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Techniques based on n-particle irreducible effective actions can be used to study systems where
perturbation theory does not apply. The main advantage, relative to other nonperturbative continuum
methods, is that the hierarchy of integral equations that must be solved truncates at the level of the action,
and no additional approximations are needed. The main problem with the method is renormalization, which
until now could only be done at the lowest (n ¼ 2) level. In this paper we show how to obtain renormalized
results from an n-particle irreducible effective action at any order. We consider a symmetric scalar theory
with quartic coupling in four dimensions and show that the 4 loop 4-particle-irreducible calculation can be
renormalized using a renormalization group method. The calculation involves one bare mass and one bare
coupling constant which are introduced at the level of the Lagrangian, and cannot be done using any known
method by introducing counterterms.
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I. INTRODUCTION

There are many interesting systems that are governed by
nonperturbative physics. Quantum chromodynamics (QCD)
is nonperturbative except at very high energy scales, and
quark gluon plasma has been studied extensively for over
20 years as a physical system which could give access to
fundamental properties of QCD. Another important example
is three dimensional quantum electrodynamics (QED),
which is physically relevant in the context of condensed
matter physics. There has been an explosion of recent interest
in QED2þ1 with the discovery of graphene, in light of its
importance in technological applications.
The importance of the study of nonperturbative field

theories is evidenced by the amount of work has been
invested in the development of different theoretical methods.
Different forms of reorganized/improved hard-thermal-loop
resummations have been used to calculate thermodynamic
quantities [1–9]. Schwinger-Dyson equations are another
familiar method to study nonperturbative physics (for a

classic introduction see [10], for a recent review see [11]).
One important issue with this approach is that the hierarchy
of coupled equations needs to be truncated by introducing
some external prescription. Various methods to truncate in a
way that preserves gauge invariance have been proposed
[12–14]. Another powerful technique is the renormalization
group [15], which is traditionally used to study systems
where scale-dependent behavior is important. Its functional
formulation can be cast into the form of an exact flow
equation for the scale-dependent effective action. The action
flow equation provides a hierarchy of coupled flow equations
for the n-point functions of the theory, but once again this
hierarchymust be truncated using some prescription [16,17].
Some reviews of this method include [18–24]. Numerical
lattice calculations are valuable in situations where the
underlying microscopic theory is known, but issues with
the continuumand finite volume limit arise. Finally, there has
been much recent interest in the study of strongly coupled
systems through the AdS=CFT correspondence.
In this work we study a different method which has some

distinct advantages: the n-particle-irreducible (nPI) effec-
tive action. The method was originally developed in the
context of non-relativistic statistical mechanics [25–27].
In its modern form, the nPI action is written as functional of
dressed vertex functions which are determined self-
consistently using the variational principle [28,29]. One
major advantage of the nPI method is that it provides a
systematic expansion for which the truncation occurs at the
level of the action. Amajor disadvantage of nPImethods is a
violation of gauge invariance [30,31]. A procedure to
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minimize gauge dependence has been proposed [32], and
some issues with applying the technique are discussed in
[33–35].
2PI effective actions have been used for almost 20 years to

study the thermodynamics of quantum fields [36–40],
transport coefficients [41–44], and nonequilibrium quantum
dynamics [45–52]. On the other hand, while higher order
effective actions have been derived using several different
methods [53–56], very little progress has been made in
solving the resulting variational equations.We comment that
although we could try to ignore vertex corrections and
improve previous 2PI calculations by increasing the order of
the truncation (usually the loop order), it is known that nPI
formulations with n > 2 are necessary in some situations.
For a symmetric scalar ϕ4 theory, it has been shown
numerically that 4PI vertex corrections are important in 3
dimensions [57]. For the same theory, working in four
dimensions, it has been shown that the 2PI approximation
breaks down at large coupling—in the sense that successive
orders in the loop expansion give large corrections [38,40].
In addition, it is known that leading order transport coef-
ficients in QED and QCD cannot be obtained using a 2PI
formulation [43]. Finally, there are general arguments that an
L loop calculation in the nPI formalism should be donewith
L ¼ n. First, the n-loop nPI calculation is complete, in the
sense that increasing the order of the approximation (the
number of variational vertices that are included) without
increasing the loop order of the truncation does not change
the effective action [53]. Second, in gauge theories, the n
loop nPI effective action respects gauge invariance to the
order of the truncation [30,31] and one therefore expects that,
for example, a 3 loop 2PI calculation will have stronger
gauge dependence than a 3 loop 3PI one.
In this paper we are concerned with the renormalization of

nPI actions, which is a fundamental problem that must be
addressed before any calculations beyond the leading 2PI
level of approximation can be attempted. The basic problem
is that the self-consistent sets of integral equations that one
must solve are plagued by ultraviolet divergences and,
beyond the 2PI level [58–61], a procedure for constructing
the counterterms needed to eliminate the corresponding
divergences is unknown. The problem of renormalization
is particularly complicated at finite temperature. One expects
on general grounds that ultraviolet divergences should be
unaffected by the temperature, but temperature dependent
divergences can appear in self-consistent approximations,
andwould cast doubt on the possibility of extracting physical
quantities from the method.
In this paper we develop and implement a functional

renormalization group (FRG) method to renormalize the
4PI theory at the 4 loop level (for some related works see
[39,62–68]). No counterterms are introduced, and all
divergences are absorbed into the bare parameters of the
Lagrangian, the structure of which is fixed and completely
independent of the order of the approximation. We work

with a symmetric scalar theory, in order to avoid the
complications associated with the Lorentz and Dirac struc-
tures of fields in gauge theories.
This paper is organized as follows. In Sec. II we present

our notation and the setup of the calculation. In Sec. III we
describe our method and derive the flow equations that we
will solve. In Sec. IV we give some details of our numerical
procedure and present our results. Conclusions are given in
Sec. V.

II. PRELIMINARIES

Using standard notation we suppress the arguments that
denote the space-time dependence of functions. For exam-
ple, the term in the action that is quadratic in the field
becomes

i
2

Z
d4xd4yφðxÞG−1

no·intðx − yÞφðyÞ → i
2
φG−1

no·intφ: ð1Þ

In our notation Gno·int is the bare propagator and the
classical action is

S½φ� ¼ i
2
φG−1

no·intφ −
i
4!
λφ4; iG−1

no·int ¼ −ð□þm2Þ:
ð2Þ

We use a scaled version of the physical coupling constant
(λphys ¼ iλ). The extra factor of i is introduced for nota-
tional convenience and will be removed when rotating to
Euclidean space to do numerical calculations.
The nPI effective action is obtained by taking the nth

Legendre transform of the generating functional which is
constructed by coupling the field to n source terms. We will
use G for a self-consistent propagator and V for a self-
consistent vertex. The result for the 4 loop 4PI effective
action in the symmetric theory has the form [55,56]

Γ½D;V� ¼ i
2
TrLnG−1 þ i

2
TrðG−1

no·intGÞ − iΦ0½G;V�
− iΦint½G;V� þ const ð3Þ

where the terms Φ0½G;V� and Φint½G;V� contain all
contributions to the effective action with two or more
loops. All bare vertices are in the piece Φ0½G;V�. The
diagrams in Φ0½G;V� and Φint½G;V� at the four loop level
are shown in Fig. 1.
We now discuss the functional renormalization group

method. The basis of the method is that we add to the action
in (2) a nonlocal regulator term

Sκ½φ� ¼ S½φ� þ ΔSκ½φ�; ΔSκ½φ� ¼ −
1

2
R̂κφ

2: ð4Þ

The parameter κ has dimensions of momentum and its role
is to divide the full momentum range into two regions
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which lie above and below the scale κ. The key point is that
the regulator function is chosen so that limQ≪κR̂κðQÞ ∼ κ2

and limQ≥κR̂κðQÞ → 0. The result is that for Q ≪ κ
the regulator plays the role of a large mass term which
suppresses quantum fluctuations with wavelengths 1=Q ≫
1=κ, and in the opposite limit when Q ≫ κ the regulator
goes to zero and fluctuations with wavelengths 1=Q ≪ 1=κ
are not affected. As we will explain below, the basis of the
method is to chose an initial value for κ which is much
greater than any other momentum scale in the problem,
so that the theory initially behaves classically, and then
slowly lower κ to zero in such a way that a finite quantum
theory is produced.
It is easy to see that if we include the FRG regulator in

the calculation of the 4PI effective action, the only change
in the expression in (3) is that the noninteracting propagator
is shifted

iGno·int → iGno·int·κ ¼ iGno·int·κ − R̂κ: ð5Þ

The last step is to define an effective action that corre-
sponds to the original classical action at the ultraviolet scale
μ by making an additional shift to obtain

Γκ ¼ Γ̂κ − ΔSκðϕÞ: ð6Þ

We use the notation Γ ¼ −iΦ and we define an imaginary
regulator function Rκ ¼ −iR̂κ (the extra factor i will be
removed when we rotate to Euclidean space). Using this
notation Eqs. (3), (5) become

G−1
no·int·κ ¼ G−1

no·int − Rκ ð7Þ

Φκ ¼ −
1

2
Tr lnG−1 −

1

2
G−1

no·int·κGþΦint: ð8Þ

III. METHOD

For any value of κ we define the functions Gκ and Vκ to
be the self-consistent solutions that minimize the action.
These solutions are not determined directly, but instead are

obtained by solving a set of coupled differential flow
equations. There are several steps involved in the derivation
of these equations, which we explain in this section.
We define kernels by taking functional derivatives of the

action:

Λðm;nÞ ¼ 2m4!nG−4n δ

δGm

δ

δVnΦint½G;V�: ð9Þ

Substituting the (as yet unknown) self-consistent solutions
we obtain κ dependent kernels

Λðm;nÞ
κ ¼ Λðm;nÞjG¼Gκ

V¼Vκ
: ð10Þ

These kernels satisfy flow equations which can be found by
a simple application of the chain rule

∂κΛ
ðm;nÞ
κ ¼ ∂Gκ

∂κ
δ

δGκ
Λðm;nÞ
κ þ ∂Vκ

∂κ
δ

δVκ
Λðm;nÞ
κ : ð11Þ

We can rewrite (11) in a more convenient form. First
we choose special names for three kernels we will write
repeatedly

Λð1;0Þ
κ ¼ Σκ; Λð2;0Þ

κ ¼ Λκ; Λð0;1Þ
κ ¼ χκ: ð12Þ

Second we use the stationary conditions to rewrite the
derivatives of the variational functions. The stationary
condition for the 2-point function is

δΦκ½G;V�
δG

jG¼Gκ
V¼Vκ

¼ 0 ð13Þ

and using Eqs. (7), (8), (12) we obtain

G−1
κ ¼ G−1

no·int − Rκ − Σκ ð14Þ

∂κGκ ¼ −Gκð∂κG−1
κ ÞGκ ¼ Gκð∂κðRκ þ ΣκÞÞGκ: ð15Þ

The stationary condition for the 4-point function can be
written

δΦκ½G;V�
δV

jG¼Gκ
V¼Vκ

¼ 0 ð16Þ

and using Eqs. (8), (12) and Fig. 1 we find

∂κVκ ¼ ∂κχκ: ð17Þ

Using Eqs. (10), (14), (17) to rewrite (11) we obtain

FIG. 1. The effective action for the symmetric theory to 4 loop
order.
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∂κΛ
ðm;nÞ
κ ¼ 1

2
∂κ½Σκ þ Rκ�G2

κΛ
ðmþ1;nÞ
κ þ 1

4!
∂κVκG4

κΛ
ðm;nþ1Þ
κ :

ð18Þ
Equation (18) gives a coupled hierarchy of integral equa-
tions. They are shown diagramatically in Fig. 2. Continuum
nonperturbative methods typically produce hierarchies of
integral equations and, as stated previously, a key feature of
the nPI formalism is that the hierarchy in (18) truncates
naturally when the action is truncated. This point is difficult
to understand without seeing the detailed structure of the
kernels themselves, and therefore we will go ahead and
write down the flow equations that we will solve, and then
explain how the truncation works.
We Fourier transform and write the flow equations (18)

in momentum space. We will also rotate to Euclidean space
by defining the Euclidean variables:

q0 → iq4; dQ → idQE; Q2 → −Q2
E;

λ → −iλE; Λðm;nÞ → iΛðm;nÞ
E ; V → iVE;

G−1
no·int → iðG−1

no·intÞE; Σ → −iΣE; Rκ → −iRκE;

⇒ G−1 → iG−1
E ¼ i½G−1

no·int þ Rκ þ Σκ�: ð19Þ
The extra factors of i in the definitions of λE and RE remove
the factors that were introduced in the definitions λphys ¼ iλ
[under Eq. (2)] and R̂ ¼ iR [under Eq. (6)]. From this point
forwardwe suppress the subscripts which indicate Euclidean
space quantities.
We will solve three flow equations, for the three kernels

in (12), which are obtained using ðm; nÞ ¼ ð1; 0Þ, (2,0) and
(0,1) on the left side of (18). In momentum space these flow
equations are

∂κΣκðPÞ ¼
1

2

Z
dL∂κ½ΣκðLÞ þ RκðLÞ�G2

κðLÞΛκðP; LÞ

þ 1

4!

Z
dL1dL2dL3∂κVκðL1; L2; L3Þ

×GκðL1ÞGκðL2ÞGκðL3ÞGκðL1 þ L2 þ L3Þ
× Λð1;1Þ

κ ðP;L1; L2; L3Þ; ð20Þ

∂κΛκðP;KÞ

¼ 1

2

Z
dL∂κ½ΣκðLÞ þ RκðLÞ�G2

κðLÞΛð3;0Þ
κ ðP;K; LÞ

þ 1

4!

Z
dL1dL2dL3∂κVκðL1; L2; L3ÞGκðL1Þ

×GκðL2ÞGκðL3ÞGκðL1 þ L2 þ L3Þ
× Λð2;1Þ

κ ðP;K; L1; L2; L3Þ; ð21Þ

∂κVκðP;K;QÞ

¼ þ 1

2

Z
dL∂κ½ΣκðLÞ þ RκðLÞ�G2

κðLÞΛð1;1Þ
κ ðL;P; K;QÞ

þ 1

4!

Z
dL1dL2dL3∂κVκðL1; L2; L3ÞGκðL1Þ

×GκðL2ÞGκðL3ÞGκðL1 þ L2 þ L3Þ
× Λð1;1Þ

κ ðP;K;Q; L1; L2; L3Þ: ð22Þ

It is easy to see that these expressions correspond to the
diagrams in Fig. 2.
To understand how the truncation of our infinite hier-

archy of equations is done, we represent the basic structure
of the equations in (20), (21), (22) as

∂κΣ ¼
Z

Λ½� þ
Z

Λð1;1Þ½�

∂κΛ ¼
Z

Λð3;0Þ½� þ
Z

Λð2;1Þ½�

∂κV ¼
Z

Λð1;1Þ½� þ
Z

Λð0;2Þ½�:

To obtain a closed set of equations, we calculate the kernels
Λð1;1Þ andΛð3;0Þ andΛð0;2Þ on the right sides of these integrals
from their definitions (10) by taking functional derivatives of
the effective action, and substitute the resulting expressions
(which depend on the 2 and 4-point functions ðΣ; VÞ) into the
flow equations. This procedure produces a closed set of three
equations for the functions ðΣ;Λ; VÞ.

FIG. 2. Representation of equation (18). The black box on the line in the first figure on the right side represents the insertion
∂κðΣκ þ RκÞ and the black box on the vertex in the second figure represents ∂κVκ. The vertical dots indicate that there are in total
2mþ 4n legs on the right side of each kernel.
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Tomake the numerical calculation practical, we reduce the
number of nested loops by extracting three pieces of the full
integrals, which are then interpolated inside the integrands
of the three flow equations. We define the three integrals

OðP;K;QÞ ¼
Z

dLVðP;K; LÞG2
κðLÞ

× ∂κ½ΣκðLÞ þ RκðLÞ�GðPþ K þ LÞ
× VðQ;−L;−P − K −QÞ ð23Þ

F ðP;K;QÞ

¼
Z

dL½∂κVκðP;K; LÞGκðLÞGκðPþ K þ LÞ

× VκðQ;−L;−P − K −QÞ þ VκðP;K; LÞ
×GκðLÞGκðPþ K þ LÞ
× ∂κVκðQ;−L;−P − K −QÞ� ð24Þ

WðP;KÞ ¼
Z

dQ
Z

dLVκðP;−K;LÞGκðLÞ

×GκðP − K þ LÞ
× ∂κVκðQ;−L;P − K þQÞGκðQÞ
×GκðP − K þQÞVκð−P;K;−QÞ: ð25Þ

In Fig. 3 we give a diagrammatic representation of Eqs. (23),
(24), (25).
In terms of these integrals, the three flow equations are

reduced to expressions that involve at most one four
dimensional integral. The resulting expressions are

∂κΣκðPÞ ¼
1

2

Z
dK∂κ½ΣκðKÞ þ RκðKÞ�G2

κðKÞΛκðP;KÞ

−
1

4

Z
dKWðP;KÞGκðKÞ ð26Þ

∂κΛκðP;KÞ ¼ ∂κΛ̄κðP;KÞ þ ∂κΛ̄κðP;−KÞ

∂κΛ̄κðP;KÞ ¼ OðP;K;−PÞ þ 1

4
WðP;KÞ

þ
Z

dQGκðQÞGκðPþ K þQÞ

× VκðP;K;QÞ½2OðP;Q;KÞ þ F ðP;Q;KÞ�
ð27Þ

∂κVκðP;K;QÞ
¼ OðP;K;QÞ þOðK;Q;PÞ þOðQ;P;KÞ

þ 1

2
½F ðP;K;QÞ þ F ðK;Q; PÞ þ F ðQ;P;KÞ�: ð28Þ

For illustration, wewill give some details for one example.
The first line of Eq. (28) corresponds to the second line of
Eq. (22). The kernel Λð1;1Þ

κ ðL; P;K;QÞ is obtained by func-
tionally differentiating the four loop diagram in the effective
action (see Fig. 1) once with respect to V and once with
respect to G. This gives a contribution to the six leg kernel
which is shown in the first part of Fig. 4. The numerical factor
for the kernel is

4! × 2 ×
1

48
× 3 × 2 ¼ 6

where the 4! × 2 comes from the definition of the kernel (9),
the 1=48 is the symmetry factor of the four loop diagram in
the effective action, the 3 is from functionally differentiating
a diagram with three vertices with respect to V, and the 2
is from functionally differentiating a diagram with two
remaining legs with respect to G. The factor ∂κ½ΣκðLÞ þ
RκðLÞ�G2

κðLÞ joins two legs and produces the diagram in
the second part of Fig. 4. There is a further factor 1=2 from
the coefficient of the second term in Eq. (22), which leaves
uswith a factor 6 × 1

2
¼ 3. Comparingwith Fig. 3 we see that

the diagram in the second part of Fig. 4 has the form of the
integral we have denotedO. The three different channels that
appear in the first line of Eq. (28) account for the remaining
factor of three.

FIG. 3. Representation of the integrals in Eqs. (23), (24), (25).

FIG. 4. An example of the method used to calculate the flow
equations (see text for further details).
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To solve the differential equations (26), (27), (28) we need
to define boundary conditions. To see how to do this, we
recall the discussion about the definition of the regulator
function RκðQÞ. This function is chosen so that at the
ultraviolet scale κ ¼ μ all fluctuations are suppressed and
the theory is essentially classical, while in the limit κ → 0 the
regulator disappears and the full quantum theory is restored.
The strategy is therefore to solve the flow equations starting
from the scale κ ¼ μ and using the known classical solutions
as boundary conditions, and then extract at the κ ¼ 0 end of
the flow the quantum n-point functions that we are look-
ing for.
The regulator function we use has the form [15]

RκðQÞ ¼ Q2

eQ
2=κ2 − 1

ð29Þ

and our initial conditions for the flow equations are

G−1
μ ¼ P2 þm2 þ ΣμðPÞ and ΣμðPÞ ¼ m2

b −m2

→ G−1
μ ¼ P2 þm2

b ð30Þ

ΛμðP;KÞ ¼ VμðP;K;QÞ ¼ −λb ð31Þ

where mb and λb are the bare parameters of the original
Lagrangian. The physical parameters are defined through
the renormalization conditions

G−1
0 ð0Þ ¼ m2 and V0ð0Þ ¼ −λ: ð32Þ

The goal of the renormalization program is to absorb
all divergences into the definitions of the bare parameters.
This is possible if the truncation is performed correctly.
In practical terms, it means that the equations we solve must
not contain any unregulated loops in the limit κ → 0. To see
how this condition is satisfied for the three functions
ðO;F ;WÞ we look at Fig. 3. Each diagram in the figure
contains a loop that would be logarithmically divergent, if
it were not for the presence of the regulator (recall that a
black box on a line indicates the insertion ∂κðΣκ þ RκÞ and
a black box on a vertex represents ∂κVκ, and both of these
quantities go to zero in the limit κ → 0 where the regulator
disappears).
We must also consider the loop structures that appear

when the functions in Eqs. (23), (24), (25) are embedded

into the kernels of the flow equations (26), (27), (28).
A diagrammatic representation of the integral in the second
term of (26) and the two contributions to the integral in the
third term of (27) are shown in Fig. 5. The figure shows that
the loops that are formed by joining legs of the functions
ðO;F ;WÞ are not divergent. The integral in the first term
on the right side of (26) is represented by the first diagram
on the right side of Fig. 2. In this graph, the grey box is the
kernel Λ which is rendered finite by its own flow equation,
and the loop that is formed by joining two legs of the
4-kernel is regulated by the insertion ∂κðΣκ þ RκÞ that is
represented by the small black box.
Now we return to the issue of the truncation. We stated

earlier that it will be possible to absorb all divergences into
the definitions of the bare parameters if the truncation is
done correctly, and that a correct truncation is one that
ensures that all potentially divergent loops contain an
insertion that goes to zero in the limit κ → 0. To understand
this better, we consider what would happen if we ignored
the flow equation for the kernel Λ. We could calculate the
kernel Λ from its definition (10) and substitute it directly
into the Σ flow equation (26), which would eliminate the
need to solve the Λ flow equation (27). However, if we do
this, the right side of the Σ flow equation will contain 2 loop
diagrams with unregulated subdivergences (one example
is the first diagram in Fig. 5 but with the insertion ∂κVκ—
which is represented by the black box—replaced with the
normal vertex Vκ). This tells us that the kernel Λ cannot be
calculated directly but must be flowed. If we were to work
beyond the four loop level then the kernels Λð1;1Þ and Λð3;0Þ

and Λð0;2Þ which were substituted directly to obtain our
flow equations for the kernels Σ ¼ Λð1;0Þ and Λ ¼ Λð2;0Þ,
would themselves have to be flowed.
Finally we comment on the fact our method requires that

we choose specific values of the bare parameters from which
to start the flow. A different choice of bare parameters
will give different quantum n-point functions at the end of
the flow, and therefore different renormalized masses and
couplings. The procedure to determine the values of the bare
parameters that will allow us to satisfy the chosen renorm-
alization conditions is called tuning. Starting from an initial
guess for the bare parameters, we solve the flow equations,
extract the renormalized parameters, adjust the bare param-
eters either up or down depending on the result, and solve the
flow equations again. The calculation is repeated until the

FIG. 5. The first diagram represents the integral in the second term of Eq. (26), and the second and third diagrams are respectively the
first and second integrals in Eq. (27).
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chosen renormalization conditions are satisfied to the desired
accuracy.

IV. NUMERICAL RESULTS

Our renormalization conditions are defined in Eq. (32).
We set m ¼ 1, and measure all dimensionful quantities in
units of the mass. We choose λ ¼ 2.
The differential equations are solved using a logarithmic

scale by defining the variable t ¼ ln κ=μ, in order to
increase sensitivity to the small κ region where we approach
the quantum theory. We use κmax ¼ μ ¼ 100, κmin ¼ 10−2

and Nκ ¼ 50. We have checked that our results are
insensitive to these choices. The 4-dimensional momentum
integrals are written in the imaginary time formalism as

Z
dKfðk0; k⃗Þ ¼ T

X
n

Z
d3k
ð2πÞ3 fðmtn; k⃗Þ ð33Þ

with mt ¼ 2πT. Numerically we take Nt terms in the
summation with β ¼ 1

T ¼ Ntat where the parameter at ¼
1=10 is the lattice spacing in the temporal direction. The
integrals over the 3-momenta are done in spherical coor-
dinates and using Gauss-Legendre integration. The depend-
ence on the angles is weak and results are very stable when
the number of lattice points for the polar and azimuthal
angles equals 4 or 6. To calculate the integral over the
magnitude of the 3-momenta, we define a spatial length
scale analogous to the inverse temperature L ¼ asNs where
as is the spatial lattice spacing and Ns is the number of
lattice points. In momentum space we have pmax ¼ π=as
and the momentum step is characterized by the param-
eter Δp ¼ π=ðasNsÞ.
In Fig. 6 we show a plot of the vertex at zero momentum

versus the number of spatial grid points Ns with as held
fixed at 1=8 (which corresponds to holding pmax fixed
while decreasing Δp). The figure shows that convergence
is achieved with N ≈ 12.

Ideally we want to renormalize at a temperature close to
zero, but smaller temperatures correspond to larger values of
Nt and therefore to increase the speed of the calculation we
would like to use a higher temperature. To check that this is
okay, we test the scale dependence of our results. In Fig. 7we
show the vertex at zero momentum as a function of temper-
ature, with the renormalization done at two different temper-
atures. To make a physical comparison the curves are shifted
so that they agree at the smallest temperature, and both satisfy
the same renormalization condition V0ð0ÞjT¼Tmin

¼ −λ [see
Eq. (32)]. The slight shift of the curves relative to each other
at the highest temperature is a measure of the scale depend-
ence of the calculation.
The main result of this paper is to show that using the

FRG renormalization method that we have introduced,
all divergences are absorbed by the bare parameters of the
Lagrangian. In Fig. 8 we show the bare vertex and the self-
consistent vertex at zero momentum as functions of the
momentum cutoff, with T and Δp held fixed. The figure
shows clearly that as the momentum cutoff increases, the
divergence in the vertex is absorbed by the bare coupling,

4 6 8 10 12 14
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)

FIG. 6. The vertex at zero momentum as a function of the
number of spatial lattice points Ns with fixed as ¼ 1=8
(or pmax ¼ 25.1).

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

2.00

2.05

2.10

2.15

T

–
V

(0
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FIG. 7. The vertex at zero momentum as a function of temper-
ature using two different renormalization points: Trenorm ¼ 2.0
(redþ) and Trenorm ¼ 0.91 (blue x).
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FIG. 8. The vertex at zero momentum (red squares) and bare
coupling (blue dots) as a function of pmax with Δp held fixed,
using T ¼ 1.4 and L ¼ 14=8.
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while the renormalized vertex remains approximately con-
stant. This result proves that our renormalization method is
working correctly.

V. CONCLUSIONS

The 4PI equations of motion involve nested subdivergen-
ces that cannot be canceled using a finite number of
counterterms. In this paper we have introduced a completely
newmethod to renormalize the 4PI theory which is based on
a renormalization group approach. Calculations involving
vertex corrections are computationally intensive, but we
have obtained preliminary results that prove the success of
our method. Using a symmetric scalarϕ4 theory at the 4 loop

4PI level, we have shown that all divergences are absorbed
into the bare parameters of the Lagrangian, and a finite
physical mass and coupling are obtained. Using this method
makes is possible, for the first time, to usenPI effective action
techniques beyond the 2PI level. The next step will be to
calculate the thermodynamic pressure in the same scalar
theory and compare with the results of perturbative and 2PI
calculations. This calculation is in progress.
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