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Dynamical gluon mass at nonzero temperature in instanton vacuum model
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In the framework of the instanton liquid model (ILM), we consider thermal modifications of gluon
properties in different scenarios of temperature (7)) dependence of the average instanton size p(T) and
instanton density n(7) known from the literature. Due to interactions with instantons, the gluons acquire
the dynamical temperature-dependent “electric” gluon mass M (g, T). We find that at small momenta and
zero temperature M (0,0) ~ 362 MeV for the phenomenological values of (0) =1/3 fm and
n(0) = 1 fm™*. However, the T dependence of the mass is very sensitive to the temperature dependence
of the instanton vacuum parameters p(7) and n(7T): it is very mild in the case of the lattice-motivated
dependence and decreases steeply in the whole range with theoretical parametrization. We find that the

region 0 < T < T, ILM is able to reproduce lattice results for the dynamical gluon mass.

DOI: 10.1103/PhysRevD.99.074005

I. INTRODUCTION

Gluodynamics at nonzero temperature T(=1/f) is
described by the partition function

1 [s X
Z= | DA, exp 37 ), dxy | dxtF,F, . (1)

where F,, = 0,A, — 0,A, —i[A,.A,], and the gauge field
A, satisfies the periodic condition A, (X,x,+/f)=A,(X.x,).
The extension of the zero-temperature instanton solution
[1]—the caloron (found in Ref. [2])—has the form

A;I4 = Hﬁzv(Ta/Zi)auH_l )

1 , _
F, = T1(20)ifg, (7,/20) (z O,

5 n-'9°M=0, (2)

? 2 2 2nt
I(r,1) =1 +%sinh%/(cosb%—cos%>
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D @

n=-—00

where r = |X[, t = x4, and 7, = (7, 7). At small distances
r,t < f the profile IT(x) may be approximated as
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I(x) &~ My(x) = (1 +%> + p? /%, (4)

where 1 = zp/p, so the gluon field has an instanton-like
shape with modified instanton size,

2

207 WX, 27
A =" R P=p/1+F). (5
H xz (xz +p,2> 14 P /( + 3> ( )

In fact, the accuracy of the approximation (4) is about 1%
up to r, t ~ f. The extension of the instanton vacuum liquid
model (ILM) [3-5] to nonzero temperature in this regime is
straightforward and might be encoded in the temperature
dependences of the main parameters of the model: the
average instanton size 5(7T) and average instanton density
n(T) = NT/V3 = 1/R*(T), where N is the total number of
instantons [6]. Both p(7) and n(T) in the ILM are
homogeneously decreasing functions of 7.

But the simplified approximation (4) does not describe a
nontrivial phase transition near the critical temperature
T, ~ Agep- Indeed, for T < T all color objects are bound
into colorless hadrons. The heat bath predominantly con-
sists of weakly interacting pions, so the 7" dependence of
the instanton density n(7T) should be rather mild, which
agrees with the expectation of almost constant 7" depend-
ence, n(T) = ny(1+ O(T?/(6f2))) [5]. However, this
behavior changes during phase transitions, and the
expected instanton density n(7) should be exponentially
suppressed at large temperatures, 7 2 T [5].

The extension of the ILM that is able to describe the
phase transition from a confined to a deconfined phase near
the critical temperature 7' is the so-called dyon-instanton
liquid model [7]. The authors of Ref. [7] concluded later in
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Ref. [8] that at very low temperature, the semiclassical
description of the Yang-Mills state reconciles the instanton
liquid model without confinement with the ’t Hooft—
Mandelstam proposal of confinement. In the former, the
low-temperature thermal state is composed of a liquid of
instantons and anti-instantons, while in the latter it is a
superfluid of monopoles and antimonopoles.

The temperature dependence of the QCD vacuum model
might be tested by comparison with results of lattice
simulations. For example, for the “electric”’ gluon mass
M (T) in the framework of lattice QCD [9-12], it was
found that for T > T the linear dependence My (T) ~ T is
consistent with Debye screening and has a minimum at
T ~T., whereas for T < T, the electric mass M (T) is a
rather slowly decreasing function of temperature 7'. This
behavior might be naturally explained in the framework of
the ILM, which predicts the temperature dependence as

M, ~ (packing parameter(T))'/2p='(T) = p(T)n"/*(T),
(6)

i.e., a decreasing function of temperature at 7 <T..
Combined with the perturbative one-loop thermal gluon
contribution to the gluon propagator, which increases with
temperature as M e (') ~ T, this model is able to repro-
duce lattice results for the dynamical gluon mass [9,12].

There are two major technical challenges in the calcu-
lation of the gluon propagator in the ILM framework: the
zero-mode problem (fluctuations along the instanton col-
lective coordinates), and averaging over the collective
coordinates of all instantons. We address the former using
the approach of Ref. [14], while for the latter we extend
Pobylitsa’s approach [15], applied earlier by us for the
gluons at 7 = 0 [16], and consider in this paper its further
extension for the ILM averaged gluon propagator at 7 # 0.

The paper is structured as follows. In Sec. II we review
briefly the formulation of the ILM at nonzero temperature
T # 0 and discuss the temperature dependence of the main
instanton vacuum parameters. In Sec. III we consider a
simplified case and evaluate the propagator of the scalar
color-octet particle (which we call the “scalar gluon”) in the
instanton background at nonzero temperature. This allows
us to get several important results which will be used later.
In Sec. IV we consider the case of a real gluon and evaluate
the propagator at nonzero temperature. We extract the
electric mass M, and compare it with lattice results.
Finally, in Sec. V we draw our conclusions.

II. VARIATIONAL ESTIMATES
INTHE ILM AT T #0

The application of Feynman’s variational principle to the
QCD vacuum filled with an instanton gas leads to the ILM
[3], which was generalized to nonzero temperatures in
Ref. [6]. The main variational ingredients of this approach

are the instanton size distribution function u(p, T, n) and
the instanton density n(7T') [6,6,17]. The ILM instanton size
distribution function is closely related to the thermal single
instanton one-loop distribution function [18],

d(p,T) = Cp"Sexp(—Ay,T?), C=const, (7)

p(p, T,n) = Cp*=3 exp [-®@(n, T)p?], (8)

1 1 - 1/2
®(n,T) = EANCTZ + [—A%VCT4 + uﬂyzn] . (9

4
where
1(11 11 b—4
ANg_g[FNC_l]ﬂz’ b= 3NC,I/—T,
_ 277*N
— —blog(Ap), A= ¢
p 0g(Ap) STy
and
(T, n) = : /wdpu(p,T,n)pz,
po(T. n) Jo
wo(.m) = [~ dpulp. 7). (10)

The result (8) might be obtained by maximizing the
variational ILM partition function [6]

Z > Z(u.n)exp(~(E ~ Ey)), (11)
1 2uo(T, n)V\N

200 = g (P05 )

(E-E) = —g/?}'znﬂ_22 (12)

with respect to the parameter y. The minimization of the
free energy F = —T/V3log Z by variation over n leads to
the equation for the density,

n(T) = 2uo(n,T). (13)

The variational estimates demonstrate that 5(7') and n(T)
are decreasing functions of temperature 7" (see Fig. 1) due
to the exponential factor in d(p,T) ~Ay_. On the other
hand, lattice data show that the instanton density n is
not modified by temperature up to the critical temperature
T. [19]. In numerical simulations of the ILM [5] it was
suggested to interpolate between no suppression [Ay =0
in Eq. (9)] below T, and full suppression [Ay # 0 in
Eq. (9)] above T, ~ 150 MeV, with a width AT = 0.3T to
be in agreement with the lattice results [19]. We follow this
suggestion and repeat the calculations with the modifica-
tion in Eq. (9) as Ay, — Ay O, (y — y.), where y=p,T,
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The (normalized to unity) temperature dependences of the instanton size 52(y)/p?(0) (left) and instanton density n(y)/n(0)

(right) obtained with variational estimates from Refs. [5,6,17]). In both plots we use the notation y = pyT and the phenomenological
values p(0) = 1/3 fm and n(0) = 1 fm™ for the estimates. The solid line corresponds to values with the modification Ay —
An,Ox,(y = ye) in Eq. (9), where @4, (y — y.) is the smooth interpolating step-like function (14) with a width AT = 0.3T [5]. Dashed
lines correspond to values with Ay = const in Eq. (9) (full suppression) for all 7.

Ve=poT.=025~T.=150MeV, Ay=pyAT.=0.075~
AT =0.3T., and we introduce a smooth interpolation with
a step-like function of width Ay,

O,y (z) = 1/2[1 + tanh(z/Ay)]. (14)

The temperature dependences of p2(y)/p*(0) and
n(y)/n(0) are shown in Fig. 1.

III. COLOR-OCTET SCALAR PROPAGATOR AT
NONZERO TEMPERATURE

We start from the scalar massless field ¢ belonging to the
adjoint representation, which is the same as a physical
gluon. We have to find its propagator in the external
classical gluon field of instanton gas A, = Al (y;),
where A/(y;) is a generic notation for the QCD (anti-)
instanton, and y; stands for all of the relevant collective
coordinates: the position in Euclidean four-dimensional
space z;, the size p;, and the SU(N,) color orientation U,
(4N, collective coordinates in total). The averaging over the
instanton collective coordinates includes the integral over
the instanton position [ d*z = I, d’z fg dz; 4. In view of
the periodicity of the fields ¢(X, r + ) = ¢(X, t) at nonzero
temperature, we may restrict the integration over ¢ to the
period S, so the effective action takes the form

_ 3. [P e Ap2ace
Sp [/3 d x% dig" (X, 1)P*¢p(X, 1), (15)

where P, =p,+A, (in the coordinate representation
p, = i0,). The color-octet scalar propagator in the field
of instanton gas is given by

-1
A=(p+A)?= <P2 + Z({P,Ai} +A7)+ ZAI'A;) ;
i i#]
Ag=p~. (16)
It is convenient to also introduce the propagator in the field
of an individual instanton,

A =P =P +{pAT+ADT. (17
and in the instanton gas background when the overlaps
~> iz;AiA; are disregarded,

B=(p+Y (pAd+aD)". (19)
i

There are no zeromodesin A7! = P? or A=! = P2, which
implies the existence of the inverse operators A; and A. Our
aim is to find the propagator averaged over instanton
collective coordinates A = (A) = [DyA. In coordinate
space the propagator A and free propagator A, must be
periodic functions of time with period /. In what follows we
will use the notation A(x,x’) = (x|A|x’) for the matrix
element of the operator A between Fock states labeled by
spacetime coordinates |x) = |X,7) = |X)|¢) (the same for
|x')) and [x,, p,] = id,, [20]. These states form a complete
orthonormalized set, »_,|t)(t| = 1, (¢|t) = 6(¢ — ). Also,
we define the step operator (#'|@|t) = @(¢ — t). In view of
4Ot — 1) = 5(1' — ), we may conclude that®~! = £ The
time-periodic state with period f may be represented in

terms of states |¢) as

= =)
(U|tg) = o(f' —15) = io: 58(f = (t—np)).

n=—oo

(19)
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Now the evaluation of the propagator A = (P?)~! is straight-
forward. Since (¢|P*|t5) = 8(f' — t/;)(l'32 + (i +Ay)?),
we have the equation in the form

<ﬁ2 - ( 83, +A4)2> (¢|Al1y) = 8(' — 1)

[Se]

)= > A@.7

n=—oo

= <_’/’ /

X, t—np),

(20)

) is a usual zero-temperature (7' = 0)
aperiodic propagator. For physical applications we need to
average the propagator A over the collective coordinates of
all instantons, A = (A) = [ DyA. We follow the procedure
developed in our previous paper [16], where the approach
[15] derived for the quark correlators was extended to the
gluon case. We start by averaging over the collective
coordinates of the operator A = (A) [see Eq. (16)]. Since
the Pobylitsa equations [15,16] are written in operator form,
they can be easily extended to the 7 # 0 case just by
calculating the matrix elements of the propagator A with
periodic states |4) on the right side.

Since the instanton gas is dilute [namely, the packing
parameter p*n~(1/3)*=12x102 <« 1], we may
develop a systematic expansion over the parameter n.
The expansion of the inverse propagator up to first-order
O(n) terms has the form

AT -ap! = <Z{Ao + (a7 = Aal)‘l}‘1>
= NAGH(A; — Ag)AG! + O(n?), (21)

where A; = f dy;A; is the propagator in the field of an
individual instanton averaged over its collective degrees of
freedom. To the same expansion order, we may approxi-
mate the inverse propagator as Al =A™ = p? + M2,
where we introduced the squared dynamical color-
octet scalar mass operator M2 whose matrix elements
are given by

(7' |M3t5)80, = NP> ({F|AF"|15) = (F|AG [15))P*. (22)

According to Ref. [18], the periodic color-octet scalar
propagator in the instanton field (3) is given by

AfP(x.y) = AfP(x.y) + AP (x,y) + A (x.y).  (23)

. B TaF(x,y)T F(y’x)
A (x,y) = Et (H(x)471'2(x —b y)zn(y))’

P’ Txm) T )
F(x,y)=1+
D=

X(mex_mﬁLymEy_mﬂ?)’ (25)

(24)

F( F
Aab )C y _tr<2ml Ty X ym Tp (ym’ ) ) (26)

x)47*(x — y,,)T1(y)

a J— Cab('x’ym)
Azb(x, y) = ;m’ (27)

Cab(x7 y) _ Z 2(1)%()()(1)1;?()})

s ﬂz(r - S)2
poi(x) @, (y)
Z ZﬂZ(r I/l)2 hrs,tuv (28)

r#s  t#Fu

2 a
pop(r—s)x
D (x) = T 22

a 2<Drs (I)fs m)
D CMen) =3 )

m m rq&s

2

222” . (29)

r#s )C rXs m yr+mys+m

Combining Egs. (28) and (29), we can simplify Eq. (27) as

p2xa p2yh 1
r#s xzx% m yr+n1ys+m (x)4”2n<y>

A (x,y) = (30)

At short distances r ~t < f the caloron field becomes
instanton-like [Eq. (5)] with a modified instanton radius

p'* =p?/(141/32%),and 1 = zp/p. In this region we can
simplify the first term in Eq. (23) as
1 F F 2 2
Adb — t 7. Fo(x, y2)Th o(y,x) ’ Ho(x):x +2P ’
’ 4% (x = y) Ty (x)o(y) x
(31)
7, = (7.1), T;: = (7, -i), 7,05 = 8 + M4y Tas
(32)
x)(thy
Folwy) = 1422000
X7y
(xy) Mo TaXuYy
— 1 +p/2 x2y2 +p/2 ﬂx2y2ll , (33)

where 77,,, = —f]4, is the ’t Hooft symbol. As will be
shown below, the contribution of the terms A% (x,y) and
A%%(x,y) in Eq. (23) is small and can be neglected.

The collective degrees of freedom (the center of the
instanton position z and orientation U) in Eq. (31) can
be introduced by shifting the arguments x — x —z
and y—y—z and color rotation factors A$’ —
0OV AbY' | where 0% are the color rotation matrices
in the adjoint representation. [0’ are related to the color
rotation matrices the in fundamental representation by
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0% = twr(UTt*Ut"), where t, are SU(N,) matrices.] The
averaging over the collective coordinates reduces to inte-
gration over the instanton center ( foﬂ dzy fv3 d3z) and color
orientation ( f dO). The latter integral can be evaluated
analytically using the well-known identities [5]
[dOO® O =5, [dOO® 0" =(N?~1)7"8,,8,, and
fdo Oabﬁb/w Oa/b/f/b’//v’ = (Ng - 1)_15aa’ (6ﬂ//5w' _‘Sﬂv' 614/)'

|

The contribution of A¢? to the color-octet scalar dynamical
mass operator (22) is given by

M3 o8ay = Np*(Aff = AF) P, (34)

so for the expression in parentheses in Eq. (34) we obtain,
after collective coordinate averaging in the coordinate
representation,

A (x.y) = A (x.y) = / d*zd00“ 0" (AjG (. y) = AT (.Y ) (¥ =x -2y =y —2),

. 3p/2 2p/4
/ / / / / /
= 5aa’/d Z[mfl(x)fl(y) +Wf2(x )9(x" =) f2() ] (35)
where we introduced the notation
1 (x,x,, ix?) 1
fl(x) - (xz +,0/2)’ f2(x) *xg(xz +,0/2)’ g<x y) 747r2(x—y)2’

and assumed (x,x,, ix?)(y,y,. iy?) = (xy)? — x*y*. In what follows we will use the notation M3 (g, m) for the dynamical
color-octet scalar mass corresponding to the Matsubara mode m with frequency w,, = 2zmT in the three-momentum g
representation. We are especially interested in the m = 0 Matsubara mode, M2(g,m = 0) = M2(q, T).

If we define the Fourier transformation to coordinate space as

o 3
filx—z) = Z / dﬂl; explip(X — 2)] exp(2zm(x — 2)4/B) f1(p, m), (36)

2

m=—0oo

then the contribution of the first term in Eq. (35) can be rewritten as

M2,,(q.T) ~q*f1(G,m = 0)f1(=g,m = 0) = ¢*13(g. 0), (37)

where

2 2o [P «©
q°f1(¢,0) = g°p dx, dx,dx3mexp

(o]

-B/2p'

S% <Z D))

mexp (—gp' (31, x* + 1)'/2))

= 4n’qp'K,(qp’). (38)

< qu/2 / d)C4d.X'2dX3

o Ot x2+1)12

and K (z) is a modified Bessel function of the second kind,
with lim,_(zK,(z) = 1. Since temperature mildly affects
the dynamical mass form factor, we can neglect this
modification at small temperatures 7" < T.. Careful analy-
sis shows that the second term in Eq. (35) and all of the
other terms including A¢” and A4” give zero or negligible
contribution, so we finally obtain

512 n 1/
O R R !
(39)
where
F(0,0)=1,  F(q.T) < F(q,0) = gpK,(qp).

IV. GLUON PROPAGATOR AT NONZERO
TEMPERATURE

In this section we extend the calculations of the averaged
full gluon propagator S,,, considered in Ref. [16], to the
nonzero-temperature case. This is a rather straightforward
task, since there all principal equations and their solutions
were found in operator form. First, the solution of the

Pobylitsa equation in operator form is

S/w - ng = N(S/Iw - SO/)Z/) + O(n2)7 (40)

where the free and single instanton gluon propagators [13]
are given by

SOMD = (5/,w - (1 - g)pﬂpy/pZ)/pZ’
§% = 8uwp® = (1= 1/8)pup,, (41)
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S;Iw = q/prP/I)A%ng - (1 - é)P/ItA%PI{’ (42)
and we introduced the notation g, =8,,0,;+0,,0,,—
5”,,5D,,.—|— €upo (for the antl-lr}stanton, Case +€,,,5 = —€upo)-
Equation (40) can be rewritten [cf. Eq. (21)] as

I,,=8,) -85}, =N} (85, —5%,)8%a +O(n?). (43)
Atnonzero temperature, the most essential point is the lack of
relativistic covariance, since Euclidian time is restricted to the
interval 0 < x;, < = 1/T, and all of the bosonic fields (the
background A, fluctuations a,, and zero modes ¢,) must be
time-periodic functions with period g, A,(X.x4+p)=
A,(X.x4). The operator form of the main equation (43)
significantly simplifies our problem, since in the end we
only have to calculate the matrix element of the operators
between the time state |#') and periodic state |75) defined in
Eq (19). Then, by means of Fourier transformations we can

Me1(y)
Me:(0)
1.0

0.8+
0.6
0.4+

0.2+ \\
\ —
= 7.\""\-\.

= Y=p0 T

0.2 0.4 0.6 0.8 1.0

obtain the momentum representation of the propagators
written in terms of three-momenta k and Matsubara modes
m [ky = 2amT, k, = (k, ky), K> = & + K31,

We expect that the dominant contribution to II,, will
come from the large-distance asymptotics of the matrix
elements of S/, — $°,,. In coordinate space, by comparing
the effects from id, and the multiplication by A/ in
Eq. (42), we conclude that the dominant asymptotic
contribution to S/, — SOW in Eq. (43) comes from the term

Po((A; = Ag)Ag + Ag(A; = Ag)) Py (44)

in particular, from p, [the most slowly decreasing part of
Eq. (44)]. The term (44) will also give the dominant
contribution to IL,,. So, Eq. (43) reduces to

H;w :2Np2(Al.0_AO)(p25;w_(1 - l/é)pypy) (45)
Fap, T=0)
1.0

0.9}

0.8}

0.7}

ap

0.2 0.4 0.6 0.8 1.0

FIG.2. Left: Temperature dependence of the “electric” gluon dynamical mass M;(0, T)/M (0, 0). The solid line was evaluated using
the modification Ay — Ay ©,,(y — y.) [see Eqgs. (9) and (14)] and interpolates smoothly between no suppression below the critical
temperature 7, = 150 MeV and full suppression above it, with the width of the interpolating region AT = 0.37 [5]. Atsmall T < T
the solid line corresponds to M (0, T)/M(0,0) = p'(T)/p(T) = (1 — 1/6x*p,*T?). The dashed line corresponds to full suppression
over the whole region of 7' [Ay_= const in Eq. (9)]. In both plots we use the phenomenological estimates M (0,0) = 362 MeV,
p(0) = 1/3, fm and n(0) = 1 fm~*. Right: Form factor of the dynamical mass F(g,0) [Eq. (39)].

Me| (T), GeV

0.36 F
0.34
0.32 -

0.30 -

. T
1.0 Tc

0.2 0.4 0.6 0.8

FIG. 3.

Mel, GeV
il
04— [] I
B a KX
02— " |
* q
0 1 | 1 | I 1 | | |
0 0.5 T/Tc

Comparison of the “electric” gluon dynamical masses from the ILM and lattice measurements. Left: 7 dependences of

M (0, T) in the region 0 < T < T, within the ILM (all definitions are the same as in Fig. 2). Right: Lattice measurement results for the
same quantity taken at the scale 2 GeV [9-12]. (The right plot is a part of Fig. 12 from Ref. [11]; see the caption of that figure for further

details.)
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By definition, the square of the “electric” gluon mass
M2 (||, T) is related to T1,,, as M2 (|k],T) =Tl (k. ks =0).
Comparing it with Eq. (34), we conclude that M2, (|k|.T) =
2M?(|k|, T) is gauge invariant (¢ independent), and its T
and ¢ dependences are represented in Fig. 2. It is obvious
that M2 (|k|, T = 0) = M (|k|), where the gauge-invariant
dynamical gluon mass M, was obtained in Ref. [16]. Using
the phenomenological values of p and n at T =0, we
obtain M(0,0) = 362 MeV.

From Fig. 3 we see that the most natural explanation for
a nonzero ‘“‘electric” gluon dynamical mass in the region
T < T, seen in lattice measurements [9,12] is given by the
ILM, since the ILM is able to (at least qualitatively)
reproduce its value at 7 = 0 and its 7 dependences.

V. SUMMARY AND DISCUSSION

In this paper we extended the calculations of the
dynamical gluon mass in the ILM [16] to nonzero temper-
ature and studied the so-called “electric” gluon mass
M (q,T), which corresponds to the Il component of
the polarization operator. We also analyzed the temperature
(T) dependence of the main parameters of the ILM: the
average instanton size p(7') and instanton density n(T). We
found that they are homogeneously decreasing functions of
temperature due to the influence of thermal gluon fluctua-
tions [6]. Our findings agree with lattice investigations [19],
which demonstrated that 5(7) and n(T) decrease rapidly
for T>T, where T, is the critical temperature. For
temperatures below the critical temperature 7., these
functions are almost constant, and we took this scenario
into account by neglecting the contributions of thermal
gluon fluctuations at low temperatures 7 < T, [5]. These
scenarios are compared in Fig. 1.

In order to find the gluon propagator in the ILM
background field at nonzero temperature 7" # 0, we solved
the gluon zero-mode problem and averaged the full gluon
propagator over the collective coordinates of all instantons.
This was done in the framework developed in our previous
paper [16] and extended to the nonzero-temperature
case. First, we evaluated the ‘“electric”’ color-octet scalar

dynamical mass M (q,T) as a function of the three-
momentum ¢ and temperature 7. The solution of the
zero-mode problem yields M%(q, T) = 2M?(q, T), which
allowed us to relate. The final results for the “electric”
gluon dynamical mass M (g, T) are presented in Fig. 2.

It is interesting to compare our result for the dynamical
“electric” gluon mass M, with the result from lattice
calculations (see Fig. 3), which observed that M (0,T)
is a decreasing function of 7 for T < T, (in agreement with
the ILM) and an increasing function of 7 above the
confinement-deconfinement phase transition [9,12]. It is
clear from Eq. (45) that the “electric” gluon mass is a
gauge-independent ({-independent) quantity. Also, the
natural scale for the ILM is p~' ~1 GeV. On the other
hand, the lattice measurements of the “electric”” gluon mass
shown in Fig. 12 of Ref. [11] were given in Landau gauge
(6=0) and at the scale 2 GeV. So, due to the scale
difference the comparison presented in Fig. 3 is only
qualitative. Here it is most important that lattice measure-
ments demonstrated a nonzero “electric” gluon mass at low
temperatures. The growth of M(0,T) for T > T, may be
explained by the perturbative thermal gluon correction and
it is expected to have an almost linear functional depend-
ence, Mpm.el(O, T) ~ T. Since thermal gluons are incorpo-
rated into our framework, it is probably easy to reproduce
the lattice measurements of the dynamical “electric” gluon
mass within the ILM model over the whole temperature
region.

In the future, we hope to apply our results to the
calculation of the temperature dependences of the heavy
quarkonium properties, and to extend the present calcu-
lation to the dynamical “magnetic” gluon mass case.
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