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Collinear and transverse-momentum-dependent (TMD) parton densities are obtained from fits to
precision measurements of deep-inelastic scattering (DIS) cross sections at HERA. The parton densities are
evolved by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution with next-to-leading-order (NLO) split-
ting functions using the parton branching method, allowing one to determine simultaneously collinear and
TMD densities for all flavors over a wide range in x, μ2 and kt, relevant for predictions at the LHC. The DIS
cross section is computed from the parton densities using perturbative NLO coefficient functions. Parton
densities satisfying angular ordering conditions are presented. Two sets of parton densities are obtained,
differing in the renormalization scale choice for the argument in the strong coupling αs. This is taken to be
either the evolution scale μ or the transverse momentum qt. While both choices yield similarly good χ2

values for the fit to DIS measurements, the gluon density especially turns out to differ between the two sets.
The TMD densities are used to predict the transverse momentum spectrum of Z bosons at the LHC.
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I. INTRODUCTION

Parton density functions (PDFs) play an essential role in
precise predictions of production processes in hadronic
collisions obtained from the factorization of the cross
sections in hard-scattering process and PDFs containing
a nonperturbative input with perturbatively calculable
evolution. The most advanced determination of parton
densities comes from the application of Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) [1–4] evolution
with next-to-leading-order (NLO) [5,6] and next-to-next-
to-leading-order (NNLO) [7,8] splitting functions. The
collinear parton densities as a function of the longitudinal
momentum fraction x and the evolution scale μ2 are
obtained by several groups, e.g., ABM [9], CTEQ [10],
HERAPDF [11], NNPDF [12] and MSTW [13,14]. The
different groups use the same DGLAP evolution, with

ordering in virtuality and the same choice of the renorm-
alization scale, but they differ in, for example, the treatment
of heavy flavors, and the experimental datasets which are
used for the determination of the starting distributions.
In Refs. [15,16] a new method, the parton branching (PB)

method, was introduced to treat DGLAP evolution. The
method applies at exclusive level, and provides an iterative
solution of the evolution equations. It agrees with the usual
methods to solve the DGLAP equations for inclusive dis-
tributions, but it provides also additional features: In addition
to the standard ordering in virtuality, angular ordering can be
applied with the necessary change in the argument of αs
[17,18]. The transversemomentum at every branching vertex
can be calculated, leading to a natural determination of the
transverse-momentum-dependent (TMD) parton densities.
The PB method uses the unitarity formulation of QCD
evolution equations [19] and is close in spirit to the works in
[20–25]. As shown inRefs. [16,26], it can be applied toNLO
and NNLO splitting functions.
In this article we present a determination of collinear and

TMD parton densities at NLO applying the PB method for
the parton evolution. The initial parton distributions are
determined froma fit toHERA Iþ II inclusive deep-inelastic
scattering (DIS) cross section measurements [11]. An early
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fit was presented in Ref. [16]. Here, we present results
obtainedwith angular ordering, both for collinear (integrated,
ITMD) andTMDparton densities, and for different choices of
the renormalization scale in αs including a full treatment of
experimental and model-dependent uncertainties. We show
an application of these TMDs to the calculation of the
transverse momentum of the Z boson in Drell-Yan (DY)
production at the Large Hadron Collider (LHC).

II. PARTON BRANCHING METHOD
AND EVOLUTION EQUATION

The PB method has been described in detail in
Refs. [15,16]. Here we limit ourselves to recalling its main
elements.

A. General features

The method is based on introducing a soft-gluon
resolution scale zM into the QCD evolution equations to
separate resolvable and nonresolvable emissions, and
treating these via, respectively, the resolvable splitting

probabilities PðRÞ
ba ðαs; zÞ and the Sudakov form factors

ΔaðzM;μ2;μ20Þ¼ exp
�
−
X
b

Z
μ2

μ2
0

dμ02

μ02

Z
zM

0

dzzPðRÞ
ba ðαs;zÞ

�
:

Here a, b are flavor indices, αs is the strong coupling at a
scale being a function of μ02 to be specified in Sec. III, z is
the longitudinal momentum splitting variable, and zM < 1
is the soft-gluon resolution parameter. For easier reading
we use the notation Δaðμ2Þ ¼ ΔaðzM; μ2; μ20Þ. The form
factors Eq. (1) have the interpretation of probabilities for
nonresolvable branchings between the evolution scales μ0
and μ. The functions PðRÞ

ba ðαs; zÞ have the structure

PðRÞ
ba ðαs; zÞ ¼ δbakbðαsÞ

1

1 − z
þ Rbaðαs; zÞ; ð1Þ

where the first term on the right-hand side contains the pole
singularity in the soft-gluon radiation region z → 1 and the
second term contains logarithmic terms and analytic terms
for z → 1. The coefficients kb and Rba in Eq. (1) have the
perturbation series expansions

kbðαsÞ ¼
X∞
n¼1

�
αs
2π

�
n
kðn−1Þb ;

Rbaðαs; zÞ ¼
X∞
n¼1

�
αs
2π

�
n
Rðn−1Þ
ba ðzÞ: ð2Þ

The explicit expressions for the n ¼ 1 (LO) and n ¼ 2
(NLO) contributions in the expansions in Eq. (2) are given
in [16]. The n ¼ 3 (NNLO) contributions can be read from
[7,8] and are used for NNLO calculations in the PB method
in [26]. The integrals appearing in the Sudakov form factors

Eq. (1) are positive at LO, NLO and NNLO, while the
functions Eq. (1) can be negative at NLO and NNLO.
The positivity of the integrals in Eq. (1) is essential for the
application of the PB method.
The PB method allows one to take into account simulta-

neously soft-gluon emission in the region z → 1 and
transverse momentum q⊥ recoils in the parton branchings
along the QCD cascade. Its advantage is twofold: On one
hand, in collinear distributions additional QCD features can
be studied such as the color radiation’s angular ordering
determined by soft-gluon interferences, and its effects on
factorization and renormalization scales; on the other hand,
the method can be applied to obtain TMD distributions.
The PB evolution equations for TMD parton densities

Aaðx;k; μ2Þ are given by [16]

Aaðx;k;μ2Þ¼Δaðμ2ÞAaðx;k;μ20Þ

þ
X
b

Z
d2q0

πq02
Δaðμ2Þ
Δaðq02ÞΘðμ

2−q02ÞΘðq02−μ20Þ

×
Z

zM

x

dz
z
PðRÞ
ab ðαs;zÞAb

�
x
z
;kþð1−zÞq0;q02

�
;

ð3Þ

in terms of the Δa form factors, Eq. (1), and PðRÞ
ba functions,

Eq. (1). The scale in αs is a function of q02, as discussed in
Sec. III. These equations can be solved by an iterative
Monte Carlo method. In this method every resolvable
branching is reconstructed explicitly and the full kinematics
at each branching is taken into account. The PB method
allows us to solve Eq. (3) in an easy and direct way, with the
possibility to include, for example, also heavy-quark
masses and soft-gluon coherence conditions.
The collinear parton densities faðx; μ2Þ are related to the

TMD densities by

faðx; μ2Þ ¼
Z

Aaðx;k; μ2Þ
d2k
π

; ð4Þ

and are described as ITMD. The evolution equations for
ITMD densities analogous to Eq. (3) can be written as

faðx; μ2Þ ¼ Δaðμ2Þfaðx; μ20Þ þ
X
b

Z
μ2

μ2
0

dμ02

μ02
Δaðμ2Þ
Δaðμ02Þ

×
Z

zM

x

dz
z
PðRÞ
ab ðz; αsÞfb

�
x
z
; μ02

�
: ð5Þ

These equations have been shown to be equivalent to
DGLAP evolution equations at NLO [15,16,20,21] and
NNLO [26] for αs ¼ αsðμ02Þ and zM → 1.
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B. PB method and determination of initial distribution

The PB method has been implemented in the xFitter
package [27] to allow fits to be made to cross section
measurements. A full Monte Carlo solution of the evolution
equation for every new set of initial parameters would be
too time consuming to be efficient. Instead, a method
developed already in [28–30] is applied: First, a kernel
Kint

baðx00; μ20; μ2Þ is determined from the Monte Carlo sol-
ution of the evolution equation for any initial parton1 of
flavor b evolving to a final parton of flavor a; then this
kernel is folded with the nonperturbative starting distribu-
tion f0;bðx; μ20Þ,

xfaðx; μ2Þ ¼ x
Z

dx0
Z

dx00f0;bðx0; μ20ÞKint
baðx00; μ20; μ2Þ

× δðx0x00 − xÞ

¼
Z

dx0f0;bðx0; μ20Þ
x
x0
Kint

ba

�
x
x0
; μ20; μ

2

�
: ð6Þ

The kernelKint
ba includes the full parton evolution from μ20 to

μ2, as in Eq. (5), with Sudakov form factors and splitting
probabilities, and is determined with the PB method. In
Eq. (6) the kernel Kint

ba depends on x, μ20 and μ2 for the kt-
integrated (ITMD) distributions.
To include also the transverse momentum kt, we define a

new kernel Kbaðx00; kt;02; kt2; μ20; μ2Þ for the TMD distri-
butions, with k2t ¼ k2,

xAaðx; k2t ; μ2Þ ¼ x
Z

dx0
Z

dx00A0;bðx0; k2t;0; μ20Þ

×Kbaðx00; k2t;0; k2t ; μ20; μ2Þδðx0x00 − xÞ

¼
Z

dx0A0;bðx0; k2t;0; μ20Þ

×
x
x0
Kba

�
x
x0
; k2t;0; k

2
t ; μ20; μ

2

�
: ð7Þ

The evolution of the kernel starts at x0 ¼ 1 at μ20. In general,
the starting distribution A0 can have flavor and x-depen-
dent kt;0 distributions; for simplicity we use here a
factorized form

A0;bðx; k2t;0; μ20Þ ¼ f0;bðx; μ20Þ · expð−jk2t;0j=σ2Þ ð8Þ

where the intrinsic kt;0 distribution is given by a Gauss
distribution with σ2 ¼ q20=2 for all flavors and all x with a
constant value q0 ¼ 0.5 GeV.
Technically, the results of the kernel evolution are stored

in a grid of size 50 × 50ð×50Þ (for the TMD densities).
The grid spacing is logarithmic (μ0 < μ < 14 000 GeV
and 0.01 < kt < 14 000 GeV); the x range is divided into
five subregions with logarithmic spacing: Subregions
of ten bins are defined with the boundaries 10−6; 0.01;
0.1; 0.4; 0.9; 1 which is optimized to ensure appropriate
behavior for large x, where the parton densities (and the
kernel) are varying rapidly.
In Fig. 1 we show the result of convoluting the starting

distribution (here taken to be the benchmark parameter-
ization of Ref. [31]) with the kernel as given in Eq. (6) for
the integrated distribution, and compare this with the
prediction from a standard evolution program (QCDNUM)
for different values of the evolution scale μ2. The kernel is
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FIG. 1. Comparison of the results from the convolution in Eq. (6) with the prediction from QCDNUM [32] using the same input
distributions, for d quarks (left) and gluons (right) at different values of the evolution scale μ2 starting from μ20 ¼ 1.9 GeV2 with αsðμ02Þ.
The lower panels show the ratio of the parton density with the one predicted by QCDNUM. The evolution is performed with NLO DGLAP
splitting functions and using zM ¼ 0.999 99.

1In practice, since the initial state partons can be only light
quarks or gluons, it is enough to determine the kernel K only for
one initial state quark and a gluon.
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evolved using NLO splitting functions with resolution scale
parameter zM separating resolvable from nonresolvable
branchings set to the value zM ¼ 0.999 99. Very good
agreement is observed over the whole range. Only the
quark distribution shows differences at very large x of the
order of a few percent, which come from the finite grid
spacing in xwhen storing the kernel (changing to a uniform
logarithmic grid spacing in x leads to significantly larger
deviations at large x). In most of the phase space region
relevant for high precision physics at HERA and the LHC
the differences are at the per mille level.

III. PARTON DENSITIES OBTAINED FROM FITS
TO INCLUSIVE HERA DIS MEASUREMENTS

The most recent and most precise measurements of the
lepton-proton DIS cross section over a wide range in x and
Q2 were performed at HERA with a combination of the
measurements from the H1 and ZEUS Collaborations [11].
These measurements are the basis for any determination of
parton densities. In Ref. [11] a fit to the inclusive DIS
measurements was performed using DGLAP at LO, NLO
and NNLO, resulting in the HERAPDF2.0 parton distri-
butions. These fits were performed with QCDNUM [32]
within the xFitter framework [27] using a starting
scale μ0 ¼ 1.9 GeV2 and the renormalization and factori-
zation scales set to μ2r ¼ μ2f ¼ Q2. The light quark matrix
elements were taken from QCDNUM, the heavy-quark
contributions were obtained within the general-mass var-
iable-flavor scheme RTOPT [33–35] for neutral current,
while for charged-current interactions the zero-mass
approximation from QCDNUM was used. The mass of the
charm quark is set mc ¼ 1.47 GeV, and mb ¼ 4.5 GeV is
used for the bottom quark mass. The strong coupling is set
to αsðM2

zÞ ¼ 0.118.
The parametrized PDFs are the gluon distribution, xg,

the valence-quark distributions, xuv, xdv, and the u-type
and d-type antiquark distributions, xŪ, xD̄. The relations
xŪ ¼ xū and xD̄ ¼ xd̄þ xs̄ are assumed at the starting
scale μ0.
The following parametrizations are used for the different

parton flavors:

xgðxÞ ¼ AgxBgð1 − xÞCg − A0
gxB

0
gð1 − xÞC0

g ;

xuvðxÞ ¼ Auvx
Buv ð1 − xÞCuv ð1þ Euvx

2Þ;
xdvðxÞ ¼ Advx

Bdv ð1 − xÞCdv ;

xŪðxÞ ¼ AŪx
BŪð1 − xÞCŪð1þDŪxÞ;

xD̄ðxÞ ¼ AD̄x
BD̄ð1 − xÞCD̄ : ð9Þ

The quark-number sum rules and the momentum sum
rule can be used to constrain the normalization parameters,
Auv; Adv ; Ag; A0

g. The B parameters are set BŪ ¼ BD̄ for
the sea distributions. The strange-quark distribution is

parametrized as a d-type sea with an x-independent
fraction, fs, xs̄ ¼ fsxD̄ at μ20 with fs ¼ 0.4. A further
constraint was applied by setting AŪ ¼ AD̄ð1 − fsÞ.
A total of 1145 data points of neutral-current and

charged-current deep-inelastic cross section measurements
were used in the range of 3.5<Q2<50000GeV2 and
4×10−5<x<0.65.
The same datasets, kinematic ranges and hard-scattering

coefficient functions, including the heavy-quark treatment,
are used for the fits described here. We use NLO DGLAP
splitting functions [5,6] as well as NLO coefficient func-
tions [36] for light quarks. For heavy quarks we apply the
general-mass variable-flavor scheme RTOPT [33–35] for
neutral current, while for charged-current interactions the
zero-mass approximation is used.
In the next section we determine the free parameters of

the initial distributions given by Eq. (9) via fits to the
HERADIS data in the range ofQ2 > 3.5 GeV2 using NLO
DGLAP splitting functions within the PB method using
zM ¼ 0.999 99.
The PB method allows the explicit calculation of the

kinematics at every branching vertex (see Fig. 2 left). Once
the physical meaning of the evolution scale is specified in
terms of kinematic variables, the transverse momenta of the
propagating and emitted partons can be calculated. In
Ref. [15] it was pointed out that angular ordering gives
transverse momentum distributions which are stable with
respect to variations of the resolution parameter zM. In
angular ordering, the angles of the emitted partons increase

FIG. 2. Left: Branching process b → aþ c. Right: Schematic
view of a parton branching process.

TABLE I. Values of χ2 for the different fits at NLO.

PB NLO set 1 αsðμ2i Þ
χ2 d.o.f. χ2=d:o:f:

μ20 ¼ 1.9 GeV2 1363.37 1131 1.21

PB NLO set 2 αsðq2tiÞ
χ2 d.o.f. χ2=d:o:f:

μ20 ¼ 1.4 GeV2 1369.80 1131 1.21
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from the hadron side towards the hard scattering, as shown in
Fig. 2 right. The transverse momentum qti can be calculated
in terms of the angleΘi of the emitted parton with respect to

the beam directions from qt;i¼ð1−ziÞEisinΘi. Associating
the “angle” Ei sinΘi with μi gives

q2
t;i ¼ ð1 − ziÞ2μ2i : ð10Þ

In the following, we use the PB method to determine
collinear (ITMD) and TMD parton densities using NLO
DGLAP splitting functions for two different scenarios:
First we only apply the angular ordering condition for the
calculation of the transverse momentum and keep the

TABLE II. Parameter values of the initial distributions at NLO.
The parameter C0 ¼ 25 was fixed, as in HERAPDF2.0. The
parameters correspond to a starting scale μ20 ¼ 1.9ð1.4Þ GeV2 for
set 1 (set 2).

PB NLO set 1 αsðμ2i Þ
A B C D E A0 B0 C0

xg 4.32 −0.015 9.15 1.040 −0.166 25
xuv 4.07 0.714 4.84 13.5
xdv 3.15 0.806 4.07
xŪ 0.107 −0.173 8.05 11.8
xD̄ 0.178 −0.173 4.89

PB NLO set 2 αsðq2tiÞ
xg 0.42 −0.047 0.96 0.008 −0.58 25

xuv 2.49 0.65 3.44 13.7
xdv 2.02 0.75 2.47
xŪ 0.14 −0.16 5.29 1.5
xD̄ 0.24 −0.16 5.83

TABLE III. Central values and change ranges of parameters for
model dependence.

Central
value

Lower
value

Upper
value

PB NLO set1 μ20 (GeV
2) 1.9 1.6 2.2

PB NLO set 2 μ20
(GeV2)

1.4 1.1 1.7

PB NLO set 2 qcut
(GeV)

1.0 0.9 1.1

mc (GeV) 1.47 1.41 1.53
mb (GeV) 4.5 4.25 4.75
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FIG. 3. Parton densities for different values of the scale μ2 ¼ Q2. The different choices for the renormalization scale in αs are shown.
The red band shows the experimental uncertainty, the yellow band the model dependence. The green band shows the uncertainty coming
from the variation of the parameter qcut in set 2.
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evolution scale μ2i as the argument in αs (set 1); in a second
scenario (set 2), we use [in Eqs. (1), (3), and (5)] the
transverse momentum jq2

t;ij as the argument in αs, as
suggested in Refs. [17,18]. An additional parameter qcut
needs to be introduced in αsðmaxðq2cut; jq2

t;ijÞÞ to avoid the
nonperturbative region, since with large z the scale jq2

t;ij ¼
ð1 − ziÞ2μ2i can become very small. We take the default
choice for this parameter to be qcut ¼ 1 GeV, and we
estimate the model dependence with a variation around the
default choice.
In the first case, the integrated parton density and the

initial parameters will be the same (up to numerical
precision) as the ones obtained by HERAPDF2.0, and
we use this as a benchmark for the whole method. In the
second case, even the integrated parton distributions differ,
because of the different scale in αs. In both cases a
reasonably good fit is obtained with χ2=ndf ∼ 1.2, as
for HERAPDF2.0. In Table I results of the fits are given.
The starting scale μ20 is chosen differently for the two
scenarios: For set 1 we chose (as in HERAPDF) μ20 ¼
1.9 GeV2 while for set 2 we chose μ20 ¼ 1.4 GeV2, which
gave the best χ2=ndf. In the Appendix we show results
obtained from a fit when μ20 ¼ 1.9 GeV2 is chosen instead
of μ20 ¼ 1.4 GeV2. The distributions agree within their

uncertainties. The values of the parameters at the starting
scale μ20 are given in Table II.

A. Collinear parton densities (ITMD)

The fits to HERA measurements are performed using χ2

minimization, as in the case of the HERAPDF fits imple-
mented in xFitter [27]. The definition of χ2 includes
systematic shifts, a treatment of correlated and uncorrelated
systematic uncertainties. In total 162 systematic uncertain-
ties plus procedural uncertainties from the combination of
H1 and ZEUS are treated as correlated uncertainties.
The experimental uncertainties of the resulting parton

densities are determined with the Hessian method [37]
(as implemented in xFitter) with Δχ2 ¼ 1. The model
dependence of the PDF fits is obtained by varying charm
and bottom masses and the starting scale of the evolution
μ20. For set 2 also the parameter qcut is varied. The central
values and the range of variation are given in Table III.
In Fig. 3 the Ū-type quark and gluon densities are shown

as functions of x for different values of the evolution scale
μ2 ¼ Q2 including the experimental uncertainties (red
band) and the uncertainties coming from the model
dependence (yellow band). For set 2 the uncertainty of
the parameter qcut is shown as the green band. The results of
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set 1 are identical to the ones obtained in HERAPDF2.0.
Although the fits (set 1 and set 2) to HERA Iþ II data are
of similar quality, the resulting parton distributions, espe-
cially for the gluon, are significantly different. With
increasing evolution scale, however, they become more
and more similar.
In Fig. 4 the total uncertainties (experimental and model)

of the parton densities are shown. The uncertainties of set 2
for the gluon distribution at large x become large. We have
investigated a possible bias coming from the chosen form
of the parametrization by including additional terms for the
gluon density:

xgðxÞ¼AgxBgð1−xÞCgð1þDgxþEgx2Þ−A0
gxB

0
gð1−xÞC0

g :

The obtained χ2 of the fit does change by at most 1 unit; the
resulting gluon distribution does not change visibly. Details
of the bias study are given in the Appendix.
In Fig. 5 we show predictions for the inclusive DIS cross

section and the inclusive charm cross section obtained from
the two different parton distributions, and compare them
with the measurements from HERA [11,38]. While the
inclusive DIS cross section is well described, the prediction
using set 2 differs from inclusive charm measurement at

low Q2 and small x. For values x > 0.001 all predictions
agree reasonably well with the data. It has been checked
explicitly that including the charm measurements in the fits
does not significantly change the fit result (the charm data
have too large an uncertainty compared to the precise
inclusive measurements). In Fig. 5 the predictions includ-
ing the systematic shifts are also shown, visually showing
that the quality of the two different fits is similar.

B. TMD parton densities

Within the PB method both collinear and TMD densities
can be determined, as the transverse momentum is calcu-
lated at every step of the branching process. TMD parton
densities can be obtained via the PB method once the
relationship between kinematical variables and evolution
scale μ is specified, and the transverse momentum at each
individual branching is calculated with Eq. (10). The
parameters for the starting distributions are obtained for
the collinear parton densities by a fit to inclusive DIS cross
section measurements, as described previously. The TMD
parton densities are then obtained from a convolution of the
TMD kernel with the starting distribution as given in
Eq. (7). The starting distribution is taken from the collinear
ITMD described in Sec. III A.
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In Fig. 6 we show the TMD parton densities for ū quarks
and gluons as a function of the transverse momentum kt ¼ffiffiffiffiffiffi
k2

p
for different values of the evolution scale μ ¼ 10, 100,

1000 GeVand different values of x for set 1 and set 2. One
can clearly see that both sets give identical results for larger
kt, while they are different for small kt, a consequence of
the different scale choices for the argument of αs.
In Fig. 7 the parton densities for all flavors are shown as

a function of kt at x ¼ 0.01 and for different values of the
evolution scale μ ¼ 10, 100, 1000 GeV. The large scales
are relevant for phenomenology at the LHC, and it is
interesting to observe that the transverse momenta extend
to very large values, up to the values of the factorization
scales (for μ ¼ 1 TeV the transverse momenta extend to
kt ∼ 1 TeV). However, the large kt values are suppressed
compared to smaller ones. The different quark flavors
show a different behavior at small kt, coming essentially
from the no-branching probability times the starting dis-
tribution [first term in Eq. (3)], while they are very similar
at larger kt, a result of perturbative splittings [second term
in Eq. (3)].
In Fig. 8 the gluon and ū densities as a function of

the transverse momentum are shown for μ ¼ 100 GeV and

x ¼ 0.01 together with the uncertainty bands obtained
from the fits. The panels show the uncertainties coming
from the experimental sources as well as the total
uncertainty coming from experimental and model sources
separately. Although only collinear splitting functions
are used, and the fit was obtained with collinear
parton densities, a kt dependence of the uncertainties
is obtained. At small kt essentially the first term in
Eq. (3) contributes without any resolvable branching and
the uncertainty comes from the starting distribution at x,
while at large kt several branching may have occurred
and therefore the uncertainty comes from the starting dis-
tribution at x=z ≫ x. The experimental uncertainties are
small over the whole range, while the model-dependent
uncertainties dominate.
The parametrization of the intrinsic transverse momen-

tum distribution is another uncertainty. With the fit to
inclusive DIS data, this distribution cannot be further
constrained. In Fig. 9 we show the TMD distribution for
gluon and ū for set 1 and set 2 at μ ¼ 10ð100Þ GeV and
x ¼ 0.01 when q0 in Bðkt;02; μ20Þ is varied from q0 ¼
0.25 GeV to q0 ¼ 1 GeV. We do not include the variation
of q0 as a systematic uncertainty, since it is not constrained
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by the fit (in the future we plan to use also Z-boson
transverse momentum spectra, which would constrain q0).
The resulting TMD parton densities, PB-NLO-2018-set1

and PB-NLO-2018-set2, including uncertainties (as well as

with variation of q0) are available in TMDLIB [39]. The
TMDPLOTTER [40,41] interface allows easy and fast
comparison to other TMDs, once they are made publicly
accessible and available in TMDLIB.
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IV. APPLICATION TO Z-BOSON
PRODUCTION AT THE LHC

The transverse momentum spectrum of Z bosons in
DY production at small values of transverse momentum
qT cannot be described by fixed-order perturbative cal-
culations, and resummation of soft-gluon emissions to
all orders in αs is needed. See e.g., [42] for a recent
discussion. The DY qT spectrum can be described by the
Collins-Soper-Sterman (CSS) method [43–46] using TMD
factorization at small qT [47,48], or by parton showers
within Monte Carlo event generators [25]. The ATLAS and

CMS experiments at the LHC have measured the qT
spectrum of the Z boson [49–51].
The TMD distributions obtained from HERA DIS

measurements can be used to predict the DY qT
spectrum of the Z boson at LHC energies. Since we are
interested in the low-qT region, we use the LO expres-
sion for Z production matrix elements.2 The transverse
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FIG. 10. Transverse momentum qT spectrum of Z bosons obtained from the two TMDs compared with measurements from [51]. Left:
Comparison of predictions using set 1 and set 2 including the full (experimental and model) uncertainties. Right: Prediction using set 2,
with experimental and full uncertainties separated (the difference is very small).

2In practical terms we use Les Houches event file [52] for
qq̄ → Z obtained from the PYTHIA event generator [53] with on-
shell initial partons.
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momentum of the initial state partons is calculated
according to the TMDs and added to the event record
in such a way that the mass of the produced DY pair is
conserved, while the longitudinal momenta are changed
accordingly. This procedure is common in standard
parton shower approaches [53,54] and is implemented
in the CASCADE package [55,56] (version newer than
2.4.X) where events in HEPMC [57] format are
produced, for further processing with Rivet [58]. The
importance of the proper inclusion of transverse momen-
tum effects from parton showers has been pointed out in
Refs. [59,60]. With the TMD distributions described
here, these effects can be included already at the level of
the cross section calculation.
In Fig. 10 (left) we show the predictions for the

transverse momentum spectrum of the Z boson obtained
with the two TMD distributions compared with the
measurements of ATLAS [51]. The uncertainties
coming from experimental and model sources are shown
for both set 1 and set 2 with the colored bands (Fig. 10
left); the experimental and full uncertainties are shown
for set 2 in Fig. 10 (right). The difference between
the full and experimental uncertainties from the fit is
very small.
In general the shape of the spectrum is described by both

TMD fits. The TMD set 2 applying the transverse momen-
tum as the renormalization scale (instead of the evolution
scale μ) provides a significantly better description of the
transverse momentum spectrum of the Z boson coming
from the different kt spectrum of the TMD already visible
in Fig. 6. One should note that no adjustment of any
parameter is made, and that the TMDs are entirely con-
strained by the fits to inclusive DIS data. The description of
the transverse momentum spectrum of the Z boson
obtained with the PB-TMD set 2 is of similar quality as
the NLOþ NNLL prediction of Ref. [61]; however, one
should note that the approach of PB-TMDs is more general
and can be applied directly to other processes as well
without further modification.

V. CONCLUSION

The parton branching method has been used to determine
a first complete set of collinear and TMD parton densities
from fits to precision DIS data over a large range in x and
Q2 as measured at HERA. The parton densities have been
obtained with NLO DGLAP splitting functions and 2-loop
αs with αsðMZÞ ¼ 0.118. The renormalization scale in the
evolution has been chosen to be the evolution scale μi
(set 1) or the transverse momentum qti (set 2). Two
different collinear and TMD sets have been obtained for
these different choices, both giving a similar χ2=ndf ¼ 1.2.
The obtained parton densities are valid over a wide range in

x and scale μ, up to the multi-TeV scale, relevant for LHC
physics.
Experimental uncertainties of the fit have been

obtained using the Hessian method with Δχ2 ¼ 1 and
model-dependent uncertainties have been determined.
The obtained TMDs have been applied to calculate the

transverse momentum spectrum of the Z boson in DY
production at LHC energies. Good agreement with the
measurement has been observed if angular ordering is
applied. The uncertainties of the prediction come only from
the TMD uncertainties determined in the fit to HERA
measurements.
For the first time, precision DIS measurements have

been used to obtain both collinear and TMD parton
densities, including uncertainties, over a wide range in x
and μ values, which are relevant for LHC and future
collider phenomenology as well as for low-energy and
small-kt physics.
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APPENDIX: ADDITIONAL CROSS CHECKS

In Fig. 11 we show a comparison of the gluon density
of set 2 (μ20 ¼ 1.4 GeV2) with a gluon density obtained
using starting scale μ20 ¼ 1.9 GeV2 (all other settings are
the same as in set 2) at a scale of Q2 ¼ 3 GeV2. The fit
with a starting scale μ20 ¼ 1.9 GeV2 gives a χ2 ¼ 1402.4
compared to χ2 ¼ 1369.8 when using μ20 ¼ 1.4 GeV2.
The uncertainties for the new fit include only the
uncertainties from experimental sources; the uncertain-
ties for set 2 are the same as in Fig 4. Both sets agree
within uncertainties.
A potential bias of the form of the parametrization

was checked by extending the original parametrization
xgðxÞ ¼ AgxBgð1 − xÞCg − A0

gxB
0
gð1 − xÞC0

g with additional
parameters:

xgðxÞ¼AgxBgð1−xÞCgð1þDgxþEgx2Þ−A0
gxB

0
gð1−xÞC0

g :

In Fig. 12 we show the gluon distribution after fitting
C0
g and including the additional factors Dg and Eg
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one after the other. The starting scale is μ20 ¼ 1.4 GeV2

(as for the original fit set 2). The obtained χ2 is larger by
1 unit after including additional terms; the shape of the
distribution does not change significantly. The uncer-
tainty band of set 2 corresponds to the uncertainties

coming from the experimental sources; no model or
parametrization uncertainty is included. The parton
distributions agree within the uncertainties shown,
excluding a significant bias from the chosen form of
the parametrization.
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of set 2 corresponds to the uncertainties coming from the experimental sources.
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