Chiral Lagrangians for mesons with a single heavy quark

Shao-Zhou Jiang,^{1,*} Yan-Rui Liu,^{2,†} and Qin-He Yang¹

¹Key Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, People's Republic of China

²School of Physics, Shandong University, Jinan 250100, People's Republic of China

(Received 30 January 2019; published 16 April 2019)

We construct the relativistic chiral Lagrangians for heavy-light mesons $(Q\bar{q})$ to the $\mathcal{O}(p^4)$ order. From $\mathcal{O}(p^2)$ to $\mathcal{O}(p^4)$, there are 17, 67, and 404 independent terms in the flavor SU(2) case and 20, 84, and 655 independent terms in the flavor SU(3) case. The Lagrangians in the heavy quark limit are also obtained. From $\mathcal{O}(p^2)$ to $\mathcal{O}(p^4)$, there are 7, 25, and 136 independent terms in the flavor SU(2) case and 8, 33, and 212 independent terms in the flavor SU(3) case. The relations between low-energy constants based on the heavy quark symmetry are also given up to the $\mathcal{O}(p^3)$ order.

DOI: 10.1103/PhysRevD.99.074018

I. INTRODUCTION

The spontaneous breaking of the global chiral symmetry of QCD is an important feature in the low-energy nonperturbative region of strong interactions. It has been widely accepted that the low-lying pseudoscalar mesons are those Goldstone bosons generated from the symmetry breaking. The effective theory based on this symmetry and its breaking is the chiral perturbation theory (ChPT) [1–3], which originally describes only low-energy dynamics of such mesons. Later, the theory was extended to cases involving octet baryons [4], decuplet baryons [5,6], and heavy quark hadrons [7,8]. The matter fields involved in the present study are those heavy-light mesons whose quark content is $Q\bar{q}$ (Q = c, b; q = u, d, s).

Because of the light quark, the low-energy interactions for the heavy-light mesons are governed by the chiral symmetry. In addition, the interactions also obey the spinflavor heavy quark (HQ) symmetry in the limit $M_Q \rightarrow \infty$ [8–11]. The heavy quark flavor symmetry means that different heavy flavors have the same dynamics while the heavy quark spin symmetry results in degenerate hadron doublets containing states with different spins. In ChPT, increasing number of low-energy constants (LECs) need to be determined when high order chiral corrections are considered. For the case involving the heavy-light mesons, the heavy quark symmetry may provide relations between LECs [12]. Before we can determine their values with other approaches, these constraints just from symmetry are certainly instructive. Of course, the corrections to such relations due to finite quark mass may also be needed for more detailed investigations.

With the chiral Lagrangians involving heavy-light mesons, a wide range of problems can be studied [13-25], such as properties of heavy-light mesons, mass difference between heavy-light mesons in the same doublet, interactions between the Goldstone bosons and the heavy-light mesons, interactions between heavy-light mesons, properties of new open-flavor particles [26], and so on. Up to now, the chiral Lagrangian in the sector of light pseudoscalar mesons has been constructed up to the $\mathcal{O}(p^8)$ order [27–35]. Recently, there have also been developments in the sector of light baryons [36–42]. However, the existing heavy-light meson chiral Lagrangian is still at low orders. The leading order result was obtained long time ago [7,8,12]. For higher order results, only parts of them were constructed for special problems, which can be found in Refs. [13–25]. Some similar works are about the SU(2)pion-kaon chiral Lagrangian. This chiral Lagrangian has the same structures as that for the heavy-light pseudoscalar mesons. It has been constructed to the $\mathcal{O}(p^4)$ order [43–45]. In the present work, we systematically construct the relativistic chiral Lagrangians in the sector of heavylight mesons up to the fourth chiral order. To find some relations of LECs by using the heavy quark symmetry, we also construct directly chiral Lagrangians with the superfield H containing the $J^P = 0^-$ and $1^- Q\bar{q}$ mesons. By comparing the relativistic Lagrangians with those in the HQ limit, one obtains relations between LECs.

This paper is organized as follows. In Sec. II, we review briefly the building blocks for the construction of chiral Lagrangians. In Sec. III, from the structures of Lagrangians

jsz@gxu.edu.cn yrliu@sdu.edu.cn

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP³.

to linear relations between various ingredients, we introduce the procedure to construct the heavy-light meson chiral Lagrangians step by step. In Sec. IV, the way to find relations between LECs with the heavy quark symmetry is introduced. In Sec. V, we list our results. The last Sec. VI is a short summary.

II. DEFINITIONS AND BUILDING BLOCKS

In this section, we give the building blocks necessary for the construction of Lagrangians. Some simple properties are also shown. These building blocks involve both relativistic and HQ forms. One may find details about them in Refs. [3,7,8,12,27,29,30,32,34,35,46–49].

A. Goldstone bosons and external sources

The QCD Lagrangian $\mathcal{L}_{\text{QCD}}^0$ with N_f -flavor massless quarks is

$$\mathcal{L} = \mathcal{L}_{\text{QCD}}^0 + \bar{q}(\not p + \not q \gamma_5 - s + i p \gamma_5)q, \qquad (1)$$

where q denotes the light quark field. s, p, v^{μ} , and a^{μ} are scalar, pseudoscalar, vector, and axial-vector external sources, respectively. The tensor source and the θ term are ignored in this paper. As usual, both a^{μ} and v^{μ} are considered traceless in the flavor SU(3) case, but only a^{μ} is traceless in the flavor SU(2) case to study the electroweak interactions.

In ChPT, the low-lying pseudoscalar mesons are considered to be Goldstone bosons coming from the spontaneous breaking of the global symmetry $SU(N_f)_L \times SU(N_f)_R$ into $SU(N_f)_V$. The meson field *u* in matrix form transforms as

$$u \to g_R u h^\dagger = h u g_L^\dagger \tag{2}$$

under the chiral rotation, where g_L and g_R are group elements of $SU(N_f)_L$ and $SU(N_f)_R$, respectively, and *h* is a compensator field which is a function of the pion fields.

Usually, the meson fields and external sources are combined to building blocks whose forms are as follows,

$$u^{\mu} = i \{ u^{\dagger} (\partial^{\mu} - ir^{\mu}) u - u (\partial^{\mu} - il^{\mu}) u^{\dagger} \}, \chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u, h^{\mu\nu} = \nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu}, f^{\mu\nu}_{+} = u F_{L}^{\mu\nu} u^{\dagger} + u^{\dagger} F_{R}^{\mu\nu} u, f^{\mu\nu}_{-} = u F_{L}^{\mu\nu} u^{\dagger} - u^{\dagger} F_{R}^{\mu\nu} u = -\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu},$$
(3)

where $r^{\mu} = v^{\mu} + a^{\mu}$, $l^{\mu} = v^{\mu} - a^{\mu}$, $\chi = 2B_0(s + ip)$, $F_R^{\mu\nu} = \partial^{\mu}r^{\nu} - \partial^{\nu}r^{\mu} - i[r^{\mu}, r^{\nu}]$, $F_L^{\mu\nu} = \partial^{\mu}l^{\nu} - \partial^{\nu}l^{\mu} - i[l^{\mu}, l^{\nu}]$, and B_0 is a constant related to the quark condensate. The covariant derivative for any building block X is defined through

$$\nabla^{\mu}X = \partial^{\mu}X + [\Gamma^{\mu}, X], \tag{4}$$

$$\Gamma^{\mu} = \frac{1}{2} \{ u^{\dagger} (\partial^{\mu} - ir^{\mu})u + u(\partial^{\mu} - il^{\mu})u^{\dagger} \}.$$
 (5)

The advantage of using these building blocks is that all of them transform under the chiral rotation (R) in the same way,

$$X \xrightarrow{R} X' = hXh^{\dagger}.$$
 (6)

B. Heavy-light mesons

A heavy-light meson contains one heavy quark Q (c or b) and one light antiquark \bar{q} (\bar{u} , \bar{d} , or \bar{s}). The lowest lying heavy-light mesons are the pseudoscalar P with $J^P = 0^-$ and vector P^* with $J^P = 1^-$. In the flavor SU(3) case (Q as a flavor singlet), they are represented as row vectors,

$$P = \begin{cases} (D^0, D^+, D_s^+), \\ (\bar{B}^-, \bar{B}^0, \bar{B}_s^0), \end{cases} \qquad P^* = \begin{cases} (D^{*0}, D^{*+}, D_s^{*+}), \\ (\bar{B}^{*-}, \bar{B}^{*0}, \bar{B}_s^{*0}). \end{cases}$$
(7)

In the flavor SU(2) case, the third $Q\bar{s}$ mesons need to be removed. The Lagrangians in these two cases have different independent chiral-invariant terms and we consider results in both cases. The covariant derivative for \tilde{P} (*P* or $P^{*\mu}$) is

$$D^{\mu}\tilde{P}^{\dagger} = (\partial^{\mu} + \Gamma^{\mu})\tilde{P}^{\dagger}, \qquad (8)$$

$$D^{\mu}\tilde{P} = \tilde{P}(\overleftarrow{\partial}^{\mu} + \Gamma^{\mu\dagger}), \qquad (9)$$

$$D^{\mu\nu\cdots\rho} \equiv \frac{1}{n!} (\underbrace{D^{\mu}D^{\nu}\cdots D^{\rho}}_{n} + \text{full permutation of } D^{*}\text{s}). \quad (10)$$

Equation (10) defines a totally symmetrical covariant derivative like the πN case [36]. The reason for this definition is that permutations of derivatives acting on a building block do not change the chiral dimension (as Eq. (23) below). The defined symmetrical derivative will simplify some calculations (see Sec. IV). The chiral transformations for heavy-light meson fields read

$$\tilde{P} \xrightarrow{R} \tilde{P}' = \tilde{P}h^{\dagger}, \qquad \tilde{P}^{\dagger} \xrightarrow{R} \tilde{P}'^{\dagger} = h\tilde{P}^{\dagger}.$$
 (11)

To adopt the heavy quark symmetry, one collects the heavy-light mesons in a superfield as usual [50],

$$H = \sqrt{M} \frac{1+\not}{2} (P_{\mathcal{Q},\mu}^* \gamma^\mu + \delta P_{\mathcal{Q}} \gamma_5), \quad \bar{H} \equiv \gamma^0 H^{\dagger} \gamma^0, \quad (12)$$

where $M \equiv M_P = M_{P^*}$ is the heavy-light meson masses in the HQ limit and v^{μ} with $v^2 = 1$ is the velocity of heavylight mesons, $P_{Q,\mu}^*$ and P_Q only contain the annihilation operator. Now, *H* contains only annihilation operators for $Q\bar{q}$ mesons and its mass dimension is 3/2. We here use δ to denote the arbitrary relative phase between the mesons P_Q and P_Q^* . Different conventions exist in the literature, e.g., $\delta = 1$ in [7], $\delta = -1$ in [47], and $\delta = i$ in [51]. This phase does not have physical effects and its choice does not impact on the form of Lagrangians, either. Scaling the superfield by $e^{-iMv \cdot x}$ will modify the energy measure from M_Q to M and the covariant derivative on matter fields becomes $D^{\mu}H(x) = -iMv^{\mu}H(x)$. Obviously, the chiral transformations for H and \bar{H} are the same as those for \tilde{P} and \tilde{P}^{\dagger} , respectively.

III. LAGRANGIAN CONSTRUCTION

This section shows the basic steps to construct the Lagrangian for heavy-light mesons. First, one analyzes the structures of chiral Lagrangians because they have effects on some properties of building blocks. Second, one establishes the *P*-parity, *C*-parity, and Hermitian properties of all the building blocks. Third, one finds out available linear relations in order to reduce linearly dependent terms. Finally, one constructs all possible structures of the chiral Lagrangian and gets independent terms by using the linear relations.

A. Structures of chiral Lagrangians

The relativistic heavy-light meson chiral Lagrangian can be written as

$$\mathcal{L} = \mathcal{L}_{PP} + \mathcal{L}_{P^*P^*} + \mathcal{L}_{PP^*} \tag{13}$$

$$=\sum_{n}C_{n}P\cdots P^{\dagger}+\sum_{m}C_{m}P^{*}\cdots P^{*\dagger}$$
$$+\sum_{n}C_{p}(P\cdots P^{*\dagger}+P^{*}\cdots P^{\dagger}), \qquad (14)$$

where \mathcal{L}_{PP} , $\mathcal{L}_{P^*P^*}$, and \mathcal{L}_{PP^*} represent the interaction terms involving only heavy pseudoscalar mesons, only heavy vector mesons, and both heavy pseudoscalar and heavy vector mesons, respectively. The symbol "…" includes allowed combinations of building blocks given in Sec. II A and appropriate coefficients (± 1 or $\pm i$) to keep the symmetry of \mathcal{L} . For convenience, the LECs (C_n , C_m , and C_p) are all assumed to be real constants and we use the convention that all the possible covariant derivatives in "…" act on the right side heavy-light meson fields.

To find out relations between LECs in the HQ limit, we also construct chiral Lagrangians involving the superfield H directly. The Lagrangian in this formalism looks like

$$\mathcal{L} = \sum_{n} D_n \langle H \cdots \Gamma \bar{H} \rangle, \tag{15}$$

where D_n 's represent LECs in this case, Γ is an element of the Clifford algebra, and $\langle \cdots \rangle$ means trace in the spin

PHYS. REV. D 99, 074018 (2019)

TABLE I. Chiral dimension (Dim), parity (P), charge conjugation (C), and Hermiticity (H.c.) of the building blocks, the matter fields, and the Levi-Civita tensor.

	Dim	Р	С	H.c.
u ^μ	1	$-u_{\mu}$	$(u^{\mu})^T$	u^{μ}
$h^{\mu u}$	2	$-h_{\mu u}$	$(h^{\mu\nu})^T$	$h^{\mu u}$
χ_{\pm}	2	$\pm\chi_{\pm}$	$(\chi_{\pm})^T$	$\pm\chi_{\pm}$
$f^{\mu u}_{\pm}$	2	$\pm f_{\pm\mu\nu}$	$\mp (f_{\pm}^{\mu\nu})^T$	$f^{\mu u}_{\pm}$
Р	0	-P	$(P^{\dagger})^T$	P^\dagger
$P^{*\mu}$	0	P^*_μ	$(P^{*\mu\dagger})^T$	$P^{*\mu\dagger}$
$D^{\mu}P$	0	$-D_{\mu}P$	$(D^{\mu}P^{\dagger})^T$	$(D^{\mu}P)^{\dagger}$
$D^{\mu}P^{* u}$	0	$D_{\mu} P_{ u}^{*}$	$(D^{\mu}P^{* u\dagger})^T$	$(D^{\mu}P^{* u})^{\dagger}$
$\epsilon^{\mu\nu\lambda\rho}$	0	$-\varepsilon_{\mu u\lambda ho}$	$\varepsilon^{\mu u\lambda ho}$	$\varepsilon^{\mu u\lambda ho}$

space. If flavor traces for building blocks are needed in "…", we also use this symbol $\langle \cdots \rangle$. The heavy quark symmetry requires that the position of Γ should be after *H* but before \overline{H} .

B. Properties of building blocks

The properties of the building blocks have been discussed in a lot of references. Here we only collect relevant results. One may find details about them in Refs. [2,3,7,27,29–31,34–36,47,51].

Table I lists the chiral dimensions, parity transformations (*P*), charge conjugation transformations (*C*), and Hermitian transformations (H.c.) of the building blocks, the matter fields, and the Levi-Civita tensor. Since the heavy-light mesons are not purely neutral states, the phases for the charge conjugation transformation of them are uncertain. Choosing "+" for *P* is natural since $J^{PC} = 0^{--}$ are exotic quantum numbers. For *P*^{*}, we use the convention "+" and will discuss another one.

Table II lists the corresponding properties of the Clifford algebra and the velocity of heavy-light mesons, which are considered between H and \bar{H} as (15). H, \bar{H} , and v^{μ} are chiral dimensionless and their properties are considered together with Clifford algebra, like the πN case in Ref. [36]. Table II only displays the extra signs. We do not show anything about γ_5 because $\langle H\gamma_5\bar{H}\rangle = 0$ gives no contributions. H only contains the $Q\bar{q}$ fields, but not $\bar{Q}q$ fields. Hence the Lagrangian in heavy quark symmetry does not

TABLE II. Chiral dimension (Dim), parity (P), charge conjugation (C), and Hermiticity (H.c.) of the Clifford algebra elements and the velocity of heavy-light mesons.

	Dim	Р	С	H.c.
1	0	+	+	+
γ^{μ}	0	+	_	+
$\gamma_5 \gamma^{\mu}$	0	_	+	+
$\sigma^{\mu u}$	0	+	_	+
v^{μ}	0	+	-	+

have to be *C*-invariant. The meaning of the charge conjugation in Table II will be discussed in Sec. IV.

C. Linear relations

Linear relations exist which are essential in reducing the chiral-invariant terms to a minimal set. For details about them, one may consult Refs. [27,29,30,34,35].

(i) Partial integration.

Ignoring higher order terms, one has

<u>~</u>__

$$0 \doteq \tilde{P}D^{r}X\tilde{P}^{\dagger} + \tilde{P}XD^{\mu}\tilde{P}^{\dagger}, \qquad (16)$$

where X is any building block or their products and " \doteq " means that both sides are approximately equal with their difference appearing at the order $\mathcal{O}(p^1)$. With this relation, we can move the covariant derivatives to the right position so that they act only on the field \tilde{P}^{\dagger} .

(ii) Schouten identity.

This is a relation about the Levi-Civita tensor,

$$\epsilon^{\mu\nu\lambda\rho}A^{\sigma} - \epsilon^{\sigma\nu\lambda\rho}A^{\mu} - \epsilon^{\mu\sigma\lambda\rho}A^{\nu} - \epsilon^{\mu\nu\sigma\rho}A^{\lambda} - \epsilon^{\mu\nu\lambda\sigma}A^{\rho} = 0, \qquad (17)$$

where *A* is anything having Lorentz index (indices). The five indices in the left-hand side are totally antisymmetric.

(iii) Equations of motions (EOMs).

The EOMs and subsidiary condition for light pseudoscalar and heavy-light mesons are

$$\nabla_{\mu}u^{\mu} \doteq \frac{i}{2} \left(\chi_{-} - \frac{1}{N_{f}} \langle \chi_{-} \rangle \right), \qquad (18)$$

$$(D^2 + M_P^2)P^{\dagger} \doteq 0, \qquad (19)$$

$$(D^2 + M_{P^*}^2) P_{\mu}^{*\dagger} \doteq 0, \qquad (20)$$

$$D^{\mu}P^{*\dagger}_{\mu} \doteq 0, \tag{21}$$

$$v^{\mu}P_{Q,\mu}^{*\dagger} = 0, \qquad (22)$$

where N_f is the number of light quark flavors and the conjugations of these equations are omitted. Equation (22) only works in the heavy quark limit. The right-hand sides of Eqs. (19)–(21) are at least at the order $\mathcal{O}(p^1)$. At the $\mathcal{O}(p^1)$ order, they contain one u^{μ} . Hence, $D^2\tilde{P}$ can be changed to $-M_{\tilde{p}}^2\tilde{P}$ and does not happen in the Lagrangian. $D^{\mu}P_{\mu}^*$ is at the order $\mathcal{O}(p^1)$. It removes the redundant degree of freedom of P_{μ}^* field, and $D^{\mu}P_{\mu}^*$ does not appear in the Lagrangian, either. (iv) Covariant derivatives and Bianchi identity.

The commutative relation for the covariant derivatives acting on any building block X is

$$[\nabla^{\mu}, \nabla^{\nu}]X = [\Gamma^{\mu\nu}, X], \qquad (23)$$

$$\Gamma^{\mu\nu} = \frac{1}{4} \left[u^{\mu}, u^{\nu} \right] - \frac{i}{2} f^{\mu\nu}_{+}.$$
 (24)

Rewriting it explicitly, one has

$$\nabla^{\mu}\nabla^{\nu}X - \nabla^{\nu}\nabla^{\mu}X - \frac{1}{4}u^{\mu}u^{\nu}X + \frac{1}{4}u^{\nu}u^{\mu}X + \frac{i}{2}f_{+}^{\mu\nu}X + \frac{1}{4}Xu^{\mu}u^{\nu} - \frac{1}{4}Xu^{\nu}u^{\mu} - \frac{i}{2}Xf_{+}^{\mu\nu} = 0.$$
 (25)

Another relation about covariant derivatives is Bianchi identity

$$\nabla^{\mu}\Gamma^{\nu\lambda} + \nabla^{\nu}\Gamma^{\lambda\mu} + \nabla^{\lambda}\Gamma^{\mu\nu} = 0.$$
 (26)

Its explicit form is

$$\nabla^{\mu} f_{+}^{\nu\lambda} + \nabla^{\nu} f_{+}^{\lambda\mu} + \nabla^{\lambda} f_{+}^{\mu\nu} + \frac{i}{2} [u^{\mu}, f_{-}^{\nu\lambda}] + \frac{i}{2} [u^{\nu}, f_{-}^{\lambda\mu}] + \frac{i}{2} [u^{\lambda}, f_{-}^{\mu\nu}] = 0.$$
(27)

These two explicit relations are for determining the strict relations of LECs which will be discussed in Sec. IV.

(v) Cayley-Hamilton relations.

Any 2×2 matrices A and B have the relation

$$AB + BA - A\langle B \rangle - B\langle A \rangle - \langle AB \rangle + \langle A \rangle \langle B \rangle = 0.$$
(28)

Any 3×3 matrices A, B, and C have the relation

$$0 = ABC + ACB + BAC + BCA + CAB + CBA$$
$$-AB\langle C \rangle - AC\langle B \rangle - BA\langle C \rangle - BC\langle A \rangle - CA\langle B \rangle$$
$$-CB\langle A \rangle - A\langle BC \rangle - B\langle AC \rangle - C\langle AB \rangle - \langle ABC \rangle$$
$$-\langle ACB \rangle + A\langle B \rangle \langle C \rangle + B\langle A \rangle \langle C \rangle + C\langle A \rangle \langle B \rangle$$
$$+ \langle A \rangle \langle BC \rangle + \langle B \rangle \langle AC \rangle + \langle C \rangle \langle AB \rangle - \langle A \rangle \langle B \rangle \langle C \rangle.$$
(29)

(vi) Contact terms.

The contact terms need to be picked up independently. Such terms appear only at the $\mathcal{O}(p^4)$ order. To show their irrelevance with pion fields, we change the building blocks from u^{μ} , $h^{\mu\nu}$, $f^{\mu\nu}_{\pm}$, and χ^{\pm} to $F^{\mu\nu}_{R,L}$, χ , and χ^{\dagger} . The relevant relations are

TABLE III. Chiral rotations (R), parity (*P*), charge conjugation (*C*), and Hermiticity (H.c.) of the LR-basis.

	R	Р	С	H.c.
χ	$g_{R}\chi g_{L}^{\dagger}$	χ^{\dagger}	χ^{T}	χ^{\dagger}
χ^{\dagger}	$g_L \chi^\dagger g_R^\dagger$	χ	$\chi^{\dagger T}$	χ
$F_L^{\mu u}$	$g_L F_L^{\mu u} g_L^\dagger$	$F_R^{\mu u}$	$-(F_R^{\mu\nu})^T$	$F_L^{\mu u}$
$F_R^{\mu\nu}$	$g_R F^{\mu u}_R g^\dagger_R$	$F_L^{\mu u}$	$-(F_L^{\mu\nu})^T$	$F_R^{\mu\nu}$

$$F_L^{\mu\nu} = \frac{1}{2} u^{\dagger} (f_+^{\mu\nu} + f_-^{\mu\nu}) u, \qquad (30)$$

$$F_{R}^{\mu\nu} = \frac{1}{2}u(f_{+}^{\mu\nu} - f_{-}^{\mu\nu})u^{\dagger}, \qquad (31)$$

$$\chi = \frac{1}{2}u(\chi_{+} + \chi_{-})u, \qquad (32)$$

$$\chi^{\dagger} = \frac{1}{2} u^{\dagger} (\chi_{+} - \chi_{-}) u^{\dagger}.$$
 (33)

We show the properties of these building blocks (LR-basis) [27,34] in Table III. The number of resultant contact terms is found small. They are listed at the end of each part for \mathcal{L}_{PP} , $\mathcal{L}_{P^*P^*}$, and \mathcal{L}_{PP^*} in Table IX and such terms in the HQ limit are given at the end of Table X.

The process to pick up independent terms is very boring and is done by computer. The details about the operation have been presented in Refs. [34,39,40].

IV. LEC RELATIONS IN THE HEAVY QUARK LIMIT

According to the heavy quark symmetry, relations exist among LECs for PP^{\dagger} terms, those for $P^*P^{*\dagger}$ terms, and those for $PP^{*\dagger}$ terms. In order to find them, we firstly redefine the independent terms and their corresponding LECs in Eq. (14) to be

$$\tilde{O}_n = O_n / M^r, \qquad \tilde{C}_n = C_n M^r, \tag{34}$$

where r is the number of covariant derivative acting on the heavy-light meson fields. Now, all \tilde{C}_n 's at a given order have the same mass dimension.

At least two methods can be used to get the LEC relations. The first one is to change the relativistic Lagrangians to the HQ form. With Eq. (12), one obtains

$$\sqrt{M}P_{Q} = \frac{1}{2}\delta^{*}\langle H\gamma_{5}\rangle, \qquad \sqrt{M}P_{Q,\mu}^{*} = \frac{1}{2}\langle H\gamma_{\mu}\rangle,
\sqrt{M}P_{Q}^{\dagger} = -\frac{1}{2}\delta\langle\bar{H}\gamma_{5}\rangle, \qquad \sqrt{M}P_{Q,\mu}^{*\dagger} = \frac{1}{2}\langle\bar{H}\gamma_{\mu}\rangle.$$
(35)

These fields contain only operators to annihilate or generate $Q\bar{q}$ mesons, but no operators for $\bar{Q}q$ mesons. If we assume

that the fields in Eq. (14) also describe only $Q\bar{q}$ mesons, the Lagrangian there can be changed to that in Eq. (15) by using the Fierz identity. Retaining only terms satisfying the heavy quark symmetry and comparing independent terms, one can obtain relations between C_n 's and D_n 's.

The second method is opposite by changing the form of Eq. (15) to that of Eq. (14),

$$\langle H\bar{H}\rangle \to M(-2P_{Q}P_{Q}^{\dagger}+2P_{Q}^{*\mu}P_{Q,\mu}^{*\dagger}), \qquad (36)$$

$$\langle H\gamma_5 \bar{H} \rangle \to 0,$$
 (37)

$$\begin{split} H\gamma^{\mu}\bar{H}\rangle &\to M(-\langle Hv^{\mu}\bar{H}\rangle) = \sqrt{M}(-2iP_{Q}D^{\mu}P_{Q}^{\dagger}/M \\ &+ 2iP_{Q}^{*\nu}D^{\mu}P_{Q,\nu}^{*\dagger}/M), \end{split} \tag{38}$$

$$\langle H\gamma_5 \gamma^{\mu} \bar{H} \rangle \to M(-2\varepsilon^{\mu\nu\lambda\rho} P^*_{\mathcal{Q},\lambda} D_{\nu} P^{*\dagger}_{\mathcal{Q},\rho} / M + 2\delta P_{\mathcal{Q}} P^{*\dagger\mu}_{\mathcal{Q}} + 2\delta^* P^{*\mu}_{\mathcal{Q}} P^{\dagger}_{\mathcal{Q}}),$$
(39)

$$\langle H\sigma^{\mu\nu}\bar{H}\rangle \to M(2iP_Q^{*\mu}P_Q^{*\dagger\nu} - 2iP_Q^{*\nu}P_Q^{*\dagger\mu} + 2i\varepsilon^{\mu\nu\lambda\rho}\delta P_Q D_\lambda P_{Q,\rho}^{*\dagger}/M + 2i\varepsilon^{\mu\nu\lambda\rho}\delta^* P_{Q,\rho}^* D_\lambda P_Q^{\dagger}/M),$$
(40)

where we have used the definition $\langle \gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma^{\rho}\gamma_{5}\rangle = -4i\varepsilon^{\mu\nu\lambda\rho}$. The factor *M* comes from the definition in Eq. (12). From the above equations, one finds that only structures $\langle H\bar{H}\rangle$, $\langle H\gamma_{5}\gamma^{\mu}\bar{H}\rangle$, and $\langle H\sigma^{\mu\nu}\bar{H}\rangle$ exist in the final results, a feature consistent with the pion-nucleon case [36]. In order to obtain the relativistic Lagrangian, the right-hand sides of the above equations also need *C* invariant. If one substitutes $\tilde{P}_{Q} \rightarrow \tilde{P}$ and chooses the "*C*-parity" of the Clifford algebra and the velocity as those in Table II, these terms automatically contain the *C*-invariant.

To get the exact relations between \tilde{C}_k and D_l , the strict linear relations are needed. In Sec. III C, we have found them in the relativistic case. Hence, we choose the second method to do the calculation. This method also avoids complex calculation from the Fierz identity. The relations are

$$\tilde{C}_k = M \sum_l D_l A_{lk}, \tag{41}$$

where M is a usual normalization factor coming from Eq. (12). All elements in matrix A_{lk} are dimensionless. Since the number of D_l is much less than the number of \tilde{C}_k (see the results in Sec. V), D_l may be obtained more easily in other ways. If all D_l are known, Eq. (41) gives a rough estimation of \tilde{C}_k . It also gives some constraint conditions of \tilde{C}_k in the heavy quark limit.

To calculate Eq. (41), we avoid the approximate relations (marked by " \doteq ") in Sec. III C as far as possible. Higher order contribution of the EOM for pseudoscalar mesons

[Eq. (18)] does not work to the $\mathcal{O}(p^2)$ order, and higher order contribution of the EOMs for heavy-light mesons does not work to the $\mathcal{O}(p^3)$ order. Hence, all relations in Sec. III C are strict ones to the $\mathcal{O}(p^3)$ order.

V. RESULTS

Following the above steps, we get the final results expressed as

$$\mathcal{L}^{(m)} = \sum_{n} C_{n}^{(m)} O_{n}^{(m)} = \sum_{n} \tilde{C}_{n}^{(m)} \tilde{O}_{n}^{(m)}, \qquad N_{f} = 3$$
(42)

$$\mathcal{L}^{(m)} = \sum_{n} c_{n}^{(m)} o_{n}^{(m)} = \sum_{n} \tilde{c}_{n}^{(m)} \tilde{o}_{n}^{(m)}, \qquad N_{f} = 2 \quad (43)$$

$$\mathcal{L}_{HQ}^{(m)} = \sum_{n} D_{n}^{(m)} P_{n}^{(m)}, \qquad N_{f} = 3$$
(44)

$$\mathcal{L}_{\mathrm{H}Q}^{(m)} = \sum_{n} d_{n}^{(m)} p_{n}^{(m)}, \qquad N_{f} = 2.$$
 (45)

where m is the chiral dimension.

A. Results at the $\mathcal{O}(p^1)$ and $\mathcal{O}(p^2)$ orders The obtained relativistic result at the leading order,

$$\begin{aligned} \mathcal{L}^{(1)} &= D_{\mu} P D^{\mu} P^{\dagger} - M_{P}^{2} P P^{\dagger} \\ &- \frac{1}{2} (D^{\mu} P^{*\nu} - D^{\nu} P^{*\mu}) (D_{\mu} P_{\nu}^{*\dagger} - D_{\nu} P_{\mu}^{*\dagger}) + M_{P^{*}}^{2} P^{*\mu} P_{\mu}^{*\dagger} \\ &+ \frac{1}{2} f_{Q} (P u^{\mu} P^{*\dagger}{}_{\mu} + \text{H.c.}) \\ &+ \frac{1}{4} g_{Q} \varepsilon^{\mu\nu\lambda\rho} (P_{\rho}^{*} u_{\lambda} (D_{\mu} P_{\nu}^{*\dagger} - D_{\nu} P_{\mu}^{*\dagger}) + \text{H.c.}), \end{aligned}$$
(46)

is the same as that in Ref. [7]. The form obeying the heavy quark symmetry is [8]

$$\mathcal{L}_{\mathrm{H}Q}^{(1)} = \langle Hiv^{\mu}D_{\mu}\bar{H}\rangle - \frac{1}{2}g\langle Hu_{\lambda}\gamma_{5}\gamma^{\lambda}\bar{H}\rangle. \tag{47}$$

The relations between f_Q , g_Q , and g are found to be

$$f_Q = 2g_Q M = -2gM. \tag{48}$$

TABLE IV. The $\mathcal{O}(p^2)$ order relativistic results. The columns 2, 3, and 4 (5, 6, and 7) are for the flavor SU(2) [SU(3)] case. When a term O_n is not given a label in the 2nd (5th) column, it is not independent and can be expressed with terms having a label in the 2nd (5th) column. "I" means that the structures of those terms are chosen as independent ones in the HQ limit.

$\overline{O_n}$	SU(2)	$\tilde{c}_n^{(2)}$	$\tilde{c}_n^{(2)}$	SU(3)	$ ilde{C}_n^{(2)}$	$ ilde{C}_n^{(2)}$
$Pu^{\mu}u_{\mu}P^{\dagger}$	1	$-2d_1^{(2)}$	Ι	1	$-2D_{1}^{(2)}$	Ι
$Pu^{\mu}u^{ u}D_{\mu u}P^{\dagger}$	2	$2d_2^{(2)}$	Ι	2	$2D_{2}^{(2)}$	Ι
$P\langle u^{\mu}u_{\mu} angle P^{\dagger}$		2		3	$-2D_{4}^{(2)}$	Ι
$P\langle u^{\mu}u^{ u} angle D_{\mu u}P^{\dagger}$				4	$2D_{5}^{(2)}$	Ι
$P\chi_+P^\dagger$	3	$-2d_{\epsilon}^{(2)}$	Ι	5	$-2D_{7}^{(2)}$	Ι
$P\langle\chi_+ angle P^\dagger$	4	$-2d_{7}^{(2)}$	Ι	6	$-2D_{s}^{(2)}$	Ι
$P^{*\mu}u_{\mu}u^{\nu}P^{*\dagger}{}_{\nu}$	5	$-2d_2^{(2)}$	Ι	7	$-2D_{2}^{(2)}$	Ι
$P^{*\mu}u^{\nu}u_{\mu}P^{*\dagger}{}_{\nu}$	6	$2d_2^{(2)}$	$-\tilde{c}_{\epsilon}^{(2)}$	8	$2D_{2}^{(2)}$	$-\tilde{C}_{7}^{(2)}$
$P^{*\mu}u^{\nu}u_{\nu}P^{*\dagger}{}_{\mu}$	7	$2d_1^{(2)}$	$-\tilde{c}_{1}^{(2)}$	9	$2D_{1}^{(2)}$	$-\tilde{C}_{1}^{(2)}$
$P^{*\mu}u^{ u}u^{\lambda}D_{ u\lambda}P^{*\dagger}{}_{\mu}$	8	$-2d_{2}^{(2)}$	$-\tilde{c}_{2}^{(2)}$	10	$-2D_{2}^{(2)}$	$-\tilde{C}_{2}^{(2)}$
$P^{*\mu}\langle u_{\mu}u^{ u}\rangle P^{*\dagger}{}_{ u}$		2	2	11	0	0
$P^{*\mu}\langle u^{ u}u_{ u} angle P^{*\dagger}{}_{\mu}$				12	$2D_{A}^{(2)}$	$-\tilde{C}_{3}^{(2)}$
$P^{*\mu}\langle u^{ u}u^{\lambda} angle D_{ u\lambda}P^{*\dagger}{}_{\mu}$				13	$-2D_{5}^{(2)}$	$-\tilde{C}_{4}^{(2)}$
$iP^{*\mu}f_{+\mu}{}^{\nu}P^{*\dagger}{}_{\nu}$	9	$4d_{4}^{(2)}$	Ι	14	$4D_{6}^{(2)}$	I
$iP^{*\mu}\langle f_{+\mu}{}^{ u} angle P^{*\dagger}{}_{ u}$	10	$4d_{5}^{(2)}$	Ι		0	
$P^{*\mu}\chi_+P^{*\dagger}{}_\mu$	11	$2d_{6}^{(2)}$	$-\tilde{c}_{2}^{(2)}$	15	$2D_7^{(2)}$	$-\tilde{C}_{5}^{(2)}$
$P^{*\mu}\langle\chi_+ angle P^{*\dagger}{}_{\mu}$	12	$2d_{7}^{(2)}$	$-\tilde{c}_{4}^{(2)}$	16	$2D_{s}^{(2)}$	$-\tilde{C}_{\epsilon}^{(2)}$
$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u_{\nu}D_{\lambda}P^{*\dagger}{}_{\rho} + \text{H.c.}$	13	$-2d_{2}^{(2)}$	$\tilde{c}_{5}^{(2)}$	17	$-2D_{2}^{(2)}$	$\tilde{C}_{7}^{(2)}$
$Pf_{-}^{\mu\nu}D_{\mu}P^{*\dagger}{}_{\nu}$ + H.c.	14	0	0	18	0	Ó
$Ph^{\mu u}D_{\mu}P^{*\dagger}{}_{ u}+ ext{H.c.}$	15	0	0	19	0	0
$i arepsilon^{\mu u\lambda ho} P f_{+\mu u} D_{\lambda} P^{*\dagger}{}_{ ho} + ext{H.c.}$	16	$2d_4^{(2)}$	$\frac{1}{2} \tilde{c}_{9}^{(2)}$	20	$2D_{6}^{(2)}$	$\frac{1}{2} \tilde{C}_{14}^{(2)}$
$i\epsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}\rangle D_{\lambda}P^{*\dagger}{}_{ ho}$ + H.c.	17	$2d_5^{(2)}$	$\frac{1}{2}\tilde{c}_{10}^{(2)}$			

TABLE V. The $\mathcal{O}(p^2)$ order results in the HQ limit. When a term P_n is not given a label in the 2nd (3rd) column, it is not independent and can be expressed with terms having a label in the 2nd (3rd) column.

$\overline{P_n}$	SU(2)	<i>SU</i> (3)
$\langle H u^{\mu} u_{\mu} \bar{H} \rangle$	1	1
$\langle H u^{\mu} u^{\nu} v_{\mu} v_{\nu} \bar{H} \rangle$	2	2
$i\langle Hu^{\mu}u^{\nu}\sigma_{\mu\nu}\bar{H}\rangle$	3	3
$\langle H \langle u^{\mu} u_{\mu} \rangle \bar{H} \rangle$		4
$\langle H \langle u^{\mu} u^{\nu} \rangle v_{\mu} v_{\nu} \bar{H} \rangle$		5
$\langle Hf_+^{\mu\nu}\sigma_{\mu\nu}\bar{H}\rangle$	4	6
$\langle H \langle f_+^{\mu u} \rangle \sigma_{\mu u} \bar{H} \rangle$	5	
$\langle H\chi_+\bar{H}\rangle$	6	7
$\langle H\langle \chi_+ angle ar{H} angle$	7	8

The results at this order are applicable for both two- and three- flavor cases.

We show the $\mathcal{O}(p^2)$ Lagrangian in the relativistic form and HQ form in Tables IV and V, respectively. The 2nd and 5th columns of Table IV (2nd and 3rd columns of Table V) give the labels for each term in the flavor SU(2)case and SU(3) case, respectively. The 3rd and 6th columns of Table IV list the corresponding LECs in the HQ limit. The 4th and 7th columns of Table IV display the LEC relations between the relativistic terms according to the heavy quark symmetry, where "I" means that corresponding terms can be treated as the independent ones. Some monomials only happen in the either SU(2) or SU(3) case because of the Cayley-Hamilton relations and the convention of the trace of the vector source v^{μ} . Hence, the other column is not labeled. Only a few analogous results in the references are found. The $\mathcal{O}(p^2)$ order \mathcal{L}_{PP} is the same as that in Ref. [20].

B. Results at the $\mathcal{O}(p^3)$ and $\mathcal{O}(p^4)$ orders

The $\mathcal{O}(p^3)$ and $\mathcal{O}(p^4)$ order results are too long and we give them in Appendix A. The relativistic results are collected in Tables VII and IX while those in the HQ limit are listed in Tables VIII and X. The 3rd and 6th columns of Table VII show the corresponding LECs in the HQ limit while the 4th and 7th columns of the same table display the LEC relations between the relativistic terms obtained from the heavy quark symmetry. "I" in Tables VII and IX again means that the relevant terms are considered independent in

the HQ limit. Some long expressions marked with "*" in Table VII are given explicitly below the table.

At present, we are not able to give the strict LEC relations for terms at the $\mathcal{O}(p^4)$ order. The $\mathcal{O}(p^1)$ order EOMs will appear because of the Schouten identity. Schouten identity can change the positions of some indexes and will give the factors as $D^{\mu}P^{*\dagger}{}_{\mu}$ or $D^2\tilde{P}$. Hence the LECs at the $\mathcal{O}(p^1)$ order will appear in these relations. The exact relations need the determination of the inverse of a large symbolic matrix. Hence, we only mark the independent terms in the HQ limit in Table IX. In the table, the 52–57, 241–253, and 402–404 terms in the two-flavor case (97–99, 413–418, and 655 terms in the three-flavor case) are contact terms. In Table X, the 128–136 terms in the two-flavor case) are contact terms.

C. Discussions

We have chosen the convention $\delta = 1$ in presenting our final results. If one wants to use another convention, all the results need not be changed. For the *C*-parity transformation of P^* , we also use the "+" convention. Another convention only has an impact on \mathcal{L}_{PP^*} . Let us consider any *C*-, *P*- and H.c.-invariant \mathcal{L}_{PP^*} term

$$(PO_{\mu}P^{*\dagger\mu} + \delta_C P^{*\mu}O_{C,\mu}P^{\dagger}), \qquad (49)$$

where O_{μ} is any possible structure, $O_{C,\mu}$ is an appropriate structure keeping the symmetry, and δ_C is the *C*-parity transformation factor of P^* . If one chooses an opposite sign of δ_C , an extra *i* factor is needed to keep Hermiticity.

VI. SUMMARY

In the present paper, we extend our previous studies and construct the relativistic chiral Lagrangians for mesons with a heavy quark to one loop, both for the flavor SU(3) case and for the flavor SU(2) case. The chiral Lagrangians in the heavy quark limit are also obtained. The number of independent terms in the heavy quark limit is much less than that in the relativistic case, which is illustrated in Table VI. By comparing independent terms in the relativistic form and those in the HQ limit, one finds LEC relations at each order which result from the heavy quark symmetry. These relations would get corrections once the breaking of heavy quark symmetry is considered.

TABLE VI. Number of independent terms at each chiral order.

		Relat	ivistic		HQ limit			
Chiral order	$\overline{\mathcal{O}(p^1)}$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^3)$	$\mathcal{O}(p^4)$	$\mathcal{O}(p^1)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^3)$	$\mathcal{O}(p^4)$
<i>SU</i> (2)	1	17	67	404	1	7	25	136
<i>SU</i> (3)	1	20	84	655	1	8	33	212

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation of China (NSFC) under Grants No. 11565004 and No. 11775132, Guangxi Science Foundation under Grants No. 2018GXNSFAA281180 and No. 2017AD22006, the special funding for Guangxi distinguished professors (Bagui Yingcai and Bagui Xuezhe) and High Level Innovation Team and Outstanding Scholar Program in Guangxi Colleges.

APPENDIX: $\mathcal{O}(p^3)$ AND $\mathcal{O}(p^4)$ ORDER RESULTS

The long relations in the fourth column of Table VII are

$$\begin{split} \tilde{c}_{44}^{(3)} &= (\tilde{c}_{10}^{(3)} + 2\tilde{c}_{11}^{(3)} - \tilde{c}_{26}^{(3)}) - 2\tilde{c}_{14}^{(3)}, \\ \tilde{c}_{45}^{(3)} &= -(\tilde{c}_{10}^{(3)} + 2\tilde{c}_{11}^{(3)} - \tilde{c}_{26}^{(3)}), \\ \tilde{c}_{53}^{(3)} &= \tilde{c}_{24}^{(3)} + \tilde{c}_{25}^{(3)} - \tilde{c}_{26}^{(3)}. \end{split}$$
(A1)

TABLE VII. The $O(p^3)$ order relativistic results. The columns 2, 3, and 4 (5, 6, and 7) are for the flavor SU(2) [SU(3)] case. When a term O_n is not given a label in the 2nd (5th) column, it is not independent and can be expressed with terms having a label in the 2nd (5th) column. "I" means that the structures of those terms are chosen as independent ones in the HQ limit. Relations marked with "*" are given below this table.

<i>O</i> _n	SU(2)	$\tilde{c}_n^{(3)}$	$\tilde{c}_n^{(3)}$	SU(3)	$ ilde{C}_n^{(3)}$	$ ilde{C}_n^{(3)}$
$\epsilon^{\mu\nu\lambda ho}Pu_{\mu}u_{\nu}u_{\lambda}D_{ ho}P^{\dagger}$	1	$-2d_{5}^{(3)}$	I	1	$-2D_{0}^{(3)}$	Ι
$\varepsilon^{\mu u\lambda ho}P\langle u_{\mu}u_{ u}u_{\lambda} angle D_{ ho}P^{\dagger}$		5		2	$-2D_{10}^{(3)}$	Ι
$Pu^{\mu}f_{-\mu}{}^{\nu}D_{\nu}P^{\dagger}$ + H.c.	2	$-2d_{17}^{(3)}$	Ι	3	$-2D_{24}^{(3)}$	Ι
$P u^{\mu} h_{\mu}{}^{\nu} D_{\nu} P^{\dagger} + \text{H.c.}$	3	$-2d_{20}^{(3)}$	Ι	4	$-2D_{27}^{(3)}$	Ι
$P u^{\mu} h^{ u\lambda} D_{\mu u\lambda} P^{\dagger} + ext{H.c.}$	4	$2d_{21}^{(3)}$	Ι	5	$2D_{28}^{(3)}$	Ι
$i \epsilon^{\mu u\lambda ho} P f_{+\mu u} u_{\lambda} D_{ ho} P^{\dagger} + ext{H.c.}$	5	$2d_{12}^{(3)}$	Ι	6	$2D_{18}^{(3)}$	Ι
$i arepsilon^{\mu u\lambda ho} P \langle f_{+\mu u} angle u_\lambda D_ ho P^\dagger$	6	$2d_{13}^{(3)}$	Ι		10	
$i arepsilon^{\mu u\lambda ho} P \langle f_{+\mu u} u_\lambda angle D_ ho P^\dagger$		15		7	$2D_{19}^{(3)}$	Ι
$iP abla^{\mu}f_{+\mu}{}^{ u}D_{ u}P^{\dagger}$	7	$2d_{23}^{(3)}$	Ι	8	$2D_{33}^{(3)}$	Ι
$iP\langle abla^{\mu}f_{+\mu}{}^{ u} angle D_{ u}P^{\dagger}$	8	$2d_{24}^{(3)}$	Ι		55	
$iPu^{\mu}\chi_{-}D_{\mu}P^{\dagger}$ + H.c.	9	$2d_{16}^{(3)}$	Ι	9	$2D_{23}^{(3)}$	Ι
$\varepsilon^{\mu\nu\lambda ho}P^*_{\mu}u_ u u_\lambda u^\sigma D_ ho P^{*\dagger}{}_\sigma + { m H.c.}$	10	$-2d_2^{(3)}$	Ι	10	*	Ι
$arepsilon^{\mu u\lambda ho}P^*{}_{\mu}u_{ u}u_{\lambda}u^{\sigma}D_{\sigma}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	11	$d_2^{(3)} + d_4^{(3)}$	Ι	11	*	Ι
$arepsilon^{\mu u\lambda ho}P^{*}{}_{\mu}u_{ u}u^{\sigma}u_{\lambda}D_{ ho}P^{*\dagger}{}_{\sigma}+ ext{H.c.}$	12	$-2d_2^{(3)} - 3d_5^{(3)}$	$\frac{3}{2}\tilde{c}_{1}^{(3)}+\tilde{c}_{10}^{(3)}$	12	$-D_{9}^{(3)}$	$\frac{1}{2}\tilde{C}_{1}^{(3)}$
$arepsilon^{\mu u\lambda ho}P^*_{\mu}u_ u u^\sigma u_\sigma D_\lambda P^{*\dagger}_{ ho} + { m H.c.}$	13	$-2d_1^{(3)} - d_2^{(3)}$	I	13	*	I
$\varepsilon^{\mu\nu\lambda ho}P^*_{\mu}u^{\sigma}u_{\nu}u_{\lambda}D_{ ho}P^{*\dagger}{}_{\sigma}+ ext{H.c.}$		1 2		14	*	$-\tilde{C}_{1}^{(3)}-\tilde{C}_{10}^{(3)}$
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\mu}u_{\nu}u^{\sigma}u^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}_{ ho}+{ m H.c.}$	14	$2d_3^{(3)} + d_4^{(3)}$	Ι	15	*	I
$arepsilon^{\mu u\lambda ho}P^{*}{}_{\mu}\langle u_{ u}u_{\lambda}u^{\sigma} angle D_{ ho}P^{*\dagger}{}_{\sigma}+ ext{H.c.}$		5		16	$3D_{10}^{(3)}$	$-\frac{3}{2}\tilde{C}_{2}^{(3)}$
$arepsilon^{\mu u\lambda ho}P^*_{\mu}\langle u_ u u^\sigma angle u_\lambda D_ ho P^{*\dagger}{}_\sigma + { m H.c.}$				17	$-2D_5^{(3)} + D_6^{(3)}$	Ī
$arepsilon^{\mu u\lambda ho}P^{*}_{\mu}\langle u_{ u}u^{\sigma} angle u_{\lambda}D_{\sigma}P^{*\dagger}{}_{ ho}$				18	*	Ι
$\epsilon^{\mu u\lambda ho}P^*_{\ \mu}\langle u_ u u^\sigma angle u_\sigma D_\lambda P^{*\dagger}_{\ ho}$				19	$-2D_5^{(3)}+3D_6^{(3)}$	Ι
$arepsilon^{\mu u\lambda ho}P^{*}{}_{\mu}\langle u_{ u}u^{\sigma} angle u^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}{}_{ ho}$				20	$2D_7^{(3)} - 3D_8^{(3)}$	Ι
$P^{*\mu}u_{\mu}f_{-}{}^{\nu\lambda}D_{\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	15	$-2d_{18}^{(3)}$	Ι	21	$-2D_{25}^{(3)}$	Ι
$P^{*\mu}u^{\nu}f_{-\mu}{}^{\lambda}D_{\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	16	$4d_{19}^{(3)}$	Ι	22	$4D_{26}^{(\tilde{3})}$	Ι
$P^{*\mu}u^{\nu}f_{-\mu}{}^{\lambda}D_{\lambda}P^{*\dagger}{}_{\nu} + \text{H.c.}$	17	$-2d_{18}^{(3)}$	$\tilde{c}_{15}^{(3)}$	23	$-2D_{25}^{(3)}$	$ ilde{C}_{21}^{(3)}$
$P^{*\mu}u^{\nu}f_{-\nu}{}^{\lambda}D_{\lambda}P^{*\dagger}{}_{\mu} + \text{H.c.}$	18	$2d_{17}^{(3)}$	$-\tilde{c}_{2}^{(3)}$	24	$2D_{24}^{(\tilde{3})}$	$-\tilde{C}_{3}^{(3)}$
$P^{*\mu}u_{\mu}h^{ u\lambda}D_{ u}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$	19	$2d_{22}^{(3)}$	Ĩ	25	$2D_{29}^{(3)}$	Ĭ
$P^{*\mu}u^{ u}h_{\mu}{}^{\lambda}D_{ u}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$	20	0	0	26	0	0
$P^{*\mu}u^{\nu}h_{\mu}^{\ \ \lambda}D_{\lambda}P^{*\dagger}{}_{\nu}+\mathrm{H.c.}$	21	$-2d_{22}^{(3)}$	$-\tilde{c}_{19}^{(3)}$	27	$-2D_{29}^{(3)}$	$- ilde{C}^{(3)}_{25}$
$P^{*\mu}u^{\nu}h_{\nu}^{\ \lambda}D_{\lambda}P^{*\dagger}{}_{\mu}$ + H.c.	22	$2d_{20}^{(3)}$	$-\tilde{c}_{3}^{(3)}$	28	$2D_{27}^{(3)}$	$- ilde{C}_4^{(3)}$

CHIRAL LAGRANGIANS FOR MESONS WITH A ...

TABLE VII. (Continued)

<i>O</i> _n	SU(2)	$\tilde{c}_n^{(3)}$	$\tilde{c}_n^{(3)}$	SU(3)	$ ilde{C}_n^{(3)}$	$ ilde{C}_n^{(3)}$
$\overline{P^{*\mu}u^{ u}h^{\lambda ho}D_{ u\lambda ho}P^{*\dagger}{}_{\mu}+ ext{H.c.}}$	23	$-2d_{21}^{(3)}$	$-\tilde{c}_{A}^{(3)}$	29	$-2D_{28}^{(3)}$	$- ilde{C}_5^{(3)}$
$P^{*\mu}\langle u_{\mu}f_{-}^{\nu\lambda}\rangle D_{\nu}P^{*\dagger}{}_{\lambda} + \mathrm{H.c.}$		21	4	30	$-2D_{30}^{(3)}$	I
$P^{*\mu}\langle u^ u f_{-\mu}{}^\lambda angle D_ u P^{*\dagger}{}_\lambda$				31	$4D_{31}^{(3)}$	Ι
$P^{*\mu}\langle u_{\mu}h^{ u\lambda} angle D_{ u}P^{*\dagger}{}_{\lambda} + ext{H.c.}$				32	$2D_{32}^{(3)}$	Ι
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu} abla_{ u}f_{-\lambda}{}^{\sigma}D_{\rho}P^{*\dagger}{}_{\sigma} + ext{H.c.}$	24	$2d_{0}^{(3)}$	Ι	33	$2D_{15}^{(3)}$	Ι
$\varepsilon^{\mu\nu\lambda ho}P^*_{\ \mu} abla_ u f_{-\lambda}{}^\sigma D_\sigma P^{*\dagger}{}_ ho$	25	$-2d_{0}^{(3)}+2d_{10}^{(3)}$	Ι	34	$-2D_{15}^{(3)}+2D_{16}^{(3)}$	Ι
$\varepsilon^{\mu u\lambda ho}P^{*}_{\ \mu} abla_{ u}h^{\sigma\delta}D_{\lambda\sigma\delta}P^{*\dagger}_{\ ho}$	26	$2d_{11}^{(3)}$	Ι	35	$2D_{17}^{(3)}$	Ι
$i\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}f_{+\nu\lambda}u^{\sigma}D_{\rho}P^{*\dagger}{}_{\sigma}$ + H.c.	27	$-2d_{12}^{(3)}$	$-\tilde{c}_{5}^{(3)}$	36	$-2D_{18}^{(3)}$	$- ilde{C}_{6}^{(3)}$
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}f_{+\nu\lambda}u^{\sigma}D_{\sigma}P^{*\dagger}_{\ \rho} + \text{H.c.}$	28	$-d_7^{(3)}$	I	37	$-D_{12}^{(3)}$	I
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}f_{+\nu}{}^{\sigma}u_{\lambda}D_{\rho}P^{*\dagger}{}_{\sigma} + \text{H.c.}$	29	$4d_{12}^{(3)}$	$2\tilde{c}_{5}^{(3)}$	38	$4D_{18}^{(3)}$	$2 ilde{C}_{6}^{(3)}$
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}f_{+\nu}{}^{\sigma}u_{\sigma}D_{\lambda}P^{*\dagger}{}_{ ho} + \text{H.c.}$	30	$2d_{6}^{(3)}$	I	39	$2D_{11}^{(3)}$	I
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle f_{+\nu\lambda}\rangle u^{\sigma}D_{\rho}P^{*\dagger}_{\ \sigma} + \text{H.c.}$	31	$-d_{13}^{(3)}$	$-\frac{1}{2}\tilde{c}_{6}^{(3)}$		11	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle f_{+\nu}{}^{\sigma}\rangle u_{\lambda}D_{\rho}P^{*\dagger}{}_{\sigma} + \text{H.c.}$	32	$2d_{12}^{(3)}$	$\tilde{c}_{\epsilon}^{(3)}$			
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle f_{+\nu\lambda}u^{\sigma}\rangle D_{\rho}P^{*\dagger}_{\ \sigma} + \mathrm{H.c.}$		15	0	40	$-D_{10}^{(3)}$	$-\frac{1}{2}\tilde{C}_{7}^{(3)}$
$i\epsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle f_{+\nu}{}^{\sigma}u_{\lambda}\rangle D_{\rho}P^{*\dagger}{}_{\sigma} + \text{H.c.}$				41	$2D_{10}^{(3)}$	$ ilde{C}_{7}^{(3)}$
$iP^{*\mu}\nabla_{\mu}f_{+}{}^{\nu\lambda}D_{\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	33	0	0	42	0	0
$iP^{*\mu} \nabla^{\!$	34	$-2d_{23}^{(3)}$	$-\tilde{c}_{7}^{(3)}$	43	$-2D_{33}^{(3)}$	$- ilde{C}_8^{(3)}$
$iP^{*\mu}\langle abla_{\mu}f_{+}^{\ \ u\lambda} angle D_{ u}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$	35	0	0 [°]		55	0
$iP^{*\mu}\langle abla^{ u}f_{+ u}{}^{\lambda} angle D_{\lambda}P^{*\dagger}{}_{\mu}$	36	$-2d_{24}^{(3)}$	$- ilde{c}_{8}^{(3)}$			
$arepsilon^{\mu u\lambda ho}P^{*}{}_{\mu}u_{ u}\chi_{+}D_{\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	37	$-2d_{14}^{(3)}$	Ι	44	$-2D_{20}^{(3)}$	Ι
$arepsilon^{\mu u\lambda ho}P^{*}{}_{\mu}\langle u_{ u}\chi_{+} angle D_{\lambda}P^{*\dagger}{}_{ ho}$	38	$-2d_{15}^{(3)}$	Ι	45	$-2D_{21}^{(3)}$	Ι
$arepsilon^{\mu u\lambda ho}P^{*}{}_{\mu}\langle\chi_{+} angle u_{ u}D_{\lambda}P^{*\dagger}{}_{ ho}$				46	$-2D_{22}^{(3)}$	Ι
$iP^{*\mu}u^{\nu}\chi_{-}D_{\nu}P^{*\dagger}{}_{\mu}$ + H.c.	39	$-2d_{16}^{(3)}$	$- ilde{c}_{9}^{(3)}$	47	$-2D_{23}^{(3)}$	$- ilde{C}_9^{(3)}$
$i arepsilon^{\mu u\lambda ho} P^*{}_{\mu} abla_{ u} \chi_{-} D_{\lambda} P^{*\dagger}{}_{ ho}$	40	$-2d_{25}^{(3)}$	Ι	48	$-2D_{13}^{(3)}$	Ι
$iarepsilon^{\mu u\lambda ho}{P^*}_{\mu}\langle abla_{ u}\chi_{-} angle D_{\lambda}{P^*}^{\dagger}_{ ho}$	41	$-2d_8^{(3)}$	Ι	49	$-2D_{14}^{(3)}$	Ι
$Pu^{\mu}u_{\mu}u^{\nu}P^{*\dagger}{}_{\nu}$ + H.c.	42	$4d_1^{(3)}$	$\tilde{c}_{10}^{(3)} - 2\tilde{c}_{13}^{(3)}$	50	$2D_1^{(3)}$	*
$Pu^{\mu}u^{\nu}u_{\mu}P^{*\dagger}{}_{\nu}$ + H.c.	43	$2d_2^{(3)}$	$-\tilde{c}_{10}^{(3)}$	51	$2D_2^{(3)}$	*
$Pu^{\mu}u^{\nu}u_{\nu}P^{*\dagger}{}_{\mu}+ ext{H.c.}$				52	$2D_1^{(3)}$	*
$Pu^{\mu}u^{\nu}u^{\lambda}D_{\mu\nu}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$	44	$-4d_3^{(3)} - 2d_{11}^{(3)}$	*	53	*	*
$Pu^{\mu}u^{\nu}u^{\lambda}D_{\mu\lambda}P^{*\dagger}{}_{\nu}+\mathrm{H.c.}$	45	$-2d_4^{(3)}+2d_{11}^{(3)}$	*	54	*	*
$Pu^{\mu}u^{\nu}u^{\lambda}D_{\nu\lambda}P^{*\dagger}{}_{\mu}$ + H.c.				55	*	*
$P\langle u^{\mu}u_{\mu}\rangle u^{\nu}P^{*\dagger}{}_{\nu}$ + H.c.				56	$2D_5^{(3)}$	$-\tfrac{3}{2}\tilde{C}_{17}^{(3)} + \tfrac{1}{2}\tilde{C}_{19}^{(3)}$
$P\langle u^{\mu}u_{\mu}u^{\nu}\rangle P^{*\dagger}{}_{\nu}$ + H.c.				57	$2D_6^{(3)}$	$- ilde{C}_{17}^{(3)}+ ilde{C}_{19}^{(3)}$
$P\langle u^{\mu}u^{\nu}\rangle u^{\lambda}D_{\mu\nu}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$				58	$D_{7}^{(3)}$	*
$P\langle u^{\mu}u^{\nu}u^{\lambda}\rangle D_{\mu\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$				59	$2D_7^{(3)} - 2D_8^{(3)}$	*
$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}f_{-\nu\lambda}P^{*\dagger}{}_{ ho}$ + H.c.	46	$-2d_{19}^{(3)}$	$-\frac{1}{2}\tilde{c}_{16}^{(3)}$	60	$-2D_{26}^{(3)}$	$-\frac{1}{2}\tilde{C}^{(3)}_{22}$
$\varepsilon^{\mu\nu\lambda\rho} P f_{-\mu\nu} u_{\lambda} P^{*\dagger}{}_{\rho} + \text{H.c.}$	47	$-d_{18}^{(3)}$	$\frac{1}{2}\tilde{c}_{15}^{(3)}$	61	$-D_{25}^{(3)}$	$\frac{1}{2}\tilde{C}^{(3)}_{21}$
$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}f_{-\nu}{}^{\sigma}D_{\lambda\sigma}P^{*\dagger}{}_{\rho} + \mathrm{H.c.}$	48	$2d_{18}^{(3)} - 4d_{19}^{(3)}$	$-\tilde{c}_{15}^{(3)}-\tilde{c}_{16}^{(3)}$	62	$2D_{25}^{(3)} - 4D_{26}^{(3)}$	$-\tilde{C}_{21}^{(3)}-\tilde{C}_{22}^{(3)}$
$\varepsilon^{\mu\nu\lambda\rho} P f_{-\mu\nu} u^{\sigma} D_{\lambda\sigma} P^{*\dagger}{}_{\rho} + \text{H.c.}$	49	$-d_{18}^{(3)}+2d_{19}^{(3)}$	$\frac{1}{2}\tilde{c}_{15}^{(3)}+\frac{1}{2}\tilde{c}_{16}^{(3)}$	63	$-D_{25}^{(3)}+2D_{26}^{(3)}$	$\frac{1}{2}\tilde{C}^{(3)}_{21} + \frac{1}{2}\tilde{C}^{(3)}_{22}$
$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}h_{\nu}{}^{\sigma}D_{\lambda\sigma}P^{*\dagger}{}_{ ho}$ + H.c.	50	$2d_{22}^{(3)}$	${ ilde c}_{19}^{(3)}$	64	$2D_{29}^{(3)}$	$ ilde{C}^{(3)}_{25}$
$arepsilon^{\mu u\lambda ho}Ph_{\mu}{}^{\sigma}u_{ u}D_{\lambda\sigma}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	51	$-2d_{22}^{(3)}$	$-\tilde{c}_{19}^{(3)}$	65	$-2D_{29}^{(3)}$	$- ilde{C}^{(3)}_{25}$
$\varepsilon^{\mu\nu\lambda\rho}P\langle u_{\mu}f_{-\nu\lambda}\rangle P^{*\dagger}{}_{ ho}$ + H.c.				66	$-2D_{31}^{(3)}$	$-rac{1}{2} ilde{C}^{(3)}_{31}$
$\varepsilon^{\mu\nu\lambda\rho}P\langle u_{\mu}f_{-\nu}{}^{\sigma}\rangle D_{\lambda\sigma}P^{*\dagger}{}_{ ho}+\mathrm{H.c.}$				67	$2D_{30}^{(3)} - 4D_{31}^{(3)}$	$- ilde{C}^{(3)}_{30} - ilde{C}^{(3)}_{31}$

TABLE	VII.	(Continued)
-------	------	-------------

O_n	SU(2)	$\tilde{c}_n^{(3)}$	$\tilde{c}_n^{(3)}$	SU(3)	$ ilde{C}_n^{(3)}$	$ ilde{C}_n^{(3)}$
$\overline{\varepsilon^{\mu\nu\lambda\rho}P\langle u_{\mu}h_{\nu}{}^{\sigma}\rangle D_{\lambda\sigma}P^{*\dagger}{}_{\rho}+\text{H.c.}}$				68	$2D_{32}^{(3)}$	$ ilde{C}_{32}^{(3)}$
$P\nabla^{\mu}f_{-\mu}{}^{\nu}P^{*\dagger}{}_{\nu}$ + H.c.	52	$2d_{0}^{(3)}$	$\tilde{c}_{24}^{(3)}$	69	$2D_{15}^{(3)}$	$ ilde{C}_{33}^{(3)}$
$P \nabla^{\mu} f_{-}{}^{\nu \lambda} D_{\mu \nu} P^{*\dagger}{}_{\lambda} + \text{H.c.}$	53	$2d_{10}^{(3)} - 2d_{11}^{(3)}$	*	70	$2D_{16}^{(3)} - 2D_{17}^{(3)}$	*
$P abla^{\mu} h^{ u\lambda} D_{\mu u} P^{*\dagger}{}_{\lambda} + ext{H.c.}$	54	$-2d_{11}^{(3)}$	$-\tilde{c}_{26}^{(3)}$	71	$-2D_{17}^{(3)}$	$-\tilde{C}_{35}^{(3)}$
$iPf_+^{\mu\nu}u_\mu P^{*\dagger}{}_\nu + \text{H.c.}$	55	$2d_6^{(3)}$	$\tilde{c}_{30}^{(3)}$	72	$2D_{11}^{(3)}$	$\tilde{C}_{39}^{(3)}$
$iPu^{\mu}f_{+\mu}{}^{\nu}P^{*\dagger}{}_{\nu}$ + H.c.	56	$-2d_{6}^{(3)}$	$-\tilde{c}_{30}^{(3)}$	73	$-2D_{11}^{(3)}$	$-\tilde{C}_{30}^{(3)}$
$iPf_{+}^{\mu\nu}u^{\lambda}D_{\mu\lambda}P^{*\dagger}{}_{\nu}$ + H.c.	57	$2d_7^{(3)} - 2d_{11}^{(3)}$	$-\tilde{c}_{26}^{(3)}-2\tilde{c}_{28}^{(3)}$	74	$2D_{12}^{(3)} - 2D_{17}^{(3)}$	$-\tilde{C}_{35}^{(3)}-2\tilde{C}_{37}^{(3)}$
$iPu^{\mu}f_{+}{}^{\nu\lambda}D_{\mu\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	58	$-2d_7^{(3)} + 2d_{11}^{(3)}$	$\tilde{c}_{26}^{(3)} + 2\tilde{c}_{28}^{(3)}$	75	$-2D_{12}^{(3)} + 2D_{17}^{(3)}$	$\tilde{C}_{35}^{(3)} + 2\tilde{C}_{37}^{(3)}$
$iP\langle f_+^{\mu\nu}\rangle u_\mu P^{*\dagger}{}_\nu + \text{H.c.}$	59	0	0		12 17	55 57
$iP\langle f_{+}^{\mu\nu}\rangle u^{\lambda}D_{\mu\lambda}P^{*\dagger}{}_{\nu}$ + H.c.	60	0	0			
$iP\langle f_+{}^{\mu u}u_\mu\rangle P^{*\dagger}{}_ u + \mathrm{H.c.}$				76	0	0
$iP\langle f_+{}^{\mu u}u^\lambda angle D_{\mu\lambda}P^{*\dagger}{}_ u+ ext{H.c.}$				77	0	0
$i \varepsilon^{\mu\nu\lambda\rho} P \nabla_{\mu} f_{+\nu}{}^{\sigma} D_{\lambda\sigma} P^{*\dagger}{}_{ ho} + \text{H.c.}$	61	0	0	78	0	0
$i \varepsilon^{\mu\nu\lambda\rho} P \langle \nabla_{\mu} f_{+\nu}{}^{\sigma} \rangle D_{\lambda\sigma} P^{*\dagger}{}_{ ho} + \text{H.c.}$	62	0	0			
$Pu^{\mu}\chi_{+}P^{*\dagger}{}_{\mu}$ + H.c.	63	$2d_{14}^{(3)}$	$-\tilde{c}_{37}^{(3)}$	79	$2D_{20}^{(3)}$	$- ilde{C}_{44}^{(3)}$
$P\chi_+ u^\mu P^{*\dagger}{}_\mu + \text{H.c.}$	64	$2d_{14}^{(3)}$	$-\tilde{c}_{37}^{(3)}$	80	$2D_{20}^{(3)}$	$-\tilde{C}_{44}^{(3)}$
$P\langle u^{\mu}\chi_{+}\rangle P^{*\dagger}{}_{\mu}$ + H.c.	65	$2d_{15}^{(3)}$	$-\tilde{c}_{38}^{(3)}$	81	$2D_{21}^{(3)}$	$-\tilde{C}_{45}^{(3)}$
$P\langle\chi_+ angle u^\mu P^{*\dagger}{}_\mu + \mathrm{H.c.}$		15	50	82	$2D_{22}^{(3)}$	$-\tilde{C}_{46}^{(3)}$
$iP abla^{\mu}\chi_{-}P^{*\dagger}{}_{\mu}+ ext{H.c.}$	66	$2d_{25}^{(3)}$	$-\tilde{c}_{40}^{(3)}$	83	$2D_{13}^{\tilde{(3)}}$	$-\tilde{C}_{48}^{(3)}$
$iP\langle \nabla^{\mu}\chi_{-}\rangle P^{*\dagger}{}_{\mu}+\mathrm{H.c.}$	67	$2d_8^{(3)}$	$-\tilde{c}_{41}^{(3)}$	84	$2D_{14}^{(3)}$	$- ilde{C}_{49}^{(3)}$

TABLE VIII. The $\mathcal{O}(p^3)$ order results in the HQ limit. When a term P_n is not given a label in the 2nd or 5th (3rd or 6th) column, it is not independent and can be expressed with terms having a label in the 2nd and 5th (3rd and 6th) columns.

<i>P_n</i>	SU(2)	SU(3)	P_n	SU(2)	<i>SU</i> (3)
$\overline{\langle Hu^{\mu}u_{\mu}u^{\nu}\gamma_{5}\gamma_{\nu}\bar{H}\rangle}$ + H.c.	1	1	$\epsilon^{\mu u\lambda ho}\langle H\langle f_{+\mu u}\rangle u_{\lambda}v_{ ho}ar{H} angle$	13	
$\langle H u^{\mu} u^{\nu} u_{\mu} \gamma_5 \gamma_{\nu} \bar{H} \rangle$	2	2	$\varepsilon^{\mu u\lambda ho}\langle H\langle f_{+\mu u}u_{\lambda} angle v_{ ho}ar{H} angle$		19
$\langle H u^{\mu} u^{\nu} u^{\lambda} \gamma_5 \gamma_{\mu} v_{\nu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$	3	3	$\langle Hu^{\mu}\chi_{+}\gamma_{5}\gamma_{\mu}\bar{H}\rangle$ + H.c.	14	20
$\langle H u^{\mu} u^{\nu} u^{\lambda} \gamma_5 \gamma_{\nu} v_{\mu} v_{\lambda} \bar{H} \rangle$	4	4	$\langle H \langle u^{\mu} \chi_{+} \rangle \gamma_{5} \gamma_{\mu} \bar{H} \rangle$	15	21
$\langle H \langle u^{\mu} u_{\mu} \rangle u^{\nu} \gamma_5 \gamma_{\nu} \bar{H} \rangle$		5	$\langle H \langle \chi_+ angle u^\mu \gamma_5 \gamma_\mu ar{H} angle$		22
$\langle H \langle u^{\mu} u_{\mu} u^{\nu} \rangle \gamma_5 \gamma_{\nu} \bar{H} \rangle$		6	$\langle Hu^{\mu}\chi_{-}v_{\mu}\bar{H}\rangle$ + H.c.	16	23
$\langle H \langle u^{\mu} u^{\nu} \rangle u^{\lambda} \gamma_5 \gamma_{\mu} v_{\nu} v_{\lambda} \bar{H} \rangle$		7	$i\langle Hu^{\mu}f_{-\mu}^{\ \nu}v_{\nu}\bar{H}\rangle + \text{H.c.}$	17	24
$\langle H \langle u^{\mu} u^{ u} u^{\lambda} \rangle \gamma_5 \gamma_{\mu} v_{\nu} v_{\lambda} \bar{H} \rangle$		8	$\langle H u^{\mu} f_{-}^{\nu\lambda} \sigma_{\mu\nu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$	18	25
$i\varepsilon^{\mu\nu\lambda ho}\langle Hu_{\mu}u_{\nu}u_{\lambda}v_{ ho}\bar{H} angle$	5	9	$\langle Hu^{\mu}f_{-}^{\nu\lambda}\sigma_{\nu\lambda}v_{\mu}\bar{H}\rangle + \text{H.c.}$	19	26
$i\varepsilon^{\mu\nu\lambda\rho}\langle H\langle u_{\mu}u_{\nu}u_{\lambda}\rangle v_{ ho}\bar{H}\rangle$		10	$i\langle Hu^{\mu}h_{\mu}{}^{\nu}v_{\nu}\bar{H}\rangle + \text{H.c.}$	20	27
$i\langle Hf_+^{\mu\nu}u_{\mu}\gamma_5\gamma_{\nu}\bar{H}\rangle + \text{H.c.}$	6	11	$i\langle Hu^{\mu}h^{\nu\lambda}v_{\mu}v_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$	21	28
$i\langle Hf_+^{\mu\nu}u^\lambda\gamma_5\gamma_\mu v_\nu v_\lambda\bar{H}\rangle + \text{H.c.}$	7	12	$\langle H u^{\mu} h^{\nu\lambda} \sigma_{\mu\nu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$	22	29
$i\langle H\nabla^{\mu}\chi_{-}\gamma_{5}\gamma_{\mu}\bar{H}\rangle$		13	$\langle H \langle u^{\mu} f_{-}^{\nu\lambda} \rangle \sigma_{\mu\nu} v_{\lambda} \bar{H} \rangle$		30
$i\langle H\langle abla^{\mu}\chi_{-} angle \gamma_{5}\gamma_{\mu}ar{H} angle$	8	14	$\langle H \langle u^{\mu} f_{-}^{\nu\lambda} \rangle \sigma_{\nu\lambda} v_{\mu} \bar{H} \rangle$		31
$\langle H \nabla^{\mu} f_{-\mu}{}^{\nu} \gamma_5 \gamma_{\nu} \bar{H} \rangle$	9	15	$\langle H \langle u^{\mu} h^{ u\lambda} angle \sigma_{\mu u} v_{\lambda} ar{H} angle$		32
$\langle H \nabla^{\mu} f_{-}^{\nu \lambda} \gamma_{5} \gamma_{\nu} v_{\mu} v_{\lambda} \bar{H} \rangle$	10	16	$\langle H \nabla^{\mu} f_{+\mu}{}^{ u} v_{ u} \bar{H} \rangle$	23	33
$\langle H \nabla^{\mu} h^{\nu\lambda} \gamma_5 \gamma_{\mu} v_{\nu} v_{\lambda} \bar{H} \rangle$	11	17	$\langle H \langle abla^{\mu} f_{+\mu}^{ u} angle v_{ u} ar{H} angle$	24	
$\varepsilon^{\mu\nu\lambda\rho}\langle Hf_{+\mu\nu}u_{\lambda}v_{\rho}\bar{H}\rangle + \text{H.c.}$	12	18	$i\langle H abla^{\mu}\chi_{-}\gamma_{5}\gamma_{\mu}ar{H} angle$	25	

TABLE IX. The $\mathcal{O}(p^4)$ order relativistic results. The columns 2, 3, 7, and 8 (4, 5, 9, and 10) are for the flavor SU(2) [SU(3)] case. When a term O_n is not given a label in the 2nd or 7th (4th or 8th) column, it is not independent and can be expressed with terms having a label in the SU(2) (SU(3)) case. "I" means that the structures of those terms are chosen as independent ones in the HQ limit. "P." stands for parity-transformed part.

$\overline{O_n}$	SU(2)	$\tilde{c}_n^{(4)}$	<i>SU</i> (3)	$\tilde{C}_n^{(4)}$	O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$
$\overline{P\langle u^{\mu}u_{\mu}\rangle u^{\nu}u_{\nu}P^{\dagger}}$	1	Ι	1	Ι	$iP^{*\mu}\nabla_{\mu}\nabla^{\nu}f_{+}{}^{\lambda\rho}D_{\nu\lambda}P^{*\dagger}{}_{ ho} + \mathrm{H.c.}$	182	Ι	334	Ι
$P\langle u^{\mu}u^{\nu}\rangle u_{\mu}u_{\nu}P^{\dagger}$	2	Ι	2	Ι	$iP^{*\mu}\nabla^{\nu}\nabla^{\lambda}f_{+\mu}{}^{\rho}D_{\nu\lambda}P^{*\dagger}{}^{\rho}$	183	Ι	335	Ι
$P\langle u^{\mu}u_{\mu}\rangle u^{\nu}u^{\lambda}D_{\nu\lambda}P^{\dagger}$	3	Ι	3	Ι	$P^{*\mu}f_{+\mu}{}^{\nu}f_{+\nu}{}^{\lambda}P^{*\dagger}{}_{\lambda}$	184	Ι	336	Ι
$P\langle u^{\mu}u^{\nu}\rangle u_{\mu}u^{\lambda}D_{\nu\lambda}P^{\dagger}$ + H.c.	4	Ι	4	Ι	$P^{*\mu}f_{+}^{\ \nu\lambda}f_{+\mu\nu}P^{*\dagger}{}_{\lambda}$	185		337	
$P\langle u^{\mu}u^{\nu}\rangle u^{\lambda}u_{\lambda}D_{\mu\nu}P^{\dagger}$			5	Ι	$P^{*\mu}f_+{}^{\nu\lambda}f_+{}_{\nu\lambda}P^{*\dagger}{}_{\mu}$	186		338	
$P\langle u^{\mu}u^{\nu}\rangle u^{\lambda}u^{\rho}D_{\mu\nu\lambda\rho}P^{\dagger}$	5	Ι	6	Ι	$P^{*\mu}f_{+\mu}{}^{\nu}f_{+}{}^{\lambda\rho}D_{\nu\lambda}P^{*\dagger}{}_{ ho}$	187	Ι	339	Ι
$P\langle u^{\mu}u_{\mu}u^{\nu}\rangle u_{\nu}P^{\dagger}$			7	Ι	$P^{*\mu}f_{+}^{\nu\lambda}f_{+\mu}^{\rho}D_{\nu\rho}P^{*\dagger}_{\lambda}$	188		340	
$P\langle u^{\mu}u_{\mu}u^{\nu}\rangle u^{\lambda}D_{\nu\lambda}P^{\dagger}$			8	Ι	$P^{*\mu}f_+{}^{ u\lambda}f_+{}^{ ho}D_{\lambda ho}P^{*\dagger}{}_{\mu}$	189		341	
$P\langle u^{\mu}u^{\nu}u^{\lambda}\rangle u_{\mu}D_{\nu\lambda}P^{\dagger}$			9	Ι	$P^{*\mu}\langle f_{+\mu}{}^{\nu}\rangle f_{+\nu}{}^{\lambda}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	190			
$P\langle u^{\mu}u^{\nu}u^{\lambda}\rangle u^{\rho}D_{\mu\nu\lambda\rho}P^{\dagger}$			10	Ι	$P^{*\mu}\langle f_+^{\ \ u\lambda}\rangle f_{+ u\lambda}P^{*\dagger}{}_{\mu}$	191			
$P\langle u^{\mu}u_{\mu}u^{\nu}u_{\nu}\rangle P^{\dagger}$			11	Ι	$P^{*\mu}\langle f_{+\mu}{}^{\nu}\rangle f_{+}{}^{\lambda\rho}D_{\nu\lambda}P^{*\dagger}{}_{\rho} + \text{H.c.}$	192			
$P\langle u^{\mu}u^{\nu}u_{\mu}u_{\nu}\rangle P^{\dagger}$			12	Ι	$P^{*\mu}\langle f_{+}^{\nu\lambda}\rangle f_{+\nu}^{\rho}D_{\lambda\rho}P^{*\dagger}_{\mu}$	193			
$P\langle u^{\mu}u_{\mu}u^{\nu}u^{\lambda}\rangle D_{\nu\lambda}P^{\dagger}$			13	Ι	$P^{*\mu}\langle f_{+\mu}{}^{\nu}f_{+\nu}{}^{\lambda}\rangle P^{*\dagger}$			342	Ι
$P\langle u^{\mu}u^{\nu}u_{\mu}u^{\lambda}\rangle D_{\mu\lambda}P^{\dagger}$			14	Ι	$P^{*\mu}\langle f_{+}^{\nu\lambda}f_{+\nu\lambda}\rangle P^{*\dagger}_{\mu}$			343	
$P\langle u^{\mu}u^{\nu}u^{\lambda}u^{\rho}\rangle D_{\mu\nu\lambda\rho}P^{\dagger}$			15	Ι	$P^{*\mu}\langle f_{+\mu}{}^{\nu}f_{+}^{\lambda ho}\rangle D_{\nu\lambda}P^{*\dagger}{}_{ ho}$			344	Ι
$Pu^{\mu}u_{\mu}u^{\nu}u_{\nu}P^{\dagger}$			16	Ι	$P^{*\mu}\langle f_{+}^{\nu\lambda}f_{+\nu}^{\rho}\rangle D_{\lambda\rho}P^{*\dagger}_{\mu}$			345	
$Pu^{\mu}u^{\nu}u_{\mu}u_{\nu}P^{\dagger}$			17	Ι	$P^{*\mu}u_{\mu}u^{\nu}\chi_{+}P^{*\dagger}{}_{\mu}$ + H.c.	194	Ι	346	Ι
$Pu^{\mu}u_{\mu}u^{\nu}u^{\lambda}D_{\mu\lambda}P^{\dagger}$ + H.c.			18	Ι	$P^{*\mu}u^{\nu}u_{\mu}\chi_{+}P^{*\dagger}\mu + \text{H.c.}$	195		347	
$Pu^{\mu}u^{\nu}u_{\mu}u^{\lambda}D_{\mu\lambda}P^{\dagger}$ + H.c.			19	Ι	$P^{*\mu}u^{\nu}u_{\nu}\chi_{+}P^{*\dagger}\mu + \text{H.c.}$	196		348	
$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u_{\nu}f_{-\lambda\rho}P^{\dagger}$ + H.c.	6	Ι	20	Ι	$P^{*\mu}u_{\mu}\chi_{+}u^{\nu}P^{*\dagger}u^{\mu}$	197	Ι	349	Ι
$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u_{\nu}f_{-\lambda}{}^{\sigma}D_{\rho\sigma}P^{\dagger} + \text{H.c.}$	7	Ι	21	Ι	$P^{*\mu}u^{\nu}\chi_{\pm}u_{\mu}P^{*\dagger}u_{\mu}$	198		350	
$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u^{\sigma}f_{-\nu\lambda}D_{\rho\sigma}P^{\dagger}$ + H.c.	8	Ι	22	Ι	$P^{*\mu}u^{\nu}\chi_{\pm}u_{\nu}P^{*\dagger}u_{\mu}$	199		351	
$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}f_{-\nu\lambda}u^{\sigma}D_{\sigma\sigma}P^{\dagger} + \text{H.c.}$	9	Ι	23	Ι	$P^{*\mu}u^{\nu}u^{\lambda}\chi_{+}D_{\mu\lambda}P^{*\dagger}_{\mu}$ + H.c.	200		352	
$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u_{\nu}h_{\lambda}{}^{\sigma}D_{\sigma\sigma}P^{\dagger}$ + H.c.	10	Ι	24	Ι	$P^{*\mu}u^{\nu}\chi_{+}u^{\lambda}D_{\nu\lambda}P^{*\dagger}u^{\mu}$	201		353	
$\epsilon^{\mu\nu\lambda\rho}P\langle u_{\mu}f_{-\nu\lambda}\rangle u_{\rho}P^{\dagger}$			25	Ι	$P^{*\mu}\langle u_{\mu}u^{\nu}\rangle\chi_{+}P^{*\dagger}$			354	Ι
$\varepsilon^{\mu\nu\lambda\rho}P\langle u_{\mu}f_{-\nu}\sigma\rangle u_{\lambda}D_{\rho\sigma}P^{\dagger}$			26	Ι	$P^{*\mu}\langle u_{\mu}u^{\nu}\gamma_{\perp}\rangle P^{*\dagger}$	202	Ι	355	Ι
$\varepsilon^{\mu\nu\lambda\rho}P\langle u_{\mu}u^{\sigma}\rangle f_{-\nu\lambda}D_{\rho\sigma}P^{\dagger}$			27	Ι	$P^{*\mu}\langle u^{\nu}\chi_{\perp}\rangle u_{\mu}P^{*\dagger}{}_{\mu}$ + H.c.			356	Ι
$\epsilon^{\mu\nu\lambda\rho}P\langle u_{\mu}u^{\sigma}f_{-\nu\lambda}\rangle D_{\rho\sigma}P^{\dagger} + \text{H.c.}$			28	Ι	$P^{*\mu}\langle \gamma_+ \rangle u_\mu u^\nu P^{*\dagger}$			357	Ι
$\epsilon^{\mu\nu\lambda\rho}P\langle u_{\mu}h_{\nu}{}^{\sigma}\rangle u_{\lambda}D_{\sigma\sigma}P^{\dagger}$			29	Ι	$P^{*\mu}\langle u^{\nu}u_{\mu}\chi_{+}\rangle P^{*\dagger}u_{\mu}$			358	
$Pf_{-\mu\nu}f_{-\mu\nu}P^{\dagger}$			30	Ι	$P^{*\mu}\langle \gamma_+ \rangle u^{\nu} u_{\mu} P^{*\dagger}$			359	
$Pf_{\mu\nu}f_{\mu\nu}f_{\mu\lambda}D_{\mu\lambda}P^{\dagger}$			31	Ι	$P^{*\mu}\langle u^{\nu}u_{\nu}\rangle \gamma_{\perp}P^{*\dagger}$			360	
$Pf_{\mu\nu}h_{\mu\lambda}D_{\mu\lambda}P^{\dagger}$ + H.c.	11	Ι	32	Ι	$P^{*\mu}\langle u^{\nu}u_{\nu}\chi_{+}\rangle P^{*\dagger}\mu$	203		361	
$Ph^{\mu\nu}h_{\mu\nu}P^{\dagger}$	12	Ι	33	Ι	$P^{*\mu}\langle u^{\nu}\chi_{+}\rangle u_{\mu}P^{*\dagger}$			362	
$Ph^{\mu\nu}h^{\mu\nu}_{\mu\lambda}D_{\nu\lambda}P^{\dagger}$	13	Ι	34	Ι	$P^{*\mu}\langle \gamma_+ \rangle u^{\nu} u_{\nu} P^{*\dagger}$			363	
$Ph^{\mu u}h^{\lambda ho}D_{\mu\nu\lambda}P^{\dagger}$	14	Ι	35	Ι	$P^{*\mu} \langle u^{\nu} u^{\lambda} \rangle \gamma_{\perp} D_{\nu \lambda} P^{*\dagger} \mu$			364	
$Pu^{\mu}\nabla^{\nu}f_{-m}P^{\dagger}$ + H.c.	15	Ι	36	Ι	$P^{*\mu} \langle u^{\nu} u^{\lambda} \chi_{+} \rangle D_{\nu\lambda} P^{*\dagger}_{\mu}$	204		365	
$Pu^{\mu}\nabla^{\nu}f_{-\mu}^{\lambda}D_{\nu\lambda}P^{\dagger}$ + H.c.	16	Ι	37	Ι	$P^{*\mu}\langle u^{\nu} \gamma_{\perp} \rangle u^{\lambda} D_{\nu \lambda} P^{*\dagger}$			366	
$Pu^{\mu}\nabla^{\nu}f_{-\nu}^{\lambda}D_{\mu\lambda}P^{\dagger}$ + H.c.	17	Ι	38	Ι	$P^{*\mu}\langle \gamma_+ \rangle u^{\nu}u^{\lambda}D_{\nu\lambda}P^{*\dagger}{}_{\mu}$			367	
$Pu^{\mu}\nabla_{\mu}h^{\nu\lambda}D_{\mu\lambda}P^{\dagger}$ + H.c.	18	Ι	39	Ι	$\varepsilon^{\mu\nu\lambda\rho}P^*_{\mu}f_{-\nu\lambda}\chi_{+}P^{*\dagger}_{\rho}$ + H.c.	205	Ι	368	Ι
$Pu^{\mu}\nabla^{\nu}h^{\lambda\rho}D_{\mu\nu\lambda\rho}P^{\dagger} + \text{H.c.}$	19	Ι	40	Ι	$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}h_{\nu}^{\ \sigma}\gamma_{\pm}D_{\lambda\sigma}P^{*\dagger}_{\ \rho} + \text{H.c.}$	206	Ι	369	Ι
$P\langle f_{\mu\nu}h_{\mu\lambda}\rangle D_{\mu\lambda}P^{\dagger}$			41	Ι	$\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u_{\nu}\nabla_{\lambda}\gamma_{+}P^{*\dagger}{}_{\rho}$ + H.c.	207	Ι	370	Ι
$P\langle h^{\mu\nu}h_{\mu\nu}\rangle P^{\dagger}$			42	Ι	$\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u_{\nu}\nabla^{\sigma}\chi_{+}D_{\lambda\sigma}P^{*\dagger}{}_{\sigma} + \text{H.c.}$	208	Ι	371	Ι
$P\langle h^{\mu\nu}h^{\mu\nu}_{\mu}\lambda^{\lambda}\rangle D_{\nu\lambda}P^{\dagger}$			43	Ι	$P^{*\mu}\nabla_{\mu}\nabla^{\nu}\chi_{+}P^{*\dagger}\nu$	209	Ι	372	Ι
$P\langle h^{\mu u}h^{\lambda ho}\rangle D_{\mu u\lambda ho}P^{\dagger}$			44	Ι	$P^{*\mu}\nabla^{\nu}\nabla_{\nu}\chi_{+}P^{*\dagger}$	210		373	
$P\langle u^{\mu}\nabla^{\nu}f_{-m\nu}\rangle P^{\dagger}$			45	Ι	$P^{*\mu} \nabla^{\nu} \nabla^{\lambda} \chi_{+} D_{\nu\lambda} P^{*\dagger}{}_{\mu}$	211		374	
$P\langle u^{\mu}\nabla^{\nu}f_{-u}^{\lambda}\rangle D_{\nu\lambda}P^{\dagger}$			46	Ι	$P^{*\mu}\langle abla_{\mu} abla^{ u} \chi_{+} angle P^{*\dagger}{}_{ u}$	212	Ι	375	Ι

=

TABLE IX. (Continued)

O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$	O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$
$\overline{P\langle u^{\mu}\nabla^{\nu}f_{-\nu}^{\ \lambda}\rangle D_{\mu\lambda}P^{\dagger}}$			47	Ι	$P^{*\mu}\langle abla^{ u} abla_{ u} \chi_{+} angle P^{*\dagger}$	213		376	
$P\langle u^{\mu}\nabla_{\mu}h^{\nu\lambda}\rangle D_{\mu\lambda}P^{\dagger}$			48	Ι	$P^{*\mu}\langle \nabla^{\nu}\nabla^{\lambda}\chi_{+}\rangle D_{\nu\lambda}P^{*\dagger}$	214		377	
$P\langle u^{\mu}\nabla^{\nu}h^{\lambda\rho}\rangle D_{\mu\nu\lambda\rho}P^{\dagger}$			49	Ι	$iP^{*\mu}f_{+\mu}^{\ \nu}\gamma_{+}P^{*\dagger}_{\ \nu}$ + H.c.	215	Ι	378	Ι
$iPf_{+}^{\mu\nu}u_{\mu}u_{\nu}P^{\dagger}$ + H.c.	20	Ι	50	Ι	$iP^{*\mu}\langle f_{+\mu}^{\nu}\rangle\chi_{+}P^{*\dagger}$	216	Ι		
$iPu^{\mu}f_{+\mu}^{\nu}u_{\nu}P^{\dagger}$	21	Ι	51	Ι	$iP^{*\mu}\langle f_{+\mu}\nu\chi_{+}\rangle P^{*\dagger}\nu$	217	Ι	379	Ι
$iPf_{\pm}^{\mu\nu}u_{\mu}u^{\lambda}D_{\mu\lambda}P^{\dagger}$ + H.c.	22	Ι	52	Ι	$iP^{*\mu}\langle \gamma_+\rangle f_{+\mu}^{\ \nu}P^{*\dagger}_{\ \nu}$	218	Ι	380	Ι
$iPf_{+}^{\mu\nu}u^{\lambda}u_{\mu}D_{\nu\lambda}P^{\dagger}$ + H.c.			53	Ι	$P^{*\mu}\chi^2_+ P^{*\dagger}_{\mu}$	219		381	
$iPu^{\mu}f_{+\mu}{}^{\nu}u^{\lambda}D_{\nu\lambda}P^{\dagger}$ + H.c.	23	Ι	54	Ι	$P^{*\mu}\langle \gamma_+ \rangle \gamma_+ P^{*\dagger}$			382	
$iP\langle f_+^{\mu\nu}u_\mu u_\nu\rangle P^\dagger$			55	Ι	$P^{*\mu}\langle \chi^2_+\rangle P^{*\dagger}$	220		383	
$iP\langle f_{+}^{\mu\nu}u_{\mu}u^{\lambda}\rangle D_{\nu\lambda}P^{\dagger}$ + H.c.			56	Ι	$P^{*\mu}\langle \chi_+ \rangle \langle \chi_+ \rangle P^{*\dagger}_{\mu}$			384	
$i\varepsilon^{\mu\nu\lambda\rho}Pf_{+\mu\nu}f_{-\lambda\rho}P^{\dagger}$ + H.c.	24	Ι	57	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u_{\nu}u_{\lambda}\chi_{-}P^{*\dagger}{}_{\rho}$ + H.c.	221	Ι	385	Ι
$i\varepsilon^{\mu\nu\lambda\rho}Pf_{+\mu\nu}f_{-\lambda}{}^{\sigma}D_{\rho\sigma}P^{\dagger}$ + H.c.	25	Ι	58	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}\chi_{-}u_{\lambda}P^{*\dagger}_{\ \rho}$	222	Ι	386	Ι
$i\varepsilon^{\mu\nu\lambda\rho}Pf_{+\mu\nu}h_{\lambda}{}^{\sigma}D_{\rho\sigma}P^{\dagger}$ + H.c.	26	Ι	59	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u_{\nu}u^{\sigma}\chi_{-}D_{\lambda\sigma}P^{*\dagger}{}_{\rho} + \text{H.c.}$			387	Ι
$i\varepsilon^{\mu\nu\lambda\rho}P\nabla_{\mu}f_{+\nu}^{\sigma}u_{\lambda}D_{\rho\sigma}P^{\dagger}$ + H.c.	27	Ι	60	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}u_{\lambda}\chi_{-}\rangle P^{*\dagger}_{\ \rho}$			388	Ι
$Pf_+^{\mu\nu}f_{+\mu\nu}P^{\dagger}$	28	Ι	61	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle\chi\rangle u_{\nu}u_{\lambda}P^{*\dagger}_{\ \rho}$			389	Ι
$Pf_{+}^{\mu u}f_{+\mu}^{\lambda}D_{\nu\lambda}P^{\dagger}$	29	Ι	62	Ι	$iP^{*\mu}f_{-\mu}^{\ \nu}\chi_{-}P^{*\dagger}_{\ \nu} + \text{H.c.}$	223	Ι	390	Ι
$P\langle f_+^{\mu u}\rangle f_{+\mu u}P^\dagger$	30	Ι			$iP^{*\mu}h_{\mu}{}^{\nu}\chi_{-}P^{*\dagger}{}_{\nu}$ + H.c.	224	Ι	391	Ι
$P\langle f_+^{\mu u}\rangle f_{+\mu}^{\lambda}D_{ u\lambda}P^{\dagger}$	31	Ι			$iP^{*\mu}h^{\nu\lambda}\chi_{-}D_{\nu\lambda}P^{*\dagger}{}_{\mu}$ + H.c.	225		392	
$P\langle f_+^{\mu u}f_{+\mu u}\rangle P^{\dagger}$			63	Ι	$iP^{*\mu}u_{\mu}\nabla^{\nu}\chi_{-}P^{*\dagger}{}_{\nu}$ + H.c.	226	Ι	393	Ι
$P\langle f_+^{\mu u}f_{+\mu}^{\lambda}\rangle D_{ u\lambda}P^{\dagger}$			64	Ι	$iP^{*\mu}u^{\nu}\nabla_{\mu}\chi_{-}P^{*\dagger}{}_{\nu}$ + H.c.	227		394	
$Pu^{\mu}u_{\mu}\chi_{+}P^{\dagger}$ + H.c.	32	Ι	65	Ι	$iP^{*\mu}u^{\nu}\nabla_{\nu}\chi_{-}P^{*\dagger}{}_{\mu}$ + H.c.	228		395	
$Pu^{\mu}\chi_{+}u_{\mu}P^{\dagger}$	33	Ι	66	Ι	$iP^{*\mu}u^{\nu}\nabla^{\lambda}\chi_{-}D_{\nu\lambda}P^{*\dagger}{}_{\mu}$ + H.c.	229		396	
$Pu^{\mu}u^{\nu}\chi_{+}D_{\mu\nu}P^{\dagger}$ + H.c.	34	Ι	67	Ι	$iP^{*\mu}\langle h_{\mu}{}^{\nu}\chi_{-}\rangle P^{*\dagger}{}_{\nu}$	230	Ι	397	Ι
$Pu^{\mu}\chi_{+}u^{ u}D_{\mu u}P^{\dagger}$	35	Ι	68	Ι	$iP^{*\mu}\langle \chi_{-} angle h_{\mu}{}^{ u}P^{*\dagger}{}_{ u}$			398	Ι
$P\langle u^{\mu}u_{\mu}\rangle\chi_{+}P^{\dagger}$			69	Ι	$iP^{*\mu}\langle h^{ u\lambda}\chi_{-}\rangle D_{ u\lambda}P^{*\dagger}{}_{\mu}$	231		399	
$P\langle u^{\mu}u_{\mu}\chi_{+}\rangle P^{\dagger}$	36	Ι	70	Ι	$iP^{*\mu}\langle\chi_{-} angle h^{ u\lambda}D_{ u\lambda}P^{*\dagger}{}_{\mu}$			400	
$P\langle u^{\mu}\chi_{+}\rangle u_{\mu}P^{\dagger}$			71	Ι	$iP^{*\mu}\langle u_{\mu}\nabla^{\nu}\chi_{-}\rangle P^{*\dagger}{}_{\nu}$ + H.c.	232	Ι	401	Ι
$P\langle\chi_+\rangle u^\mu u_\mu P^\dagger$			72	Ι	$iP^{*\mu}\langle \nabla^{\nu}\chi_{-}\rangle u_{\mu}P^{*\dagger}{}_{\nu} + \text{H.c.}$			402	Ι
$P\langle u^{\mu}u^{ u} angle \chi_{+}D_{\mu u}P^{\dagger}$			73	Ι	$iP^{*\mu}\langle u^{ u} abla_{ u}\chi_{-}\rangle P^{*\dagger}{}_{\mu}$	233		403	
$P\langle u^{\mu}u^{ u}\chi_{+} angle D_{\mu u}P^{\dagger}$	37	Ι	74	Ι	$iP^{*\mu}\langle abla^{ u}\chi_{-} angle u_{ u}P^{*\dagger}{}_{\mu}$			404	
$P\langle u^{\mu}\chi_{+} angle u^{ u}D_{\mu u}P^{\dagger}$			75	Ι	$iP^{*\mu}\langle u^{ u} abla^{\lambda}\chi_{-} angle D_{ u\lambda}P^{*\dagger}{}_{\mu}$	234		405	
$P\langle\chi_+ angle u^\mu u^ u D_{\mu u}P^\dagger$			76	Ι	$iP^{*\mu}\langle abla^{ u}\chi_{-} angle u^{\lambda}D_{ u\lambda}P^{*\dagger}{}_{\mu}$			406	
$P abla^\mu abla_\mu\chi_+P^\dagger$	38	Ι	77	Ι	$arepsilon^{\mu u\lambda ho}P^*{}_\mu f_{+ u\lambda}\chiP^{*\dagger}{}_ ho+ ext{H.c.}$	235	Ι	407	Ι
$P abla^\mu abla^ u \chi_+ D_{\mu u} P^\dagger$	39	Ι	78	Ι	$arepsilon^{\mu u\lambda ho}P^{*}{}_{\mu}\langle f_{+ u\lambda} angle \chi_{-}P^{*\dagger}{}_{ ho}$	236	Ι		
$P\langle abla^\mu abla_\mu \chi_+ angle P^\dagger$	40	Ι	79	Ι	$arepsilon^{\mu u\lambda ho}P^{*}{}_{\mu}\langle f_{+ u\lambda}\chi_{-} angle P^{*\dagger}{}_{ ho}$	237	Ι	408	Ι
$P\langle abla^\mu abla^ u \chi_+ angle D_{\mu u} P^\dagger$	41	Ι	80	Ι	$arepsilon^{\mu u\lambda ho}P^{*}{}_{\mu}\langle\!\!\!\!\chi_{-} angle f_{+ u\lambda}P^{*\dagger}{}_{ ho}$	238	Ι	409	Ι
$P\chi^2_+P^\dagger$	42	Ι	81	Ι	$P^{*\mu}\chi^2P^{*\dagger}{}_\mu$	239		410	
$P\langle\chi_+ angle\chi_+P^\dagger$			82	Ι	$P^{*\mu}\langle \chi angle \chi P^{*\dagger}{}_\mu$	240		411	
$P\langle\chi^2_+ angle P^\dagger$	43	Ι	83	Ι	$P^{*\mu}\langle \chi angle\langle \chi angle P^{*\dagger}{}_\mu$			412	
$P\langle\chi_+ angle\langle\chi_+ angle P^\dagger$			84	Ι	$iP^{*\mu}\langle D_{\mu}D^{\nu}F_{L\nu}{}^{\lambda} angle P^{*\dagger}{}_{\lambda}+P.+\mathrm{H.c.}$	241	Ι		
$iPh^{\mu u}\chi_{-}D_{\mu u}P^{\dagger}+{ m H.c.}$	44	Ι	85	Ι	$iP^{*\mu}\langle D_{\mu}D^{\nu}F_{L}{}^{\lambda ho}\rangle D_{\nu\lambda}P^{*\dagger}{}_{ ho}+P.+\mathrm{H.c.}$	242	Ι		
$iPu^{\mu} abla_{\mu}\chi_{-}P^{\dagger}+ ext{H.c.}$	45	Ι	86	Ι	$P^{*\mu}\langle F_{L\mu}{}^{\nu}F_{L\nu}{}^{\lambda}\rangle P^{*\dagger}{}_{\lambda} + \mathrm{H.c.}$	243		413	Ι
$iPu^{\mu}\nabla^{\nu}\chi_{-}D_{\mu\nu}P^{\dagger}$ + H.c.	46	Ι	87	Ι	$P^{*\mu} \langle F_L^{\nu\lambda} F_{L\nu\lambda} \rangle P^{*\dagger}{}_{\mu} + \text{H.c.}$	244		414	
$iP\langle h^{\mu u}\chi_{-} angle D_{\mu u}P^{\dagger}$	47	Ι	88	Ι	$P^{*\mu}\langle F_{L\mu}{}^{\nu}F_{L}{}^{\lambda ho}\rangle D_{\nu\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	245		415	Ι
$iP\langle\chi angle h^{\mu u}D_{\mu u}P^\dagger$			89	Ι	$P^{*\mu}\langle F_L^{\ u\lambda}F_{L u}^{\ u} angle D_{\lambda ho}P^{*\dagger}{}_{\mu}+ ext{H.c.}$	246		416	
$iP\langle u^{\mu}\nabla_{\mu}\chi_{-}\rangle P^{\dagger}$	48	Ι	90	Ι	$P^{*\mu}\langle F_{L\mu}{}^{\nu}\rangle\langle F_{L\nu}{}^{\lambda}\rangle P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$	247			
$iP\langle abla^{\mu}\chi_{-} angle u_{\mu}P^{\dagger}$			91	Ι	$P^{*\mu}\langle F_L^{\nu\lambda}\rangle\langle F_{L\nu\lambda}\rangle P^{*\dagger}{}_{\mu}$ + H.c.	248			
$iP\langle u^\mu abla^ u \chi angle D_{\mu u} P^\dagger$	49	Ι	92	Ι	$P^{*\mu}\langle F_{L\mu}{}^{ u} angle\langle F_{L}{}^{\lambda ho} angle D_{ u\lambda}P^{*\dagger}{}_{ ho} + ext{H.c.}$	249			

<i>O</i> _n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$	O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$
$iP\langle abla^\mu \chi angle u^ u D_{\mu u}P^\dagger$			93	Ι	$P^{*\mu}\langle F_L{}^{ u\lambda} angle\langle F_{L u}{}^ ho angle D_{\lambda ho}P^{*\dagger}{}_\mu+ ext{H.c.}$	250			
$P\chi^2P^\dagger$	50	Ι	94	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle F_{L\nu\lambda}F_L^{\ \sigma\delta}\rangle D_{\rho\sigma}P^{*\dagger}_{\ \delta} + P. + \text{H.c.}$	251	Ι	417	Ι
$P\langle\chi angle\chiP^\dagger$	51	Ι	95	Ι	$P^{*\mu}\langle \chi \chi^{\dagger} angle P^{*\dagger}{}_{\mu}$	252		418	
$P\langle\chi angle\langle\chi angle P^\dagger$			96	Ι	$P^{*\mu} \det \chi P^{*\dagger}{}_{\mu} + \mathrm{H.c.}$	253			
$P\langle F_L^{\mu\nu}F_{L\mu\nu}\rangle P^{\dagger}$ + H.c.	52	Ι	97	Ι	$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u_{\nu}u_{\lambda}u^{\sigma}D_{\rho}P^{*\dagger}{}_{\sigma}+\mathrm{H.c.}$	254		419	
$P\langle F_L^{\mu u}F_{L\mu}{}^\lambda angle D_{ u\lambda}P^\dagger + ext{H.c.}$	53	Ι	98	Ι	$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u_{\nu}u_{\lambda}u^{\sigma}D_{\sigma}P^{*\dagger}{}_{ ho}+\mathrm{H.c.}$	255		420	
$P\langle F_L^{\mu\nu}\rangle\langle F_{L\mu\nu}\rangle P^{\dagger}$ + H.c.	54	Ι			$\varepsilon^{\mu\nu\lambda ho}Pu_{\mu}u_{\nu}u^{\sigma}u_{\lambda}D_{ ho}P^{*\dagger}{}_{\sigma}+\mathrm{H.c.}$			421	
$P\langle F_L^{\mu u} angle\langle F_{L\mu}{}^\lambda angle D_{ u\lambda}P^\dagger + { m H.c.}$	55	Ι			$arepsilon^{\mu u\lambda ho}Pu_{\mu}u_{ u}u^{\sigma}u_{\lambda}D_{\sigma}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			422	
$P\langle\chi\chi^\dagger angle P^\dagger$	56	Ι	99	Ι	$\varepsilon^{\mu\nu\lambda ho}Pu_{\mu}u_{\nu}u^{\sigma}u_{\sigma}D_{\lambda}P^{*\dagger}{}_{ ho}+\mathrm{H.c.}$	256		423	
$P \det \chi P^{\dagger} + \text{H.c.}$	57	Ι			$\varepsilon^{\mu\nu\lambda ho}Pu_{\mu}u^{\sigma}u_{\nu}u_{\lambda}D_{ ho}P^{*\dagger}{}_{\sigma}+\mathrm{H.c.}$			424	
$P^{*\mu}\langle u_{\mu}u^{ u} angle u_{ u}u^{\lambda}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$	58	Ι	100	Ι	$arepsilon^{\mu u\lambda ho}Pu_{\mu}u^{\sigma}u_{ u}u_{\lambda}D_{\sigma}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			425	
$P^{*\mu} \langle u_{\mu} u^{\nu} \rangle u^{\lambda} u_{\nu} P^{*\dagger}{}_{\lambda} + \text{H.c.}$	59		101	Ι	$arepsilon^{\mu u\lambda ho}Pu_{\mu}u^{\sigma}u_{ u}u_{\sigma}D_{\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			426	
$P^{*\mu}\langle u_{\mu}u^{ u} angle u^{\lambda}u_{\lambda}P^{*\dagger}{}_{ u}$	60	Ι	102	Ι	$arepsilon^{\mu u\lambda ho}Pu_{\mu}u^{\sigma}u_{\sigma}u_{ u}D_{\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			427	
$P^{*\mu}\langle u^ u u_ u angle u_\mu u^\lambda P^{*\dagger}{}_\lambda$	61		103	Ι	$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u_{\nu}u^{\sigma}u^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}{}_{ ho}+\mathrm{H.c.}$	257		428	
$P^{*\mu}\langle u^ u u_ u angle u^\lambda u_\mu P^{*\dagger}{}_\lambda$			104		$arepsilon^{\mu u\lambda ho}Pu_{\mu}u^{\sigma}u_{ u}u^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			429	
$P^{*\mu}\langle u^{ u}u_{ u} angle u^{\lambda}u_{\lambda}P^{*\dagger}{}_{\mu}$	62		105		$\varepsilon^{\mu\nu\lambda ho}Pu_{\mu}u^{\sigma}u^{\delta}u_{\nu}D_{\lambda\sigma\delta}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			430	
$P^{*\mu}\langle u^ u u^\lambda angle u_ u u_\lambda P^{*\dagger}{}_\mu$	63		106		$arepsilon^{\mu u\lambda ho}P\langle u_{\mu}u^{\sigma} angle u_{ u}u_{\lambda}D_{ ho}P^{*\dagger}{}_{\sigma}+ ext{H.c.}$			431	
$P^{*\mu} \langle u_{\mu} u^{ u} \rangle u^{\lambda} u^{ ho} D_{ u\lambda} P^{*\dagger}{}_{ ho} + \mathrm{H.c.}$	64	Ι	107	Ι	$arepsilon^{\mu u\lambda ho}P\langle u_{\mu}u^{\sigma} angle u_{ u}u_{\lambda}D_{\sigma}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			432	
$P^{*\mu}\langle u_{\mu}u^{ u} angle u^{\lambda}u^{ ho}D_{ u ho}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$	65		108	Ι	$arepsilon^{\mu u\lambda ho}P\langle u_{\mu}u^{\sigma} angle u_{ u}u_{\sigma}D_{\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			433	Ι
$P^{*\mu}\langle u_{\mu}u^{ u} angle u^{\lambda}u^{ ho}D_{\lambda ho}P^{*\dagger}{}_{ u}$	66	Ι	109	Ι	$arepsilon^{\mu u\lambda ho}P\langle u_{\mu}u^{\sigma} angle u_{ u}u^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			434	Ι
$P^{*\mu}\langle u^ u u_ u angle u^\lambda u^ ho D_{\lambda ho} P^{*\dagger}{}_\mu$	67		110		$arepsilon^{\mu u\lambda ho}P\langle u_{\mu}u_{ u}u_{\lambda} angle u^{\sigma}D_{ ho}P^{*\dagger}{}_{\sigma}+ ext{H.c.}$			435	
$P^{*\mu}\langle u^ u u^\lambda angle u_\mu u^ ho D_{ u\lambda} P^{*\dagger}{}_ ho$	68		111	Ι	$arepsilon^{\mu u\lambda ho}P\langle u_{\mu}u_{ u}u_{\lambda} angle u^{\sigma}D_{\sigma}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			436	
$P^{*\mu}\langle u^ u u^\lambda angle u_ u u^ ho D_{\lambda ho} P^{*\dagger}{}_\mu + { m H.c.}$	69		112		$P\langle u^{\mu}u_{\mu} angle f_{-}^{ u\lambda}D_{ u}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$	258	Ι	437	
$P^{*\mu}\langle u^ u u^\lambda angle u^ ho u_\mu D_{ u\lambda} P^{*\dagger}{}_ ho$			113		$P\langle u^{\mu}u^{ u} angle f_{-\mu}{}^{\lambda}D_{ u}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$	259	Ι	438	
$P^{*\mu}\langle u^ u u^\lambda angle u^ ho u_ ho D_{ u\lambda} P^{*\dagger}{}_\mu$			114		$P\langle u^{\mu}u^{ u} angle f_{-\mu}{}^{\lambda}D_{\lambda}P^{*\dagger}{}_{ u}+ ext{H.c.}$	260	Ι	439	
$P^{*\mu}\langle u^ u u^\lambda angle u^ ho u^\sigma D_{ u\lambda ho\sigma}P^{*\dagger}{}_\mu$	70		115		$P\langle u^{\mu}u^{ u} angle f_{-}^{\lambda ho}D_{\mu u\lambda}P^{*\dagger}{}_{ ho}+{ m H.c.}$	261	Ι	440	
$P^{*\mu} \langle u_{\mu} u^{\nu} u_{\nu} \rangle u^{\lambda} P^{*\dagger}{}_{\lambda} + \text{H.c.}$			116		$P\langle u^{\mu}u_{\mu} angle h^{ u\lambda}D_{ u}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$	262	Ι	441	
$P^{*\mu}\langle u_{\mu}u^{ u}u^{\lambda} angle u_{ u}P^{*\dagger}{}_{\lambda}$			117	Ι	$P\langle u^{\mu}u^{ u} angle h_{\mu}{}^{\lambda}D_{ u}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$	263	Ι	442	
$P^{*\mu}\langle u_{\mu}u^{\nu}u^{\lambda}\rangle u_{\lambda}P^{*\dagger}{}_{\nu}$			118		$P\langle u^{\mu}u^{\nu}\rangle h_{\mu}{}^{\lambda}D_{\lambda}P^{*\dagger}{}_{\nu}$ + H.c.	264	Ι	443	
$P^{*\mu} \langle u^{ u} u_{ u} u^{\lambda} angle u_{\lambda} P^{*\dagger}{}_{\mu}$			119		$P \langle u^{\mu} u^{ u} \rangle h^{\lambda ho} D_{\mu u \lambda} P^{*\dagger}{}_{ ho} + { m H.c.}$	265	Ι	444	
$P^{*\mu}\langle u_{\mu}u^{\nu}u^{\lambda}\rangle u^{\rho}D_{\nu\lambda}P^{*\dagger}{}_{\rho}$ + H.c.			120		$P\langle u^{\mu}u^{ u}\rangle h^{\lambda\rho}D_{\mu\lambda\rho}P^{*\dagger}{}_{\nu}+\mathrm{H.c.}$	266	Ι	445	
$P^{*\mu} \langle u_{\mu} u^{ u} u^{\lambda} \rangle u^{ ho} D_{ u ho} P^{*\dagger}{}_{\lambda}$			121	Ι	$P\langle u^{\mu}f_{-\mu}{}^{\nu}\rangle u^{\lambda}D_{\lambda}P^{*\dagger}{}_{\nu}$ + H.c.	267	Ι	446	
$P^{*\mu}\langle u_{\mu}u^{\nu}u^{\lambda}\rangle u^{\rho}D_{\lambda\rho}P^{*\dagger}{}_{\nu}$			122		$P\langle u^{\mu}f_{-\mu}{}^{\nu}\rangle u^{\lambda}D_{\nu}P^{*\dagger}{}^{\lambda}+\text{H.c.}$	268	Ι	447	
$P^{*\mu}\langle u^{\nu}u_{\nu}u^{\lambda}\rangle u^{\rho}D_{\lambda\rho}P^{*\dagger}{}_{\mu}$			123		$P\langle u^{\mu}f_{-}^{\nu\lambda}\rangle u_{\mu}D_{\nu}P^{*\dagger}_{\lambda}$ + H.c.	269	Ι	448	
$P^{*\mu} \langle u^{\nu} u^{\lambda} u^{\rho} \rangle u_{\nu} D_{\lambda \rho} P^{*\dagger}{}_{\mu}$			124		$P\langle u^{\mu}f_{-}^{\nu\lambda}\rangle u_{\nu}D_{\mu}P^{*\dagger}_{\lambda}$ + H.c.	270	I	449	
$P^{*\mu} \langle u^{\nu} u^{\lambda} u^{\rho} \rangle u^{\sigma} D_{\nu\lambda\rho\sigma} P^{*\dagger}{}_{\mu}$			125	_	$P\langle u^{\mu}f_{-}^{\nu\lambda}\rangle u_{\nu}D_{\lambda}P^{*\dagger}{}_{\mu}$ + H.c.	271	I	450	
$P^{*\mu}\langle u_{\mu}u^{\nu}u_{\nu}u^{\lambda}\rangle P^{*\dagger}_{\lambda}$			126	I	$P\langle u^{\mu}f_{-}^{\nu\lambda}\rangle u^{\rho}D_{\mu\nu\rho}P^{*\dagger}_{\lambda} + \text{H.c.}$	272	I	451	
$P^{*\mu}\langle u_{\mu}u^{ u}u^{\lambda}u_{ u} angle P^{*\dagger}{}_{\lambda}$			127	I	$P\langle u^{\mu}h_{\mu}{}^{\nu}\rangle u^{\lambda}D_{\lambda}P^{*\dagger}{}_{\nu}$ + H.c.	273	I	452	
$P^{*\mu}\langle u_{\mu}u^{ u}u^{\lambda}u_{\lambda}\rangle P^{*\dagger}{}_{ u}$			128		$P\langle u^{\mu}h_{\mu}{}^{\nu}\rangle u^{\lambda}D_{\nu}P^{*\dagger}{}_{\lambda}+\text{H.c.}$	274	I	453	
$P^{*\mu}\langle u^{\nu}u_{\nu}u^{\lambda}u_{\lambda}\rangle P^{*\dagger}{}_{\mu}$			129		$P\langle u^{\mu}h^{\nu\lambda}\rangle u_{\mu}D_{\nu}P^{*\dagger}{}_{\lambda}$ + H.c.	275	I	454	
$P^{*\mu} \langle u^{\nu} u^{\lambda} u_{\nu} u_{\lambda} \rangle P^{*\dagger}{}_{\mu}$			130	-	$P\langle u^{\mu}h^{\nu\lambda}\rangle u_{\nu}D_{\mu}P^{*\dagger}{}_{\lambda}$ + H.c.	276	I	455	
$P^{*\mu} \langle u_{\mu} u^{\nu} u^{\lambda} u^{\rho} \rangle D_{\nu\lambda} P^{*\dagger}{}_{\rho}$			131	l	$P\langle u^{\mu}h^{\nu\lambda}\rangle u_{\nu}D_{\lambda}P^{*\dagger}{}_{\mu}$ + H.c.	277	l	456	
$P^{*\mu} \langle u_{\mu} u^{\nu} u^{\lambda} u^{\rho} \rangle D_{\nu\rho} P^{*\dagger}{}_{\lambda}$			132	I	$P\langle u^{\mu}h^{\nu\lambda}\rangle u^{\rho}D_{\mu\nu\rho}P^{*\dagger}\lambda + \mathrm{H.c.}$	278	I	457	
$P^{*\mu} \langle u_{\mu} u^{\nu} u^{\lambda} u^{\rho} \rangle D_{\lambda \rho} P^{*\dagger} \nu$			133		$P\langle u^{\mu}h^{\nu\lambda}\rangle u^{\rho}D_{\mu\nu\lambda}P^{*\dagger}{}_{\rho} + \text{H.c.}$	279	l	458	
$P^{*\mu} \langle u^{\nu} u_{\nu} u^{\lambda} u^{\rho} \rangle D_{\lambda \rho} P^{*\dagger}_{\mu}$			134		$P\langle u^{\mu}h^{\nu\lambda}\rangle u^{\rho}D_{\nu\lambda\rho}P^{*\dagger}{}_{\mu}$ + H.c.	280	1	459	
$P^{*\mu} \langle u^{\nu} u^{\lambda} u_{\nu} u^{\rho} \rangle D_{\lambda \rho} P^{*\dagger}{}_{\mu}$			135		$P\langle u^{\mu}u_{\mu}f^{-\nu\lambda}\rangle D_{\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	001		460	
$P^{*\mu} \langle u^{\nu} u^{\kappa} u^{\rho} u^{\sigma} \rangle D_{\nu \lambda \rho \sigma} P^{*\dagger}{}_{\mu}$			136		$P\langle u^{\mu}u^{\nu}f_{-\mu}^{\lambda}\rangle D_{\nu}P^{*}\lambda + \text{H.c.}$	281		461	
$P^{*\mu}u_{\mu}u^{\nu}u_{\nu}u^{\lambda}P^{*\dagger}{}_{\lambda}$			137		$P\langle u^{\mu}u^{\nu}f_{-\mu}{}^{\lambda}\rangle D_{\lambda}P^{*\dagger}{}_{\nu} + \text{H.c.}$	282		462	

O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$	O_n	SU(2)	$\tilde{c}_n^{(4)} SU(3) \tilde{C}_n^{(4)}$
$\overline{P^{*\mu}u_{\mu}u^{\nu}u^{\lambda}u_{\nu}P^{*\dagger}}_{\lambda} + \text{H.c.}$			138		$P\langle u^{\mu}u^{\nu}f_{-\nu}{}^{\lambda}\rangle D_{\mu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$		463
$P^{*\mu}u^{\nu}u_{\mu}u^{\lambda}u_{\nu}P^{*\dagger}{}_{\lambda}$			139		$P\langle u^{\mu}u^{\nu}f_{-\nu}^{\lambda}\rangle D_{\lambda}P^{*\dagger}_{\mu}$ + H.c.		464
$P^{*\mu}u^{\nu}u_{\mu}u^{\lambda}u_{\lambda}P^{*\dagger}{}_{\nu}$ + H.c.			140		$P\langle u^{\mu}u^{\nu}f_{-}^{\lambda\rho}\rangle D_{\mu\nu\lambda}P^{*\dagger}{}_{\rho} + \text{H.c.}$		465
$P^{*\mu}u^{\nu}u_{\nu}u^{\lambda}u_{\lambda}P^{*\dagger}u^{\prime}$			141		$P\langle u^{\mu}u_{\mu}h^{\nu\lambda}\rangle D_{\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$		466
$P^{*\mu}u^{\nu}u^{\lambda}u_{\nu}u_{\lambda}P^{*\dagger}$			142		$P\langle u^{\mu}u^{\nu}h_{\mu}{}^{\lambda}\rangle D_{\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	283	467
$P^{*\mu}u_{\mu}u^{\nu}u^{\lambda}u^{\rho}D_{\mu\lambda}P^{*\dagger}$			143	Ι	$P\langle u^{\mu}u^{\nu}h_{\mu}^{\lambda}\rangle D_{\lambda}P^{*\dagger}{}_{\mu}$ + H.c.	284	468
$P^{*\mu}u_{\mu}u^{\nu}u^{\lambda}u^{\rho}D_{\mu\rho}P^{*\dagger}{}_{\lambda} + \text{H.c.}$			144		$P\langle u^{\mu}u^{\nu}h_{\nu}^{\lambda}\rangle D_{\mu}P^{*\dagger} + \text{H.c.}$		469
$P^{*\mu}u^{\nu}u_{\mu}u^{\lambda}u^{\rho}D_{\mu\rho}P^{*\dagger}$			145		$P\langle u^{\mu}u^{\nu}h_{\nu}^{\lambda}\rangle D_{\lambda}P^{*\dagger}$ + H.c.		470
$P^{*\mu}u^{\nu}u_{\mu}u^{\lambda}u^{\rho}D_{\lambda\alpha}P^{*\dagger}u + \text{H.c.}$			146		$P\langle u^{\mu}u^{\nu}h^{\lambda\rho}\rangle D_{\mu} P^{*\dagger} + \text{H.c.}$		471
$P^{*\mu}u^{\nu}u_{\nu}u^{\lambda}u^{\rho}D_{\lambda\rho}P^{*\dagger}u + \text{H.c.}$			147		$P\langle u^{\mu}u^{\nu}h^{\lambda\rho}\rangle D_{\mu\lambda\rho}P^{*\dagger}$, + H.c.	285	472
$P^{*\mu}u^{\nu}u^{\lambda}u, u^{\rho}D_{\lambda}P^{*\dagger} + \text{H.c.}$			148		$P\langle u^{\mu}u^{\nu}h^{\lambda\rho}\rangle D_{\mu\lambda\rho}P^{*\dagger}$ + H.c.		473
$\varepsilon^{\mu\nu\lambda\rho}P^* \cdot \mu_{\nu}\mu_{\nu}f = \sigma^{\sigma}P^{*\dagger} + H.c.$	71		149		$Pu^{\mu}u_{\nu}f^{\nu\lambda}D_{\nu}P^{*\dagger}+H.c.$		474
$\varepsilon^{\mu\nu\lambda\rho}P^* u u^{\sigma}f P^{\dagger} P^{\dagger} + Hc$	72		150		$Pu^{\mu}u^{\nu}f^{-\lambda}DP^{*\dagger}$ + H.c.		475
$\varepsilon^{\mu\nu\lambda\rho}P^* u u^{\sigma}f \cdot P^{*\dagger} + Hc$	73	T	151	T	$P u^{\mu} u^{\nu} f^{-\lambda} D_{\lambda} P^{*\dagger} + H c$		476
$e^{\mu\nu\lambda\rho}P^* u^{\sigma}u f \cdot P^{*\dagger} + Hc$	74	-	152	-	$Pu^{\mu}u^{\nu}f^{\lambda}D P^{*\dagger} + Hc$		477
$c^{\mu\nu\lambda\rho} P^* u^{\sigma} u f \cdot P^{*\dagger} \perp H c$, ,		152	Ţ	$Pu^{\mu}u^{\nu}f^{\lambda}D_{\mu}P^{*\dagger} + Hc$		478
$c^{\mu\nu\lambda\rho} P^* u^{\sigma} u f P^{*\dagger} + H c$			154	T	$P_{\mu}^{\mu} \mu^{\nu} f^{\lambda\rho} D P^{*\dagger} + H c$		479
$c = \mu u u_{\sigma} J_{-\nu\lambda} I_{\rho} + \Pi c$	75		155	1	$P_{\mu\nu}^{\mu} \mu b^{\nu\lambda} D P^{*\dagger} + H c$		480
$e^{\mu\nu\lambda\rho} P^* \mu \mu^{\sigma} f^{\delta} D P^{*\dagger} + H c$	76		155		$P u^{\mu} u^{\nu} h^{\lambda} D P^{*\dagger} + H c$		481
$\mathcal{E}' = \Gamma_{\mu} u_{\nu} u_{J-\lambda} D_{\rho\sigma} \Gamma_{\delta} + \Pi.C.$	70		150		$F u^{\mu} u^{\mu} h^{\lambda} D P^{*\dagger} + H c$		482
$\mathcal{E}^{\mu\nu} + \Gamma_{\mu} u_{\nu} u^{\sigma} f_{-\lambda} D_{\rho\delta} \Gamma_{\sigma} + \Pi.C.$	//		158	T	$F w u n_{\mu} D_{\lambda} F +_{\nu} + \Pi.C.$		482
$\mathcal{E}^{\mu\nu} \mathcal{P}_{\mu} u_{\nu} u_{\nu} J_{-\lambda} D_{\sigma\delta} \mathcal{P}_{\rho} + \Pi.C.$	79	т	150	T	$F u^{\mu} u^{\mu} n_{\nu} D_{\mu} F^{\mu} \lambda + \text{H.c.}$		483
$\mathcal{E}^{\mu\nu\gamma}P_{\mu}u_{\nu}u^{\sigma}J_{-\sigma}D_{\lambda\delta}P^{+}\rho + \text{H.c.}$	70	1	159	1	$P u^{\mu} u^{\mu} h_{\nu}^{\mu} D_{\lambda} P^{\mu} + \text{H.c.}$		404
$\varepsilon^{\mu\nu\rho}P^{\mu}{}_{\mu}u^{\sigma}u_{\nu}f_{-\lambda}{}^{\sigma}D_{\rho\delta}P^{\mu}{}_{\sigma}$ + H.c.	19		161	т	$Pu^{\mu}u^{\nu}n^{\mu}p_{\mu\nu\lambda}P^{\mu}\rho + \text{H.c.}$		465
$\varepsilon^{\mu\nu\rho}P^{+}{}_{\mu}u^{\circ}u_{\nu}f_{-\sigma}^{\circ}D_{\lambda\delta}P^{+}{}_{\rho}^{+}$ H.c.	20	т	162	I T	$Pu^{\mu}u^{\nu}n^{\mu}p_{\mu\lambda\rho}P^{\mu}{}_{\nu}$ + H.C.		400
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}u_{\lambda}h_{\rho}^{\ \sigma}P^{\star\dagger}_{\ \sigma} + \text{H.c.}$	80	I T	162	I T	$Pu^{\mu}u^{\nu}h^{\lambda\rho}D_{\nu\lambda\rho}P^{*+}\mu + \text{H.c.}$		487
$\varepsilon^{\mu\nu\rho}P^{*}{}_{\mu}u_{\nu}u^{\circ}h_{\lambda\sigma}P^{*}{}_{\rho}$ + H.c.	81	1	105	I	$Pu^{\mu}f_{-\mu}u^{\nu}D_{\nu}P^{+}\lambda$ + H.c.		488
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u^{\sigma}u_{\nu}h_{\lambda\sigma}P^{*}_{\ \rho} + \text{H.c.}$	00		164	1	$Pu^{\mu}f_{-\mu}{}^{\nu}u^{\lambda}D_{\lambda}P^{*\dagger}{}_{\nu}$ + H.c.		489
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}u_{\lambda}h^{oo}D_{\rho\sigma}P^{*}_{\ \delta} + \text{H.c.}$	82	Ŧ	165	Ŧ	$Pu^{\mu}f_{-}^{\nu\nu}u_{\mu}D_{\nu}P^{*\dagger}{}_{\lambda}$ + H.c.		490
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}u_{\lambda}h^{oo}D_{\sigma\delta}P^{*}_{\ \rho}$ + H.c.	83	I	166	l	$Pu^{\mu}f_{-}^{\nu\lambda}u_{\nu}D_{\mu}P^{*}\lambda_{\lambda} + \text{H.c.}$		491
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}u^{\sigma}h_{\lambda}{}^{o}D_{\rho\sigma}P^{*}_{\ \delta} + \text{H.c.}$	84	I	167	1	$Pu^{\mu}f_{-}^{\nu\lambda}u_{\nu}D_{\lambda}P^{*}\mu_{\mu} + \text{H.c.}$		492
$\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u_{\nu}u^{\sigma}h_{\lambda}{}^{o}D_{\rho\delta}P^*{}_{\sigma}+\mathrm{H.c.}$	85		168	-	$Pu^{\mu}f_{-}^{\nu\lambda}u^{\rho}D_{\mu\nu\rho}P^{*}\lambda$ + H.c.		493
$\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u_{\nu}u^{\sigma}h_{\lambda}{}^{o}D_{\sigma\delta}P^{*\dagger}{}_{\rho}$ + H.c.		_	169	I	$Pu^{\mu}h_{\mu}{}^{\nu}u^{\lambda}D_{\nu}P^{*\dagger}{}_{\lambda}$ + H.c.		494
$\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u_{\nu}u^{\sigma}h_{\sigma}{}^{\delta}D_{\lambda\delta}P^{*\dagger}{}_{\rho}$ + H.c.	86	Ι	170	Ι	$Pu^{\mu}h_{\mu}{}^{\nu}u^{\lambda}D_{\lambda}P^{*\dagger}{}_{\nu}$ + H.c.		495
$\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u^{\sigma}u_{\nu}h_{\lambda}{}^{\delta}D_{\rho\delta}P^{*\dagger}{}_{\sigma}$ + H.c.	87		171		$Pu^{\mu}h^{\nu\lambda}u_{\mu}D_{\nu}P^{*\dagger}{}_{\lambda}$ + H.c.		496
$\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u^{\sigma}u_{\nu}h_{\sigma}{}^{\delta}D_{\lambda\delta}P^{*\dagger}{}_{\rho}$ + H.c.			172	Ι	$Pu^{\mu}h^{\nu\lambda}u_{\nu}D_{\mu}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$		497
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u^{\sigma}u_{\sigma}h_{\nu}{}^{\delta}D_{\lambda\delta}P^{*\dagger}{}_{ ho}+\mathrm{H.c.}$			173	Ι	$Pu^{\mu}h^{ u\lambda}u_{ u}D_{\lambda}P^{*\dagger}{}_{\mu}+\mathrm{H.c.}$		498
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}u^{\sigma}h^{\delta\alpha}D_{\lambda\sigma\delta\alpha}P^{*\dagger}_{\ \rho}+\mathrm{H.c.}$			174	Ι	$P u^{\mu} h^{ u\lambda} u^{ ho} D_{\mu u\lambda} P^{*\dagger}{}_{ ho} + \mathrm{H.c.}$		499
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}f_{-\lambda\rho}u^{\sigma}P^{*\dagger}_{\ \sigma} + \mathrm{H.c.}$	88		175		$Pu^{\mu}h^{ u\lambda}u^{ ho}D_{\mu u ho}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$		500
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}f_{-\lambda}^{\ \sigma}u_{\rho}P^{*\dagger}_{\ \sigma}+\mathrm{H.c.}$			176	Ι	$P u^{\mu} h^{ u\lambda} u^{ ho} D_{ u\lambda ho} P^{*\dagger}{}_{\mu} + \mathrm{H.c.}$		501
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}f_{-\lambda}^{\ \sigma}u^{\delta}D_{\rho\sigma}P^{*\dagger}_{\ \delta} + \mathrm{H.c.}$	89		177		$Pf_{-}^{\mu\nu}u_{\mu}u^{\lambda}D_{\nu}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$		502
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}f_{-\lambda}{}^{\sigma}u^{\delta}D_{\rho\delta}P^{*\dagger}{}_{\sigma} + \text{H.c.}$	90		178		$Pf_{-}^{\mu u}u_{\mu}u^{\lambda}D_{\lambda}P^{*\dagger}{}_{ u}+ ext{H.c.}$		503
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}f_{-}^{\ \sigma\delta}u_{\lambda}D_{\rho\sigma}P^{*\dagger}_{\ \delta} + \text{H.c.}$			179	Ι	$Ph^{\mu\nu}u_{\mu}u^{\lambda}D_{\nu}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$		504
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}h_{\lambda}^{\ \sigma}u_{\rho}P^{*\dagger}_{\ \sigma} + \text{H.c.}$			180	Ι	$Ph^{\mu\nu}u_{\mu}u^{\lambda}D_{\lambda}P^{*\dagger}{}_{\nu}$ + H.c.		505
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}h_{\lambda}{}^{\sigma}u^{\delta}D_{\rho\sigma}P^{*\dagger}{}_{\delta} + \text{H.c.}$	91	Ι	181	Ι	$Ph^{\mu\nu}u^{\lambda}u^{\rho}D_{\mu\nu\lambda}P^{*\dagger}{}_{\rho} + \text{H.c.}$		506
$\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}u_{\nu}h_{\lambda}{}^{\sigma}u^{\delta}D_{\rho\delta}P^{*\dagger}{}_{\sigma} + \text{H.c.}$	92	Ι	182	Ι	$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}\nabla_{\nu}f_{-\lambda}{}^{\sigma}D_{\rho}P^{*\dagger}{}_{\sigma} + \text{H.c.}$	286	507
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}h_{\lambda}^{\ \sigma}u^{\delta}D_{\sigma\delta}P^{*\dagger}_{\ \sigma} + \mathrm{H.c.}$			183	Ι	$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}\nabla_{\nu}f_{-\lambda}{}^{\sigma}D_{\sigma}P^{*\dagger}{}_{\rho} + \text{H.c.}$	287	508
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}u_{\nu}h^{\sigma\delta}u_{\lambda}D_{\rho\sigma}P^{*\dagger}_{\ \delta} + \text{H.c.}$			184	Ι	$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}\nabla^{\sigma}f_{-\nu\sigma}D_{\lambda}P^{*\dagger}_{\rho} + \text{H.c.}$	288	509
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}u^{\sigma}\rangle f_{-\lambda\rho}P^{*\dagger}{}_{\sigma} + \mathrm{H.c.}$			185		$\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}\nabla^{\sigma}f_{-\nu}^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}{}_{\rho} + \text{H.c.}$	289	510

O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$	O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$
$\epsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}u^{\sigma}\rangle f_{-\lambda}{}^{\delta}D_{\rho\sigma}P^{*\dagger}{}_{\delta} + \mathrm{H.c.}$			186		$\varepsilon^{\mu\nu\lambda ho}Pu_{\mu} abla_{ u}h^{\sigma\delta}D_{\lambda\sigma\delta}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	290		511	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}u^{\sigma}\rangle f_{-\lambda}{}^{\delta}D_{\rho\delta}P^{*\dagger}{}_{\sigma} + \text{H.c.}$			187		$\varepsilon^{\mu\nu\lambda\rho}P\nabla_{\mu}f_{-\nu}{}^{\sigma}u_{\lambda}D_{\rho}P^{*\dagger}{}_{\sigma}+\mathrm{H.c.}$	291		512	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}u^{\sigma} angle h_{\lambda}^{\ \delta}D_{ ho\sigma}P^{*\dagger}_{\ \ \delta}+ ext{H.c.}$			188	Ι	$arepsilon^{\mu u\lambda ho}P abla_{\mu}f_{- u}{}^{\sigma}u_{\lambda}D_{\sigma}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	292		513	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}u^{\sigma} angle h_{\lambda}^{\ \delta}D_{ ho\delta}P^{*\dagger}_{\ \ \sigma}+ ext{H.c.}$			189	Ι	$\varepsilon^{\mu\nu\lambda\rho}P abla_{\mu}f_{- u}{}^{\sigma}u_{\sigma}D_{\lambda}P^{*\dagger}{}^{ m ho}+{ m H.c.}$	293		514	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}f_{-\lambda\rho}\rangle u^{\sigma}P^{*\dagger}_{\ \sigma} + \text{H.c.}$			190		$\varepsilon^{\mu\nu\lambda\rho}P abla_{\mu}f_{- u}{}^{\sigma}u^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}{}_{ ho} + \mathrm{H.c.}$	294		515	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}f_{-\lambda}{}^{\sigma}\rangle u_{\rho}P^{*\dagger}{}_{\sigma} + \text{H.c.}$			191		$\varepsilon^{\mu\nu\lambda\rho} P f_{-\mu\nu} f_{-\lambda}{}^{\sigma} D_{\rho} P^{*\dagger}{}_{\sigma} + \text{H.c.}$	295		516	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u^{\sigma}f_{-\nu\lambda}\rangle u_{\rho}P^{*\dagger}_{\ \sigma} + \text{H.c.}$			192		$\varepsilon^{\mu\nu\lambda\rho} P f_{-\mu\nu} f_{-\lambda}{}^{\sigma} D_{\sigma} P^{*\dagger}{}_{\rho} + \text{H.c.}$	296		517	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}f_{-\lambda}{}^{\sigma}\rangle u^{\delta}D_{\rho\delta}P^{*\dagger}{}_{\sigma} + \text{H.c.}$			193		$\varepsilon^{\mu\nu\lambda\rho} P f_{-\mu\nu} h_{\lambda}{}^{\sigma} D_{\rho} P^{*\dagger}{}_{\sigma} + \text{H.c.}$	297		518	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}f_{-\lambda}{}^{\sigma}\rangle u^{\delta}D_{\rho\sigma}P^{*\dagger}{}_{\delta} + \text{H.c.}$			194		$\varepsilon^{\mu\nu\lambda\rho} P f_{-\mu\nu} h_{\lambda}{}^{\sigma} D_{\sigma} P^{*\dagger}{}_{\rho} + \text{H.c.}$	298		519	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle u_{\nu}f_{-}^{\ \sigma\delta}\rangle u_{\lambda}D_{\rho\sigma}P^{*\dagger}_{\ \delta} + \text{H.c.}$			195		$\varepsilon^{\mu\nu\lambda\rho} P f_{-\mu\nu} h^{\sigma\delta} D_{\lambda\sigma\delta} P^{*\dagger}{}_{\rho} + \text{H.c.}$	299		520	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\mu}\langle u^{\sigma}f_{-\nu\lambda}\rangle u^{\delta}D_{\rho\delta}P^{*\dagger}_{\sigma}$ + H.c.			196		$\varepsilon^{\mu\nu\lambda\rho}P\nabla_{\mu}h^{\sigma\delta}u_{\nu}D_{\lambda\sigma\delta}P^{*\dagger}$ + H.c.	300		521	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\mu}\langle u_{\nu}h_{\lambda}^{\sigma}\rangle u_{\rho}P^{*\dagger}_{\sigma}$ + H.c.			197	Ι	$\varepsilon^{\mu\nu\lambda\rho}Ph_{\mu}^{\sigma}f_{-\nu\lambda}D_{\rho}P^{*\dagger}{}_{\sigma}$ + H.c.	301		522	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\mu}\langle u_{\nu}h_{\lambda}^{\sigma}\rangle u^{\delta}D_{\rho\delta}P^{*\dagger}_{\sigma}$ + H.c.			198	Ι	$\varepsilon^{\mu\nu\lambda\rho}Ph_{\mu}^{\sigma}f_{-\nu\lambda}D_{\sigma}P^{*\dagger}{}_{a} + \text{H.c.}$	302		523	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\mu}\langle u_{\nu}h_{\nu}^{\sigma}\rangle u^{\delta}D_{\rho\sigma}P^{*\dagger}_{\delta} + \text{H.c.}$			199		$\varepsilon^{\mu\nu\lambda\rho}Ph_{\mu}^{\sigma}f_{-\nu}^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}_{\sigma} + \text{H.c.}$	303		524	
$\varepsilon^{\mu\nu\lambda\rho}P^*_{\mu}\langle u_{\mu}h^{\sigma\delta}\rangle u_{\lambda}D_{\alpha\sigma}P^{*\dagger}_{\delta} + \text{H.c.}$			200		$\varepsilon^{\mu\nu\lambda\rho}Ph_{\mu}{}^{\sigma}h_{\nu\sigma}D_{\lambda}P^{*\dagger}{}_{\sigma} + \text{H.c.}$	304		525	
$\varepsilon^{\mu\nu\lambda\rho}P^* \langle u^{\sigma}h, \delta \rangle u_{\lambda}D_{\lambda}S^{\mu\dagger} + \text{H.c.}$			201		$\varepsilon^{\mu\nu\lambda\rho}Ph_{\nu}{}^{\sigma}h_{\nu}{}^{\delta}D_{\lambda\sigma}{}^{s}P^{*\dagger}{}_{\sigma} + \text{H.c.}$	305		526	
$\varepsilon^{\mu\nu\lambda\rho}P^* (\mu,\mu)f \sigma^{\sigma} P^{*\dagger} + \text{H.c.}$			202	Ι	$\mathcal{E}^{\mu\nu\lambda\rho}P\langle\mu,\nabla,f,\sigma\rangle D,P^{*\dagger} + H.c.$			527	Ι
$e^{\mu\nu\lambda\rho}P^* \langle \mu \mu_{\lambda}f \sigma^{\delta}\rangle D P^{*\dagger}e^{\pm Hc}$			203	I	$e^{\mu\nu\lambda\rho}P\langle\mu\nabla f,\sigma\rangle D P^{*\dagger} + Hc$			528	I
$\varepsilon^{\mu\nu\lambda\rho}P^* \langle u u_{\lambda}h \sigma \rangle P^{*\dagger} + Hc$			204	I	$e^{\mu\nu\lambda\rho}P\langle\mu\nabla^{\sigma}f\rangle D_{\sigma}P^{*\dagger} + Hc$			529	T
$\varepsilon^{\mu\nu\lambda\rho}P^* \langle u u, h^{\sigma\delta} \rangle D P^{*\dagger} + H c$			205	T	$e^{\mu\nu\lambda\rho}P\langle\mu\nabla^{\sigma}f \delta\rangle D_{\lambda} e^{P^{*\dagger}} + H c$			530	T
$e^{\mu\nu\lambda\rho}P^*/\mu \mu_{\lambda}h^{\sigma\delta}D^{\sigma}P^{*\dagger}$			206	Ī	$e^{\mu\nu\lambda\rho}P/\mu \nabla h^{\sigma\delta}D_{\sigma} P^{\dagger} + Hc$			531	ī
$P^{*\mu}/\mu \nabla^{\nu} f^{-\lambda} P^{*\dagger} + H c$	93	T	207	T	$e^{\mu\nu\lambda\rho}P/f = h_{\sigma}^{\sigma}D P^{*\dagger} + H c$			532	ī
$P^{*\mu}/\mu^{\nu}\nabla f^{\lambda}P^{*\dagger} + H c$	94	ī	208	T	$p_{\mu\nu\lambda\rho} P / f = h_{\sigma} D P^{*\dagger} + H_{c}$			533	T
$\frac{1}{\mu} \sqrt{\frac{u}{\nu}} \frac{v_{\mu}J_{-\nu}}{\lambda f} \sqrt{\frac{1}{\lambda}} + 11.0.$	95	1	200	1	$\mathcal{E} = I \setminus J_{-\mu\nu} n_{\lambda} / D_{\sigma} I = \rho + \Pi.c.$ $\mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E} $			534	T
$\mathbf{D}^{*\mu}/\mu \nabla^{\nu} \mathbf{f}^{\lambda\rho} \mathbf{D} \mathbf{D}^{*\dagger} + \mathbf{H} \mathbf{c}$	96	т	210	т	$\mathcal{E} = \int J_{-\mu\nu} n / D_{\lambda\sigma\delta} f_{\rho} + \Pi.C.$ $\mathcal{D}\nabla^{\mu}\nabla f_{\nu} \lambda D P^{*\dagger} + H_{\rho}$	306	т	535	T
$P'' \langle u_{\mu} \vee J_{-} \rangle \langle D_{\nu\lambda} P \rangle_{\rho} + \Pi.C.$ $P^{*\mu} \langle u^{\nu} \nabla f \rangle^{\lambda\rho} \langle D P^{*\dagger} \rangle + H \rho$	97	T	210	T	$P \nabla^{\mu} \nabla^{\nu} f \lambda D P^{*\dagger} + H c$	307	T	536	T
$\Gamma + \langle u \vee_{\mu} J - + \rangle D_{\nu\lambda} \Gamma + \rho + \Pi.C.$ $D^{*\mu} \langle v \nabla_{\lambda} f \rangle = \rho + \tau$	08	1	211	1	$P \nabla^{\mu} \nabla^{\nu} \int_{-\mu} D_{\nu} P \gamma_{\lambda}^{*} + \Pi.C.$	307	T	530	T
$P^{*} \langle u^{*} \nabla^{*} J_{-\nu} \rangle D_{\lambda\rho} P^{+} \mu$ $D^{*} \langle u^{*} \nabla^{\lambda} f_{-\nu} \rangle D_{\lambda\rho} P^{*\dagger}$	90		212		$P \nabla^{\mu} \nabla^{\nu} J = {}^{\mu} D_{\mu\nu\lambda} P {}^{\mu} \rho + \text{H.c.}$	300	T	528	T
$P^{*} \langle u^{*} \nabla^{*} J_{-\lambda^{r}} \rangle D_{\nu\rho} P^{+} \mu$ $P^{*} \langle u^{*} \nabla^{-} h_{-\lambda} \rangle P^{*} + H_{-\lambda}$	100	т	213	т	$P \nabla^{\mu} \nabla^{\mu} h^{\mu} D_{\mu\nu\lambda} P^{\mu}{}_{\rho} + \text{H.c.}$	210	1	520	1
$P^{*\mu} \langle u^{\nu} \nabla_{\mu} h_{\nu}^{\lambda} \rangle P^{*+\lambda} + \text{H.c.}$	100	I T	214	I T	$i\varepsilon^{\mu\nu\rho}Pf_{+\mu\nu}u_{\lambda}u^{\sigma}D_{\rho}P^{++\sigma}$ + H.c.	211		539	
$P^{+\mu} \langle u_{\mu} \nabla^{\nu} h^{\lambda \rho} \rangle D_{\nu \lambda} P^{++\rho} + \text{H.c.}$	101	I T	215	I T	$i\varepsilon^{\mu\nu\rho}Pf_{+\mu\nu}u_{\lambda}u^{\sigma}D_{\sigma}P^{++}\rho + \text{H.c.}$	212		540	
$P^{+\mu} \langle u^{\nu} \nabla_{\mu} h^{\lambda \rho} \rangle D_{\nu \lambda} P^{++\rho} + \text{H.c.}$	102	1	210	1	$i\varepsilon^{\mu\nu\rho\rho}Pf_{+\mu\nu}u^{\sigma}u_{\lambda}D_{\rho}P^{++}\sigma^{+}$ H.c.	212		541	
$P^{\star\mu} \langle u^{\nu} \nabla_{\nu} h^{\lambda\rho} \rangle D_{\lambda\rho} P^{\star\dagger} \mu$	103		217		$i\varepsilon^{\mu\nu\lambda\rho}Pf_{+\mu\nu}u^{\sigma}u_{\lambda}D_{\sigma}P^{\star}\rho^{\dagger}$ + H.c.	313		542	
$P^{\star\mu} \langle u^{\nu} \nabla^{\lambda} h^{\rho \delta} \rangle D_{\nu \lambda \rho \sigma} P^{\star \dagger}{}_{\mu}$	104		218		$i\varepsilon^{\mu\nu\lambda\rho}Pf_{+\mu\nu}u^{\sigma}u_{\sigma}D_{\lambda}P^{\star}\rho_{\rho} + \text{H.c.}$	314		543	
$P^{\star\mu}\langle f_{-\mu}\nu h_{\nu}\lambda \rangle P^{\star}\lambda + \text{H.c.}$	105	I	219	I	$i\varepsilon^{\mu\nu\lambda\rho}Pf_{+\mu\nu}u^{\sigma}u^{\sigma}D_{\lambda\sigma\delta}P^{*\dagger}{}_{\rho}$ + H.c.	315		544	
$P^{*\mu}\langle f_{-\mu}^{\nu}h^{\lambda\rho}\rangle D_{\nu\lambda}P^{*+}\rho + \text{H.c.}$	106	I	220	1	$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}f_{+\nu\lambda}u^{o}D_{\rho}P^{*+}\sigma$ + H.c.	316		545	
$P^{*\mu}\langle f^{-\nu\lambda}h_{\nu}^{\ } angle D_{\lambda ho}P^{*\dagger}{}_{\mu}$	107		221		$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}f_{+\nu\lambda}u^{\sigma}D_{\sigma}P^{*\dagger}{}_{\rho}$ + H.c.	317		546	
$P^{*\mu}\langle h_{\mu}{}^{\nu}h_{\nu}{}^{\lambda}\rangle P^{*\dagger}{}_{\lambda}$	108	I	222	I	$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}f_{+\nu}{}^{\sigma}u_{\lambda}D_{\rho}P^{*}{}^{\sigma}\sigma$ H.c.	318		547	
$P^{*\mu}\langle h^{ u\lambda}h_{ u\lambda} angle P^{*\dagger}{}_{\mu}$	109	-	223	-	$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}f_{+\nu}{}^{\sigma}u_{\lambda}D_{\sigma}P^{*\dagger}{}^{\rho}$ + H.c.	319		548	
$P^{*\mu}\langle h_{\mu}{}^{ u}h^{\lambda ho} angle D_{ u\lambda}P^{*\dagger}{}_{ ho}$	110	I	224	l	$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}f_{+\nu}{}^{\sigma}u_{\sigma}D_{\lambda}P^{*\dagger}{}^{\rho}$ + H.c.	320		549	
$P^{*\mu}\langle h_{\mu}{}^{ u}h^{\lambda ho}\rangle D_{\lambda ho}P^{*\dagger}{}_{ u}$	111	I	225	I	$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}f_{+\nu}{}^{\sigma}u^{o}D_{\lambda\sigma\delta}P^{*\dagger}{}_{\rho}$ + H.c.	321		550	
$P^{*\mu} \langle h^{\nu\lambda} h_{\nu}{}^{ ho} \rangle D_{\lambda ho} P^{*\dagger}{}_{\mu}$	112		226		$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u_{\nu}f_{+\lambda}{}^{\sigma}D_{\rho}P^{*\dagger}{}_{\sigma}$ + H.c.	322		551	
$P^{*\mu} \langle h^{ u\lambda} h^{ ho\sigma} \rangle D_{ u\lambda ho\sigma} P^{*\dagger}{}_{\mu}$	113		227		$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u_{\nu}f_{+\lambda}{}^{\sigma}D_{\sigma}P^{*\dagger}{}^{\rho}$ + H.c.	323		552	
$P^{*\mu}u_{\mu}\nabla^{\nu}f_{-\nu}{}^{\lambda}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	114		228	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}\rangle u_{\lambda}u^{\sigma}D_{\rho}P^{*\dagger}{}_{\sigma}+\mathrm{H.c.}$	324			
$P^{*\mu}u^{\nu}\nabla_{\mu}f_{-\nu}{}^{\lambda}P^{*\dagger}{}_{\lambda} + \mathrm{H.c.}$	115		229	Ι	$i \varepsilon^{\mu\nu\lambda ho} P \langle f_{+\mu\nu} \rangle u_{\lambda} u^{\sigma} D_{\sigma} P^{*\dagger}{}_{ ho} + ext{H.c.}$	325			
$P^{*\mu}u^{\nu}\nabla_{\nu}f_{-\mu}{}^{\lambda}P^{*\dagger}{}_{\lambda} + \mathrm{H.c.}$			230	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}\rangle u^{\sigma}u_{\sigma}D_{\lambda}P^{*\dagger}{}_{ ho}+\mathrm{H.c.}$	326			
$P^{*\mu}u^{\nu}\nabla^{\lambda}f_{-\mu\lambda}P^{*\dagger}{}_{\nu}$ + H.c.			231		$i arepsilon^{\mu u\lambda ho} P \langle f_{+\mu u} angle u^{\sigma} u^{\delta} D_{\lambda\sigma\delta} P^{*\dagger}{}_{ ho} + ext{H.c.}$	327			
$P^{*\mu}u^{\nu}\nabla^{\lambda}f_{-\nu\lambda}P^{*\dagger}{}_{\mu}$ + H.c.			232		$i\varepsilon^{\mu\nu\lambda ho}Pu_{\mu}u^{\sigma}f_{+\nu\lambda}D_{ ho}P^{*\dagger}{}_{\sigma}+\mathrm{H.c.}$			553	
$P^{*\mu}u_{\mu}\nabla^{\nu}f_{-}^{\lambda ho}D_{\nu\lambda}P^{*\dagger}{}_{ ho}+\mathrm{H.c.}$	116		233	Ι	$i \varepsilon^{\mu\nu\lambda ho} P u_{\mu} u^{\sigma} f_{+\nu\lambda} D_{\sigma} P^{*\dagger}{}_{ ho} + \mathrm{H.c.}$			554	

<i>O</i> _n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$	O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$
$P^{*\mu}u^{\nu}\nabla_{\mu}f_{-}^{\lambda\rho}D_{\nu\lambda}P^{*\dagger}{}_{ ho}$ + H.c.	117		234	Ι	$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u^{\sigma}f_{+\nu\sigma}D_{\lambda}P^{*\dagger}{}_{ ho}$ + H.c.			555	
$P^{*\mu}u^{\nu}\nabla^{\lambda}f_{-\mu}^{\ \ \rho}D_{\nu\lambda}P^{*\dagger}_{\ \ \rho} + \mathrm{H.c.}$			235	Ι	$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}u^{\sigma}f_{+\nu}{}^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}{}_{\rho} + \text{H.c.}$			556	
$P^{*\mu}u^{\nu}\nabla^{\lambda}f_{-\mu}^{\ \ \rho}D_{\lambda\rho}P^{*\dagger}_{\ \nu}+\mathrm{H.c.}$			236		$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u_{\lambda}\rangle u^{\sigma}D_{\rho}P^{*\dagger}{}_{\sigma}$ + H.c.			557	
$P^{*\mu}u^{\nu}\nabla^{\lambda}f_{-\nu}^{\ \ \rho}D_{\lambda\rho}P^{*\dagger}{}_{\mu} + \text{H.c.}$			237		$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u_{\lambda}\rangle u^{\sigma}D_{\sigma}P^{*\dagger}{}_{ ho}$ + H.c.			558	
$P^{*\mu}u^{\nu}\nabla^{\lambda}f_{-\lambda}{}^{\rho}D_{\nu\rho}P^{*\dagger}{}^{\mu}$ + H.c.			238		$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u^{\sigma}\rangle u_{\lambda}D_{\rho}P^{*\dagger}{}_{\sigma}$ + H.c.			559	
$P^{*\mu}u^{\nu}\nabla_{\mu}h_{\nu}{}^{\lambda}P^{*\dagger}{}_{\lambda} + \text{H.c.}$			239	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u^{\sigma}\rangle u_{\lambda}D_{\sigma}P^{*\dagger}{}_{\rho}$ + H.c.			560	
$P^{*\mu}u_{\mu}\nabla^{\nu}h^{\lambda\rho}D_{\nu\lambda}P^{*\dagger}{}_{\rho} + \text{H.c.}$	118		240		$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u^{\sigma}\rangle u_{\sigma}D_{\lambda}P^{*\dagger}{}_{\rho}$ + H.c.			561	
$P^{*\mu}u^{\nu}\nabla_{\mu}h^{\lambda\rho}D_{\nu\lambda}P^{*\dagger}{}_{\rho}$ + H.c.			241	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u^{\sigma}\rangle u^{\delta}D_{\lambda\sigma\delta}P^{*\dagger}{}_{\rho} + \text{H.c.}$			562	
$P^{*\mu}u^{\nu}\nabla_{\mu}h^{\lambda\rho}D_{\lambda\rho}P^{*\dagger}{}_{\nu}$ + H.c.			242		$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u_{\lambda}u^{\sigma}\rangle D_{\rho}P^{*\dagger}{}_{\sigma}$ + H.c.			563	
$P^{*\mu}u^{\nu}\nabla_{\nu}h^{\lambda\rho}D_{\lambda\rho}P^{*\dagger}\mu + \text{H.c.}$			243		$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u_{\lambda}u^{\sigma}\rangle D_{\sigma}P^{*\dagger}{}_{o} + \text{H.c.}$			564	
$P^{*\mu}u^{\nu}\nabla^{\lambda}h^{\rho\sigma}D_{\mu\lambda\sigma\sigma}P^{*\dagger}\mu + \text{H.c.}$			244		$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u^{\sigma}u_{\lambda}\rangle D_{\rho}P^{*\dagger}{}_{\sigma}$ + H.c.			565	
$P^{*\mu}f_{-\mu}^{\nu}f_{-\nu}^{\lambda}P^{*\dagger}$	119	Ι	245	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{\pm\mu\nu}u^{\sigma}u_{\lambda}\rangle D_{\sigma}P^{*\dagger}_{\sigma} + \text{H.c.}$			566	
$P^{*\mu}f_{-\nu\lambda}f_{-\mu\nu}P^{*\dagger}\lambda$			246		$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{+\mu\nu}u^{\sigma}u_{\sigma}\rangle D_{\lambda}P^{*\dagger}{}_{\rho}$ + H.c.			567	
$P^{*\mu}f_{-\nu\lambda}f_{-\nu\lambda}P^{*\dagger}$			247		$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{\perp\mu\nu}u^{\sigma}u^{\delta}\rangle D_{\lambda\sigma\delta}P^{*\dagger}{}_{\alpha} + \text{H.c.}$			568	
$P^{*\mu}f_{-\mu}^{\nu}f_{-\lambda\rho}D_{\nu\lambda}P^{*\dagger}$	120	Ι	248	Ι	$iPf_{\perp}^{\mu\nu}f_{-\mu}^{\lambda}D_{\nu}P^{*\dagger}+\text{H.c.}$	328		569	
$P^{*\mu}f_{-\nu\lambda}f_{-\nu}^{\rho}D_{\nu\alpha}P^{*\dagger}$			249		$iPf_{\perp}^{\mu\nu}f_{-\mu}^{\lambda}D_{\lambda}P^{*\dagger}_{\mu}$ + H.c.	329		570	
$P^{*\mu}f^{\nu\lambda}f^{\nu}\rho D_{\lambda}P^{*\dagger}$			250		$iPf^{\mu\nu}f_{\mu\nu}\lambda D_{\nu}P^{*\dagger} + \text{H.c.}$	330		571	
$P^{*\mu}f_{\mu\nu}h_{\nu\lambda}P^{*\dagger} + \text{H.c.}$	121		251	Ι	$iPf^{\mu\nu}f_{\mu\nu}h_{\mu}^{\lambda}D_{\lambda}P^{*\dagger}$, + H.c.	331		572	
$P^{*\mu}f^{\nu\lambda}h_{\mu\nu}P^{*\dagger} + \text{H.c.}$			252		$iPf_{\mu\nu}h_{\nu}^{\lambda}D_{\nu}P^{*\dagger} + \text{H.c.}$	332		573	
$P^{*\mu}f^{\nu}h^{\lambda\rho}D_{\lambda}P^{*\dagger} + \text{H.c.}$	122		253	I	$iPf_{\mu}^{\mu\nu}h^{\lambda}D_{\lambda}P^{*\dagger} + H.c.$	333		574	
$P^{*\mu}f^{\nu}h^{\lambda\rho}D, P^{*\dagger} + Hc$	123	I	254	I	$iPh^{\mu\nu}f \stackrel{\lambda}{\longrightarrow} D P^{*\dagger} \stackrel{\lambda}{\longrightarrow} H c$	334		575	
$P^{*\mu}f^{\nu\lambda}h^{\rho}D^{\nu}P^{*\dagger} + Hc$		-	255	-	$iPh^{\mu\nu}f_{+}^{\lambda}D_{2}P^{*\dagger} + Hc$	335		576	
$P^{*\mu}f^{\nu\lambda}h^{\rho}D, P^{*\dagger} + Hc$			256		$iPf_{\mu} h^{\lambda\rho} D = P^{*\dagger} + Hc$	336		577	
$P^{*\mu}h^{\nu}h^{\lambda}P^{*\dagger}$	124		257	T	$iP_{\mu\nu}f^{\lambda\rho}D^{\lambda\rho}P^{\dagger}^{\nu} + Hc$	337		578	
$\mathbf{P}^{*\mu}\mathbf{h}^{\nu\lambda}\mathbf{h} \mathbf{P}^{*\dagger}.$	121		258	1	$iP\nabla^{\mu}f = \nu_{\mu\nu\lambda}P P^{*\dagger} + Hc$	338		579	
$\mathbf{P}^{*\mu}\mathbf{h}^{\nu\lambda}\mathbf{h} \mathbf{P}^{*\dagger}$			259		$iP \nabla^{\mu} f = \nu u^{\lambda} D P^{\dagger} + H c$	339		580	
$P^{*\mu}h^{\nu}h^{\lambda\rho}D^{\mu}P^{*\dagger}$	125		260	Ţ	$iP \nabla^{\mu} f^{\nu\lambda} \mu D P^{*\dagger} + H c$	340		581	
$P^{*\mu}h^{\nu}h^{\lambda\rho}D P^{*\dagger} + Hc$	125		260	T	$iP \nabla^{\mu} f \stackrel{\nu \lambda}{}_{+} u_{\mu} D_{\nu} P \stackrel{\lambda}{}_{+} + H.c.$	341		582	
$P^{*\mu}h^{\nu\lambda}h^{\rho}D^{\rho}D^{\nu}$ $P^{*\dagger}$			261	1	$i P_{\mu} \nabla f_{\mu} = u_{\nu} D_{\mu} P_{\lambda} + H.c.$	3/2		583	
$P^{*\mu} L^{\nu\lambda} L^{\rho} D^{\nu} P^{*\dagger}$			262		$\mu \mu \nabla \mu f + D_{\nu} \mu \nabla \mu f + H c$	3/3		584	
$\mathbf{P}^{*\mu}\mathbf{h}^{\nu\lambda}\mathbf{h}^{\rho\sigma}\mathbf{D} = \mathbf{P}^{*\dagger}$			263		$i\Gamma u^{\nu} \nabla f_{+\mu} D_{\nu} \Gamma_{\lambda} + \Pi.C.$ $iD_{\mu} u^{\mu} \nabla^{\nu} f_{\lambda} D_{\mu} D^{*\dagger} + H_{\mu} C$	343		585	
$\Gamma^{\mu} n n^{\nu} D_{\nu\lambda\rho\sigma} \Gamma^{\mu} \mu$ $\rho^{\mu\nu\lambda\rho} P^* \nabla \nabla^{\sigma} f \delta D P^{*\dagger} + H \rho$	126	т	265	т	$i\Gamma u^{\nu} \nabla J_{+\nu} D_{\mu} \Gamma \lambda + \Pi.C.$ $iD_{\mu} u^{\mu} \nabla^{\nu} f \lambda D P^{*\dagger} + H c$	3/15		586	
\mathcal{E}^{+} , $\Gamma_{\mu} \mathbf{v}_{\nu} \mathbf{v}^{\dagger} J_{-\lambda} D_{\rho\sigma} \Gamma_{\delta}^{\dagger} + \mathbf{H.c.}$	120	T	205	T	$i\Gamma \mathcal{U} \vee J_{+\nu} D_{\lambda} \Gamma_{\mu} + \Pi.C.$ $iD\nabla \mathcal{U} f_{\nu} \nu^{\lambda} \mathcal{U} D_{\nu} D^{*\dagger} + \Pi.C.$	345		587	
$\mathcal{E} \to \Gamma_{\mu} \mathbf{v} \mathbf{v} \mathbf{v} J_{-\nu\lambda} D_{\rho\sigma} \Gamma_{\delta} + \Pi.C.$ $\mathcal{D}^{*\mu}/\mathcal{F} = \nu \nabla \mathcal{D}_{\lambda} \mathcal{D}^{*\dagger} + \Pi_{\sigma}$	127	T	200	1	$i \Gamma \nabla^{\mu} J_{+} u^{\mu} D_{\mu\nu\rho} \Gamma^{\mu} \lambda + \Pi.C.$ $i D_{\mu\nu\rho} \Gamma^{\mu} \lambda^{\rho} D_{\mu\nu\rho} D^{*\dagger} + \Pi.C.$	347		588	
$i \Gamma + \langle J_{+\mu} \rangle u_{\nu} u \Gamma + \lambda + \text{f.c.}$ $: D^{*\mu} / f_{-\nu} \rangle : \lambda_{\nu} D^{*\dagger} + \text{H.c.}$	120	1			$iF W \vee J_+ D_{\mu\nu\lambda}F_{\rho} + H.c.$ $iD/f_{\mu\nu} f_{\lambda} D_{\lambda} D^{*\dagger} + H.c.$	347		566	
$lP^{+}\langle J_{+\mu}\rangle u^{*}u_{\nu}P^{+}\lambda + \text{H.c.}$	129	т			$P(J_{+}^{\mu\nu})J_{-\mu}^{\mu\nu}D_{\nu}P^{+}\lambda + \text{H.c.}$	240			
$\frac{iP^{+\mu}\langle f_{+\mu}\rangle u^{\lambda}u_{\lambda}P^{+\nu}}{iP^{*\mu}\langle f_{+\mu}\rangle}$	121	1			$P \langle J_{+}^{\mu\nu} \rangle h_{\mu}^{\lambda} D_{\nu} P^{+}_{\lambda} + \text{H.c.}$	349 350			
$\frac{iP^{\mu}\langle J_{+}^{\mu}\rangle u_{\nu}u_{\lambda}P^{\mu}}{iP^{\mu}}$	121	т			$P \langle J_{+}^{\mu\nu} \rangle h_{\mu}^{\lambda} D_{\lambda} P^{+}_{\nu} + \text{H.c.}$	251			
$P^{*\mu}\langle f_{+\mu}\rangle u^{\kappa}u^{\rho}D_{\nu\lambda}P^{*+}\rho + \text{H.c.}$	132	1			$P \langle J_{+}^{\mu\nu} \rangle h^{\mu\nu} D_{\mu\lambda\rho} P^{\mu\nu}{}_{\nu} + \text{H.c.}$	252			
$iP^{*\mu}\langle f_{+\mu}^{\nu}\rangle u^{\lambda}u^{\rho}D_{\nu\rho}P^{*+}\lambda + \text{H.c.}$	133	т			$iP\langle \nabla^{\mu}f_{+\mu}\rangle u^{\lambda}D_{\nu}P^{*\dagger}\lambda + \text{H.c.}$	352 252			
$iP^{*\mu}\langle f_{+\mu}\rangle u^{\lambda}u^{\rho}D_{\lambda\rho}P^{*\dagger}\nu$	134	1			$iP\langle \nabla^{\mu}f_{+\mu}\rangle u^{\lambda}D_{\lambda}P^{+}\nu + \text{H.c.}$	353			
$iP^{*\mu}\langle f_+\nu_\lambda\rangle u_\nu u^\rho D_{\lambda\rho}P^{*\dagger}{}_\mu + \text{H.c.}$	135	т	0(7	т	$iP\langle \nabla^{\mu}f_{+}^{\nu\lambda}\rangle u_{\mu}D_{\nu}P^{*\dagger}_{\lambda}$ + H.c.	354			
$iP^{*\mu}\langle f_{+\mu}{}^{\nu}u_{\nu}\rangle u^{\lambda}P^{*\dagger}{}_{\lambda}$ + H.c.	136	I	267	I	$iP\langle \nabla^{\mu}f_{+}^{\nu\lambda}\rangle u_{\nu}D_{\mu}P^{*\dagger}{}_{\lambda}$ + H.c.	300			
${}_{\nu}P^{*\mu}\langle f_{+\mu}{}^{\nu}u^{\lambda}\rangle u_{\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	137	1	268	1	$P \langle \nabla^{\mu} f_{+}^{\nu \lambda} \rangle u^{\rho} D_{\mu \nu \rho} P^{*} \lambda + \text{H.c.}$	356		500	
$iP^{\star\mu}\langle f_{+\mu}{}^{\nu}u^{\lambda}\rangle u_{\lambda}P^{\star}{}^{\nu}\nu$	138	1	269	1	$\iota P \langle f_{+}^{\mu\nu} f_{-\mu}^{\lambda} \rangle D_{\nu} P^{*} \rangle_{\lambda} + \text{H.c.}$			589	
$iP^{*\mu}\langle f_{+\mu}{}^{\nu}u^{\lambda}\rangle u^{\rho}D_{\nu\lambda}P^{*\dagger}_{\rho}$ + H.c.	139	l	270	1	$iP\langle f_{+}^{\mu\nu}h_{\mu}^{\lambda}\rangle D_{\nu}P^{*\dagger}_{\lambda} + \text{H.c.}$			590	
$iP^{*\mu}\langle f_{+\mu}{}^{\nu}u^{\lambda}\rangle u^{\rho}D_{\nu\rho}P^{*\dagger}_{\lambda}$ + H.c.	140	l	271	1	$iP\langle f_{+}^{\mu\nu}h_{\mu}^{\lambda}\rangle D_{\lambda}P^{*\dagger}\nu + \text{H.c.}$			591	
$iP^{*\mu}\langle f_{+\mu}{}^{\nu}u^{\lambda}\rangle u^{\rho}D_{\lambda\rho}P^{*\dagger}{}_{\nu}$	141	Ι	272	Ι	$iP\langle f_{+}^{\mu\nu}h^{\lambda\rho}\rangle D_{\mu\lambda\rho}P^{*\dagger}{}_{\nu}$ + H.c.			592	
$iP^{*\mu}\langle f_{+\mu}{}^{\nu}u_{\nu}u^{\lambda}\rangle P^{*\dagger}{}_{\lambda} + \mathrm{H.c.}$	142	Ι	273	Ι	$iP\langle \nabla^{\mu}f_{+\mu}{}^{\nu}u^{\lambda}\rangle D_{\nu}P^{*\dagger}{}_{\lambda} + \mathrm{H.c.}$			593	

<i>O</i> _{<i>n</i>}	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$	O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$
$iP^{*\mu}\langle f_{+\mu}{}^{ u}u^{\lambda}u_{ u} angle P^{*\dagger}{}_{\lambda}+ ext{H.c.}$			274		$iP\langle abla^{\mu}f_{+\mu}{}^{ u}u^{\lambda} angle D_{\lambda}P^{*\dagger}{}_{ u}+ ext{H.c.}$			594	
$iP^{*\mu}\langle f_{+\mu}{}^{ u}u^{\lambda}u_{\lambda} angle P^{*\dagger}{}_{ u}$			275	Ι	$iP\langle abla^{\mu}f_{+}{}^{ u\lambda}u_{\mu} angle D_{ u}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$			595	
$iP^{*\mu}\langle f_+{}^{ u\lambda}u_ u_\lambda angle P^{*\dagger}{}_\mu$	143		276		$iP\langle \nabla^{\mu}f_{+}{}^{ u\lambda}u_{ u} angle D_{\mu}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$			596	
$iP^{*\mu}\langle f_{+\mu}{}^{ u}u^{\lambda}u^{ ho}\rangle D_{\nu\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	144	Ι	277	Ι	$iP\langle abla^{\mu}f_{+}{}^{ u\lambda}u^{ ho} angle D_{\mu u ho}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$			597	
$iP^{*\mu}\langle f_{+\mu}{}^{ u}u^{\lambda}u^{ ho}\rangle D_{ u ho}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$			278		$i arepsilon^{\mu u\lambda ho} P abla_{\mu} abla^{\sigma} f_{+ u\sigma} D_{\lambda} P^{*\dagger}{}_{ ho} + ext{H.c.}$	357		598	
$iP^{*\mu}\langle f_{+\mu}{}^{ u}u^{\lambda}u^{ ho}\rangle D_{\lambda ho}P^{*\dagger}{}_{ u}$			279	Ι	$i arepsilon^{\mu u\lambda ho} P abla_{\mu} abla^{\sigma} f_{+ u}{}^{\delta} D_{\lambda\sigma\delta} P^{*\dagger}{}_{ ho} + ext{H.c.}$	358		599	
$iP^{*\mu}\langle f_+{}^{ u\lambda}u_ u u^ ho angle D_{\lambda ho}P^{*\dagger}{}_\mu+{ m H.c.}$	145		280		$arepsilon^{\mu u\lambda ho}Pf_{+\mu u}f_{+\lambda}{}^{\sigma}D_{ ho}P^{*\dagger}{}_{\sigma}+ ext{H.c.}$	359		600	
$iP^{*\mu}\langle u_{\mu}u^{\nu}\rangle f_{+\nu}{}^{\lambda}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	146	Ι	281	Ι	$arepsilon^{\mu u\lambda ho}Pf_{+\mu u}f_{+\lambda}{}^{\sigma}D_{\sigma}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	360		601	
$iP^{*\mu}\langle u^{ u}u_{ u} angle f_{+\mu}{}^{\lambda}P^{*\dagger}{}_{\lambda}$	147	Ι	282	Ι	$arepsilon^{\mu u\lambda ho}P\langle f_{+\mu u} angle f_{+\lambda}{}^{\sigma}D_{ ho}P^{*\dagger}{}_{\sigma}+ ext{H.c.}$	361	Ι		
$iP^{*\mu}\langle u_{\mu}u^{ u} angle f_{+}{}^{\lambda ho}D_{ u\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	148	Ι	283	Ι	$arepsilon^{\mu u\lambda ho}P\langle f_{+\mu u} angle f_{+\lambda}{}^{\sigma}D_{\sigma}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	362	Ι		
$iP^{*\mu}\langle u^{ u}u^{\lambda} angle f_{+\mu}{}^{ ho}D_{ u\lambda}P^{*\dagger}{}_{ ho}$	149	Ι	284	Ι	$arepsilon^{\mu u\lambda ho}Pu_{\mu}u_{ u}\chi_{+}D_{\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	363		602	
$iP^{*\mu}f_{+\mu}{}^{ u}u_{ u}u^{\lambda}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$			285	Ι	$arepsilon^{\mu u\lambda ho}Pu_{\mu}\chi_{+}u_{ u}D_{\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$	364		603	
$iP^{*\mu}f_{+\mu}{}^{ u}u^{\lambda}u_{ u}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$			286	Ι	$arepsilon^{\mu u\lambda ho}P\chi_+u_\mu u_ u D_\lambda {P^*}^\dagger_ ho + { m H.c.}$	365		604	
$iP^{*\mu}f_{+\mu}{}^{ u}u^{\lambda}u_{\lambda}P^{*\dagger}{}_{ u}$ + H.c.			287	Ι	$arepsilon^{\mu u\lambda ho}P\langle u_{\mu}u_{ u}\chi_{+} angle D_{\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			605	
$iP^{*\mu}f_+{}^{ u\lambda}u_\mu u_ u P^{*\dagger}{}_\lambda + { m H.c.}$			288		$arepsilon^{\mu u\lambda ho}P\langle u_{\mu}\chi_{+} angle u_{ u}D_{\lambda}P^{*\dagger}{}_{ ho}+ ext{H.c.}$			606	Ι
$iP^{*\mu}f_+{}^{\nu\lambda}u_ u_\mu P^{*\dagger}{}_\lambda + \mathrm{H.c.}$			289		$arepsilon^{\mu u\lambda ho}P\langle\chi_+ angle u_\mu u_ u D_\lambda P^{*\dagger}{}_ ho + { m H.c.}$			607	
$iP^{*\mu}f_+{}^{\nu\lambda}u_ u_\lambda P^{*\dagger}{}_\mu + \mathrm{H.c.}$			290		$Pf_{-}^{\mu u}\chi_{+}D_{\mu}P^{*\dagger}{}_{ u}+{ m H.c.}$	366		608	
$iP^{*\mu}f_{+\mu}{}^{ u}u^{\lambda}u^{ ho}D_{ u\lambda}P^{*\dagger}{}_{ ho}+\mathrm{H.c.}$			291	Ι	$P\chi_{+}f_{-}^{\ \mu u}D_{\mu}P^{*\dagger}{}_{ u}+ ext{H.c.}$	367		609	
$iP^{*\mu}f_{+\mu}{}^{\nu}u^{\lambda}u^{ ho}D_{ u ho}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$			292	Ι	$Ph^{\mu u}\chi_+D_\mu {P^*}^\dagger_ u+{ m H.c.}$	368		610	
$iP^{*\mu}f_{+\mu}{}^{ u}u^{\lambda}u^{ ho}D_{\lambda ho}P^{*\dagger}{}_{ u}+ ext{H.c.}$			293	Ι	$P\chi_+ h^{\mu u} D_\mu {P^*}^\dagger_ u + \mathrm{H.c.}$	369		611	
$iP^{*\mu}f_+^{\nu\lambda}u_\mu u^\rho D_{\nu\rho}P^{*\dagger}{}_\lambda + \text{H.c.}$			294		$Pu^{\mu}\nabla^{\nu}\chi_{+}D_{\mu}P^{*\dagger}{}_{\nu}$ + H.c.	370		612	
$iP^{*\mu}f_+{}^{\nu\lambda}u_{\nu}u^{\rho}D_{\lambda\rho}P^{*\dagger}{}_{\mu}+\mathrm{H.c.}$			295		$Pu^{\mu}\nabla^{\nu}\chi_{+}D_{\nu}P^{*\dagger}{}_{\mu}$ + H.c.	371		613	
$iP^{*\mu}f_+{}^{\nu\lambda}u^{\rho}u_{\mu}D_{\nu\rho}P^{*\dagger}{}_{\lambda}+\mathrm{H.c.}$			296		$P \nabla^{\mu} \chi_{+} u^{\nu} D_{\mu} P^{*\dagger}{}_{\nu} + \text{H.c.}$	372		614	
$iP^{*\mu}f_+{}^{\nu\lambda}u^{ ho}u_{\nu}D_{\lambda ho}P^{*\dagger}{}_{\mu}+\mathrm{H.c.}$			297		$P \nabla^{\mu} \chi_{+} u^{\nu} D_{\nu} P^{*\dagger}{}_{\mu} + \text{H.c.}$	373		615	
$iP^{*\mu}u_{\mu}f_{+}^{\ \nu\lambda}u_{\nu}P^{*\dagger}{}_{\lambda} + \text{H.c.}$			298	Ι	$P\langle f_{-}^{\mu u}\chi_{+} angle D_{\mu}P^{*\dagger}{}_{ u}+ ext{H.c.}$	374	Ι	616	Ι
$iP^{*\mu}u^{ u}f_{+ u}^{\lambda}u_{\lambda}P^{*\dagger}{}_{\mu}$			299		$P\langle\chi_+ angle f^{\mu u}D_\mu P^{*\dagger}{}_ u+ ext{H.c.}$			617	Ι
$iP^{*\mu}u_{\mu}f_{+}^{\ \nu\lambda}u^{ ho}D_{ u ho}P^{*\dagger}{}_{\lambda}+ ext{H.c.}$			300		$P\langle h^{\mu u}\chi_+ angle D_\mu {P^*}^{\dagger}_ u+{ m H.c.}$	375	Ι	618	Ι
$iP^{*\mu}u^{ u}f_{+ u}^{\lambda}u^{ ho}D_{\lambda ho}P^{*\dagger}{}_{\mu}+ ext{H.c.}$			301		$P\langle\chi_+ angle h^{\mu u}D_\mu {P^*}^\dagger_ u+{ m H.c.}$			619	Ι
$i \varepsilon^{\mu\nu\lambda\rho} P^*_{\ \mu} \nabla_{\nu} f_{+\lambda}{}^{\sigma} u_{\rho} P^{*\dagger}{}_{\sigma} + \text{H.c.}$	150		302		$P\langle u^\mu abla^ u \chi_+ angle D_\mu {P^*}^\dagger_ u + ext{H.c.}$	376	Ι	620	Ι
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu} abla_{ u}f_{+\lambda}{}^{\sigma}u_{\sigma}P^{*\dagger}{}_{ ho} + \mathrm{H.c.}$	151	Ι	303	Ι	$P\langle abla^\mu \chi_+ angle u^ u D_ u P^{*\dagger}{}_\mu + ext{H.c.}$			621	Ι
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\nabla^{\sigma}f_{+\nu\sigma}u_{\lambda}P^{*\dagger}_{\ \rho} + \mathrm{H.c.}$	152	Ι	304	Ι	$P\langle u^{\mu} abla^{ u}\chi_{+} angle D_{ u}P^{*\dagger}{}_{\mu}+ ext{H.c.}$	377	Ι	622	Ι
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu} abla_{ u}f_{+\lambda}{}^{\sigma}u^{\delta}D_{ ho\sigma}P^{*\dagger}{}_{\delta} + \mathrm{H.c.}$	153		305		$P\langle abla^\mu \chi_+ angle u^ u D_\mu {P^*}^\dagger_ u + ext{H.c.}$			623	Ι
$i \varepsilon^{\mu\nu\lambda\rho} P^*_{\ \mu} \nabla_{\nu} f_{+\lambda}{}^{\sigma} u^{\delta} D_{\rho\delta} P^{*\dagger}{}_{\sigma} + \text{H.c.}$	154		306		$iarepsilon^{\mu u\lambda ho}Pf_{+\mu u}\chi_+D_\lambda P^{*\dagger}{}_ ho+ ext{H.c.}$	378		624	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu} abla_{ u}f_{+\lambda}{}^{\sigma}u^{\delta}D_{\sigma\delta}P^{*\dagger}_{\ ho} + \mathrm{H.c.}$	155	Ι	307	Ι	$iarepsilon^{\mu u\lambda ho}P\chi_+f_{+\mu u}D_\lambda P^{*\dagger}{}_ ho+ ext{H.c.}$	379		625	
$i \varepsilon^{\mu\nu\lambda ho} P^*_{\ \mu} abla_{ u} f_+^{\ \sigma\delta} u_{\lambda} D_{ ho\sigma} P^{*\dagger}_{\ \delta} + ext{H.c.}$	156		308		$i arepsilon^{\mu u\lambda ho} P \langle f_{+\mu u} angle \chi_+ D_\lambda P^{*\dagger}{}_ ho + { m H.c.}$	380			
$i \varepsilon^{\mu\nu\lambda\rho} P^*_{\ \mu} \nabla_{\nu} f_+^{\ \sigma\delta} u_{\sigma} D_{\lambda\delta} P^{*\dagger}_{\ ho} + \mathrm{H.c.}$	157	Ι	309	Ι	$iarepsilon^{\mu u\lambda ho}P\langle f_{+\mu u}\chi_+ angle D_\lambda P^{*\dagger}{}_ ho + { m H.c.}$	381		626	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\nabla^{\sigma}f_{+\nu\sigma}u^{\delta}D_{\lambda\delta}P^{*\dagger}_{\ \rho} + \mathrm{H.c.}$	158	Ι	310	Ι	$i \varepsilon^{\mu u \lambda ho} P \langle \chi_+ angle f_{+\mu u} D_\lambda P^{*\dagger}{}_{ ho} + ext{H.c.}$	382		627	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}f_{+\nu\lambda}f_{-\rho}^{\ \sigma}P^{*\dagger}_{\ \sigma} + \text{H.c.}$	159		311		$iPu^{\mu}u^{\nu}\chi_{-}D_{\mu}P^{*\dagger}{}_{\nu}$ + H.c.	383	Ι	628	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}f_{+\nu}{}^{\sigma}f_{-\lambda\rho}P^{*\dagger}_{\ \sigma} + \text{H.c.}$	160		312		$iPu^{\mu}u^{\nu}\chi_{-}D_{\nu}P^{*\dagger}{}_{\mu}$ + H.c.	384		629	
$i\varepsilon^{\mu\nu\lambda\rho}P^*{}_{\mu}f_{+\nu}{}^{\sigma}f_{-\lambda\sigma}P^{*\dagger}{}_{\rho} + \text{H.c.}$	161	Ι	313	Ι	$iPu^{\mu}\chi_{-}u^{\nu}D_{\mu}P^{*\dagger}_{\nu}$ + H.c.	385		630	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}f_{+\nu\lambda}f_{-}^{\ \sigma\delta}D_{\rho\sigma}P^{*\dagger}_{\ \delta} + \mathrm{H.c.}$	162		314		$iPu^{\mu}\chi_{-}u^{\nu}D_{\nu}P^{*\dagger}{}_{\mu}$ + H.c.	386		631	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}f_{+\nu}{}^{\sigma}f_{-\lambda}{}^{\delta}D_{\rho\delta}P^{*\dagger}{}_{\sigma} + \text{H.c.}$	163		315		$iP\chi_{-}u^{\mu}u^{\nu}D_{\mu}P^{*\dagger}_{\nu}$ + H.c.	387		632	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}f_{+\nu}{}^{\sigma}f_{-\sigma}{}^{\delta}D_{\lambda\delta}P^{*\dagger}_{\ \rho} + \text{H.c.}$	164	Ι	316	Ι	$iP\chi_{-}u^{\mu}u^{\nu}D_{\nu}P^{*\dagger}{}_{\mu}$ + H.c.			633	
$i arepsilon^{\mu u\lambda ho} P^*{}_{\mu} f_{+ u\lambda} h_{ ho}{}^{\sigma} P^{*\dagger}{}_{\sigma} + ext{H.c.}$	165	Ι	317	Ι	$iP\langle u^{\mu}u^{ u}\rangle\chi_{-}D_{\mu}P^{*\dagger}{}_{\nu}+\mathrm{H.c.}$			634	Ι
$i arepsilon^{\mu u\lambda ho} P^*{}_{\mu} f{}_{+ u}{}^{\sigma} h_{\lambda\sigma} P^{*\dagger}{}_{ ho} + ext{H.c.}$	166	Ι	318	Ι	$iP\langle u^{\mu}u^{ u}\chi_{-} angle D_{\mu}P^{*\dagger}{}_{ u}+ ext{H.c.}$	388	Ι	635	
$i \varepsilon^{\mu\nu\lambda\rho} P^*_{\ \mu} f_{+\nu\lambda} h^{\sigma\delta} D_{\rho\sigma} P^{*\dagger}_{\ \delta} + \mathrm{H.c.}$	167		319		$iP\langle u^{\mu}\chi_{-} angle u^{ u}D_{ u}P^{*\dagger}{}_{\mu}+ ext{H.c.}$			636	Ι
$i \varepsilon^{\mu\nu\lambda\rho} P^*{}_{\mu} f_{+\nu\lambda} h^{\sigma\delta} D_{\sigma\delta} P^{*\dagger}{}_{\rho} + \text{H.c.}$	168	Ι	320	Ι	$iP\langle\chi_{-} angle u^{\mu}u^{ u}D_{\mu}{P^{*\dagger}}_{ u}+ ext{H.c.}$			637	
$i\epsilon^{\mu\nu\lambda ho}P^*{}_{\mu}f_{+ u}{}^{\sigma}h_{\lambda}{}^{\delta}D_{ ho\delta}P^{*^{i}}{}_{\sigma}+ ext{H.c.}$	169		321		$iP\langle u^{\mu}u^{ u}\chi_{-} angle D_{ u}P^{*\dagger}{}_{\mu}+ ext{H.c.}$			638	

IADLE IA. (Commune

O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$	O_n	SU(2)	$\tilde{c}_n^{(4)}$	SU(3)	$\tilde{C}_n^{(4)}$
$\overline{i\varepsilon^{\mu\nu\lambda ho}P^*}_{\mu}f_{+\nu}{}^{\sigma}h_{\sigma}{}^{\delta}D_{\lambda\delta}P^{*\dagger}{}_{ ho} + \mathrm{H.c.}$	170	Ι	322	Ι	$iP\langle u^{\mu}\chi_{-}\rangle u^{\nu}D_{\mu}P^{*\dagger}{}_{\nu}$ + H.c.			639	Ι
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle \nabla_{\nu}f_{+\lambda}{}^{\sigma}\rangle u_{\rho}P^{*\dagger}{}_{\sigma} + \mathrm{H.c.}$	171	Ι			$iP\langle\chi_{-}\rangle u^{\mu}u^{\nu}D_{\nu}P^{*\dagger}{}_{\mu}$ + H.c.			640	
$i \varepsilon^{\mu u\lambda ho} P^*_{\ \mu} \langle abla_{ u} f_{+\lambda}{}^\sigma angle u_{\sigma} P^{*\dagger}{}_{ ho}$	172	Ι			$i\varepsilon^{\mu\nu\lambda\rho}Pf_{-\mu\nu}\chi_{-}D_{\lambda}P^{*\dagger}{}_{\rho} + \text{H.c.}$	389		641	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle \nabla_{\nu}f_{+\lambda}{}^{\sigma}\rangle u^{\delta}D_{\rho\sigma}P^{*\dagger}{}_{\delta} + \text{H.c.}$	173	Ι			$i\varepsilon^{\mu\nu\lambda\rho}P\chi_{-}f_{-\mu\nu}D_{\lambda}P^{*\dagger}_{\ \ \rho} + \mathrm{H.c.}$	390		642	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle \nabla_{\nu}f_{+\lambda}{}^{\sigma}\rangle u^{\delta}D_{\rho\delta}P^{*\dagger}{}_{\sigma} + \mathrm{H.c.}$	174	Ι			$i\varepsilon^{\mu\nu\lambda\rho}Pu_{\mu}\nabla_{\nu}\chi_{-}D_{\lambda}P^{*\dagger}{}_{ ho} + \text{H.c.}$	391		643	
$iarepsilon^{\mu u\lambda ho}P^*_{\ \ \mu}\langle abla_ u f_{+\lambda}{}^\sigma angle u^\delta D_{\sigma\delta}P^{*\dagger}{}_ ho$	175	Ι			$i \varepsilon^{\mu u \lambda ho} P \nabla_{\mu} \chi_{-} u_{ u} D_{\lambda} P^{*\dagger}{}_{ ho} + ext{H.c.}$	392		644	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle f_{+\nu\lambda}\rangle f_{-\rho}^{\ \sigma}P^{*\dagger}_{\ \sigma} + \mathrm{H.c.}$	176	Ι			$i\varepsilon^{\mu\nu\lambda\rho}P\langle f_{-\mu\nu}\chi_{-}\rangle D_{\lambda}P^{*\dagger}{}_{ ho} + \text{H.c.}$	393	Ι	645	Ι
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle f_{+\nu\lambda}\rangle h_{ ho}^{\ \sigma}P^{*\dagger}_{\ \sigma} + \mathrm{H.c.}$	177	Ι			$i\varepsilon^{\mu\nu\lambda\rho}P\langle\chi_{-}\rangle f_{-\mu\nu}D_{\lambda}P^{*\dagger}{}_{ ho} + \text{H.c.}$			646	Ι
$i \varepsilon^{\mu\nu\lambda\rho} P^*_{\ \mu} \langle f_{+\nu\lambda} \rangle h^{\sigma\delta} D_{\rho\sigma} P^{*\dagger}_{\ \delta} + \text{H.c.}$	178	Ι			$i\varepsilon^{\mu\nu\lambda\rho}P\langle u_{\mu} abla_{ u}\chi_{-} angle D_{\lambda}P^{*\dagger}{}_{ ho} + \mathrm{H.c.}$	394	Ι	647	Ι
$i arepsilon^{\mu u\lambda ho} P^*_{\ \mu} \langle f_{+ u\lambda} angle h^{\sigma\delta} D_{\sigma\delta} P^{*\dagger}_{\ ho}$	179	Ι			$i \varepsilon^{\mu\nu\lambda ho} P \langle \nabla_{\mu} \chi_{-} \rangle u_{\nu} D_{\lambda} P^{*\dagger}{}_{ ho} + \mathrm{H.c.}$			648	Ι
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle \nabla_{\nu}f_{+\lambda}{}^{\sigma}u_{\rho}\rangle P^{*\dagger}{}_{\sigma} + \mathrm{H.c.}$			323	Ι	$iP \nabla^{\mu} \nabla^{\nu} \chi_{-} D_{\mu} P^{*\dagger}{}_{\nu} + \mathrm{H.c.}$	395	Ι	649	Ι
$i \varepsilon^{\mu\nu\lambda ho} P^*_{\ \mu} \langle \nabla_{\nu} f_{+\lambda}{}^{\sigma} u_{\sigma} \rangle P^{*\dagger}_{\ ho}$			324	Ι	$iP\langle \nabla^{\mu}\nabla^{\nu}\chi_{-}\rangle D_{\mu}P^{*\dagger}{}_{\nu} + \text{H.c.}$	396	Ι	650	Ι
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle \nabla_{\nu}f_{+\lambda}{}^{\sigma}u^{\delta}\rangle D_{\rho\sigma}P^{*\dagger}{}_{\delta} + \text{H.c.}$			325	Ι	$Pf_+^{\mu u}\chiD_\mu P^{*\dagger}{}_ u+\mathrm{H.c.}$	397		651	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle \nabla_{\nu}f_{+\lambda}{}^{\sigma}u^{\delta}\rangle D_{\rho\delta}P^{*\dagger}{}_{\sigma} + \text{H.c.}$			326	Ι	$P\chi_{-}f_{+}^{\mu\nu}D_{\mu}P^{*\dagger}{}_{\nu}$ + H.c.	398		652	
$i \varepsilon^{\mu\nu\lambda ho} P^*_{\ \mu} \langle abla_{ u} f_{+\lambda}{}^{\sigma} u^{\delta} angle D_{\sigma\delta} P^{*\dagger}_{\ ho}$			327	Ι	$P\langle f_{+}^{\mu\nu}\rangle\chi_{-}D_{\mu}P^{*\dagger}{}_{\nu}+\mathrm{H.c.}$	399			
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle f_{+\nu\lambda}f_{-\rho}{}^{\sigma}\rangle P^{*\dagger}_{\ \sigma}$ + H.c.			328	Ι	$P\langle f_+^{\mu\nu}\chi\rangle D_\mu P^{*\dagger}{}_\nu + \text{H.c.}$	400		653	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle f_{+\nu\lambda}h_{\rho}^{\ \sigma}\rangle P^{*\dagger}_{\ \sigma} + \text{H.c.}$			329	Ι	$P\langle \chi_{-}\rangle f_{+}^{\mu\nu} D_{\mu} P^{*\dagger}{}_{\nu} + \text{H.c.}$	401		654	
$i\varepsilon^{\mu\nu\lambda\rho}P^*_{\ \mu}\langle f_{+\nu\lambda}h^{\sigma\delta}\rangle D_{\rho\sigma}P^{*\dagger}_{\ \delta} + \text{H.c.}$			330	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P\langle D_{\mu}D^{\sigma}F_{L\nu\sigma}\rangle D_{\lambda}P^{*\dagger}{}_{\rho} + \mathrm{P.} + \mathrm{H.c.}$	402			
$i \epsilon^{\mu u\lambda ho} P^*_{\ \mu} \langle f_{+ u\lambda} h^{\sigma\delta} \rangle D_{\sigma\delta} P^{*\dagger}_{\ ho}$			331	Ι	$i\varepsilon^{\mu\nu\lambda\rho}P\langle D_{\mu}D^{\sigma}F_{L\nu}{}^{\delta}\rangle D_{\lambda\sigma\delta}P^{*\dagger}{}_{\rho} + \mathrm{P.} + \mathrm{H.c.}$	403			
$iP^{*\mu}\nabla_{\mu}\nabla^{\nu}f_{+\nu}{}^{\lambda}P^{*\dagger}{}_{\lambda} + \text{H.c.}$	180	Ι	332	Ι	$iP\langle F_L^{\mu\nu}F_{L\mu}^{\lambda}\rangle D_{\nu}P^{*\dagger}{}_{\lambda} + P. + H.c.$	404		655	
$iP^{*\mu}\nabla^{\nu}\nabla_{\nu}f_{+\mu}{}^{\lambda}P^{*\dagger}{}_{\lambda}$	181	Ι	333	Ι					

The long relations in the sixth column of Table VII are

$$\tilde{C}_{10}^{(3)} = -D_2^{(3)} - D_6^{(3)} + D_9^{(3)}, \qquad \tilde{C}_{11}^{(3)} = D_2^{(3)} + D_4^{(3)} + D_6^{(3)} + D_8^{(3)}, \qquad \tilde{C}_{13}^{(3)} = -2D_1^{(3)} - D_2^{(3)} - 3D_6^{(3)}, \\
\tilde{C}_{14}^{(3)} = D_2^{(3)} + D_6^{(3)} + D_9^{(3)}, \qquad \tilde{C}_{15}^{(3)} = 2D_3^{(3)} + D_4^{(3)} + 3D_8^{(3)}, \qquad \tilde{C}_{18}^{(3)} = 2D_5^{(3)} - D_6^{(3)} - D_8^{(3)}, \\
\tilde{C}_{53}^{(3)} = \tilde{C}_{55}^{(3)} = -2D_3^{(3)} - 2D_7^{(3)} - D_{17}^{(3)}, \qquad \tilde{C}_{54}^{(3)} = -2D_4^{(3)} - 2D_7^{(3)} + 2D_{17}^{(3)}.$$
(A2)

TABLE X. The $\mathcal{O}(p^4)$ order results in the HQ limit. When a term P_n is not given a label in the 2nd or 5th (3rd or 6th) column, it is not independent and can be expressed with terms having a label in the 2nd and 5th (3rd and 6th) columns.

<i>P_n</i>	SU(2)	<i>SU</i> (3)	P_n	SU(2)	SU(3)
$\overline{\langle H \langle u^{\mu} u_{\mu} \rangle u^{ u} u_{ u} ar{H} \rangle}$	1	1	$\langle H \langle f_{+}^{\mu u} u^{\lambda} \rangle u^{ ho} \sigma_{\mu ho} v_{ u} v_{\lambda} \bar{H} \rangle$	72	
$\langle H \langle u^{\mu} u^{\nu} \rangle u_{\mu} u_{\nu} \bar{H} \rangle$	2	2	$\langle H abla^\mu abla_\mu \chi_+ ar H angle$		111
$\langle H \langle u^{\mu} u_{\mu} \rangle u^{\nu} u^{\lambda} v_{\nu} v_{\lambda} \bar{H} \rangle$	3	3	$\langle H abla^\mu abla^ u \chi_+ v_\mu v_ u ar{H} angle$		112
$\langle H \langle u^{\mu} u^{\nu} \rangle u_{\mu} u^{\lambda} v_{\nu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$	4	4	$\langle H \langle abla^\mu abla_\mu \chi_+ angle ar{H} angle$		113
$\langle H \langle u^{\mu} u^{\nu} \rangle u^{\lambda} u_{\lambda} v_{\mu} v_{\nu} \bar{H} \rangle$		5	$\langle H \langle abla^{\mu} abla^{ u} \chi_{+} angle v_{\mu} v_{ u} ar{H} angle$		114
$\langle H \langle u^{\mu} u^{\nu} \rangle u^{\lambda} u^{\rho} v_{\mu} v_{\nu} v_{\lambda} v_{\rho} \bar{H} \rangle$	5	6	$\langle H \langle f_{+}^{\mu\nu} u_{\mu} u^{\lambda} \rangle \sigma_{\nu\lambda} \bar{H} \rangle + \text{H.c.}$		115
$\langle H \langle u^{\mu} u_{\mu} u^{\nu} \rangle u_{\nu} \dot{H} \rangle$		7	$\langle H \langle f_+^{\mu u} u^{\lambda} u_{\lambda} \rangle \sigma_{\mu u} \bar{H} \rangle$		116
$\langle H \langle u^{\mu} u_{\mu} u^{ u} \rangle u^{\lambda} v_{ u} v_{\lambda} \bar{H} \rangle$		8	$\langle H \langle f_+^{\mu u} u^\lambda u^ ho angle \sigma_{\mu u} v_\lambda v_ ho \bar{H} \rangle$		117
$\langle H \langle u^{\mu} u^{\nu} u^{\lambda} \rangle u_{\mu} v_{\nu} v_{\lambda} \bar{H} \rangle$		9	$\langle H \langle f_+^{\mu\nu} u^{\lambda} u^{\rho} \rangle \sigma_{\mu\lambda} v_{\nu} v_{\rho} \bar{H} \rangle + \text{H.c.}$		118
$\langle H \langle u^{\mu} u^{\nu} u^{\lambda} \rangle u^{ ho} v_{\mu} v_{\nu} v_{\lambda} v_{ ho} \bar{H} \rangle$		10	$i\langle Hu^{\mu}f_{+\mu}{}^{ u}u_{ u}ar{H} angle$		119
$\langle H \langle u^{\mu} u_{\mu} u^{\nu} u_{\nu} \rangle \dot{H} \rangle$		11	$i\langle Hu^{\mu}f_{+\mu}^{\nu}u^{\lambda}v_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		120
$\langle H \langle u^{\mu} u^{\nu} u_{\mu} u_{\nu} \rangle \bar{H} \rangle$		12	$\langle H \langle u^{\mu} u_{\mu} \rangle f_{+}{}^{ u\lambda} \sigma_{ u\lambda} ar{H} angle$	73	121

<i>P_n</i>	SU(2)	SU(3)	P_n	SU(2)	SU(3)
$\langle H \langle u^{\mu} u_{\mu} u^{ u} u^{\lambda} \rangle v_{ u} v_{\lambda} ar{H} angle$		13	$\langle H \langle u^{\mu} u^{ u} angle f_{+\mu}{}^{\lambda} \sigma_{ u\lambda} ar{H} angle$	74	122
$\langle H \langle u^{\mu} u^{ u} u_{\mu} u^{\lambda} \rangle v_{ u} v_{\lambda} \bar{H} \rangle$		14	$\langle H \langle u^{\mu} u^{ u} \rangle f_{+}^{\lambda ho} \sigma_{\mu \lambda} v_{ u} v_{ ho} \bar{H} \rangle$	75	123
$\langle H \langle u^{\mu} u^{ u} u^{\lambda} u^{ ho} \rangle v_{\mu} v_{ u} v_{\lambda} v_{ ho} \bar{H} \rangle$		15	$\langle H \langle u^{\mu} u^{\nu} \rangle f_{+}^{\lambda ho} \sigma_{\lambda ho} v_{\mu} v_{\nu} \bar{H} \rangle$	76	124
$i\langle H\langle u^{\mu}u_{\mu}\rangle u^{\nu}u^{\lambda}\sigma_{\nu\lambda}\bar{H}\rangle$	6	16	$\langle Hf_{+}^{\mu\nu}u_{\mu}u^{\lambda}\sigma_{\nu\lambda}\dot{H}\rangle + \text{H.c.}$		125
$i\langle H\langle u^{\mu}u^{\nu}\rangle u_{\mu}u^{\lambda}\sigma_{\nu\lambda}\bar{H}\rangle + \text{H.c.}$	7	17	$\langle Hf_+^{\mu u}u^{\lambda}u_{\mu}\sigma_{ u\lambda}\bar{H} angle+ ext{H.c.}$		126
$i\langle H\langle u^{\mu}u^{\nu}\rangle u^{\lambda}u^{\rho}\sigma_{u\lambda}v_{\nu}v_{\rho}\bar{H}\rangle + \text{H.c.}$	8	18	$\langle Hf_{+}^{\mu\nu}u^{\lambda}u_{\lambda}\sigma_{\mu\nu}\bar{H}\rangle + \text{H.c.}$		127
$i\langle H\langle u^{\mu}u^{\nu}\rangle u^{\lambda}u^{\rho}\sigma_{\lambda\rho}v_{\mu}v_{\nu}\bar{H}\rangle$	9	19	$\langle Hf_{+}^{\mu\nu}u^{\lambda}u^{\rho}\sigma_{\mu\nu}v_{\lambda}v_{\rho}\bar{H}\rangle + \text{H.c.}$		128
$i\langle H\langle f_{+}^{\mu\nu}\rangle u_{\mu}u_{\nu}\bar{H}\rangle$	10		$\langle Hf_{+}^{\mu\nu}u^{\lambda}u^{\rho}\sigma_{\mu\lambda}v_{\nu}v_{\rho}\bar{H}\rangle + \text{H.c.}$		129
$i\langle H\langle f_{+}^{\mu\nu}\rangle u_{\mu}u^{\lambda}v_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$	11		$\langle Hf_{+}^{\mu\nu}u^{\lambda}u^{\rho}\sigma_{\mu\rho}v_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		130
$i\langle H\langle u^{\mu}u^{\nu}u^{\lambda}\rangle u_{\mu}\sigma_{\nu\lambda}\bar{H}\rangle$		20	$\langle Hf_{+}^{\mu\nu}f_{+m}\bar{H}\rangle$	77	131
$i\langle H\langle u^{\mu}u^{\nu}u^{\lambda}\rangle u^{\rho}\sigma_{\mu\nu}v_{\lambda}v_{\rho}\bar{H}\rangle$		21	$\langle Hf_{\pm}^{\mu\nu}f_{\pm\mu}^{\lambda}v_{\mu}v_{\lambda}\bar{H}\rangle$	78	132
$i\langle H\langle u^{\mu}u_{\mu}u^{\nu}u^{\lambda}\rangle\sigma_{\mu\lambda}\bar{H}\rangle$		22	$i\langle Hf_{\perp}^{\mu\nu}f_{\perp\mu}^{\lambda}\sigma_{\mu\lambda}\bar{H}\rangle$	79	133
$i\langle H\langle u^{\mu}u^{\nu}u^{\lambda}u^{\rho}\rangle\sigma_{\mu\nu}v_{\lambda}v_{\rho}\bar{H}\rangle$		23	$i\langle Hf_{\perp}^{\mu\nu}f_{\perp}^{\lambda\rho}\sigma_{\mu\lambda}v_{\mu}v_{\rho}\bar{H}\rangle$	80	134
$\langle Hu^{\mu}u_{\mu}u^{\nu}u_{\nu}\bar{H}\rangle$		24	$\langle H\langle f_{\perp}^{\mu\nu}\rangle f_{\perp\mu\nu}\bar{H}\rangle$	81	
$\langle Hu^{\mu}u^{\nu}u_{\mu}u_{\nu}H\rangle$		25	$\langle H \langle f_{\perp}^{\mu\nu} \rangle f_{\perp\mu}^{\lambda} v_{\nu} v_{2} \bar{H} \rangle$	82	
$\langle Hu^{\mu}u_{}u^{\nu}u^{\lambda}v_{}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		26	$\langle H\langle f \mu \nu f m \rangle \bar{H} \rangle$		135
$\langle Hu^{\mu}u^{\nu}u_{}u^{\lambda}v_{}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		27	$\langle H\langle f_{\perp}^{\mu\nu}f_{\perp\nu}^{\lambda}\rangle v_{\nu}v_{\lambda}\bar{H}\rangle$		136
$i\langle Hu^{\mu}u, u^{\nu}u^{\lambda}\sigma, \overline{H}\rangle + H.c.$		28	$\langle Hu^{\mu}u_{\mu}\gamma,\bar{H}\rangle + H.c.$	83	137
$i\langle Hu^{\mu}u^{\nu}u_{}u^{\lambda}\sigma_{\lambda}\overline{H}\rangle + \text{H.c.}$		29	$\langle Hu^{\mu}\gamma \downarrow u_{}\bar{H}\rangle$	84	138
$i\langle Hu^{\mu}u^{\nu}u^{\lambda}u^{\rho}\sigmav_{\lambda}v_{\lambda}\bar{H}\rangle + H.c.$		30	$\langle Hu^{\mu}u^{\nu}\chi, v, v, \bar{H} \rangle + H.c.$	85	139
$i\langle Hu^{\mu}u^{\nu}u^{\lambda}u^{\rho}\sigma_{\mu\nu}v_{\lambda}v_{\rho}H\rangle + H.c.$		31	$\langle Hu^{\mu}\gamma, u^{\nu}v, v, \bar{H} \rangle$	86	140
$i\langle H\langle f, \mu\nu u, u, \rangle \bar{H} \rangle$	12	32	$i\langle Hu^{\mu}u^{\nu}\chi + \sigma_{\mu}\sigma_{\nu}H \rangle + H.c.$	87	141
$i\langle H\langle f, \mu\nu\mu, \mu^{\lambda}\rangle v, v, \bar{H}\rangle + H.c.$	13	33	$i\langle Hu^{\mu}\chi + u^{\nu}\sigma - \bar{H}\rangle$	88	142
$\langle H \langle f, \mu \nu \rangle \mu \mu^{\lambda} \sigma, \bar{H} \rangle + H c$	14		$\langle H \langle u^{\mu} u \rangle \gamma, \overline{H} \rangle$		143
$\langle H \langle f \downarrow^{\mu\nu} \rangle u^{\lambda} u_{\lambda} \sigma_{\mu\nu} \bar{H} \rangle$	15		$\langle H \langle u^{\mu} u_{\mu} \chi_{+} \rangle \bar{H} \rangle$	89	144
$\langle \mathbf{H} \langle \mathbf{f}, \mu \nu \rangle \boldsymbol{\mu}^{\lambda} \boldsymbol{\mu}^{\rho} \boldsymbol{\sigma} \boldsymbol{\eta}_{\lambda} $	16		$\langle H \langle u^{\mu} \gamma \rangle \rangle u \bar{H} \rangle$		145
$\langle H \langle f, \mu \nu \rangle u^{\lambda} u^{\rho} \sigma \langle v, v, \bar{H} \rangle + H c$	17		$\langle H \langle u \rangle \chi + \langle u \mu H \rangle$		146
$\langle \mathbf{H} \langle \mathbf{f} \rangle_{+} / \boldsymbol{\mu} \langle \mathbf{h} \langle \mathbf{h} \rangle_{\mu} \langle \mathbf{h} \rangle_{\nu} \langle \mathbf{h} \rangle_{\mu} \langle \mathbf{h} \rangle$	18		$\langle H \langle \mu^{\mu} \mu^{\nu} \rangle \chi , \eta , \eta , \bar{H} \rangle$		147
$(\Pi \setminus J + /\pi \gamma S f \mu v_{\nu} v_{\lambda} v_{\rho} \Pi)$ $i/H f \mu \mu \mu \bar{H} + H c$	10	34	$\langle H \langle u^{\mu} u^{\nu} \chi \rangle \langle v \rangle v \rangle \bar{H} \rangle$	90	148
$i\langle Hf, \mu\nu\mu, \mu^{\lambda}v, \nu, \bar{H} \rangle + Hc$		35	$\langle \mathbf{H} \langle \mathbf{u}^{\mu} \mathbf{v}_{\lambda} \rangle \langle \mathbf{u}^{\nu} \mathbf{v}_{\lambda} \mathbf{v}_{\mu} \mathbf{v}_{\nu} \mathbf{H} \rangle$	20	149
$i/Hf \mu^{\mu}\mu^{\lambda}\mu v v \bar{H} + Hc$		36	$\langle H \langle u \rangle_{\mu} + \langle u \rangle_{\mu} = \langle u \rangle_{\nu} = \langle H \rangle_{\mu} \langle u \rangle_{\mu} = \langle $		150
$(H/f)_{+} u u_{\mu} v_{\nu} v_{\lambda} H/f H = 0$		37	$(H \setminus \mu^{\mu} \mu^{\nu} \chi \setminus \sigma \bar{H})$		150
$\langle \mathbf{H} \rangle_{f} + u_{\mu} u_{\lambda} \langle \mathbf{U} \rangle_{\lambda} \mathbf{H} \rangle$		38	$i \langle H \langle \chi \rangle \rangle u^{\mu} u^{\nu} \sigma \bar{H} \rangle$		152
$\frac{\langle \mathbf{H} \rangle_{\mathbf{f}} + u \langle u_{\mu} \sigma_{\nu\lambda} \mathbf{H} \rangle}{\langle \mathbf{H} \langle \mathbf{f} + \mu \nu_{\mu} \lambda \rangle_{\mathbf{H}} \sigma_{\mu} \mathbf{H}}$		39	$\langle Hf \mu\nu\chi \sigma \bar{H} \rangle + Hc$	91	152
$\langle \mathbf{H} \rangle f = u / u_{\lambda} O_{\mu\nu} H / f \langle \mu \nu \mu^{\lambda} \rangle \mu \rho \sigma = v \cdot v \cdot \bar{H} \rangle$		40	$\langle H f \downarrow^{\mu\nu} \rangle_{\chi} \sigma \bar{H} \rangle$	92	100
$\langle \mathbf{H} \langle \mathbf{f} \rangle_{+}^{\mu\nu} u^{\lambda} \langle u^{\rho} \sigma \rangle v \langle v \rangle \bar{\mathbf{H}} \rangle$		41	$\langle H \langle f, \mu\nu\gamma \rangle \langle \sigma, \bar{H} \rangle$	93	154
$\langle \mathbf{H} \rangle f + u / u \partial_{\mu\lambda} \partial_{\nu} \partial_{\rho} \mathbf{H} \rangle$ $\langle \mathbf{H} / f + u / u \partial_{\lambda} u \rho \sigma + v \partial_{\mu} \mathbf{H} \rangle$		42	$\langle H \rangle \langle \gamma + \chi + \langle \sigma_{\mu\nu} H \rangle$ $\langle H \rangle \langle \gamma + \chi + \langle \sigma_{\mu\nu} H \rangle$	94	155
$ (H \setminus J_{+} u / u \partial_{\mu\rho} v_{\nu} v_{\lambda} H) $ $ (H f_{\mu\nu} h^{\lambda\rho} v_{-\nu} v_{-\nu} v_{-\nu} v_{-\nu} H) $		43	$\langle H \chi_{+} / J + \sigma_{\mu\nu} H \rangle$ $\langle H \chi_{-}^{2} \bar{H} \rangle$	95	155
$\langle H \nabla^{\mu} f \rangle = \frac{\nu}{\mu} \frac{\lambda}{\lambda} v_{\tau} v_{\tau} v_{\tau} \bar{v}_{\tau} \bar{v}_$		44	$\langle H\chi_{\pm}H\rangle$ $\langle H\nabla^{\mu}\nabla_{\mu}\chi_{\mu}\bar{H}\rangle$	96	150
$(H\nabla^{\mu}f)^{\mu} u \gamma_{5} v_{\nu} v_{\lambda} H + H c$		45	$\langle H \nabla^{\mu} \nabla^{\nu} \chi, \eta, \eta, \bar{H} \rangle$	97	
$(\Pi \mathbf{v}^{\mu} f_{+\mu} u \gamma_{5} \gamma_{\lambda} v_{\nu} \Pi) + \Pi.c.$		46	$\langle \mathbf{H} \nabla^{\mu} \nabla^{\nu} \nabla^{\mu} \nabla^{$	98	
$(\Pi \nabla^{\mu} f)_{+} u_{\mu} \gamma_{5} \gamma_{\nu} v_{\lambda} \Pi / + \Pi c$		47	$\langle H \langle \nabla^{\mu} \nabla^{\nu} \chi + H \rangle / H \rangle = \langle H \langle \nabla^{\mu} \nabla^{\nu} \chi \rangle \langle $	99	
$\langle II \mathbf{v}' J_{+} u_{\nu} \gamma_{5} \gamma_{\mu} v_{\lambda} II \rangle + II.C.$ $\langle H \nabla^{\mu} f_{-} v^{\lambda} u^{\rho} u \alpha v_{-} v_{-} v_{-} v_{-} \overline{H} \rangle + H c$		48	$\langle \mathbf{\Pi} \langle \mathbf{v} \cdot \mathbf{v} \rangle \chi_{+} / v_{\mu} v_{\nu} \mathbf{\Pi} \rangle$		157
$\langle \mathbf{\Pi} \mathbf{v}^{\prime} \mathbf{J}_{+} u \gamma_{5} \gamma_{\nu} v_{\mu} v_{\lambda} v_{\rho} \mathbf{\Pi} \rangle + \mathbf{\Pi} \mathbf{C}$ $\langle \mathbf{H} / \mathbf{f} \mu \nu \mathbf{f} \lambda \rangle_{\mathbf{u}} \langle \mathbf{u} \rangle \mathbf{H} \rangle$		40	$\langle \mathbf{I} \mathbf{I} \langle \mathbf{\chi} + / \mathbf{\chi} + \mathbf{I} \mathbf{I} \rangle$ $/ \mathbf{H} / \alpha^2 \langle \mathbf{H} \rangle$	100	157
$ \begin{array}{c} \langle \mathbf{I} \mathbf{I} \rangle + \langle \mathbf{J} - \mu \rangle / \mathbf{I} \mathbf{J} / \nu \boldsymbol{U} \rangle \mathbf{I} \mathbf{I} \rangle \\ \langle \mathbf{H} / \mathbf{f} \rangle \mu \nu h \rangle \lambda \langle \mathbf{u} \rangle \mathbf{u} \rangle \mathbf{H} \rangle \\ \end{array} $		50	$\langle \mathbf{H} \rangle \langle \mathbf{V} + \langle \mathbf{H} \rangle \rangle \langle \mathbf{V} \rangle \langle \mathbf{H} \rangle$	100	150
$ \begin{array}{c} \langle \mathbf{I} \mathbf{I} \rangle \mathbf{J} + \langle \mathbf{I} \boldsymbol{\mu} \rangle / \mathbf{I} \mathbf{I} \mathbf{I} \rangle \\ \langle \mathbf{H} / \mathbf{f} \rangle \langle \mathbf{\mu} \mathbf{\nu} \mathbf{h} \rangle \lambda \langle \mathbf{u} - \mathbf{v}, \mathbf{u} \rangle \langle \mathbf{H} \rangle \\ \end{array} $		51	$\frac{1}{2} \sqrt{1 + \sqrt{1 + 1}} $	101	160
$ \begin{array}{c} \langle \mathbf{I} \mathbf{I} \rangle J + & \mathbf{I} \mu / \mathbf{I} \mathbf{S} \mathbf{I} \lambda \boldsymbol{\nu} \nu \mathbf{I} \mathbf{I} \rangle \\ \langle \mathbf{H} / \mathbf{f} & \mu \nu h^{\lambda \rho} \rangle_{\mathcal{H}} \langle \mathbf{H} \rangle \mathbf{I} \rangle \langle \mathbf{I} \rangle \langle$		52	$\frac{11}{\mu} \frac{\mu}{\mu} \frac{\mu}{\nu} \frac{\mu}{\mu} \frac{\mu}{\nu} \frac{\mu}{\nu} \frac{\mu}{\nu} \frac{\mu}{\nu} \frac{\mu}{\nu} \frac{\mu}{\nu} + \frac{\mu}{\nu} \frac$	101	161
$ \begin{array}{c} \langle \mathbf{\mu} \rangle J + \langle \mathbf{\mu} \rangle / \gamma S \gamma_{\mu} \upsilon_{\nu} \upsilon_{\lambda} \upsilon_{\rho} \boldsymbol{\Pi} \rangle \\ \langle \mathbf{\mu} / \nabla \boldsymbol{\mu} f - \upsilon_{\mu} \lambda \rangle \langle \mathbf{\mu} \rangle \langle \mathbf{\mu} \rangle \langle \boldsymbol{\Pi} \rangle \end{array} $	10	52	$ \langle H u^{\mu} u \lambda_{-} f S \gamma_{\nu} v_{\mu} H I \rangle + H c. $	102	167
$ \begin{array}{c} \langle \mathbf{I} \mathbf{I} \setminus \mathbf{v}^{T} J + \mu & \mu / \gamma 5 \gamma_{\nu} \mathcal{V}_{\lambda} \mathbf{I} \mathbf{I} \rangle \\ \langle \mathbf{H} / \nabla \mu f & \nu_{\mu} \lambda \rangle_{\mathcal{H}} \langle \mathbf{u} \rangle_{\mathcal{H}} $	20	54	$\langle \mu u \chi_{-} u \gamma_{5} \gamma_{\mu} v_{\nu} \mu \rangle + \Pi.c.$ $\langle H / \mu^{\mu} \mu^{\nu} \chi_{-} \chi_{-} \chi_{-} \chi_{-} \chi_{-} \bar{\mu} \rangle + H.c.$	102	162
(II) V $J + \mu \mu / 757 \lambda v_{\nu} II)$	20	54	$\chi^{II} \chi^{\mu} \mu \chi_{-} / 757 \mu \nu_{\nu} II / + 11.0.$		105

P _n	SU(2)	SU(3)	P_n	SU(2)	SU(3)
$\langle H \langle \nabla^{\mu} f_{+}{}^{\nu\lambda} u_{\mu} \rangle \gamma_{5} \gamma_{\nu} v_{\lambda} \bar{H} \rangle$	21	55	$\langle H \langle \chi_{-} \rangle u^{\mu} u^{\nu} \gamma_5 \gamma_{\mu} v_{\nu} \bar{H} \rangle + \mathrm{H.c.}$		164
$\langle H \langle abla^{\mu} f_{+}{}^{ u\lambda} u_{ u} angle \gamma_{5} \gamma_{\mu} v_{\lambda} ar{H} angle$	22	56	$i\langle Hf_+^{\mu u}\chi\gamma_5\gamma_\mu v_ uar{H} angle+{ m H.c.}$	103	165
$\langle H \langle abla^{\mu} f_{+}^{ u\lambda} u^{ ho} angle \gamma_{5} \gamma_{ u} v_{\mu} v_{\lambda} v_{ ho} ar{H} angle$	23	57	$i\langle H\langle f_+^{\mu u} angle\chi\gamma_5\gamma_\mu v_ uar{H} angle$	104	
$\langle H \langle f_+^{\mu u} f_{-\mu}^{\ \lambda} \rangle \gamma_5 \gamma_ u v_\lambda \bar{H} \rangle$	24		$i\langle H\langle f_+{}^{\mu u}\chi angle\gamma_5\gamma_\mu v_ uar{H} angle$	105	166
$\langle H \langle f_+^{\mu u} h_\mu^{\lambda} \rangle \gamma_5 \gamma_ u v_\lambda ar{H} angle$	25		$i\langle H\langle \chi_{-} angle f_{+}{}^{\mu u}\gamma_{5}\gamma_{\mu}v_{ u}ar{H} angle$	106	167
$\langle H \langle f_+^{\mu u} h_^\lambda angle \gamma_5 \gamma_\lambda v_ u ar{H} angle$	26		$\langle H \chi^2 \bar{H} \rangle$	107	168
$\langle H \langle f_+{}^{\mu u} h^{\lambda ho} angle \gamma_5 \gamma_\mu v_ u v_\lambda v_ ho ar{H} angle$	27		$\langle H \langle \chi_{-} \rangle \chi_{-} ar{H} angle$	108	169
$i \varepsilon^{\mu\nu\lambda ho} \langle Hf_{+\mu\nu} f_{-\lambda ho} \bar{H} \rangle + \text{H.c.}$	28	58	$\langle H \langle \chi_{-} angle \langle \chi_{-} angle ar{H} angle$		170
$i \epsilon^{\mu\nu\lambda ho} \langle Hf_{+\mu\nu} f_{-\lambda}{}^{\sigma} v_{ ho} v_{\sigma} \bar{H} angle + ext{H.c.}$	29	59	$i\langle H\langle u^{\mu}u^{ u}f_{-\mu}^{\ \ \lambda} angle\gamma_{5}\gamma_{ u}v_{\lambda}ar{H} angle+ ext{H.c.}$	109	171
$i \varepsilon^{\mu\nu\lambda ho} \langle Hf_{+\mu\nu} h_{\lambda}{}^{\sigma} v_{ ho} v_{\sigma} \bar{H} \rangle + \mathrm{H.c.}$	30	60	$i\langle H\langle u^{\mu}u^{ u}f_{-\mu}^{\ \ \lambda} angle \gamma_{5}\gamma_{\lambda}v_{ u}ar{H} angle + ext{H.c.}$	110	172
$i\varepsilon^{\mu\nu\lambda ho}\langle H abla_{\mu}f_{+ u}{}^{\sigma}u_{\lambda}v_{ ho}v_{\sigma}ar{H} angle+\mathrm{H.c.}$	31	61	$i\langle H\langle u^{\mu}u^{\nu}h_{\mu}{}^{\lambda}\rangle\gamma_{5}\gamma_{\nu}v_{\lambda}\bar{H} angle+\mathrm{H.c.}$	111	173
$i\langle Hf_{-}^{\mu u}\chi_{+}\gamma_{5}\gamma_{\mu}v_{ u}ar{H} angle+ ext{H.c.}$	32	62	$i\langle H\langle u^{\mu}u^{\nu}h_{\mu}^{\ \lambda}\rangle\gamma_{5}\gamma_{\lambda}v_{\nu}\bar{H} angle + \mathrm{H.c.}$	112	174
$i\langle Hh^{\mu u}\chi_+\gamma_5\gamma_\mu v_ uar{H} angle+ ext{H.c.}$	33	63	$i\langle H\langle u^{\mu}u^{\nu}h^{\lambda\rho}\rangle\gamma_{5}\gamma_{\mu}v_{\nu}v_{\lambda}v_{\rho}\bar{H}\rangle + \text{H.c.}$	113	175
$i\langle Hu^{\mu} abla^{ u}\chi_{+}\gamma_{5}\gamma_{\mu}v_{ u}ar{H} angle+ ext{H.c.}$	34	64	$i\langle Hu^{\mu}u_{\mu}f_{-}^{\nu\lambda}\gamma_{5}\gamma_{\nu}v_{\lambda}\bar{H} angle+\mathrm{H.c.}$		176
$i\langle Hu^{\mu}\nabla^{\nu}\chi_{+}\gamma_{5}\gamma_{\nu}v_{\mu}\bar{H} angle + \mathrm{H.c.}$	35	65	$i\langle Hu^{\mu}u^{\nu}f_{-\mu}^{\ \ \lambda}\gamma_{5}\gamma_{\nu}v_{\lambda}\bar{H} angle + \mathrm{H.c.}$		177
$\langle Hf_{-}^{\mu\nu}\chi_{-}\sigma_{\mu\nu}\bar{H}\rangle$ + H.c.	36	66	$i\langle Hu^{\mu}u^{\nu}f_{-\mu}^{\lambda}\gamma_{5}\gamma_{\lambda}v_{\nu}\bar{H} angle+ ext{H.c.}$		178
$i\langle Hh^{\mu u}\chi_{-}v_{\mu}v_{ u}ar{H} angle+ ext{H.c.}$	37	67	$i\langle Hu^{\mu}u^{\nu}f_{-\nu}^{\lambda}\gamma_{5}\gamma_{\mu}v_{\lambda}\bar{H} angle+\mathrm{H.c.}$		179
$i\langle Hu^{\mu} abla_{\mu}\chi_{-}ar{H} angle+ ext{H.c.}$	38	68	$i\langle Hu^{\mu}u^{\nu}f_{-\nu}^{\ \ \lambda}\gamma_{5}\gamma_{\lambda}v_{\mu}\bar{H} angle+ ext{H.c.}$		180
$i\langle Hu^{\mu}\nabla^{\nu}\chi_{-}v_{\mu}v_{\nu}\bar{H} angle + \mathrm{H.c.}$	39	69	$i\langle Hu^{\mu}u^{\nu}f_{-}^{\lambda\rho}\gamma_{5}\gamma_{\lambda}v_{\mu}v_{\nu}v_{\rho}\bar{H}\rangle + \text{H.c.}$		181
$\langle H u^{\mu} \nabla^{\nu} \chi_{-} \sigma_{\mu\nu} \bar{H} \rangle + \text{H.c.}$	40	70	$i\langle Hu^{\mu}u_{\mu}h^{\nu\lambda}\gamma_{5}\gamma_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		182
$i\langle H\langle h^{\mu u}\chi_{-}\rangle v_{\mu}v_{ u}ar{H} angle$	41	71	$i\langle Hu^{\mu}u^{\nu}h_{\mu}^{\ \lambda}\gamma_{5}\gamma_{\nu}v_{\lambda}\bar{H} angle + \mathrm{H.c.}$		183
$i\langle H\langle \chi_{-} angle h^{\mu u}v_{\mu}v_{ u}ar{H} angle$		72	$i\langle Hu^{\mu}u^{\nu}\dot{h_{\mu}}^{\lambda}\gamma_{5}\gamma_{\lambda}v_{\nu}\bar{H}\rangle + \text{H.c.}$		184
$i\langle H\langle u^{\mu} abla_{\mu}\chi_{-} anglear{H} angle$	42	73	$i\langle Hu^{\mu}u^{\nu}h_{\nu}^{\lambda}\gamma_{5}\gamma_{\mu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		185
$i\langle H\langle abla^{\mu}\chi_{-} angle u_{\mu}ar{H} angle$		74	$i\langle Hu^{\mu}u^{\nu}h_{\nu}^{\lambda}\gamma_{5}\gamma_{\lambda}v_{\mu}\bar{H}\rangle + \text{H.c.}$		186
$i\langle H\langle u^{\mu}\nabla^{ u}\chi_{-}\rangle v_{\mu}v_{ u}ar{H} angle$	43	75	$i\langle Hu^{\mu}u^{\nu}h^{\lambda\rho}\gamma_{5}\gamma_{\mu}v_{\nu}v_{\lambda}v_{\rho}\bar{H}\rangle + \text{H.c.}$		187
$i\langle H\langle abla^{\mu}\chi_{-} angle u^{ u}v_{\mu}v_{ u}ar{H} angle$		76	$i\langle Hu^{\mu}u^{\nu}h^{\lambda\rho}\gamma_{5}\gamma_{\nu}v_{\mu}v_{\lambda}v_{\rho}\bar{H}\rangle + \text{H.c.}$		188
$\langle H \langle u^{\mu} \nabla^{\nu} f_{-\mu\nu} \rangle \overline{H} \rangle$	44	77	$i\langle Hu^{\mu}u^{\nu}h^{\lambda\rho}\gamma_{5}\gamma_{\lambda}v_{\mu}v_{\nu}v_{\rho}\bar{H}\rangle + \text{H.c.}$		189
$\langle H \langle u^{\mu} \nabla^{\nu} f_{-\mu}^{\lambda} \rangle v_{\nu} v_{\lambda} \bar{H} \rangle$	45	78	$i\langle Hu^{\mu}f_{-\mu}{}^{\nu}u^{\lambda}\gamma_{5}\gamma_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		190
$\langle H \langle u^{\mu} \nabla^{\nu} f_{-\nu}^{\ \lambda} \rangle v_{\mu} v_{\lambda} \bar{H} \rangle$	46	79	$i\langle Hu^{\mu}f_{-\mu}^{\ \nu}u^{\lambda}\gamma_{5}\gamma_{\lambda}v_{\nu}\bar{H}\rangle + \text{H.c.}$		191
$\langle H \langle u^{\mu} \nabla_{\mu} h^{ u\lambda} \rangle v_{\nu} v_{\lambda} \bar{H} \rangle$	47	80	$i\langle Hu^{\mu}h_{\mu}^{\ \nu}u^{\lambda}\gamma_{5}\gamma_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		192
$\langle H \langle u^{\mu} \nabla^{\nu} h^{\lambda \rho} \rangle v_{\mu} v_{\nu} v_{\lambda} v_{\rho} \bar{H} \rangle$	48	81	$i\langle Hu^{\mu}h_{\mu}^{\ \nu}u^{\lambda}\gamma_{5}\gamma_{\lambda}v_{\nu}\bar{H}\rangle + \text{H.c.}$		193
$\langle H \langle f_{-}^{\mu u} h_{\mu}^{\ \lambda} \rangle v_{ u} v_{\lambda} \bar{H} \rangle$	49	82	$i\langle Hu^{\mu}h^{\nu\lambda}u^{\rho}\gamma_{5}\gamma_{\mu}v_{\nu}v_{\lambda}v_{\rho}\bar{H}\rangle + \text{H.c.}$		194
$\langle H \langle h^{\mu u} h_{\mu u} \rangle ar{H} angle$	50	83	$\varepsilon^{\mu\nu\lambda\rho}\langle Hu_{\mu}u_{\nu}f_{-\lambda\rho}\bar{H}\rangle + \text{H.c.}$	114	195
$\langle H \langle h^{\mu\nu} h_{\mu}^{\lambda} \rangle v_{\nu} v_{\lambda} \bar{H} \rangle$	51	84	$\varepsilon^{\mu\nu\lambda\rho}\langle Hu_{\mu}u_{\nu}f_{-\lambda}{}^{\sigma}v_{\rho}v_{\sigma}\bar{H}\rangle + \text{H.c.}$	115	196
$\langle H \langle h^{\mu\nu} h^{\lambda\rho} \rangle v_{\mu} v_{\nu} v_{\lambda} v_{\rho} \bar{H} \rangle$	52	85	$\varepsilon^{\mu\nu\lambda\rho}\langle Hu_{\mu}u^{\sigma}f_{-\nu\lambda}v_{\rho}v_{\sigma}\bar{H}\rangle + \text{H.c.}$	116	197
$\langle H u^{\mu} \nabla^{\nu} f_{-\mu\nu} \bar{H} \rangle + \text{H.c.}$		86	$\varepsilon^{\mu\nu\lambda\rho}\langle Hu_{\mu}f_{-\nu\lambda}u^{\sigma}v_{\rho}v_{\sigma}\bar{H}\rangle + \text{H.c.}$	117	198
$\langle H u^{\mu} \nabla^{\nu} f_{-\mu}^{\ \lambda} v_{\nu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$		87	$\varepsilon^{\mu\nu\lambda\rho}\langle Hu_{\mu}u_{\nu}h_{\lambda}^{\sigma}v_{\rho}v_{\sigma}\bar{H}\rangle + \text{H.c.}$	118	199
$\langle H u^{\mu} \nabla^{\nu} f_{-\nu}{}^{\lambda} v_{\mu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$		88	$\langle H \langle \nabla^{\mu} f_{+\mu}^{\ \nu} \rangle u^{\lambda} \gamma_{5} \gamma_{\nu} v_{\lambda} \bar{H} \rangle$	119	
$\langle H u^{\mu} \nabla_{\mu} h^{\nu \lambda} v_{\nu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$		89	$\langle H \langle \nabla^{\mu} f_{+\mu}^{\ \nu} \rangle u^{\lambda} \gamma_{5} \gamma_{\lambda} v_{\nu} \bar{H} \rangle$	120	
$\langle H u^{\mu} \nabla^{\nu} h^{\lambda \rho} v_{\mu} v_{\nu} v_{\lambda} v_{\rho} \bar{H} \rangle + \text{H.c.}$		90	$\langle H \langle \nabla^{\mu} f_{+}^{\nu\lambda} \rangle u_{\mu} \gamma_{5} \gamma_{\nu} v_{\lambda} \bar{H} \rangle$	121	
$\langle Hf_{-}^{\mu\nu}f_{-\mu\nu}\bar{H}\rangle$		91	$\langle H \langle \nabla^{\mu} f_{+}^{\nu\lambda} \rangle u_{\nu} \gamma_{5} \gamma_{\mu} v_{\lambda} \bar{H} \rangle$	122	
$\langle Hf_{-}^{\mu\nu}f_{-\mu}^{\lambda}v_{\nu}v_{\lambda}\bar{H}\rangle$		92	$\langle H \langle \nabla^{\mu} f_{+}^{\nu\lambda} \rangle u^{\rho} \gamma_{5} \gamma_{\nu} v_{\mu} v_{\lambda} v_{\rho} \bar{H} \rangle$	123	
$\langle Hf_{-}^{\mu\nu}h_{\mu}^{\lambda}v_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		93	$\langle H \langle f_+^{\mu u} \rangle f_{-\mu}^{\ \lambda} \gamma_5 \gamma_ u v_\lambda ar{H} angle$	124	
$\langle H h^{\mu u} h_{\mu u} ar{H} angle$		94	$\langle H \langle f_+^{\mu u} \rangle f_{-\mu}^{\ \lambda} \gamma_5 \gamma_\lambda v_ u ar{H} \rangle$	125	
$\langle H h^{\mu u} h^{\lambda}_{\mu} v_{ u} v_{\lambda} ar{H} angle$		95	$\langle H \langle f_+^{\mu u} \rangle h_\mu^{\ \lambda} \gamma_5 \gamma_ u v_\lambda ar{H} angle$	126	
$\langle H h^{\mu u} h^{\lambda ho} v_{\mu} v_{ u} v_{ u} v_{\lambda} v_{ ho} \bar{H} \rangle$		96	$\langle H \langle f_{+}^{\mu u} \rangle h_{\mu}^{\ \lambda} \gamma_{5} \gamma_{\lambda} v_{\nu} \bar{H} \rangle$	127	
$i\langle Hu^{\mu}\nabla_{\mu}f_{-}^{\nu\lambda}\sigma_{\nu\lambda}\bar{H}\rangle + \text{H.c.}$	53	97	$\varepsilon^{\mu\nu\lambda ho}\langle H\langle u_{\mu}f_{-\nu\lambda}\rangle u_{ ho}\bar{H}\rangle$		200
$i\langle Hu^{\mu}\nabla^{\nu}f_{-\nu}{}^{\lambda}\sigma_{\mu\lambda}\bar{H}\rangle + \text{H.c.}$	54	98	$\varepsilon^{\mu\nu\lambda\rho}\langle H\langle u_{\mu}f_{-\nu}^{\ \sigma}\rangle u_{\lambda}v_{\rho}v_{\sigma}\bar{H}\rangle$		201
$i\langle Hu^{\mu}\nabla^{\nu}f_{-}^{\lambda\rho}\sigma_{\mu\lambda}v_{\nu}v_{\rho}\bar{H}\rangle + \text{H.c.}$	55	99	$\varepsilon^{\mu\nu\lambda\rho}\langle H\langle u_{\mu}u^{\sigma}\rangle f_{-\nu\lambda}v_{\rho}v_{\sigma}\bar{H}\rangle$		202

P_n	SU(2)	SU(3)	P_n	SU(2)	SU(3)
$\frac{1}{i\langle Hu^{\mu}\nabla^{\nu}f_{-}^{\lambda\rho}\sigma_{\nu\lambda}v_{\mu}v_{\rho}\bar{H}\rangle + \text{H.c.}}$	56	100	$\varepsilon^{\mu\nu\lambda\rho} \langle H \langle u_{\mu} u^{\sigma} f_{-\nu\lambda} \rangle v_{\rho} v_{\sigma} \bar{H} \rangle + \text{H.c.}$		203
$i\langle Hu^{\mu}\nabla^{\nu}h^{\lambda\rho}\sigma_{\mu\nu}v_{\lambda}v_{\rho}\bar{H}\rangle + \text{H.c.}$	57	101	$arepsilon^{\mu u\lambda ho}\langle H\langle u_{\mu}h_{ u}{}^{\sigma} angle u_{\lambda}v_{ ho}v_{\sigma}ar{H} angle$		204
$i\langle Hf_{-}^{\mu\nu}f_{-\mu}^{\lambda}\sigma_{\nu\lambda}\bar{H}\rangle$	58	102	$\langle Hf_{+}^{\mu\nu}f_{-\mu}^{\lambda}\gamma_{5}\gamma_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		205
$i\langle Hf_{-}^{\mu u}f_{-}^{\lambda ho}\sigma_{\mu\lambda}v_{ u}v_{ ho}ar{H} angle$	59	103	$\langle Hf_{+}^{\mu\nu}f_{-\mu}^{\lambda}\gamma_{5}\gamma_{\lambda}v_{\nu}\bar{H}\rangle + \text{H.c.}$		206
$i\langle Hf_{-}^{\mu u}h_{\mu}^{\ \lambda}\sigma_{ u\lambda}\bar{H} angle+\mathrm{H.c.}$	60	104	$\langle Hf_{+}^{\mu\nu}h_{\mu}^{\lambda}\gamma_{5}\gamma_{\nu}v_{\lambda}\bar{H}\rangle + \text{H.c.}$		207
$i\langle Hf_{-}^{\mu u}h^{\lambda ho}\sigma_{\mu u}v_{\lambda}v_{ ho}\bar{H} angle+ ext{H.c.}$	61	105	$\langle Hf_{+}^{\mu\nu}h_{\mu}^{\ \lambda}\gamma_{5}\gamma_{\lambda}v_{\nu}\bar{H}\rangle + \text{H.c.}$		208
$i\langle Hf_{-}^{\mu u}h^{\lambda ho}\sigma_{\mu\lambda}v_{\nu}v_{ ho}\bar{H} angle+ ext{H.c.}$	62	106	$\langle H \langle D^{\mu} D_{\mu} F_L^{\nu\lambda} \rangle \sigma_{\nu\lambda} \bar{H} \rangle + \text{H.c.}$	128	
$i\langle H h^{\mu u} h_{\mu}{}^{\lambda}\sigma_{ u\lambda}ar{H} angle$	63	107	$\langle H \langle D^{\mu} D^{\nu} F_L^{\lambda \rho} \rangle \sigma_{\mu \lambda} v_{\nu} v_{\rho} \bar{H} \rangle + \text{H.c.}$	129	
$i\langle Hh^{\mu u}\dot{h}^{\lambda ho}\sigma_{\mu\lambda}v_{ u}v_{ ho}ar{H} angle$	64	108	$\langle H \langle F_L^{\mu\nu} F_{L\mu\nu} \rangle \bar{H} \rangle + \text{H.c.}$	130	209
$\langle H abla^\mu abla_\mu f_+^{\ u\lambda} \sigma_{ u\lambda} ar{H} angle$	65	109	$\langle H \langle F_L^{\mu\nu} F_{L\mu}^{\lambda} \rangle v_{\nu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$	131	210
$\langle H abla^\mu abla^ u f_+^{\lambda ho} \sigma_{\mu\lambda} v_ u v_ ho ar{H} angle$	66	110	$\langle H \langle F_L^{\mu\nu} F_{L\mu}^{\lambda} \rangle \gamma_5 \gamma_{\nu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$	132	211
$\langle H \langle f_{+}^{\mu\nu} u_{\mu} \rangle u^{\lambda} \sigma_{\nu\lambda} \bar{H} \rangle$	67		$\langle H \langle F_L^{\mu\nu} \rangle \langle F_{L\mu\nu} \rangle \bar{H} \rangle + \text{H.c.}$	133	
$\langle H\langle f_+^{\mu\nu}u^\lambda\rangle u_\mu\sigma_{\nu\lambda}\bar{H}\rangle$	68		$\langle H \langle F_L^{\mu\nu} \rangle \langle F_{L\mu}^{\lambda} \rangle v_{\nu} v_{\lambda} \bar{H} \rangle + \text{H.c.}$	134	
$\langle H \langle f_+^{\mu u} u^\lambda \rangle u_\lambda \sigma_{\mu u} \bar{H} \rangle$	69		$\langle H \langle \chi \chi^{\dagger} \rangle \bar{H} \rangle$	135	212
$\langle H \langle f_+^{\mu u} u^\lambda \rangle u^ ho \sigma_{\mu u} v_\lambda v_ ho \bar{H} \rangle$	70		$\langle H \det \chi \bar{H} \rangle + \text{H.c.}$	136	
$\langle H \langle f_+^{\mu\nu} u^\lambda \rangle u^\rho \sigma_{\mu\lambda} v_\nu v_\rho \bar{H} \rangle$	71				

The long relations in the seventh column in Table VII are

$$\begin{split} \tilde{C}_{50}^{(3)} &= \tilde{C}_{52}^{(3)} = \frac{1}{2} \tilde{C}_{1}^{(3)} + \tilde{C}_{10}^{(3)} - \tilde{C}_{13}^{(3)} + \tilde{C}_{17}^{(3)} - \tilde{C}_{19}^{(3)}, \qquad \tilde{C}_{51}^{(3)} = -\tilde{C}_{1}^{(3)} - 2\tilde{C}_{10}^{(3)} + \tilde{C}_{17}^{(3)} - \tilde{C}_{19}^{(3)}, \\ \tilde{C}_{53}^{(3)} &= \tilde{C}_{55}^{(3)} = \frac{1}{2} \tilde{C}_{1}^{(3)} + \tilde{C}_{10}^{(3)} + \tilde{C}_{11}^{(3)} - \tilde{C}_{15}^{(3)} + \tilde{C}_{17}^{(3)} + \tilde{C}_{18}^{(3)} - \tilde{C}_{20}^{(3)} - \frac{1}{2} \tilde{C}_{35}^{(3)}, \\ \tilde{C}_{54}^{(3)} &= -\tilde{C}_{1}^{(3)} - 2\tilde{C}_{10}^{(3)} - 2\tilde{C}_{11}^{(3)} + \tilde{C}_{17}^{(3)} + \tilde{C}_{18}^{(3)} - \tilde{C}_{20}^{(3)} + \tilde{C}_{35}^{(3)}, \qquad \tilde{C}_{58}^{(3)} &= -\frac{3}{2} \tilde{C}_{17}^{(3)} - \frac{3}{2} \tilde{C}_{18}^{(3)} + \frac{1}{2} \tilde{C}_{20}^{(3)}, \\ \tilde{C}_{59}^{(3)} &= -\tilde{C}_{17}^{(3)} - \tilde{C}_{18}^{(3)} + \tilde{C}_{20}^{(3)}, \qquad \tilde{C}_{70}^{(3)} &= \tilde{C}_{33}^{(3)} + \tilde{C}_{34}^{(3)} - \tilde{C}_{35}^{(3)}. \end{split}$$
(A3)

- [1] S. Weinberg, Phenomenological Lagrangians, Physica (Amsterdam) **96A**, 327 (1979).
- [2] J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. (N.Y.) 158, 142 (1984).
- [3] J. Gasser and H. Leutwyler, Chiral perturbation theory: Expansions in the mass of the strange quark, Nucl. Phys. B250, 465 (1985).
- [4] A. Krause, Baryon matrix elements of the vector current in chiral perturbation theory, Helv. Phys. Acta **63**, 3 (1990).
- [5] E. Jenkins and A. V. Manohar, Chiral corrections to the baryon axial currents, Phys. Lett. B 259, 353 (1991).
- [6] T. R. Hemmert, B. R. Holstein, and J. Kambor, Heavy baryon chiral perturbation theory with light deltas, J. Phys. G 24, 1831 (1998).
- [7] T.-M. Yan, H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin, and H.-L. Yu, Heavy quark symmetry and chiral dynamics, Phys. Rev. D 46, 1148 (1992).

- [8] M. B. Wise, Chiral perturbation theory for hadrons containing a heavy quark, Phys. Rev. D 45, R2188 (1992).
- [9] N. Isgur and M. B. Wise, Weak decays of heavy mesons in the static quark approximation, Phys. Lett. B 232, 113 (1989).
- [10] N. Isgur and M. B. Wise, Weak transition form factors between heavy mesons, Phys. Lett. B 237, 527 (1990).
- [11] H. Georgi, An effective field theory for heavy quarks at lowenergies, Phys. Lett. B 240, 447 (1990).
- [12] G. Burdman and J. F. Donoghue, Union of chiral and heavy quark symmetries, Phys. Lett. B 280, 287 (1992).
- [13] F.-K. Guo, C. Hanhart, S. Krewald, and U.-G. Meißner, Subleading contributions to the width of the $D_{s0}^*(2317)$, Phys. Lett. B **666**, 251 (2008).
- [14] F.-K. Guo, C. Hanhart, and U.-G. Meißner, Interactions between heavy mesons and Goldstone bosons from chiral dynamics, Eur. Phys. J. A 40, 171 (2009).

- [15] M. Altenbuchinger, L. S. Geng, and W. Weise, Scattering lengths of Nambu-Goldstone bosons off *D* mesons and dynamically generated heavy-light mesons, Phys. Rev. D 89, 014026 (2014).
- [16] Z.-W. Liu, N. Li, and S.-L. Zhu, Chiral perturbation theory and the $\overline{B}\overline{B}$ strong interaction, Phys. Rev. D **89**, 074015 (2014).
- [17] D.-L. Yao, M.-L. Du, F.-K. Guo, and U.-G. Meißner, Oneloop analysis of the interactions between charmed mesons and Goldstone bosons, J. High Energy Phys. 11 (2015) 058.
- [18] Z.-H. Guo, U.-G. Meißner, and D.-L. Yao, New insights into the $D_{s0}^*(2317)$ and other charm scalar mesons, Phys. Rev. D **92**, 094008 (2015).
- [19] Z.-G. Wang, $D_{s3}^*(2860)$ and $D_{s1}^*(2860)$ as the 1D $c\bar{s}$ states, Eur. Phys. J. C **75**, 25 (2015).
- [20] M.-L. Du, F.-K. Guo, U.-G. Meißner, and D.-L. Yao, Aspects of the low-energy constants in the chiral Lagrangian for charmed mesons, Phys. Rev. D 94, 094037 (2016).
- [21] B.-X. Sun, F.-Y. Dong, and J.-L. Pang, Study of X(5568) in a unitary coupled-channel approximation of $B\bar{K}$ and $B_s\pi$, Chin. Phys. C **41**, 074104 (2017).
- [22] H. Xu, B. Wang, Z.-W. Liu, and X. Liu, *DD** potentials in chiral perturbation theory and possible molecular states, Phys. Rev. D 99, 014027 (2019).
- [23] H.-Y. Cheng and F.-S. Yu, Masses of scalar and axial-vector B mesons revisited, Eur. Phys. J. C 77, 668 (2017).
- [24] M.-L. Du, F.-K. Guo, U.-G. Meißner, and D.-L. Yao, Study of open-charm 0⁺ states in unitarized chiral effective theory with one-loop potentials, Eur. Phys. J. C 77, 728 (2017).
- [25] X.-Y. Guo, Y. Heo, and M. F. M. Lutz, On chiral extrapolations of charmed meson masses and coupled-channel reaction dynamics, Phys. Rev. D 98, 014510 (2018).
- [26] H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, and S.-L. Zhu, A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017).
- [27] H. W. Fearing and S. Scherer, Extension of the chiral perturbation theory meson Lagrangian to order p^6 , Phys. Rev. D **53**, 315 (1996).
- [28] P. Herrera-Siklódy, J. I. Latorre, P. Pascual, and J. Taron, Chiral effective Lagrangian in the large N_c limit: The nonet case, Nucl. Phys. **B497**, 345 (1997).
- [29] J. Bijnens, G. Colangelo, and G. Ecker, The mesonic chiral Lagrangian of order p^6 , J. High Energy Phys. 02 (1999) 020.
- [30] J. Bijnens, L. Girlanda, and P. Talavera, The anomalous chiral Lagrangian of order p^6 , Eur. Phys. J. C 23, 539 (2002).
- [31] T. Ebertshäuser, H. W. Fearing, and S. Scherer, The anomalous chiral perturbation theory meson Lagrangian to order p^6 reexamined, Phys. Rev. D **65**, 054033 (2002).
- [32] O. Catà and V. Mateu, Chiral perturbation theory with tensor sources, J. High Energy Phys. 09 (2007) 078.

- [33] C. Haefeli, M. A. Ivanov, M. Schmid, and G. Ecker, On the mesonic Lagrangian of order p^6 in chiral SU(2), arXiv:0705.0576.
- [34] S.-Z. Jiang, F.-J. Ge, and Q. Wang, Full pseudoscalar mesonic chiral Lagrangian at p^6 order under the unitary group, Phys. Rev. D **89**, 074048 (2014).
- [35] J. Bijnens, N. Hermansson-Truedsson, and S. Wang, The order p^8 mesonic chiral Lagrangian, J. High Energy Phys. 01 (2019) 102.
- [36] N. Fettes, U.-G. Meißner, M. Mojžiš, and S. Steininger, The chiral effective pion nucleon Lagrangian of order p⁴, Ann. Phys. (N.Y.) 283, 273 (2000).
- [37] J. A. Oller, M. Verbeni, and J. Prades, Meson-baryon effective chiral Lagrangians to $\mathcal{O}(q^3)$, J. High Energy Phys. 09 (2006) 079.
- [38] M. Frink and U.-G. Meißner, On the chiral effective mesonbaryon Lagrangian at third order, Eur. Phys. J. A 29, 255 (2006).
- [39] S.-Z. Jiang, Q.-S. Chen, and Y.-R. Liu, Meson-baryon effective chiral Lagrangians at order p^4 , Phys. Rev. D **95**, 014012 (2017).
- [40] S.-Z. Jiang, Y.-R. Liu, and H.-Q. Wang, Chiral Lagrangian with $\Delta(1232)$ to one loop, Phys. Rev. D **97**, 014002 (2018).
- [41] S.-Z. Jiang, Y.-R. Liu, H.-Q. Wang, and Q.-H. Yang, Chiral Lagrangians with decuplet baryons to one loop, Phys. Rev. D 97, 054031 (2018).
- [42] M. Holmberg and S. Leupold, The relativistic chiral Lagrangian for decuplet and octet baryons at next-to-leading order, Eur. Phys. J. A 54, 103 (2018).
- [43] A. Roessl, Pion kaon scattering near the threshold in chiral SU(2) perturbation theory, Nucl. Phys. B555, 507 (1999).
- [44] M.-L. Du, F.-K. Guo, and U.-G. Meißner, Subtraction of power counting breaking terms in chiral perturbation theory: spinless matter fields, J. High Energy Phys. 10 (2016) 122.
- [45] M.-L. Du, F.-K. Guo, and U.-G. Meißner, One-loop renormalization of the chiral Lagrangian for spinless matter fields in the SU(N) fundamental representation, J. Phys. G 44, 014001 (2017).
- [46] J. Gasser, M. E. Sainio, and A. Švarc, Nucleons with chiral loops, Nucl. Phys. B307, 779 (1988).
- [47] M. B. Wise, Combining chiral and heavy quark symmetry, arXiv:hep-ph/9306277.
- [48] E. E. Jenkins, A. V. Manohar, and M. B. Wise, Baryons containing a heavy quark as solitons, Nucl. Phys. B396, 27 (1993).
- [49] R. Casalbuoni, A. Deandrea, N. D. Bartolomeo, R. Gatto, F. Feruglio, and G. Nardulli, Phenomenology of heavy meson chiral Lagrangians, Phys. Rep. 281, 145 (1997).
- [50] H. Georgi, *Heavy Quark Effective Field Theory* (1992), pp. 589–630, https://www.worldscientific.com/doi/abs/ 10.1142/9789814439725_0011.
- [51] A. V. Manohar and M. B. Wise, *Heavy Quark Physics* (Cambridge University Press, Cambridge, England, 2000), Vol. 10, pp. 1–191.