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In the framework of the instanton liquid model (ILM), we consider thermal modifications of gluon
properties in different scenarios of temperature (T) dependence of the average instanton size ρ̄ðTÞ and
instanton density nðTÞ known from the literature. Due to interactions with instantons, the gluons acquire
the dynamical temperature-dependent “electric” gluon massMelðq; TÞ. We find that at small momenta and
zero temperature Melð0; 0Þ ≈ 362 MeV for the phenomenological values of ρ̄ð0Þ ¼ 1=3 fm and
nð0Þ ¼ 1 fm−4. However, the T dependence of the mass is very sensitive to the temperature dependence
of the instanton vacuum parameters ρ̄ðTÞ and nðTÞ: it is very mild in the case of the lattice-motivated
dependence and decreases steeply in the whole range with theoretical parametrization. We find that the
region 0 < T < Tc ILM is able to reproduce lattice results for the dynamical gluon mass.
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I. INTRODUCTION

Gluodynamics at nonzero temperature Tð≡1=βÞ is
described by the partition function

Z ¼
Z

DAμ exp

�
−

1

2g2

Z
β

0

dx4

Z
d3xtrFμνFμν

�
; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ − i½Aμ; Aν�, and the gauge field
Aμ satisfies the periodic condition Aμðx⃗;x4þβÞ¼Aμðx⃗;x4Þ.
The extension of the zero-temperature instanton solution
[1]—the caloron (found in Ref. [2])—has the form

AI
μ ¼Πη̄aμνðτa=2iÞ∂νΠ−1;

Fμν ¼
1

2
Πðτ∂Þη̄aμνðτa=2iÞðτþ∂ÞΠ−1; Π−1∂2Π¼ 0; ð2Þ

Πðr; tÞ ¼ 1þ πρ2

βr
sinh

2πr
β

=
�
cosh

2πr
β

− cos
2πt
β

�

¼ 1þ
X∞
n¼−∞

ρ2

r2 þ ðt − nβÞ2 ; ð3Þ

where r ¼ jx⃗j, t ¼ x4, and τμ ¼ ðτ⃗; iÞ. At small distances
r; t ≪ β the profile ΠðxÞ may be approximated as

ΠðxÞ ≈ Π0ðxÞ ¼
�
1þ λ2

3

�
þ ρ2=x2; ð4Þ

where λ ¼ πρ=β, so the gluon field has an instanton-like
shape with modified instanton size,

AI;a
μ ¼ 2ρ02

x2
η̄aμνxν

ðx2 þ ρ02Þ ; ρ02 ¼ ρ2=

�
1þ λ2

3

�
: ð5Þ

In fact, the accuracy of the approximation (4) is about 1%
up to r; t ∼ β. The extension of the instanton vacuum liquid
model (ILM) [3–5] to nonzero temperature in this regime is
straightforward and might be encoded in the temperature
dependences of the main parameters of the model: the
average instanton size ρ̄ðTÞ and average instanton density
nðTÞ ¼ NT=V3 ¼ 1=R4ðTÞ, whereN is the total number of
instantons [6]. Both ρ̄ðTÞ and nðTÞ in the ILM are
homogeneously decreasing functions of T.
But the simplified approximation (4) does not describe a

nontrivial phase transition near the critical temperature
Tc ∼ ΛQCD. Indeed, for T < Tc all color objects are bound
into colorless hadrons. The heat bath predominantly con-
sists of weakly interacting pions, so the T dependence of
the instanton density nðTÞ should be rather mild, which
agrees with the expectation of almost constant T depend-
ence, nðTÞ ¼ n0ð1þOðT2=ð6f2πÞÞÞ [5]. However, this
behavior changes during phase transitions, and the
expected instanton density nðTÞ should be exponentially
suppressed at large temperatures, T ≳ Tc [5].
The extension of the ILM that is able to describe the

phase transition from a confined to a deconfined phase near
the critical temperature Tc is the so-called dyon-instanton
liquid model [7]. The authors of Ref. [7] concluded later in
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Ref. [8] that at very low temperature, the semiclassical
description of the Yang-Mills state reconciles the instanton
liquid model without confinement with the ’t Hooft–
Mandelstam proposal of confinement. In the former, the
low-temperature thermal state is composed of a liquid of
instantons and anti-instantons, while in the latter it is a
superfluid of monopoles and antimonopoles.
The temperature dependence of the QCD vacuum model

might be tested by comparison with results of lattice
simulations. For example, for the “electric” gluon mass
MelðTÞ in the framework of lattice QCD [9–12], it was
found that for T ≥ Tc the linear dependence MelðTÞ ∼ T is
consistent with Debye screening and has a minimum at
T ∼ Tc, whereas for T ≤ Tc the electric mass MelðTÞ is a
rather slowly decreasing function of temperature T. This
behavior might be naturally explained in the framework of
the ILM, which predicts the temperature dependence as

Mel ∼ ðpacking parameterðTÞÞ1=2ρ̄−1ðTÞ ¼ ρ̄ðTÞn1=2ðTÞ;
ð6Þ

i.e., a decreasing function of temperature at T ≤ Tc.
Combined with the perturbative one-loop thermal gluon
contribution to the gluon propagator, which increases with
temperature as Mpert;elðTÞ ∼ T, this model is able to repro-
duce lattice results for the dynamical gluon mass [9,12].
There are two major technical challenges in the calcu-

lation of the gluon propagator in the ILM framework: the
zero-mode problem (fluctuations along the instanton col-
lective coordinates), and averaging over the collective
coordinates of all instantons. We address the former using
the approach of Ref. [14], while for the latter we extend
Pobylitsa’s approach [15], applied earlier by us for the
gluons at T ¼ 0 [16], and consider in this paper its further
extension for the ILM averaged gluon propagator at T ≠ 0.
The paper is structured as follows. In Sec. II we review

briefly the formulation of the ILM at nonzero temperature
T ≠ 0 and discuss the temperature dependence of the main
instanton vacuum parameters. In Sec. III we consider a
simplified case and evaluate the propagator of the scalar
color-octet particle (which we call the “scalar gluon”) in the
instanton background at nonzero temperature. This allows
us to get several important results which will be used later.
In Sec. IV we consider the case of a real gluon and evaluate
the propagator at nonzero temperature. We extract the
electric mass Mel and compare it with lattice results.
Finally, in Sec. V we draw our conclusions.

II. VARIATIONAL ESTIMATES
IN THE ILM AT T ≠ 0

The application of Feynman’s variational principle to the
QCD vacuum filled with an instanton gas leads to the ILM
[3], which was generalized to nonzero temperatures in
Ref. [6]. The main variational ingredients of this approach

are the instanton size distribution function μðρ; T; nÞ and
the instanton density nðTÞ [6,6,17]. The ILM instanton size
distribution function is closely related to the thermal single
instanton one-loop distribution function [18],

dðρ; TÞ ¼ Cρb−5 expð−ANc
T2Þ; C ¼ const; ð7Þ

μðρ; T; nÞ ¼ Cρb−5 exp ½−Φðn; TÞρ2�; ð8Þ

Φðn; TÞ ¼ 1

2
ANc

T2 þ
�
1

4
A2
Nc
T4 þ νβ̄γ2n

�
1=2

; ð9Þ

where

ANc
¼ 1

3

�
11

6
Nc − 1

�
π2; b ¼ 11

3
Nc; ν ¼

b − 4

2
;

β̄ ¼ −b logðΛρ̄Þ; γ2 ¼ 27π2Nc

4ðN2
c − 1Þ

and

ρ̄2ðT; nÞ ¼ 1

μ0ðT; nÞ
Z

∞

0

dρμðρ; T; nÞρ2;

μ0ðT; nÞ ¼
Z

∞

0

dρμðρ; T; nÞ: ð10Þ

The result (8) might be obtained by maximizing the
variational ILM partition function [6]

Z ≥ Z1ðμ; nÞ expð−hE − E1iÞ; ð11Þ

Z1ðμ; nÞ ¼
1

ðN=2!Þ2
�
2μ0ðT; nÞV

N

�
N
;

hE − E1i ¼ −
N
2
β̄γ2nρ̄22 ð12Þ

with respect to the parameter μ. The minimization of the
free energy F ¼ −T=V3 logZ by variation over n leads to
the equation for the density,

nðTÞ ¼ 2μ0ðn; TÞ: ð13Þ

The variational estimates demonstrate that ρ̄ðTÞ and nðTÞ
are decreasing functions of temperature T (see Fig. 1) due
to the exponential factor in dðρ; TÞ ∼ ANc

. On the other
hand, lattice data show that the instanton density n is
not modified by temperature up to the critical temperature
Tc [19]. In numerical simulations of the ILM [5] it was
suggested to interpolate between no suppression [ANc

¼ 0

in Eq. (9)] below Tc and full suppression [ANc
≠ 0 in

Eq. (9)] above Tc ∼ 150 MeV, with a width ΔT ¼ 0.3Tc to
be in agreement with the lattice results [19]. We follow this
suggestion and repeat the calculations with the modifica-
tion in Eq. (9) as ANc

→ ANc
ΘΔyðy − ycÞ, where y¼ ρ̄0T,
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yc ¼ ρ̄0Tc¼ 0.25∼Tc¼ 150MeV, Δy¼ ρ̄0ΔTc¼0.075∼
ΔT¼0.3Tc, and we introduce a smooth interpolation with
a step-like function of width Δy,

ΘΔyðzÞ ¼ 1=2½1þ tanhðz=ΔyÞ�: ð14Þ

The temperature dependences of ρ2ðyÞ=ρ2ð0Þ and
nðyÞ=nð0Þ are shown in Fig. 1.

III. COLOR-OCTET SCALAR PROPAGATOR AT
NONZERO TEMPERATURE

We start from the scalar massless field ϕ belonging to the
adjoint representation, which is the same as a physical
gluon. We have to find its propagator in the external
classical gluon field of instanton gas Aμ ¼

P
IA

I
μðγIÞ,

where AI
μðγIÞ is a generic notation for the QCD (anti-)

instanton, and γI stands for all of the relevant collective
coordinates: the position in Euclidean four-dimensional
space zI , the size ρI , and the SUðNcÞ color orientation UI
(4Nc collective coordinates in total). The averaging over the
instanton collective coordinates includes the integral over
the instanton position

R
d4z≡ R

V3
d3zI

R β
0 dzI;4. In view of

the periodicity of the fields ϕðx⃗; tþ βÞ ¼ ϕðx⃗; tÞ at nonzero
temperature, we may restrict the integration over t to the
period β, so the effective action takes the form

Sϕ ¼
Z
V3

d3x
Z

β

0

dtϕ†ðx⃗; tÞP2ϕðx⃗; tÞ; ð15Þ

where Pμ ¼ pμ þ Aμ (in the coordinate representation
pμ ¼ i∂μ). The color-octet scalar propagator in the field
of instanton gas is given by

Δ¼ðpþAÞ−2¼
�
p2þ

X
i

ðfp;AigþA2
i Þþ

X
i≠j

AiAj

�
−1
;

Δ0¼p−2: ð16Þ

It is convenient to also introduce the propagator in the field
of an individual instanton,

Δi ¼ P−2
i ¼ ðp2 þ fp; Aig þ A2

i Þ−1; ð17Þ
and in the instanton gas background when the overlaps
∼
P

i≠jAiAj are disregarded,

Δ̃ ¼ ðp2 þ
X
i

ðfp; Aig þ A2
i ÞÞ−1: ð18Þ

There are no zeromodes inΔ−1
i ¼ P2

i orΔ−1 ¼ P2, which
implies the existence of the inverse operatorsΔi andΔ. Our
aim is to find the propagator averaged over instanton
collective coordinates Δ̄≡ hΔi ¼ R

DγΔ. In coordinate
space the propagator Δ and free propagator Δ0 must be
periodic functions of timewith period β. In what follows we
will use the notation Δðx; x0Þ≡ hxjΔjx0i for the matrix
element of the operator Δ between Fock states labeled by
spacetime coordinates jxi≡ jx⃗; ti ¼ jx⃗ijti (the same for
jx0i) and ½xμ; pν� ¼ iδμν [20]. These states form a complete
orthonormalized set,

P
tjtihtj ¼ 1; ht0jti ¼ δðt0 − tÞ. Also,

we define the step operator ht0jΘjti ¼ Θðt0 − tÞ. In view of
d
dt0 Θðt0 − tÞ ¼ δðt0 − tÞ, wemay conclude thatΘ−1 ≡ d

dt. The
time-periodic state with period β may be represented in
terms of states jti as

jtβi≡
X∞
n¼−∞

jt − nβi;

ht0jtβi ¼ δðt0 − tβÞ≡
X∞
n¼−∞

δðt0 − ðt − nβÞÞ: ð19Þ

FIG. 1. The (normalized to unity) temperature dependences of the instanton size ρ̄2ðyÞ=ρ̄2ð0Þ (left) and instanton density nðyÞ=nð0Þ
(right) obtained with variational estimates from Refs. [5,6,17]). In both plots we use the notation y ¼ ρ̄0T and the phenomenological
values ρ̄ð0Þ ¼ 1=3 fm and nð0Þ ¼ 1 fm−4 for the estimates. The solid line corresponds to values with the modification ANc

→
ANc

ΘΔyðy − ycÞ in Eq. (9), where ΘΔyðy − ycÞ is the smooth interpolating step-like function (14) with a width ΔT ¼ 0.3Tc [5]. Dashed
lines correspond to values with ANc

¼ const in Eq. (9) (full suppression) for all T.
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Now the evaluation of the propagatorΔ ¼ ðP2Þ−1 is straight-
forward. Since ht0jP2jtβi ¼ δðt0 − tβÞðP⃗2 þ ði ∂

∂t0 þ A4Þ2Þ,
we have the equation in the form�
P⃗2 þ

�
i
∂
∂t0 þ A4

�
2
�
ht0jΔjtβi ¼ δðt0 − tβÞ

⇒ hx⃗0; t0jΔjx⃗; tβi ¼
X∞
n¼−∞

Δðx⃗0; t0jx⃗; t − nβÞ;

ð20Þ
whereΔðx⃗0; t0jx⃗; t − nβÞ is a usual zero-temperature (T ¼ 0)
aperiodic propagator. For physical applications we need to
average the propagator Δ over the collective coordinates of
all instantons, Δ̄ ¼ hΔi ¼ R

DγΔ. We follow the procedure
developed in our previous paper [16], where the approach
[15] derived for the quark correlators was extended to the
gluon case. We start by averaging over the collective

coordinates of the operator ¯̃Δ ¼ hΔ̃i [see Eq. (16)]. Since
the Pobylitsa equations [15,16] are written in operator form,
they can be easily extended to the T ≠ 0 case just by
calculating the matrix elements of the propagator Δ̃ with
periodic states jtβi on the right side.
Since the instanton gas is dilute [namely, the packing

parameter ρ4n ∼ ð1=3Þ4 ¼ 1.2 × 10−2 ≪ 1], we may
develop a systematic expansion over the parameter n.
The expansion of the inverse propagator up to first-order
OðnÞ terms has the form

¯̃Δ−1 − Δ−1
0 ¼

�X
i

fΔ0 þ ðΔ−1
i − Δ−1

0 Þ−1g−1
	

¼ NΔ−1
0 ðΔ̄I − Δ0ÞΔ−1

0 þOðn2Þ; ð21Þ
where Δ̄I ¼

R
dγIΔI is the propagator in the field of an

individual instanton averaged over its collective degrees of
freedom. To the same expansion order, we may approxi-

mate the inverse propagator as Δ̄−1 ¼ ¯̃Δ−1 ¼ p2 þM2
s ,

where we introduced the squared dynamical color-
octet scalar mass operator M2

s whose matrix elements
are given by

ht0jM2
s jtβiδab ¼ Np2ðht0jΔ̄ab

I jtβi − ht0jΔab
0 jtβiÞp2: ð22Þ

According to Ref. [18], the periodic color-octet scalar
propagator in the instanton field (3) is given by

Δab
I ðx; yÞ ¼ Δab

0 ðx; yÞ þ Δab
1 ðx; yÞ þ Δab

2 ðx; yÞ; ð23Þ

Δab
0 ðx; yÞ ¼ 1

2
tr

�
τaFðx; yÞτbFðy; xÞ

ΠðxÞ4π2ðx − yÞ2ΠðyÞ
�
; ð24Þ

Fðx; yÞ ¼ 1þ
X
m

ρ2ðτxmÞðτ†ymÞ
x2my2m

× ðxm ≡ x −mβt̂; ym ≡ y −mβt̂Þ; ð25Þ

Δab
1 ðx; yÞ ¼ 1

2
tr

�X
m
0 τaFðx; ymÞτbFðym; xÞ
ΠðxÞ4π2ðx − ymÞ2ΠðyÞ

�
; ð26Þ

Δab
2 ðx; yÞ ¼

X
m

Cabðx; ymÞ
ΠðxÞ4π2ΠðyÞ ; ð27Þ

Cabðx; yÞ ¼
X
r≠s

2Φa
rsðxÞΦb

rsðyÞ
β2ðr − sÞ2

−
X
r≠s

X
t≠u

ρ2Φa
rsðxÞ

β2ðr − sÞ2
Φb

tuðyÞ
β2ðt − uÞ2 hrs;tu; ð28Þ

Φa
rsðxÞ ¼

ρ2βðr − sÞxa
x2rx2s

;

X
m

Cabðx; ymÞ ¼
X
m

X
r≠s

2Φa
rsðxÞΦb

rsðymÞ
β2ðr − sÞ2

¼
X
r≠s

ρ2xa

x2rx2s

X
m

ρ2yb

y2rþmy
2
sþm

: ð29Þ

Combining Eqs. (28) and (29), we can simplify Eq. (27) as

Δab
2 ðx; yÞ ¼

X
r≠s

ρ2xa

x2rx2s

X
m

ρ2yb

y2rþmy
2
sþm

1

ΠðxÞ4π2ΠðyÞ : ð30Þ

At short distances r ∼ t ≤ β the caloron field becomes
instanton-like [Eq. (5)] with a modified instanton radius
ρ02 ¼ ρ2=ð1þ 1=3λ2Þ, and λ ¼ πρ=β. In this region we can
simplify the first term in Eq. (23) as

Δab
I;0 ¼

1

2
tr

�
τaF0ðx; yÞτbF0ðy; xÞ

4π2ðx− yÞ2Π0ðxÞΠ0ðyÞ
�
; Π0ðxÞ ¼

x2 þ ρ02

x2
;

ð31Þ

τμ ≡ ðτ⃗; iÞ; τ†μ ¼ ðτ⃗;−iÞ; τμτ
þ
ν ¼ δμν þ iη̄aμντa;

ð32Þ

F0ðx; yÞ ¼ 1þ ρ02
ðτxÞðτþyÞ

x2y2

¼ 1þ ρ02
ðxyÞ
x2y2

þ ρ02
iη̄aμντaxμyν

x2y2
; ð33Þ

where η̄aμν ¼ −η̄aνμ is the ’t Hooft symbol. As will be
shown below, the contribution of the terms Δab

1 ðx; yÞ and
Δab

2 ðx; yÞ in Eq. (23) is small and can be neglected.
The collective degrees of freedom (the center of the

instanton position z and orientation U) in Eq. (31) can
be introduced by shifting the arguments x → x − z
and y → y − z and color rotation factors Δab

I →
OabOa0b0Δbb0

I , where Oab are the color rotation matrices
in the adjoint representation. [Oab are related to the color
rotation matrices the in fundamental representation by
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Oab ¼ trðU†taUtbÞ, where ta are SUðNcÞ matrices.] The
averaging over the collective coordinates reduces to inte-
gration over the instanton center (

R β
0 dz4

R
V3
d3z) and color

orientation (
R
dO). The latter integral can be evaluated

analytically using the well-known identities [5]R
dOOabOab0 ¼δbb0 ;

R
dOOabOa0b0 ¼ðN2

c−1Þ−1δaa0δbb0 andR
dOOabη̄bμνOa0b0 η̄b0μ0ν0 ¼ðN2

c−1Þ−1δaa0 ðδμμ0δνν0 −δμν0δνμ0 Þ.

The contribution of Δab
I;0 to the color-octet scalar dynamical

mass operator (22) is given by

M2
s;0δab ¼ Np2ðΔ̄ab

I;0 − Δab
0 Þp2; ð34Þ

so for the expression in parentheses in Eq. (34) we obtain,
after collective coordinate averaging in the coordinate
representation,

Δ̄aa0
I;0 ðx; yÞ − Δaa0

0 ðx; yÞ ¼
Z

d4zdOOacOa0c0 ðΔcc0
I;0ðx0; y0Þ − Δcc0

0 ðx0; y0ÞÞðx0 ≡ x − z; y0 ≡ y − zÞ;

¼ δaa0
Z

d4z
�

3ρ02

4π2ðN2
c − 1Þ f1ðx

0Þf1ðy0Þ þ
2ρ04

N2
c − 1

f2ðx0Þgðx0 − y0Þf2ðy0Þ
�
; ð35Þ

where we introduced the notation

f1ðxÞ ¼
1

ðx2 þ ρ02Þ ; f2ðxÞ ¼
ðxμxν; ix2Þ
x2ðx2 þ ρ02Þ ; gðx − yÞ ¼ 1

4π2ðx − yÞ2 ;

and assumed ðxμxν; ix2Þðyμyν; iy2Þ ¼ ðxyÞ2 − x2y2. In what follows we will use the notation M2
sðq⃗; mÞ for the dynamical

color-octet scalar mass corresponding to the Matsubara mode m with frequency ωm ¼ 2πmT in the three-momentum q⃗
representation. We are especially interested in the m ¼ 0 Matsubara mode, M2

sðq⃗; m ¼ 0Þ≡M2
sðq⃗; TÞ.

If we define the Fourier transformation to coordinate space as

f1ðx − zÞ ¼
X∞

m¼−∞

Z
d3p
ð2πÞ3 exp½ip⃗ðx⃗ − z⃗Þ� expð2πmðx − zÞ4=βÞf1ðp⃗; mÞ; ð36Þ

then the contribution of the first term in Eq. (35) can be rewritten as

M2
s;0;1ðq; TÞ ∼ q4f1ðq⃗; m ¼ 0Þf1ð−q⃗; m ¼ 0Þ ¼ q4f21ðq⃗; 0Þ; ð37Þ

where

q2f1ðq; 0Þ ¼ q2ρ02
Z

β=2ρ0

−β=2ρ0
dx4

Z
∞

−∞
dx2dx3π exp

�
−qρ0

�X4
i¼2

xi2 þ 1Þ1=2
��

1

ðP4
i¼2 xi

2 þ 1Þ1=2

≤ q2ρ02
Z

∞

−∞
dx4dx2dx3

π exp ð−qρ0ðP4
i¼2 xi

2 þ 1Þ1=2ÞÞ
ðP4

i¼2 xi
2 þ 1Þ1=2 ¼ 4π2qρ0K1ðqρ0Þ; ð38Þ

and K1ðzÞ is a modified Bessel function of the second kind,
with limz→0zK1ðzÞ ¼ 1. Since temperature mildly affects
the dynamical mass form factor, we can neglect this
modification at small temperatures T ≤ Tc. Careful analy-
sis shows that the second term in Eq. (35) and all of the
other terms including Δab

1 and Δab
2 give zero or negligible

contribution, so we finally obtain

Msðq; TÞ ≈Ms;0;1ðq; TÞ ¼
�
3ρ̄02ðTÞnðTÞ
ðN2

c − 1Þ 4π2
�
1=2

Fðq; TÞ;

ð39Þ
where

Fð0; 0Þ ¼ 1; Fðq; TÞ ≤ Fðq; 0Þ ¼ qρ̄K1ðqρ̄Þ:

IV. GLUON PROPAGATOR AT NONZERO
TEMPERATURE

In this section we extend the calculations of the averaged
full gluon propagator S̄μν, considered in Ref. [16], to the
nonzero-temperature case. This is a rather straightforward
task, since there all principal equations and their solutions
were found in operator form. First, the solution of the
Pobylitsa equation in operator form is

S̄ρν − S0ρν ¼ NðS̄Iρν − S0ρνÞ þOðn2Þ; ð40Þ
where the free and single instanton gluon propagators [13]
are given by

S0μν ¼ ðδμν − ð1 − ξÞpμpν=p2Þ=p2;

S0−1μν ¼ δμνp2 − ð1 − 1=ξÞpμpν; ð41Þ
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SIμν ¼ qμνρσPI
ρΔ2

IP
I
σ − ð1 − ξÞPI

μΔ2
IP

I
ν; ð42Þ

and we introduced the notation qμνρσ¼δμνδρσþδμρδνσ−
δμσδνρþϵμνρσ (for the anti-instanton, caseþϵμνρσ⇒−ϵμνρσ).
Equation (40) can be rewritten [cf. Eq. (21)] as

Πρν≡ S̄−1ρν −S−10;ρν¼NS0−1ρσ ðS̄Iσμ−S0σμÞS0−1μα þOðn2Þ: ð43Þ

At nonzero temperature, themost essential point is the lack of
relativistic covariance, since Euclidian time is restricted to the
interval 0 ≤ x4 ≤ β ¼ 1=T, and all of the bosonic fields (the
background Aμ, fluctuations aμ, and zero modes ϕμ) must be
time-periodic functions with period β, Aμðx⃗;x4þβÞ¼
Aμðx⃗;x4Þ. The operator form of the main equation (43)
significantly simplifies our problem, since in the end we
only have to calculate the matrix element of the operators
between the time state jt0i and periodic state jtβi defined in
Eq (19). Then, by means of Fourier transformations we can

obtain the momentum representation of the propagators
written in terms of three-momenta k⃗ and Matsubara modes
m [k4 ¼ 2πmT, kμ ≡ ðk⃗; k4Þ, k2 ¼ k⃗2 þ k24].
We expect that the dominant contribution to Πνμ will

come from the large-distance asymptotics of the matrix
elements of SIνμ − S0νμ. In coordinate space, by comparing
the effects from i∂μ and the multiplication by AI

μ in
Eq. (42), we conclude that the dominant asymptotic
contribution to SIνμ − S0νμ in Eq. (43) comes from the term

pρððΔI − Δ0ÞΔ0 þ Δ0ðΔI − Δ0ÞÞpσ: ð44Þ

in particular, from pρ [the most slowly decreasing part of
Eq. (44)]. The term (44) will also give the dominant
contribution to Πνμ. So, Eq. (43) reduces to

Πμν ¼ 2Np2ðΔI;0 − Δ0Þðp2δμν − ð1 − 1=ξÞpμpνÞ: ð45Þ

FIG. 2. Left: Temperature dependence of the “electric” gluon dynamical massMelð0; TÞ=Melð0; 0Þ. The solid line was evaluated using
the modification ANc

→ ANc
ΘΔyðy − ycÞ [see Eqs. (9) and (14)] and interpolates smoothly between no suppression below the critical

temperature Tc ¼ 150 MeV and full suppression above it, with the width of the interpolating region ΔT ¼ 0.3Tc [5]. At small T ≤ Tc

the solid line corresponds to Melð0; TÞ=Melð0; 0Þ ¼ ρ̄0ðTÞ=ρ̄ðTÞ ¼ ð1 − 1=6π2ρ̄02T2Þ. The dashed line corresponds to full suppression
over the whole region of T [ANc

¼ const in Eq. (9)]. In both plots we use the phenomenological estimates Melð0; 0Þ ¼ 362 MeV,
ρ̄ð0Þ ¼ 1=3, fm and nð0Þ ¼ 1 fm−4. Right: Form factor of the dynamical mass Fðq; 0Þ [Eq. (39)].

FIG. 3. Comparison of the “electric” gluon dynamical masses from the ILM and lattice measurements. Left: T dependences of
Melð0; TÞ in the region 0 < T < Tc within the ILM (all definitions are the same as in Fig. 2). Right: Lattice measurement results for the
same quantity taken at the scale 2 GeV [9–12]. (The right plot is a part of Fig. 12 from Ref. [11]; see the caption of that figure for further
details.)
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By definition, the square of the “electric” gluon mass
M2

elðjk⃗j; TÞ is related to Πμν as M2
elðjk⃗j;TÞ¼Π44ðk⃗;k4¼0Þ.

Comparing it with Eq. (34), we conclude thatM2
elðjk⃗j; TÞ ¼

2M2
sðjk⃗j; TÞ is gauge invariant (ξ independent), and its T

and q dependences are represented in Fig. 2. It is obvious
that M2

elðjk⃗j; T ¼ 0Þ ¼ Mgðjk⃗jÞ, where the gauge-invariant
dynamical gluon massMg was obtained in Ref. [16]. Using
the phenomenological values of ρ̄ and n at T ¼ 0, we
obtain Melð0; 0Þ ¼ 362 MeV.
From Fig. 3 we see that the most natural explanation for

a nonzero “electric” gluon dynamical mass in the region
T < Tc seen in lattice measurements [9,12] is given by the
ILM, since the ILM is able to (at least qualitatively)
reproduce its value at T ¼ 0 and its T dependences.

V. SUMMARY AND DISCUSSION

In this paper we extended the calculations of the
dynamical gluon mass in the ILM [16] to nonzero temper-
ature and studied the so-called “electric” gluon mass
Melðq; TÞ, which corresponds to the Π44 component of
the polarization operator. We also analyzed the temperature
(T) dependence of the main parameters of the ILM: the
average instanton size ρ̄ðTÞ and instanton density nðTÞ. We
found that they are homogeneously decreasing functions of
temperature due to the influence of thermal gluon fluctua-
tions [6]. Our findings agree with lattice investigations [19],
which demonstrated that ρ̄ðTÞ and nðTÞ decrease rapidly
for T ≥ Tc, where Tc is the critical temperature. For
temperatures below the critical temperature Tc, these
functions are almost constant, and we took this scenario
into account by neglecting the contributions of thermal
gluon fluctuations at low temperatures T ≤ Tc [5]. These
scenarios are compared in Fig. 1.
In order to find the gluon propagator in the ILM

background field at nonzero temperature T ≠ 0, we solved
the gluon zero-mode problem and averaged the full gluon
propagator over the collective coordinates of all instantons.
This was done in the framework developed in our previous
paper [16] and extended to the nonzero-temperature
case. First, we evaluated the “electric” color-octet scalar

dynamical mass Msðq; TÞ as a function of the three-
momentum q⃗ and temperature T. The solution of the
zero-mode problem yields M2

elðq; TÞ ¼ 2M2
sðq; TÞ, which

allowed us to relate. The final results for the “electric”
gluon dynamical mass Melðq; TÞ are presented in Fig. 2.
It is interesting to compare our result for the dynamical

“electric” gluon mass Mel with the result from lattice
calculations (see Fig. 3), which observed that Melð0; TÞ
is a decreasing function of T for T ≤ Tc (in agreement with
the ILM) and an increasing function of T above the
confinement-deconfinement phase transition [9,12]. It is
clear from Eq. (45) that the “electric” gluon mass is a
gauge-independent (ξ-independent) quantity. Also, the
natural scale for the ILM is ρ−1 ∼ 1 GeV. On the other
hand, the lattice measurements of the “electric” gluon mass
shown in Fig. 12 of Ref. [11] were given in Landau gauge
(ξ ¼ 0) and at the scale 2 GeV. So, due to the scale
difference the comparison presented in Fig. 3 is only
qualitative. Here it is most important that lattice measure-
ments demonstrated a nonzero “electric” gluon mass at low
temperatures. The growth of Melð0; TÞ for T ≥ Tc may be
explained by the perturbative thermal gluon correction and
it is expected to have an almost linear functional depend-
ence, Mpert;elð0; TÞ ∼ T. Since thermal gluons are incorpo-
rated into our framework, it is probably easy to reproduce
the lattice measurements of the dynamical “electric” gluon
mass within the ILM model over the whole temperature
region.
In the future, we hope to apply our results to the

calculation of the temperature dependences of the heavy
quarkonium properties, and to extend the present calcu-
lation to the dynamical “magnetic” gluon mass case.
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