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We discuss the fact that kt-factorization calculations for heavy-quark production include only the
gg → QQ̄ contribution. The cases of fixed-flavor-number scheme and variable-flavor-number scheme
calculations are analyzed separately. For the latter, we show that, similarly to the collinear factorization, the
main contribution is given by the Qg → Qg process. In this scheme, calculations including only the gg
contribution should show a large discrepancy with the data. We show that, if they do not, it is because they
include (effectively) a large K factor.
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I. INTRODUCTION

Heavy flavor is an important tool for the study of strong
interaction and QCDmatter. One reason being that it makes
theoretical calculations simpler, in particular because the
heavy-quark mass allows for the use of perturbation theory.
The energy loss of a heavy quark propagating in a medium
has been studied extensively, and it is used to determine
some of the medium properties, like the transport coef-
ficient q̂. If using a transport code, the heavy quark mass
allows to use equations which are simplified versions of the
Boltzmann equation. It is a privileged probe for the study of
the quark-gluon plasma, since, contrary to light particles, it
is generally accepted that it cannot be produced signifi-
cantly in the hot medium. Then, the only source of heavy
quarks is the hard process, calculable in perturbation
theory. From the experimental side, heavy flavors give a
clear signal, and experiments like ALICE are able to see the
secondary vertex for D mesons.
Having a good understanding of heavy-quark production

is then of first importance for the phenomenology. In
this paper, we concentrate on the pt distribution of a
heavy quark. More exclusive processes, like quarkonia
production, are not considered. We treat the case of
collinear factorization in Sec. II, where the differences
between a fixed-flavor-number scheme and a variable-
flavor-number scheme are discussed. Some common
statements on heavy-quark production will be analyzed,
and it is reminded [1] that, in a variable-flavor-number

scheme,1 some of them are wrong. In particular, it is
generally not true that the gluon fusion process gives the
main contribution. In the regionpt > m,m being the heavy-
quark mass, it is in fact given by the Qg → Qg process.
In Sec. III, we present the usual kt-factorization formula

for heavy-quark production. The main goal of this paper is
to discuss the fact that kt-factorization calculations take into
account only the gg → QQ̄ process. After some remarks, in
Sec. IV, we analyze separately the cases of fixed-flavor-
number scheme and variable-flavor-number scheme calcu-
lations, Secs. V and VI. We will see that the situation is
similar to the collinear factorization case. When the
variable-flavor-number scheme is used, the main contribu-
tion is given by the Qg → Qg process. The gg contribution
alone should not gives a satisfying description of the data.
If it does, it means that the calculation (effectively) includes
a incorrect large K factor, and we will see how it can be
“implemented.” At the end of Sec. VI, numerical calcu-
lations using a variable-flavor-number scheme, including
flavor excitation processes, are presented.

II. HEAVY FLAVOR PRODUCTION WITHIN
THE COLLINEAR FACTORIZATION

For hadron-hadron collisions, the collinear factorization
formula reads [2]

dσ
dx1dx2d2pt

ðP1;P2Þ

¼
X
i;j

fiðx1;μ2fÞfjðx2;μ2fÞσ̂ij
�
x1x2s;pt;αsðμRÞ;

Q2

μR
;
Q2

μf

�
;

ð1Þ
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1This scheme is probably the most commonly used at LHC
energies.
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with s ¼ ðP1 þ P2Þ2, Pk the hadron 4-momentum and xk
the longitudinal momentum fraction of the hadron carried
by the incoming parton:

x1 ¼
ptffiffiffi
s

p eya þ ptffiffiffi
s

p eyb x2 ¼
ptffiffiffi
s

p e−ya þ ptffiffiffi
s

p e−yb ; ð2Þ

with ya and yb the rapidities of the two outgoing partons
and pt their transverse momentum.2 The hard scale is
denoted by Q2 and is conventionally chosen3 to be p2

t . The
factorization and renormalization scales are μf and μR,
respectively. They are sometimes chosen to be equal, but it
is not necessary, and in FONLL calculations [4], they are
varied independently in order to estimate the corresponding
uncertainties. The partonic cross sections, σ̂ij, depend also
on the mass of the heavy partons involved in the hard
process, and have a perturbative expansion:

σ̂ ¼
X∞
k¼0

αnþk
s σ̂k; ð3Þ

with n the power of αs at leading order. In the case of
heavy-quark production, n ¼ 2. The functions fi are the
parton densities.

A. Fixed-flavor-number scheme

In Eq. (1), in order to know if the sum over the indices i
and j includes the heavy quarks, one has to specify the
scheme and the scale μf. Historically, the first next-to-
leading order (NLO) calculations have been done using the

fixed-flavor-number scheme (FFNS) [5–8]. The 3-flavor
scheme assumes that the nucleon is made only of gluons
and three light quarks, while the 4-flavor scheme, which
can be used for bottom production, also includes the charm
quark. Then, LO calculation includes only the flavor
creation diagrams shown in the upper row of Fig. 1. It
is known [4,9,10] that this scheme fails at pt ≫ mQ,
because of the absence of resummation of the large
logarithm lnðp2

t =m2
QÞ. This issue is solved by the varia-

ble-flavor-number scheme (VFNS), presented in the next
section. However, within uncertainties (which are large in
this scheme), the NLO FFNS calculations are in good
agreement with data up to quite large pt. For instance, in
Ref. [11], Figure 2 (left panel), we observe the agreement of
the NLO calculation for bottom production on the full pt
range ([0,25] GeV).
The situation is completely different in the case of FFNS

LO calculations. Using the same gluon density, a large K
factor is necessary to bring agreement with NLO calcu-
lations, as discussed in [6]. In this paper, it is shown
(Fig. 12) that at

ffiffiffi
s

p ¼ 1.8 TeV, for the bottom mass,

FIG. 1. Leading order Feynman diagrams with an outgoing heavy quark Q in the VFNS. We neglect contributions implying two
incoming heavy quarks like cc̄ → cc̄ or cb → cb.

FIG. 2. Ratio gðx; μ2Þ=cðx; μ2Þ for different μ2 values, in GeV2.
We use the CTEQ14 PDF at NLO [12]. It is reminded that for
dσ=dpt, one usual choice is μ2f ¼ p2

t .

2In this study, we will not consider higher order corrections to
the partonic cross sections, σ̂ij. Then, the two outgoing partons
are back to back, both in the partonic center-of-momentum frame
and in the laboratory frame. This will not be true anymore when
using the kt factorization, since the transverse momentum, kt, of
the incoming partons is taken into account. In fact, it is one of the
interests of this formalism.

3See Ref. [3] for a detailed discussion on this choice.
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K ¼ 2.5. The reason for this large factor is not really the
“large” logarithm, but the fact that NLO contributions open
the flavor excitation channels, which have large cross
sections.
Preparing the discussion on unintegrated parton den-

sities, we note that in [6], the LO calculations without the K
factor are below the data.4 But the parton distribution
functions (PDFs) are order- and scheme-dependent quan-
tities, and with the choice gðx; μ2ÞLO ¼ ffiffiffiffiffiffiffi

2.5
p

gðx; μ2ÞNLO,
the LO FFNS calculation for bottom production at the
Tevatron works perfectly fine, since the LO and NLO lines
have a similar slope, see [6], Figure 12. However, in [6],
Figure 10, we can see that at the same energy, but with a
heavy-quark mass mQ ¼ 80 GeV, the K factor is only 1.5,
so our new LO FFNS gluon will do a poor description of
the (hypothetical) data. It will result in large uncertainties
on the LO FFNS gluon distribution, which is expected
since the lnðp2

t =m2
QÞ and the flavor excitation cross

sections, which partially explain the difference between
mQ ¼ 5 and mQ ¼ 80 GeV, are not at all included.
In order to describe heavy-quark production data, using

gluon densities with reasonable uncertainties, one should
(at least) work either with the FFNS at NLO or with the
VFNS at LO.

B. Variable-flavor-number scheme

Even at NLO, calculations using the FFNS do not work
quite well at pt ≫ mQ. In this region, it is necessary to
resum the large logarithms lnðp2

t =m2
QÞ. This is achieved

with the VFNS, which includes the heavy-quark density
and takes into account the flavor excitation diagrams, even
at LO. This scheme is used by the GM-VNFS [10,13] and
FONLL [4] calculations, which include also the resumma-
tion of large logarithms due to final state emissions, using
scale-dependent fragmentation functions.
The VFNS has several advantages. For pt > mQ, LO

calculations give results comparable to the FFNS NLO
calculations, as shown in the next subsection. Compared to
the FFNS, the uncertainties due to scale variation are
smaller [11]. Finally, the uncertainties on the gluon
densities are also smaller, and going from LO to NLO
does not change significantly their value (for μ > few GeV,
see the two black curves in Fig. 5), contrary to the
FFNS case.

C. Analyzing some common statements
on heavy-quark production

In the VFNS, one has to take into account the heavy-
quark densities, and we can wonder which process gives the
main contribution. For the second part of this paper, about

thept distribution of a heavy quark within kt factorization, it
is useful to analyze first the following common statements
in the framework of collinear factorization:
(1) At small x, the main contribution comes from

gg → QQ̄.
(2) At small x, the gluon distribution is much larger than

the charm distribution.
(3) The gluon distribution grows faster than the quark

distribution towards small x (see for instance [14]).
(4) At leading order, one needs a K factor to take into

account higher orders corrections (K > 2).
It is important to understand that there are some implicit
statements. For instance, statement 3 is sometimes consid-
ered to explain statement 2, and statement 2 is considered to
explain statement 1.
We will not discuss the correctness of statement 3, since

it is a general result of evolution equations [14] [Eq. (2.124)
and discussion thereafter]. On the contrary, it is wrong to
think that statement 3 implies statement 2, and it is easy to
find a counterexample. Consider the two linear functions
f1ðyÞ ¼ y, with slope one, and f2ðyÞ ¼ 2þ 2y with slope
two. Even if f2 grows faster than f1, the ratio f2=f1
decreases with y. In Fig. 2, we show the ratio
gðx; μ2Þ=cðx; μ2Þ for different μ2 values, obtained with
the CTEQ14 PDFs at NLO [12] (table CT14n.00.pds).
We see that for μ2 ¼ 10 GeV2, the ratio decreases towards
small x. For μ2 ¼ 100 GeV2 the situation is more compli-
cated since it depends on the x range. We first have a fast
decrease between x ¼ 0.1 and x ¼ 0.001. Then, the ratio
starts to increase but very slowly. For μ2 ¼ 104 GeV2, the
increase is faster but this curve corresponds to energies
much higher than LHC energies. Generally, one can
conclude that even if statement 3 is true, it is incorrect
to use it in order to justify statement 2. This ratio is large
since the beginning, that is all.
We have seen that statements 3 and 2 are correct, but the

former cannot be used to justify the latter (at least at LHC
energies). It is also clear that statement 2 alone cannot be
used to justify statement 1. The factorization formula is
given by the convolution of parton densities with partonic
cross sections, and information on the former is not enough
to justify statement 1. But it is usual to encounter the claim
that, due to the high number of gluons, heavy quark
production is dominated by the gluon fusion process.
Implicitly, it assumes that the ratio of partonic cross
sections σ̂ij→QþX is close to one. However, at LHC and
RHIC energies, the ratio σ̂Qg→Qg=σ̂gg→QQ̄ is large (around
60 at pt ¼ 10 GeV,

ffiffiffi
s

p ¼ 7 TeV, and central rapidity). In
2002, Field showed that the main contribution is the Qg
process [1]. A full calculation, based on the implementation
of formula (1), using LO partonic cross sections and CTEQ
PDFs [12], is shown in Fig. 3. We can see that, for the
charm quark, the Qg contribution is approximately 4 times
larger than the gg contribution, and 3 times larger for the
bottom. It was in fact expected, looking at the ratios

4Strictly speaking, we should say below the NLO calculations,
but we have seen that pt ⋍ 5 − 10mQ. See also the NLO results
compared to FONLL, Fig. 4.
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gðx;Q2Þ=Qðx;Q2Þ and σ̂Qg→Qg=σ̂gg→QQ̄, and taking into
account the factor 2 for the Qg contribution (the gluon can
be provided by hadron 1 or hadron 2).
Finally, let us analyze statement 4. We have already seen

that it is true in the FFNS. However, it is not the case in the
VFNS, thanks to the heavy-quark density, resuming to all
orders large logarithms, and to the flavor excitation dia-
grams, having large cross sections. In Fig. 4, we present the
results obtained with the collinear factorization at LO, for
the full contribution (solid red line) and for the gg
contribution only (dotted black line). Using a factor
K ¼ 1, the full contribution is in very good agreement
with NLO5 and FONLL (for the bottom distribution)
calculations obtained from [15]. In the case of charm
production, the reason why NLO and our calculations
are above the FONLL line is probably because of the
absence of resummation of final state emissions. In the
region pt > mQ, the gluon fusion contribution completely
undershoots the FONLL result. Thinking that the main
contribution is given by the gg process, and looking at the
LO result (dotted black line), it is natural to think that at
LO, one needs a largeK factor. After adding theQg andQq
contributions, everything is in order. We will see that the
situation is similar within kt factorization.

III. STANDARD HEAVY-QUARK PRODUCTION
WITHIN kt FACTORIZATION

In order to make the comparison with the collinear
factorization easier, we rewrite Eq. (1) as

dσ
dx1dx2d2pt

ðx1; x2; p2
t ; Q2; μ2Þ

¼
X
ij

fiðx1; Q2; μ2Þfjðx2; Q2; μ2Þσ̂ijðx1; x2; p2
t Þ: ð4Þ

Here, we do not consider the dependence on μR as for
simplicity, αs is taken constant. The factorization scale is

now written μ and, using the freedom on the definition of
parton densities, the logarithms of Q2=μ2 have been
included in these functions. We keep track of μ in fi

and σ in order to keep in mind that, at finite orders, these
quantities do depend on the factorization scale, giving rise
to the factorization scale uncertainty.

FIG. 3. Respective contributions for charm and bottom production. These cross sections are given for −0.5 < y < 0.5 and the unit is
the μb. The dotted black and dashed blue lines are superposed due to the small qq̄ contribution.

FIG. 4. Charm and bottom production, obtained with the
formula (1), using LO partonic cross sections, LO CTEQ PDFs
[12] and K ¼ 1. This is in good agreement with NLO and
FONLL results, obtained from the web page [15].

5The NLO result obtained from [15] is based on the Nason-
Dawson-Ellis calculations [6].
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The kt factorization (also called high energy factorization
or semihard approach) has been developed in parallel in
Refs. [16–19], in order to resum the large logarithms of
lnð1=xÞ which appear at high energies. For hadron-hadron
collisions we have

dσ
dx1dx1d2pt

ðs; x1; x2; p2
t ; μ2Þ

¼
Z

k2t;max
d2k1td2k2tFðx1; k21t; μ2ÞFðx2; k22t; μ2Þ

× σ̂ðx1x2s; k21t; k22t; p2
t Þ; ð5Þ

with the variables x1, x2, pt and μ having the same meaning
as in Eq. (4). The first difference with the collinear
factorization is the use of unintegrated parton densities
(uPDF), depending on kt, the transverse momentum of the
spacelike incoming parton. This additional degree of free-
dom is integrated out, up to the kinematical upper bound
k2t;max, discussed in the Appendix. It is also sometimes
necessary to have a specific treatment in the infrared region,
see for instance Refs. [20,21]. In [16,17], the unintegrated
gluon density obeys the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [22], while in [19] the evolution is given
by the nonlinear Balitsky-Kovchegov (BK) equation
[23,24]. In the literature, some studies use Eq. (5) and
the terminology kt factorization, but employ uPDFs which
do not obey the BFKL or BK equations. In order to keep the
discussion as general as possible, we define the kt facto-
rization as the convolution of uPDFs with off-shell
cross sections, without any condition on the x evolution.
However, wewill restrict to the cases where the uPDFs obey

fðx;Q2; μ2Þ ¼
Z

Q2

Fðx; k2t ; μ2Þd2kt; ð6Þ

[or similar, see for instance Eq. (8)]. Here, we followed the
notation used in Refs. [25,26].6 We will also consider the
uPDFs which are said to obey approximately Eq. (6).
The second difference with the collinear factorization is

the use of off-shell partonic cross sections, which depend
on the transverse momenta, k1t and k2t, of the incoming
spacelike partons (with off-shellness jk2i j ≃ k2it). Outgoing
partons are on shell.
Finally, a third difference, the main purpose of this paper,

is the absence of the sum on parton types. The function
Fðx; k2t ; μ2Þ corresponds specifically to the unintegrated
gluon density. This is for instance the case in the following
papers [20,21,27–29]. Note that, in few cases, the role of
the unintegrated quark density in different processes has
been underlined and studied [30–32]. The off-shell cross
section for the process g�g� → QQ̄, where the stars indicate
which parton is of shell, can be found in [17].

In Secs. V and VI, we will analyze heavy-quark
production within kt factorization. Before the discussion
is in order, in Sec. IV we present some issues and
complications with the use of kt factorization.

IV. ON THE PRACTICAL USE
OF THE kt FACTORIZATION

The most problematic part comes from the uPDFs. We
first note the existence of various conventions, making the
comparison of different papers more complicated. In some
cases, it is even not possible to know which convention has
been used, in particular because the relation to the usual
PDFs is not given. For instance, if the relation is

fðx;Q2; μ2Þ ¼
Z

Q2

Fðx; k2t ; μ2Þdk2t ; ð7Þ

then this uPDF is related to the one in Eq. (6) by a factor of
π. Another convention is given below in Eq. (8). More
important, in view of the next section, is the discussion of
the uncertainties on these uPDFs. If one finds easily some
theoretical explanations or references on how these uPDFs
are built, details concerning the practical implementation
are not always given. It is clear that the implementation of
the same uPDF done by different groups can leave to
differences in final results. In particular, the uPDFs built
from the usual PDFs, like the KMR [33,34] uPDFs, depend
on the choice of the PDF set. We believe that all groups
should try to use the same sets of uPDFs,7 making the
comparison between different studies easier. For this
reason, we think that the TMDlib [35] is a very good
initiative. This is a library of uPDFs, and all the results of
this paper will be obtained with uPDFs taken from it, when
possible.
Another issue is the ambiguity of LO calculations, using

only unintegrated gluon densities (uGDs). In this case, if
not explicitly stated, it is not always possible to know if the
calculation is performed using a FFNS, or using a VFNS
with the approximation that the gg process gives the main
contribution. We analyze separately these two cases in
Secs. V and VI.
Since the parton densities are order and scheme depen-

dent, different choices of schemes can result in quite
different uPDFs. In Fig. 5, we show different uGDs, taken
from the TMDlib [35], and integrated based on the relation

xgðx; μ2; μ2Þ ¼
Z

μ2

0

Fðx; k2t ; μ2Þdk2t : ð8Þ

As a reference, we show the LO and NLO CTEQ14 PDF
[12] as black lines. Not surprisingly, the PB-NLO-HERAI
+II-2018-set1 (later referred to as PB uPDFs) is in perfect

6However, our function Fðx; k2t ; μ2Þ is related to their function
by a factor x.

7This is the case with the collinear factorization where some
“official” sets are provided by collaborations like CTEQ.
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agreement with the NLO CTEQ gluon, since it has been
obtained in a VFNS with the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution at NLO. In the oppo-
site, the ccfm-JH-2013-set1 (later referred to as JH uPDFs)
is a factor∼2 above the CTEQ gluons. It is not an issue, and
it was in fact expected, since the JH uPDFs have been
determined using a nearly8 0-flavor scheme. Moreover, the
CCFM uPDFs are sometimes said to obey only approx-
imatively to the relation Eq. (8).
In the next sections, we discuss heavy-quark production

within the kt factorization. We will consider separately
FFNS and VFNS calculations.

V. kt FACTORIZATION WITH A FFNS

Because the CCFM evolution includes only gluons,
calculations using CCFM uGDs is a typical example of
FFNS. More precisely, in this case, a 0-flavor scheme. In
Sec. II A, we have seen that LO FFNS gluon densities able
to reproduce heavy-quark data at large energies, could be
quite larger than NLO FFNS or LOVFNS gluons. It is then
not surprising for the JH uPDFs to be above the CTEQ
gluons. After including the NLO contributions in the off-
shell cross section, we can expect the CCFM uGDs to be
divided by a large factor, K ≃ 2, similarly to the collinear
factorization case.9 In the next section, it will be explained
why the ccfm-setB0 uPDFs (later referred as to B0 uPDF)
are smaller than the JH uPDFs.

For reasons identical to the collinear factorization case,
these calculations suffer from large uncertainties, related to
the uGDs and scales variation. The result could be
improved, either by including NLO contributions or by
changing to a VFNS.10 An equivalent statement is that
taking into account the unintegrated heavy-quark density
will improve the result.

VI. kt FACTORIZATION WITH A VFNS

In the previous section, we discussed that the 0-flavor
scheme calculations, which include only the gg contribu-
tion, are correct but suffer from large uncertainties. Here,
the situation is completely different. A VFNS calculation
should take into account the flavor excitation processes.
Including only gg → QQ̄ means that the Qg and Qq
contributions are considered to be negligible.
In Sec. VI A, we show that this is wrong, and that,

similarly to the collinear factorization, the main contribution
is givenbyQg → Qg. Then, in Secs.VI B andVI C,we show
that, if available VFNS calculations are in agreement with
data, it is because they (effectively) include a large K factor.
We claim and we will show that, if the gg contribution

alone is in agreement with data, the full calculation,
including in particular the Qg process will completely
overshoot the data.

A. Main contribution and large K factor

In Sec. II C, we have seen that in the VFNS at LO, no
large K factor is required. We argue that this is also true for

FIG. 5. CTEQ14 gluon distribution at LO (upper black line) and NLO (lower black line) [12], compared with integrated uPDFs taken
from the TMDlib [35]: ccfm-JH-2013-set1 [36], ccfm-setB0 [37] and PB-NLO-HERA+II-2018-set1 [38]. These uPDFs are integrated
out following Eq. (8).

8The authors have modified the Ciafaloni-Catani-Fiorani-
Marchesini (CCFM) evolution in order to include valence quarks
[36].

9One of the reasons explaining the similarities between kt and
collinear factorization is that, in the limit kt ≪ pt, the off-shell
cross sections reduce to the usual ones.

10It is possible to modify the CCFM evolution in order to
include valence and sea quarks [36].
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kt factorization. Two reasons why no large K factor is
required are:
(1) The arguments given in Sec. II C are still valid: the

flavor excitation cross sections are large and the
unintegrated heavy-quark density resums large log-
arithms.

(2) Once we take into account all contributions, we
obtain a result in good agreement with NLO calcu-
lations, see Fig. 12 and the associated discussion.

In Fig. 6 are shown the contributions gg → cc̄, cg → cg
and cq → cq to the charm pt distribution, obtained with
KATIE [39] and the PB uPDFs. The unintegrated gluon
distribution from this set has already been presented in
Fig. 5. The reason why the labels are sg and qs rather than
cg and qc is because heavy quarks in the initial state are not
allowed in KATIE. Consequently, we have used sðx; μ2Þ=1.3
which is in fact a quite good charm quark, as shown in the
bottom panel of Fig. 6. It has been checked that the factor

1.3 does not change to much with x. Last detail: for the
calculation of the contributions shown in the top panel of
Fig. 6, the factorization scale μ ¼ ðpc

t þ pX
t Þ=2 is used,

where c refers to the charm and X to the other outgoing
particle. Since we start the calculation for pc

t ¼ 4 (and for a
technical reason pX

t > 2), then μ2≥9GeV2. Consequently,
there is no issue with the behavior of the PDFs at small μ2,
and it is acceptable to neglect the effect of the charm mass
in the matrix elements for cg → cg and cq → cq.
It is clear that the use of sðx; μ2Þ=1.3 instead of the true

charm distribution includes an uncertainty in our calcu-
lations. However, as it can be seen in Fig. 6, this uncertainty
is of the order of 10%, and is irrelevant, since we are
discussing the correctness of a large K factor.
The result shown in Fig. 6 is exactly what was expected

from the theory. The cg contribution is a factor ∼4 larger
than the gg contribution. This result has been obtained
using public codes written by other groups. This is the
method used in the case of collinear factorization, where
there are few official PDFs, given by collaborations like
CTEQ. The fact that some groups use their unpublished
implementation of uPDFs makes it hard or impossible to
reproduce their results. In particular, it is not possible to
check if the used uPDFs respect the relation they are
supposed to respect, and we will see that it is not always
the case.

B. Discussion on published results

Calculations using uPDFs determined by the inversion of
Eq. (8) are an example of VFNS calculations, since the
usual PDFs have been obtained in this scheme. This is for
instance the case of the KMR uPDFs, which is treated in
detail in the next subsection. Using uPDFs determined in a
VFNS and obeying to Eq. (8), it should be impossible to be
in agreement with data, taking into account only the gg
contribution. If the published results do, it is because they
(effectively) include a large K factor. It can be done at least
in four ways:
(1) Too large unintegrated gluon distribution, gðxÞ →ffiffiffiffi

K
p

gðxÞ.
(2) Put by hand, in order to take into account supposedly

large higher order corrections.
(3) By choosing the factorization scale much higher

than the usual choice.
(4) Unreasonably large kt tail, see Sec. VI C.
By too large uGDs, we mean that, after integrating the

uGD with the appropriate formula, the result is a factor
ffiffiffiffi
K

p
larger than the appropriate gluon density. By appropriate
gluon density, we mean a gluon density determined in a
scheme and to an order identical to the uGD. Due to the
lack of information and to the issues discussed in Sec. IV, it
is not always possible to check if the used uPDFs are too
large. Ideally, something similar to our Fig. 5 should be
shown, in order to demonstrate that the uPDFs are correctly
normalized. It is done in several papers using ccfm uPDFs,

FIG. 6. Top panel: gg, cg and qc contributions to the charm pt
distribution. Instead of the charm uPDF, the strange uPDF
divided by 1.3 is used, because KATIE does not accept initial
heavy states. See the text for more details. Bottom panel:
comparison of cðx; μ2Þ and sðx; μ2Þ=1.3.
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see for instance [36]. However, in this case the issue is
the lack of gluon densities determined at LO in a 0-flavor
scheme,11 necessary for a meaningful comparison.
The second possibility consists in adding a factor K by

hand, in order to take into account higher order corrections.
This factor is discussed for instance in Ref. [40] [Eq. (21)].
We have already seen that in the VFNS, no large K factor is
required. To our knowledge, there is no evidence of the use of
such a factor in recent studies based on the kt factorization.
The third possibility consists in using uPDFs with a

factorization scale much higher than the usual one,
μ2F ≫ μ2 ∼ p2

t þm2, with p2
t the transverse momentum

of the outgoing parton andm the heavy-quark mass. It is for
instance the case in Ref. [29], where the authors use
μ2F ¼ ŝþ k2t , (ŝ ¼ x1x2s) and the B0 uPDFs,12 plotted in
Fig. 8. In the case of collinear factorization, it is clear that
choosing a much higher factorization scale gives an
effective large K factor. Indeed, while physical observables
computed to all orders do not depend on the factorization
scale, in finite order calculations, and in particular at LO,
the dependence on μ can be significant. In Fig. 7, we show
the same calculations as in Fig. 4, now using μ2 ¼ ŝ. Even
if this factorization scale is still smaller than the one in
Ref. [29], we see that the gg contribution alone is in better
agreement with FONLL, while the full contribution is
too high.

Moreover, the factorization scale μ2F ¼ ŝþ k2t is not
appropriate for two reasons. First, it should not be defined
as a function of k2t . Indeed, for uPDFs obeying Eq. (8) (or
equivalent), it gives the impossible equation:

xgðx; ŝþ k2t Þ ¼
Z

ŝþk2t
dk2t Fðx; k2t ; ŝþ k2t Þ: ð9Þ

Second, one should avoid defining the factorization scale as
a function of x1 and x2, which are integration variables for
the cross section dσ=dp2

t . In Ref. [41] it is shown that this
kind of choice for μ is dangerous (see the discussion on
pages 20–22).
Finally, we also want to mention that for D-meson and

B-meson production, the branching fraction used for the
hadronization is not always indicated.

C. The case of the KMR/MRW parametrization

We have implemented the KMR uPDFs (to be exact,
the MRW uPDFs [34], also used in [27]), using the
CTEQ14 LO PDFs. For the gluon, the expression is

Fgðx; k2t ; μ2Þ

¼ Tgðk2t ; μ2Þ
αsðk2t Þ
2πk2t

×
Z

1

x
dz

�X
q

PgqðzÞ
x
z
q

�
x
z
; k2t

�

þ PggðzÞ
x
z
g

�
x
z
; k2t

�
Θ
�

μ

μþ kt
− z

��
; ð10Þ

with Pij the unregularized splitting functions, and Tg the
Sudakov form factor:

FIG. 7. Bottom production, obtained with the formula (1), using LO partonic cross sections, CTEQ PDFs, K ¼ 1 and the factorization
scale μ2 ¼ ŝ.

11We have already mentioned that we expect this gluon density
to be quite larger than the CTEQ gluons.

12It could look incoherent to mention ccfm uPDFs in this
section dedicated to the VFNS. However, here it is just a
numerical matter. The reason why the B0 uGD, 2 times smaller
than the JH uGD, gives an acceptable result is because they are
used with a very large factorization scale, effectively giving a
large K factor.
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Tgðk2t ; μ2Þ ¼ exp

�
−
Z

μ2

k2t

dq2
αsðq2Þ
2πq2

�Z
1−Δ

0

dzzPggðzÞ

þ nf

Z
1

0

dzPqgðzÞ
��

: ð11Þ

Note the factor z in front of the Pgg splitting function,
absent in [33] [Eq. (3)]. This factor regularizes the
divergence of the Pgg splitting function at x ¼ 0. In order
to avoid the divergence at x ¼ 1, this parametrization uses
zmax ¼ 1 − Δ, with

Δ ¼ kt
kt þ μ

: ð12Þ

In Fig. 8 we show the result of the implementation at
x ¼ 10−4. In the left panel, we checked that this para-
metrization indeed respects the relation (8). For gluons,
there is a discrepancy of ∼25%, due to the introduction of
Δ, not dictated by the DGLAP equation [42]. In the
right panel, we show the k2t distribution. We have a very
similar shape compared to [27], but our distribution is
smaller. It could be due to the fact that we use the CTEQ
PDFs, while the authors of [27] use the MSTW08
PDFs [43].
Using our MRW uPDFs and the KATIE event generator,

it came as a big surprise to see that the gg contribution alone
gives a good description of NLO calculations for the charm
pt distribution, as illustrated in Fig. 9. However, as
explained before, it is not good news since, after adding
the gQ contribution, the result will completely overshoot
the NLO line.
In the following, we will demonstrate that this agreement

is accidental. It is related to the definition of Δ, Eq. (12),
and to the fact that this specific implementation of
uGD obeys Eq. (8) only approximately, as shown in
Fig. 8. At kt ¼ μ, zmax ¼ 0.5, and because the parametri-
zation allows kt > μ (giving a Sudakov form factor larger
than one), zmax can even go to zero, an unrealistic value [in
Eq. (11), Pqg is integrated up to z ¼ 1]. Using instead

zmax ¼ 0.99, in Eqs. (10) and (11), we obtained a much
better agreement between the CTEQ and the integrated
KMR gluon densities, see Fig. 10 (left). However, in this
case, the gg contribution overshoots the NLO line by more
than 1 order of magnitude (see Fig. 10, right), showing that
the previous agreement was just accidental.
The reason for the too large gg contribution, both in

Figs. 10 and 9, is the large kt tail of the KMR para-
metrization. Here, by large we precisely mean k2t > μ2.
This part of the distribution is not constrained by the
relation (8). While the other uPDFs displayed in Fig. 8
show a very fast decrease at k2t ≳ μ2, the KMR uPDFs
decrease slower. To probe the contribution of this large kt
tail, we set the uPDFs equal to zero13 for k2t > 1.5μ2. The
result obtained with these cut KMR uPDFs is shown in

FIG. 8. Left: based on Eq. (8), the KMR uPDFs for charm and gluon are integrated and compared to LO CTEQ14 PDFs. Right: k2t
distribution of the KRM uPDFs at μ2 ¼ 10 GeV2 and x ¼ 10−4. For comparison, we also show the result of the ccfm-setB0 and PB-
NLO-HERA+II-2018-set1 sets. All the gluon distributions have been normalized by 10.

FIG. 9. NLO calculation for the charm pt distribution, com-
pared to gg → cc̄ using KMR gluons.

13We did not choose to set these functions to zero for k2t > μ2

because, compared to the other uPDFs displayed in Fig. 8, it
would have been too rough.
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Fig. 11. The gg contribution is now below the NLO line,
showing that indeed, the large kt tail gives an important
contribution. Note also the good agreement of the ggþ cg
calculation. Clearly, this agreement depends on our choice
for the cut KMR uPDFs. What really matters is the
confirmation that the Qg process gives the dominant
contribution.
We believe that the KMR large kt tail cannot be correct

for the following reason. In the KMR paper [33], the uPDFs
are built in two steps. In the first step, inverting Eq. (8) and
using the DGLAP equation gives

k2t Faðx; k2t ; μ2Þ ¼
∂aðx; μ2Þ
∂ ln μ2

����
μ2¼k2t

¼ αs
2π

X
a0

�Z
1−Δ

x
Paa0 ðzÞa0

�
x
z
; k2t

�
dz

− aðx; k2t Þ
Z

1−Δ

0

Pa0aðzÞdz
�
; ð13Þ

with aðx; μ2Þ the usual momentum density. The term
with a minus sign is referred to as the virtual contribution.
In a second step, this virtual contribution disappears,
replaced by the Sudakov form factor, supposed to resum
the virtual contribution. It is clear that this Sudakov form
factor does not play its role in the region k2t > μ2,
and while the virtual contribution can be large, leading
to a substantial reduction of the first term in the rhs of
Eq. (13), the Sudakov form factor (replacing the virtual
contribution) multiplies this term by a factor larger than 1.
This explains the slow decrease of the KMR uPDFs
with k2t .
To summarize, with the KMR uPDFs, the agreement of

the gg contribution with the NLO result is accidental.
The unintegrated gluon does not exactly respect Eq. (8),
and, trying to improve the situation by playing with zmax
makes the gg contribution overshoot the NLO line.
This overestimation is due to the too large kt tail of the
KMR uPDFs. Consequently, the result displayed in Fig. 9
cannot be considered as viable. Having a too large kt tail
could be seen as another way of implementing a large K
factor.

D. Full calculation with KATIE and discussions

By employing a VFNS, we have seen that the main
contribution to the heavy-quark pt distribution is the
process Qg → Qg, both within collinear and kt factoriza-
tion. Equation (5) should be changed for

dσ
dx1dx1d2pt

ðs; x1; x2; p2
t ; μ2Þ

¼
X
ij

Z
k2max

d2k1td2k2tFiðx1; k21t; μ2ÞFjðx2; k22t; μ2Þ

× σ̂ijðx1x2s; k21t; k22t; p2
t Þ; ð14Þ

where a sum on all parton types has been included. If all
contributions are taken into account, no large factor is
required. The result for the full calculation, using the PB

FIG. 11. NLO calculations for the charm pt distribution,
compared to the gg and ggþ cg contributions, using our cut
KMR uPDFs.

FIG. 10. Same as Figs. 8 (left) and 9, with zmax ¼ 0.99 (Δ ¼ 0.01).
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uPDFs and the event generator KATIE is displayed in
Fig. 12. The details of the implementation have already
been presented in Sec. VI A. While the full calculation is in
good agreement with NLO, the gg contribution alone is
below the NLO line by a factor ∼4. These calculations also
confirm that at medium and large pt, collinear and kt
factorizations are numerically close (see [3,44]).
These numerical results confirm the theoretical expect-

ations, and in particular, the importance of the gQ contri-
bution. This conclusion can be probably generalized to
several phenomenological papers using the kt factorization.
The majority of these papers take into account only the
unintegrated gluon densityFgðx; kt; μÞ, while it is likely that
the unintegrated quark density, Fqðx; kt; μÞ, also plays a
non-negligible role in some of these studies. It is then
important to systematically explore the effect of the quark
contribution.
Concerning the phenomenology, the Qg → Qg process

gives kinematical configurations quite different from the
gg → QQ̄ process. Including the flavor excitation contri-
butions, as well as spacelike and timelike cascades, is
the minimal requirement for a realistic comparison with
observables like heavy-quarks correlations.14 Note that, in
the framework of models based on collinear factorization,
the azimuthal correlations between a bb̄ pair have been
studied in [1], using the event generators HERWIG,
ISAJET and PYTHIA. They observed that the toward

region (Δϕ ∈ ½0; 90�) is very sensitive to the presence of
the flavor excitation and cascades processes.

VII. CONCLUSION

We have analyzed the pt distribution of a heavy quark in
the fixed-flavor-number scheme and in the variable-flavor-
number scheme. In Sec. II, discussing the case of collinear
factorization, we reminded that in the FFNS, the NLO
contributions give a large K factor, due to the opening of
the flavor excitation channel. In the opposite, this is not true
in the VFNS, since flavor excitation and the heavy-quark
density, resuming to all orders large logarithms of
lnðp2

t =m2
QÞ, are included at leading order.

The main goal of this paper was the discussion of the
fact that, generally, kt-factorization calculations include
only the gg → QQ̄ contribution. The conclusion of the
discussion depends on the scheme used. We have seen
that in a FFNS, taking into account only the gg con-
tribution is correct, by definition for a 0-flavor scheme.
For n-flavor schemes, with n > 0, it is a good approxi-
mation since the qq̄ → QQ̄ contribution is negligible at
small and medium x. However, in this scheme, the
calculations suffer from large uncertainties. Moreover,
in the region pt ≫ mQ, NLO FFNS calculations fail
and the heavy-quark density has to be taken into account
for accurate predictions. In a VFNS, the unintegrated sea-
quark densities should be taken into account, and we have
shown that the Qg → Qg process gives the main con-
tribution, for pt > mQ. Calculations in agreement with
data and taking into account only the gg contribution are
incorrect since (1) by definition of the VFNS, flavor
excitation processes should be included and (2) if they
were, the obtained result would overshoot data by a large
factor (in the region pt > mQ).
In this scheme, if the gg contribution is in agreement with

data, it is because the calculation (effectively) includes a
large K factor. In Secs. VI B and VI C, we discussed how
this factor can be implemented. It can be added by hand, or
can be obtained by using a too large unintegrated gluon
density, a too large factorization scale or uGDs with a too
large kt tail. We have shown that the latter possibility is the
case of the KMR uPDFs.
In Sec. VI D, numerical (VFNS) calculations, done with

the help of the KATIE event generator and the PB uPDFs
have been presented in Fig. 12. They show that, while the
gg contribution is far below the NLO line, the full
contribution is in fair agreement with NLO calculations.
We chose these uPDFs because they are part of the tmdlib
library and because we have been able to check that they do
obey the relation they are said to obey, e.g., Eq. (8). It is not
the case of the KMR parametrization studied in Sec. VI C,
where the uGD shows a disagreement of ∼25% with the
corresponding gluon density. It is also interesting to note
that, for the pt distribution of a heavy quark, collinear

FIG. 12. Transverse momentum distribution of a charm quark
at central rapidity. Results obtained with the KATIE event
generator for the gg and the full contributions are compared
with NLO calculations [15] and our collinear calculations.

14If the observable has been chosen in order to make the
contribution of multiple partonic interactions (MPI) negligible.
Otherwise a model for MPI should be implemented for realistic
studies.
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and kt-factorization results are numerically very close, in
agreement with [3,44].
Heavy-quark production is probably not an isolated case,

and the role of unintegrated quark densities should be
systematically studied in papers using the kt factorization.
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APPENDIX: KINEMATICAL UPPER BOUND

The upper bound for the k2t integration is generally not
important, since large kt are suppressed by the unintegrated
parton densities, Fðx; k2t Þ. Sometimes, one finds the
condition

ðk1 þ k2Þ2 < s; ðA1Þ
with k1 ¼ ½k0; k⃗t; kz� and k2 ¼ ½k0;−k⃗t;−kz�, in the par-
tonic center-of-momentum frame. These partons being
spacelike, we define

k21 ¼ k22 ¼ −Q2: ðA2Þ
The condition (A1) is clearly insufficient since here,
kt can go to infinity without violation of this bound or
of energy conservation. Indeed, using the approximation
k2t ¼ Q2 (used in the calculation of off-shell cross sections)
we get

k20 ¼ −Q2 þ k2t þ k2z ¼ k2z ; ðA3Þ
and the energy is finite. Intuitively, the upper bound
would be

k2t;max ¼
s
4
: ðA4Þ

In the case of on-shell particles, in order to find the upper
bound for pt, one writes an equation for 4-momentum
conservation and put pz to zero. This is how the upper
bound p2

t < ŝ=4 is found. Trying to do the same in the case
of off-shell particles, we first get

ðk1 þ k2Þ2 ¼ ŝ ¼ 4k20; ðA5Þ
giving the usual relation k20 ¼ ŝ=4. The second step consists
in writing explicitly the relation (A2):

k2t þ k2z ¼
ŝ
4
þQ2: ðA6Þ

In the case of on-shell partons, Q2 ¼ 0, taking kz to zero
gives k2t;max ¼ ŝ=4. However, in the case of off-shell partons
with k2t ¼ Q2, the relation becomes

k2z ¼
ŝ
4
: ðA7Þ

We see that it is not possible to obtain the upper bound in
this way.
We need to find another method for the derivation of the

upper bound k2t;max. First, we want to show that the relation
k2t ¼ Q2 cannot be correct. We will see that this is an
approximation, accurate only in a specific kinematical
region. Let us consider the diagram in Fig. 13. Here, we
consider the simplified situation where the spacelike parton
is generated after the bremsstrahlung from a perfectly
collinear on-shell parton with energy

E ¼
ffiffiffi
s

p
2

: ðA8Þ

For the spacelike parton, we choose the parametrization
k ¼ ½xE; k⃗t; xE�, which corresponds to the approximation
k2 ¼ −Q2 ¼ −k2t . But then, 4-momentum conservation
implies that the radiated parton has the 4-momentum

p ¼ ½ð1 − xÞE;−k⃗t; ð1 − xÞE�: ðA9Þ

This is not acceptable since it gives p2 ¼ −k2t < 0 and we
want the radiated parton to be timelike or on shell. This
strange situation is due to the approximation Q2 ¼ k2t .
Relaxing this approximation and using the same dia-

gram, it is in fact possible to derive the true relation
between k2t and Q2, as well as the upper bounds for these
two quantities. 4-momenta can be written

q ¼ ðE; 0; 0; EÞ ðA10Þ

k ¼ ðEk; k⃗t; kzÞ ðA11Þ

p ¼ ðEp;−k⃗t; pzÞ: ðA12Þ

FIG. 13. p is the 4-momentum of the radiated parton while k is
the 4-momentum of the spacelike parton. q is the proton (or
parton with x ¼ 1) 4-momentum.
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Asking for 4-momentum conservation and choosing the
radiated parton on shell gives the following equations:

E2
p ¼ k2t þ p2

z ðA13Þ

Ek þ Ep ¼ E ðA14Þ

kz þ pz ¼ E: ðA15Þ

With these equations, we obtain

Ek þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t þ ðE − kzÞ2

q
¼ E ðA16Þ

E2
k − k2t − k2z ¼ 2EðEk − kzÞ: ðA17Þ

In the lhs of Eq. (A17), one can recognize k2 ¼ −Q2. We
then obtain the following expression for the virtuality:

Q2 ¼ 2EðxE − EkÞ; ðA18Þ

where the definition kz ≔ xE has been used. The maximum
value is obtained for Ek ¼ 0:

Q2
maxðxÞ ¼ 2xE2 ¼ xs

2
; ðA19Þ

giving the x-dependent upper bound for the virtuality.
The relation between k2t and Q2 can be obtained using

Eq. (A16) and the off-shell condition E2
k − k2t − k2z ¼ −Q2,

giving

k2t ¼ Q2ð1 − xÞ þQ4

s
; ðA20Þ

where we have used the fact that 4E2 ¼ s and kz ¼ xE. We
see that in the limit Q2=s ≪ ð1 − xÞ and x ≪ 1, this
equation reduces to

k2t ¼ Q2: ðA21Þ

Using Eq. (A19), we see that Q2=s ≪ ð1 − xÞ is always
true at small x. Then, the condition x ≪ 1 is enough to
ensure the validity of the approximation Eq. (A21), show-
ing that at small x, it is justified to use this relation when
computing the off-shell cross section.
As for Q2, the upper bound for kt is obtained in the case

Ek ¼ 0. Inserting Eq. (A19) in Eq. (A20), we obtain

k2t;maxðxÞ ¼
s
4
ð2x − x2Þ: ðA22Þ

At small x, corresponding to the kinematical region of
interest for the kt factorization, we have

k2t;maxðxÞ ≃
xs
2
: ðA23Þ

For x ¼ 1, one has k2t;max ¼ s=4, which is the x-indepen-
dent intuitive expectation given in Eq. (A4). This limit
corresponds to the simple case where the radiated parton
takes all the energy and has no longitudinal momentum,
p ¼ ½E; E⃗; 0�. Then the 4-momentum of the spacelike
parton is k ¼ ½0; E⃗; E�, showing that the parametrization
½xE; k⃗t; xE� can be really incorrect. In this case we have

k2t ¼ Q4

s ≠ Q2. Of course, the probability for an emission
with a very large transverse momentum is low, and the
region of large x is supposed15 to be outside of the domain
of applicability of the kt factorization.
Finally, we wonder if the upper bound is always

irrelevant, if we are only interested by the main contribu-
tion. In Ref. [3], it is shown that doing the integration up to
p2
t (or m2

t ¼ p2
t þm2), pt being the transverse momentum

of the outgoing parton, is enough in order to obtain the
main contribution. If k2t;max > p2

t or 1 ≪ k2t;max < p2
t , the

upper bound is irrelevant.16 Then, we concentrate on
the small-pt and small-x region and wonder when

k2t;maxðx1;2Þ ≃
x1;2s
2

¼ p2
t ; ðA24Þ

with

x1 ¼
p1;tffiffiffi
s

p ey1 þ p2;tffiffiffi
s

p ey2 x2 ¼
p1;tffiffiffi
s

p e−y1 þ p2;tffiffiffi
s

p e−y2 ;

ðA25Þ

and we choose p1;t ¼ pt, while p2;t is integrated out. Let us
take the case of x1. We have

x1s
2

¼
ffiffiffi
s

p
2

ðptey1 þ p2;tey2Þ ¼ p2
t : ðA26Þ

The solution is

pt ¼
ffiffiffi
s

p
4

ey1
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

p2;tffiffiffi
s

p ey2−2y1
r �

: ðA27Þ

Let us consider that small pt means pt ¼ 1 GeV,
then the two factors in the rhs of Eq. (A27) have to be

15Computing dσ=dpt requires an integration over x which is
not restricted to small values. We do not know if the region of, let
us say x > 0.01, gives a negligible contribution.

16The second case is due to the fact that large kt contributions
are strongly suppressed by Fðx; k2t Þ, the unintegrated parton
densities.
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small. If the term with p2;t is negligible, the condition
on y1 is ffiffiffi

s
p
2

ey1 ¼ 1; ðA28Þ

which corresponds to the value y1∼−8.16, for
ffiffiffi
s

p ¼7TeV.
If the second term with p2;t is not negligible, the value
will be even more negative. For Pb-Pb collision,

ffiffiffi
s

p
is

smaller which gives a smaller value for y1. Then, at the
LHC, if one starts to measure particles at y ∼ 7–8, k2t;max

will play an important role, while at central rapidities, it
does not.
It is maybe possible to find a more restrictive k2t;max, for

instance due to angular ordering. In this case, the absolute
value of y, for which the precise definition of the upper
bound plays a role, will be smaller.
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