.4 0.5
–0.2

–0.1

0.0

0.1

0.2
0.0 0.1 0.2 0.3 0.4 0.5

–0.2

–0.1

0.0

0.1

0.2

r in r0 units

FIG. 3. Comparison of lattice and MS scheme results for
nf ¼ 0. Upper panel: We plot VPV and the differences:
(a) VPV − VP, and (b) VPV − VP − 1

rΩV in the lattice and MS
scheme with nf ¼ 0 light flavors. Lower panel: Figs. 1 and 2
combined.
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truncated semiclassical expansion. We observe that the
exact result is very well saturated by the first terms of
the expansion computed in Eq. (37). Truncating the
expansion produces differences much smaller than the
typical precision of the different terms of the hyperasymp-
totic expansion. As expected nf ¼ 3 is better than nf ¼ 0.
Note that in the large β0 approximation we exactly
have Λ ¼ μe−2π=ðβ0αðμÞÞ.
An alternative, very effective, presentation of the

above results can be done by plotting the relative
accuracy of the prediction at each order in α and at
each order of the superasymptotic expansion. We note
that we have one observable for each value of r.
Therefore, for illustration, we make the comparison
with the observable for r ¼ 0.1 GeV−1, and for the
theoretical prediction we take the smallest positive
value of c corresponding to lattice or MS. We show
the results in Fig. 7. We stress that several terms of the
hyperasymptotic expansion are included. We can also
see gaps each time the NP exponential terms are
included. Indeed to reach the precision where Ω0

V is
relevant, we used the exact (numerical) expression of
ΩV , since the NNLO truncated expression is not precise
enough. We also nicely see that, once reached the
minimum, both schemes yield similar precision, but in

the lattice scheme (bigger factorization scale μ) more
terms of the perturbative expansions are needed to
reach the same precision. One important lesson one
may extrapolate from this exercise is that, for a fixed
order computation, the smaller the renormalization
scale μ, the better. One can obtain much better preci-
sion for an equal number of perturbative coefficients.
Another observation is that the minimal term deter-
mined numerically need not to coincide with the
minimal term computed using n ¼ NP (though it should
not be much different). The difference reflects how
much the exact coefficient is saturated by the asymp-
totic expression.

C. (N;μ) → ∞. Eq. (28). Case (2)

The potential advantage of this method is that we can
obtain analytic results that are μ independent. We profit
from earlier analyses in [37,38] adapted to our case. In all
cases the q integrals will be done in the complex plane
along similar lines as the computation done in those
references.
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FIG. 6. Comparison of lattice and MS scheme results for
nf ¼ 3. Upper panel: We plot VPV and the differences:
(a) VPV − VP, and (b) VPV − VP − 1

rΩV in the lattice and MS
scheme with nf ¼ 3 light flavors. Lower panel: Figs. 4 and 5
combined.
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FIG. 5. As in Fig. 1 but with nf ¼ 3 light flavors and in the MS
scheme.
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TABLE I. 1=rΩV for nf ¼ 0 in r−10 units compared with Eq. (86) truncated at different powers of α. Upper panel computed in the MS
scheme. Lower panel in the lattice scheme. Lattice seems to be better but both schemes yield very good results.

MS-Scheme (nf ¼ 0)

r in r0 c 1
rΩExact j ΩLO

ΩExact − 1j × 102 j ΩNLOΩExact − 1j × 103 j ΩNNLOΩExact − 1j × 104

1.5 0.178 629 8.3643 22.4162 47.5334 1969.22
1.2 0.569 288 2.9883 0.403 29 24.9029 253.624
1.0 0.888 48 1.8767 3.9895 17.132 24.530
0.8 1.279 14 1.1346 4.616 87 3.820 12 43.2013
0.6 0.032 079 2.3128 5.144 76 0.979 725 9.611 23
0.4 0.741 928 1.2686 1.150 11 2.545 79 1.8752
0.2 0.204 72 1.4294 1.539 09 0.352 876 1.594 71
0.1 1.418 22 0.519 43 1.165 26 0.275 048 1.367 91
0.01 0.197 248 0.914 80 0.654 315 0.073 017 0.120 936

Lattice-Scheme (nf ¼ 0)

r in r0 c 1
rΩExact j ΩLO

ΩExact − 1j × 103 j ΩNLOΩExact − 1j × 104 j ΩNNLOΩExact − 1j × 105

1.5 0.810 107 0.782 53 6.493 13 4.434 51 0.078 7894
1.2 1.200 77 0.562 37 9.541 84 1.298 76 4.369 81
1.0 1.5200 0.395 25 7.3017 3.2941 5.5745
0.8 0.159 911 1.0434 9.335 33 0.811 786 2.314 43
0.6 0.663 557 0.765 43 3.004 01 2.819 03 0.726 526
0.4 1.373 41 0.419 46 7.027 49 0.698 35 2.696 81
0.2 0.836 198 0.612 77 4.4603 1.742 06 0.162 621
0.1 0.298 99 0.790 56 3.426 96 0.824 86 0.671 662
0.01 0.828 727 0.495 92 2.871 57 0.729 908 0.047 8304

TABLE II. 1=rΩV for nf ¼ 3 in GeV units compared with Eq. (86) truncated at different powers of α. Upper panel computed in the
MS scheme. Lower panel in the lattice scheme. Lattice seems to be better but both schemes yield very good results.

MS-Scheme (nf ¼ 3)

r in GeV−1 c 1
rΩExact j ΩLO

ΩExact − 1j × 102 j ΩNLOΩExact − 1j × 103 j ΩNNLOΩExact − 1j × 104

1.5 0.491 648 0.505 79 0.447 496 2.600 06 4.234 28
1.2 0.811 277 0.357 70 1.885 63 1.835 77 1.809 28
1.0 1.0724 0.257 79 1.9932 0.169 27 4.6228
0.8 1.392 06 0.151 83 0.834 303 2.4094 4.065 97
0.6 0.371 743 0.425 91 0.250 112 0.811 721 1.164 51
0.4 0.952 529 0.240 35 1.301 66 0.350 684 1.003 95
0.2 0.512 995 0.315 54 0.2984 0.466 805 0.211 32
0.1 0.073 4605 0.383 29 1.171 0.025 92 0.228 532
0.01 0.506 882 0.230 72 0.159 53 0.132 861 0.029 0686

Lattice-Scheme (nf ¼ 3)

r in GeV−1 c 1
rΩExact j ΩLO

ΩExact − 1j × 103 j ΩNLOΩExact − 1j × 104 j ΩNNLOΩExact − 1j × 105

1.5 0.645 661 0.223 92 3.994 52 1.809 93 0.012 1182
1.2 0.965 291 0.163 63 6.1928 0.589 165 1.1845
1.0 1.2264 0.116 68 4.9332 1.3597 1.5880
0.8 0.113 682 0.304 51 6.740 04 0.327 704 0.714 606
0.6 0.525 757 0.227 32 1.874 99 1.336 36 0.251 716
0.4 1.106 54 0.127 52 5.015 92 0.288 87 0.935 909
0.2 0.667 008 0.188 26 3.149 74 0.950 153 0.048 8073
0.1 0.227 474 0.245 25 2.880 66 0.447 528 0.294 791
0.01 0.660 895 0.159 97 2.225 17 0.485 566 0.017 5813
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We first truncate the sum of the αv coupling:

αNðqÞ≡ α
XN
n¼0

Ln ¼ α
1 − LNþ1

1 − L
: ð89Þ

Following [37,38] we can isolate the N-dependence from
the leading contribution to the potential at short distances:

VNðrÞ ¼ −
2CFα

π

Z
∞

0

dq
sin qr
qr

1 − LNþ1

1 − L

≡ 4CF

β0
Λ̃½v1ðΛ̃rÞ þ v2ðΛ̃r; N þ 1Þ�; ð90Þ

where

v1 ¼
1

rΛ̃

Z
∞

0

dxe−x arctan

�
π

2 lnðrΛ̃x Þ

�
; ð91Þ

arctanðxÞ is defined in the branch ½0; πÞ, and

v2¼−
π

ρ
cosρ−

Z
∞

0;PV
dk

sinkρ
kρ

1

ln1=k

�
1þ 1

Nþ1
ln
1

k

�
Nþ1

:

ð92Þ

We then have that

VPV − VN ¼ 4CFΛ̃
β0

�
−π
ρ

cos ρ − v2

�
: ð93Þ

Note that this equality allows us to write VPV in the
following way (vC ¼ v1ðρÞ − π

ρ with the notation of [37]):

VPV ¼ 4CFΛ̃
β0

�
vC −

π

ρ
ðcos ρ − 1Þ

�
: ð94Þ

In this explicit representation of VPV each term scales
differently in powers of ρ:OðvCÞ ∼ ρ−1, the ρ0 term is set to
zero (or incorporated in vC), and each Oðρ2nþ1Þ term is
encoded in π

ρ ðcos ρ − 1Þ. Still, Eq. (94) cannot be under-
stood as an explicit representation of the OPE, since the NP
power corrections scale with odd powers of ρ, and indeed
there are no Oðρ2nÞ terms. However, this splitting naturally
leads to define a short distance coupling:

αSDð1=rÞ ¼ −r
4

β0
Λ̃vCðrÞ: ð95Þ

This definition has nice properties. It is an smooth function
∀ r ∈ ð0;∞Þ, with the right short distance limit:

αSDð1=rÞ ¼
2π

β0

1

lnðρrÞ r → 0: ð96Þ

A detailed study of this quantity can be found in [38]. Note
also that in this definition the whole OðΛQCDÞ correction
has been included in 4CF

β0
Λ̃vCðrÞ. The other thing that one

could study, since we have the analytic behavior, is the
behavior of αSD beyond the regime where it was originally
defined, i.e., at long distances. In this respect, it is
interesting to notice that the long distance limit

αSDð0Þ ¼
4π

β0
ð97Þ

is exactly equal to the value obtained in [52], within
the context of analytic perturbation theory analyses.
Nevertheless, one could as well argue that all Oðρ2nþ1Þ
terms are short distances and should be incorporated in αSD.
If one does so, αSD does not have an smooth limit for ρ → 0
anymore. Finally, one could also study the β function of αSD.
It is interesting to compare Eq. (85), the hyperasymptotic

expansion using method (1), with Eq. (94). We can make
the comparison at oðΛQCDÞ and at oðΛ3

QCDr
2Þ in the

hyperasymptotic expansion. We show such comparison
in Fig. 8. At oðΛQCDÞ, the leading power correction in
Eq. (94) is of OðρÞ. We find that Eq. (85) is more
convergent, which is consistent with the estimated made
in Eq. (50). Either way, the convergence is extremely good.
The precision is much below the MeV.

FIG. 7. jVPV − VHyperasymptotic
PV j for r ¼ 0.1 GeV−1. Points above

the horizontal dotted line are |VPV − VN |. Points between the

horizontal dotted and horizontal dashed lines are jVPV−VP−
1
rΩV −

P
N
n¼NPþ1ðVn−VðasÞ

n Þαnþ1j with c ¼ 0.073 and c ¼ 0.227

(the smallest positive values that yield integer NP) in the MS
and lattice scheme respectively. Points below the horizontal

dashed lines are jVPV−VP− 1
rΩV −

P3NP
n¼NPþ1ðVn−VðasÞ

n Þαnþ1−
1
rΩ

0
V −

P
N
n¼3NPþ1ðVn−VðasÞ

n Þαnþ1j, where in the last sum the two
first renormalons are subtracted. Jumps correspond to the
inclusion of ΩV and Ω0

V . Full points have been computed in
the MS scheme and empty points in the lattice scheme. We work
with nf ¼ 3.

AYALA, LOBREGAT, and PINEDA PHYS. REV. D 99, 074019 (2019)

074019-20



In real life we will not have such complete analytic
control and must rely on the methods discussed in Sec. II.
Therefore, we now apply the limit (2A) and (2B) discussed
in Eq. (28) to VN .

1. Case (2A)

We now take

N þ 1 ¼ 2π

β0αðμÞ
: ð98Þ

The large N limit of v2 yields

v2 ¼
−π
ρ

þ
Z

∞

0

dx
e−x − 1þ xθð1 − xÞ

x2
ln ρ

x

ln2 ρ
x þ π2=4

−
1

2
ð−γE þ ln 2þ lnðN þ 1ÞÞ þ 1

2
ln

�
ln2ρþ π2

4

�

ð99Þ

up to terms that vanish whenN → ∞. Note that theN → ∞
limit of v2 (logarithmically) diverges. Note also that when
ρ → 0 the integral term tends to zero. Thus, the ρ ∼ 0 limit
of v2 is

v2 ¼
−π
ρ

−
1

2
ð−γE þ ln 2þ lnðN þ 1ÞÞ þ ln ln

1

ρ
ρ ∼ 0:

ð100Þ
The difference between the PV and the truncated series

can be computed by complex variable integration following
similar lines as in [37,38]. We find (for large N)

VPV − VN

¼ 4CFΛ̃
β0

�
π

ρ
ð1 − cosðρÞÞ −

Z
∞

0

dx
e−x − 1þ θð1 − xÞx

x2

×
lnðρxÞ

ln2ðρxÞ þ π2

4

−
1

2
ln

�
ln2ðρÞ þ π2

4

�

þ 1

2
ð−γE þ ln 2þ lnðN þ 1ÞÞ

�
þ oð1=NÞ: ð101Þ

For large values of N and small values of r (care should
be taken when taking the r → 0 limit) the above expression
simplifies to

VPV − VN

¼ 4CFΛ̃
β0

�
− ln ln

�
1

ρ

�
þ 1

2
ð−γE þ ln 2þ lnðN þ 1ÞÞ

�

þ oð1=N; rÞ: ð102Þ

For completeness, we have also obtained the lnðNÞ
behavior in a different way. We follow the method recently
proposed in [39]. There, a summation integral relation was
found for a general observable. We applied it to the case of
the first IR renormalon of the potential and pole mass. The
advantage of this new method is that the lnN term can be
determined if the normalization of the leading renormalon
in the Borel plane is known. It would be very interesting to
try to generalize this result beyond the large β0 approxi-
mation, as well as to extend the analysis to the ln lnð1ρÞ term.
The fact that we have certain analytic control of the

result allows us to address some issues. The first one is to
make explicit that truncated sums around the minimal term
do not guarantee, per se, that they are finite. In particular,
one can see that VN is divergent in the N → ∞. Therefore,
it would be wrong to assign VN to the leading term in
the hyperasymptotic expansion of VPV. On the other
hand, we have analytic control on the divergence, which
is found to be logarithmic in N.9 In principle, one can
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FIG. 8. Upper panel: oðΛQCDÞ precision figure. VPV − 4CFΛ̃
β0

vC
(black line), and VPV − VP − 1

rΩV (orange bands) in the lattice
and MS scheme with nf ¼ 3 (as drawn in Fig. 6). Lower panel:

oðΛ3
QCDr

2Þ precision figure. VPV − 4CFΛ̃
β0

ðvC þ πρ=2Þ (black

line), and VPV − VP − 1
rΩV −

P3NP
n¼NPþ1ðVn − VðasÞ

n Þαnþ1 − 1
rΩ

0
V

(blue bands) in the lattice and MS scheme with nf ¼ 3 (as drawn
in Fig. 6). Note that in this last figure the vertical axis is in MeV
and the precision is at the level of 10−2 MeV.

9It is worth mentioning again that this lnN behavior also
appears beyond the large β0 approximation in the context of the
static potential [38].
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subtract this lnN divergence from VN (this is completely
analogous to subtracting 1=ϵ divergences in perturbative
computations using dimensional regularization) to obtain
the first term of the hyperasymptotic expansion.
Nevertheless, the difference does not still scale like
ΛQCD. Instead one has

VPV −
�
VN þ 4CFΛ̃

β0
lnðNþ 1Þ

�

¼ 4CFΛ̃
β0

�
− ln ln

�
1

ρ

�
þ 1

2
ð−γE þ ln2Þ

�
þ oð1=N; rÞ;

ð103Þ

which, at short distances, scales as ΛQCD ln lnð1ρÞ (this
behavior is also seen beyond the large β0 approximation
in the context of the static potential [38]). Therefore, to get
the proper scaling in ΛQCD of the different terms of the
hyperasymptotic expansion requires that the ΛQCD ln lnð1ρÞ
should be identified and subtracted first from VN . One then
has the freedom to subtract OðΛQCDÞ finite pieces, which
can be absorbed in the next term of the hyperasymptotic
expansion.
We do not do a numerical analysis here, as the method

cannot, at present, be generalized beyond the large β0
approximation.

2. Case (2B)

We now take

N þ 1 ¼ 2π

β0αðμÞ
ðs − 1Þ with s < 2: ð104Þ

Under these conditions, we can take the N → ∞ limit (the
result does not diverge in this limit). Adapting [38]
derivation to our case we obtain

lim
N→∞

v2 ≡ v3 ¼ −
π

ρ
− ρs−2

Z
∞

0

dx
e−x − 1

xs

×
π
2
cosðπ

2
½1 − s�Þ þ ln ρ

x sinðπ2 ½1 − s�Þ
ln2 ρ

x þ π2

4

: ð105Þ

Therefore, we define [using the relation Eq. (104)]10

VA ≡ lim
N→∞

VN ¼ v1 þ v3: ð106Þ

Note that this far, the expressions for v1 and v3 are valid
∀ r. It is also possible, and most relevant for us, to relate
the truncated sum (in the limit μ → ∞) with VPV. We obtain

VPV −VA ¼ 4CFΛ̃
β0

�
π

ρ
½1− cosðρÞ� þ ðρÞs−2

Z
∞

0

dx
e−x − 1

xs

×
π=2 cosðπ

2
½1− s�Þ þ ln ρ

x sinðπ2 ½1− s�Þ
ln2 ρ

xþ π2

4

�
:

ð107Þ
Again this result is valid ∀ r. We now focus on the ρ → 0
limit. This will allows us to connect with the limit (2B) of
Eq. (28). Nevertheless, this connection has to be done with
care. One has to take the limit r → 0 and s → 2 in a
correlated way, following the limit (2B) of Eq. (28).
Therefore, we take

s ¼ 2 − c0αð1=rÞ: ð108Þ
Then, the previous expression reads

VPV−VA

¼ 4CFΛ̃
β0

�
π

Λ̃r
ð1− cosðΛ̃rÞÞþðΛ̃rÞ−c0αð1=rÞ

Z
∞

0

dx
e−x−1

x2−cαð1=rÞ

π
2
cosðπ

2
ð−1þc0αð1=rÞÞÞþ lnðΛ̃rx Þsinðπ2ð−1þc0αð1=rÞÞÞ

ln2ðΛ̃rx Þþ π2

4

�
:

ð109Þ

We can now obtain the ρ → 0 limit:

VPV − VA ¼ −4CFΛ̃
β0

Ei

�
2πc0

β0

�
þ oðrÞ; ð110Þ

where, for x ∈ R,

EiðxÞ ¼ −
Z

∞

−x;PV
dt

e−t

t
: ð111Þ

Nicely enough Eq. (110) agrees with the prediction of
Eq. (71) applied to VPV.
For future reference, we are also interested in the next

correction in powers of αð1=rÞ of Eq. (110). We obtain

VPV−VA¼
−4CFΛ̃

β0

�
Ei

�
2πc0

β0

�
−e

2πc0
β0

β0
12π

ð6γE−1Þαð1=rÞ

þOðα2ð1=rÞÞ
�
: ð112Þ

10Since the result we obtain is finite, we could as well taken
N þ 1 → N ¼ NA in Eq. (104), and the result does not change. In
other words, Vðβ0Þ

A does not depend on adding or subtracting an
extra term to the sum. This is a pleasant property.
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Note though that Eq. (71) cannot predict the OðαÞ
correction.
We have already emphasized that obtaining the ρ → 0

limit was delicate. Let us illustrate this. If we take the ρ → 0
limit with s fixed (but close to 2), such that s < 2, we obtain

v3 ¼ −
π

ρ
− ρs−2

Z
∞

0

dx
e−x − 1

xs
ln ρ sinðπ

2
½1 − s�Þ

ln2ρ

¼ −
π

ρ
−
ρs−2 sinðπ

2
½1 − s�Þ

ln ρ

Z
∞

0

dx
e−x − 1

xs

¼ −
π

ρ
−
ρs−2 sinðπ

2
½1 − s�Þ

ln ρ
Γð1 − sÞ; ð113Þ

up to contributions that vanish when ρ → 0. If we now take
s ¼ 2 − c0αð1=rÞ and take again ρ → 0 we obtain

lim
s→2

lim
ρ→0

Eq:ð107Þ ¼ −2CFΛ̃
πc0

e
2c0π
β0 ; ð114Þ

which is obviously different that Eq. (110). In short

lim
s→2

lim
ρ→0

Eq:ð107Þ ≠ lim
s→2&ρ→0ðcorrelatedÞ

Eq:ð107Þ: ð115Þ

If we rephrase this discussion in terms of the c0 behavior,
what we have is that Eq. (110) is not obtained by taking the
limit c0 → 0 before taking the limit r → 0 of Eq. (109).
Indeed, the limit c0 → 0 before taking the limit r → 0
produces Eq. (114), which does not correspond to the limit
(2B) we are following in this paper. As we can see from
the explicit computation, both limits yield NP power
corrections with the right scaling (pointing out that there
is not unique procedure to get/define the NP correction).
Nevertheless, the overall coefficient is different, whereas
Eq. (110) diverges logarithmically in c0, Eq. (114) diverges
like 1=c0 for small c0. In this paper we stick to method (2B)
as it allows us to go beyond the large β0 approximation and
to relate the normalization of the power correction with the
normalization of the renormalon.
Finally, note that this method has the pleasant feature

that the generated OðΛQCDÞ correction complies with the
OPE. It also yields results that do not depend on N (and μ)
anymore. Still, it has some errors and does not reach the
precision of method (1). There is a residual scheme
dependence associated with uncomputed terms of
OðαΛQCDÞ. Part of it can be estimated by the residual
dependence in c0. In order to estimate it, we compute VA for
different values of c0. On the one hand c0 cannot be very
large, as c0αð1=rÞ should be relatively close to zero. On the
other handwe cannot make c0αð1=rÞ to get arbitrary close to
zero, as theOðΛQCDÞ correction diverges logarithmically in
c0. We also note that there is a value of c0 ¼ c0min that makes

that KðAÞ
X ¼ 0 so that the OðΛQCDÞ correction vanishes.

Therefore, we compute VA for different values of c0.

For illustration we show some results in Figs. 9 and 10.

We draw lines for VPV − VA − KðAÞ
X ΛX at c0 ¼ 1 and c0 ¼

cmin generating a band. We also explore the dependence on
the scheme by comparing the results in the lattice and MS
scheme. We stress again that in the large β0 approximation
lattice andMS schemes just correspond to a redefinition ofμ,
but quite large indeed. On the other hand the final result is μ
independent. Nevertheless, theway the μ → ∞ limit is taken
is fixed byNA, as defined in Eq. (28), which is dependent on
μ. This explains why different results are obtained.
In Figs. 9 and 10, we also compare with results obtained

using method (1), more specifically we compare with
VPV − VP − 1

rΩV , as they both have analogous power
accuracy [though method (1) is parametrically more pre-
cise]. For ΩV we take the exact expression but using its
approximated expression does not change the discussion,

(alatt)

(blatt) (aMS) (bMS)

0.0 0.1 0.2 0.3 0.4 0.5
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1.0
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1.0

1.5

r in r0 units

FIG. 9. We plot (a) VPV − VA − KðAÞ
X ΛX for nf ¼ 0 in the lattice

and MS scheme. For each case, we generate bands by computing
VA with c0 ¼ 1 and c0 ¼ c0min. We also compare with
(b) VPV − VP − 1

rΩV obtained with method (1) with the bands
generated for Fig. 3.
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FIG. 10. We plot (a) VPV − VA − KðAÞ
X ΛX for nf ¼ 3 in the

lattice and MS scheme. For each case, we generate bands by
computing VA with c0 ¼ 1 and c0 ¼ c0min. We also compare with
(b) VPV − VP − 1

rΩV obtained with method (1) with the bands
generated for Fig. 6.
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as the difference is very small. What we see is that the MS
scheme yields more precise predictions than the lattice
scheme, and that method (1) yields considerable better
results than method (2B).
Another issue specific to method (2B) is to determine

how large we need to take N (and consequently μ) of the
truncated sum such that it approximates well VA. For
illustrative purposes we show the convergence in Fig. 11
for nf ¼ 3 in the lattice and MS scheme. We find that we
have to go to relatively large values of μ (and N) to get it
precise. This can be a problem if one wants to go beyond
the large β0. This problem would be less severe if one can
use the asymptotic expression for the coefficients beyond
certain n. Nicely enough, we find that the use of the
asymptotic expression for the coefficients for n > N� (∼3
in the MS and ∼8 in the lattice scheme) is very efficient and
basically yields the same results as the exact result. Finally,
we also recall that to approximate well VA by the truncated
sum is more costly for small values of c0.

IV. CONCLUSION

We aim to accurately describe observables characterized
by having a large scale Q ≫ ΛQCD. For those it is believed

that the OPE is a good approximation (we do not enter in
this paper on the issue of duality violations). We want to
make the most of available perturbative expressions of the
observable. Our aim is to organize the computation and its
associated accuracy within a hyperasymptotic expansion.
For this, we carefully study the connection between
truncated sums of the perturbative expansions in powers
of α and the associated NP corrections. In practice, we
relate those truncated sums with the Borel sum of the
perturbative series regulated using the PV prescription. This
object has the nice properties of being scale and scheme
independent. It may also open the window to connect with
studies directly aiming to the NP regime. We then hypoth-
esize that the difference between the Borel sum and the full
NP evaluation of the observable complies with the structure
of the NP OPE (at least for the first terms of the NP power
expansion). Such computational scheme allows us to get a
hyperasymptotic expansion of the observable, and, con-
sequently, to unambiguously state the magnitude of the
different terms of the hyperasymptotic expansion.
Relating truncated sums of the perturbative expansion

with NP definitions of them is not trivial in general.
However, this is possible for the case of the PV prescrip-
tion. We have studied two methods that achieve this goal
and explored how reliable they are in practice. We have
given analytic formulas (with exponential accuracy) that
relate the truncated sum with the PV-regulated Borel sum.
We emphasize that these formulas are valid beyond the
large-β0 approximation.
These methods allow us to efficiently disentangle the pure

perturbative term from the first NP corrections of an arbitrary
observable that admits an OPE at large energies. General
expressions for arbitrary observables are given (for this paper
we neglect ultraviolet renormalons). Nevertheless, the accu-
racy we achieve for each case is different:

(i) The method (2B) [see Eq. (76)] has the handicap
that (in principle) needs the perturbative expansion
of the observable and the running of α to all orders.
On top of that we are only able to obtain the

Oðe− 2πd
β0αðQÞα−

dβ1
2β0ðQÞÞ term of the Borel sum, which

then sets the precision of the analysis. On the other
hand, it has the nice feature that the leading NP
power correction of the Borel sum has exactly the
same scaling as the NP corrections dictated by the
OPE, and that the result is explicitly μ independent.

(ii) On the other hand, method (1) [see Eq. (75)] shows
to be much more powerful. At low orders it is just
standard perturbation theory. At high orders (quan-
tified by NP) the series is truncated. This corre-
sponds to the superasymptotic approximation. We
can quantify the error committed in summations
truncated at the minimal term and state the inde-
pendence of the result on the scale and scheme used
for the perturbative expansion to a given accuracy.
This allows us to state the parametric accuracy of
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FIG. 11. Upper panel: We plot VPV − VA − KðAÞ
X ΛX for nf ¼ 3

in the lattice scheme with c0 ¼ 1 vs the truncated sums

VPV −
PNA

n¼0 Vnα
nþ1ðμÞ − KðAÞ

X ΛX , where μ is fixed using NA

defined in Eq. (28). Lower panel: As in the upper panel but in the
MS scheme.
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determinations of genuine NP power corrections
obtained by subtracting the perturbative series from
the full observable (the latter being obtained either
from lattice simulations or directly from experi-
ment). We then incorporate the NP corrections to the
truncated sum associated with the renormalons using
the PV regularization prescription. The procedure
uses the theory of terminants discussed in [14]. The
scale and scheme dependence of this merging is
under control in the whole process. This process is,
in principle, systematically improvable. Subleading
power corrections can be incorporated in the analy-
sis, reaching hyperasymptotic accuracy. This analy-
sis also allows us to visualize that truncating the
perturbative sum at the minimal term produces, in
general, terms that cannot be absorbed in the NP
terms of the OPE, because of prefactors proportional
to

ffiffiffi
α

p
. Overall, one obtains an smooth connection

between the standard (pure) perturbative computa-
tion and the OPE (hyperasymptotic) expansion that
includes the NP power corrections.

With these methods it is possible to determine the
leading difference between the perturbative series truncated
at the minimal term with the Borel integral regulated using
the PV prescription in terms of the closest singularity to the
origin of the Borel transform. This is very good because it
allows us to determine such leading NP correction in terms
of the normalization of the leading renormalon, ZX

Od
, for

which approximate determinations can be obtained if the
perturbative series is known to high enough orders. It is also
worth mentioning that the dependence on ZX

Od
of the

hyperasymptotic approximation to the Borel sum is min-
imal, since it only appears inΩ. Finally note that there is no
need of introducing an infrared cutoff νf.
We plan to apply these methods to general observables,

but before we want to study the methods in test-objects for
which the approximations are under control. In this paper
we take the static potential in the large β0 approximation,
regulating the asymptotic perturbative expansion using the
PV prescription, as the observable. It has nice properties: A
lot of analytic control is known for it, its Borel transform is
known exactly, and it does not have ultraviolet renorma-
lons. In this case we know what the genuine NP corrections
are. They are zero by construction.
Whereas the general expressions we give in this paper

are valid for any scheme, for the specific analysis worked
out in this paper (the static potential in the large β0
approximation), we use two different schemes: the lattice
and the MS schemes. In the large β0 this is equivalent to a
redefinition of the renormalization scale. Nevertheless, let
us stress that it corresponds to a rather large change in the
scale. Different values of c [see Eq. (27)] can also be
understood as a change in the renormalization scale. The
result is independent on the scheme and factorization
scale used for the α (within the error of the computation).

The scheme/scale dependence is a higher order effect. The
important thing is that both schemes converge. This does
not mean that all schemes converge equally fast. We
observe that MS appears to be more convenient for method
(2B). It is also interesting to see the dependence of the
observables/methods with nf. Indeed we observe that the
range of validity of the hyperasymptotic expansion is
sensitive to the value of nf. Changing from nf¼0 to nf¼3

significantly enlarges the range of validity of the OPE. This
is a relevant discussion when trying to determine up to
which scale one can apply perturbation theory and the OPE.
Concerning how well method (1) and (2B) perform in
practice for this observable, we find that both methods
converge to the expected result. Method (2B) is not
particularly precise though. Method (1) appears to converge
faster (besides being systematically improvable). Finally,
and specific to method (2B), one issue that we address is
how large the renormalization scale μ has to be such that the
perturbative expansion simulates well the truncated integral
in Eq. (68). For the case of the static potential in the large β0
approximation, we observe that we have to go to relatively
high scales. This makes this method not very useful.
The application of these analyses to QCD observables

(beyond the large β0 approximation) and the incorporation
of ultraviolet renormalons (if necessary) is left to forth-
coming papers.
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APPENDIX: Db(− x)
We define

Dbð−xÞ≡ x
Z

∞

0;PV
due−ux

1

ð1 − uÞ1þb

¼ 1

Γðbþ 1Þ
Z

∞

0;PV
dϵϵb

1

1 − ϵ
x

e−ϵ; ðA1Þ

where x > 0. Note that this integral has a cut in the
integration line starting at u ¼ 1. We have to define how
we handle the singularity. We demandDbð−xÞ to be real for
real and positive x. The first expression can be understood
as the analytic continuation in b of the second expression
(which is first defined for arbitrary positive integer values),
and in the second expression we use the PV prescription.
Both expressions produce the same asymptotic expansions.
Finally, we obtain the following expression
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Dbð−xÞ ¼ xe−xð−xÞb½Γð−bÞ − Γð−b;−xÞ�
− cosðπbÞΓð−bÞx1þbe−x; ðA2Þ

where (ΓðbÞ≡ Γðb; 0Þ)

Γðb; xÞ ¼
Z

∞

x
dttb−1e−t ðA3Þ

is the incomplete Gamma function. The second term in
Eq. (A2) is explicitly real, not so for the first term. Note that
the last term in Eq. (A2) is proportional to ΛQCD. From
these expressions is difficult to take the b → 0 limit. It is
more convenient to set b ¼ 0 before computing.

Dbð−xÞ is long known: Dbð−xÞ ¼ Λ̄bð−xÞ, where
Λ̄bð−xÞ is defined in [14]. Variants of that formula read
(originally generated with a > 0)Z

∞

0

dye−yx
1

ð1þ y
aÞ1þb ¼

a
Γðbþ1Þx

b

Z
∞

0

dyybe−yx
1

ð1þ y
aÞ
;

ðA4ÞZ
∞

0;PV
dϵe−ϵ

ðαϵÞN
1−αϵ

¼αN−1ΓðNþbþaÞ
Z

∞

0;PV
dϵe−ϵ=α

1

ð1−ϵÞð1þbþNÞ : ðA5Þ
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