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We stress that, although the D̄� is very narrow (one hundred keV), the difference between the full D̄�

contribution to B → D̄ππ and its zero-width limit is surprisingly large: several percent. This phenomenon is a
general effect that appears when considering the production of particles that are coupled to an intermediate
virtual state, stable or not, and it persists whether the width is large or not. The effects of various cuts and of
the inclusion of damping factors at the strong and weak vertices are discussed. It is shown how the zero-width
limit, needed to compare with theoretical expectations, can be extracted. One also evaluates the virtual D̄�

V

contribution, which comes out roughly as found experimentally, but which is however much more dependent
on cuts and uncontrollable off-shell effects. We suggest a way to estimate the impact of the damping factors.
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I. MOTIVATION

Our goal is to clarify at the same time the following:
(1) The theoretical meaning of the measurement of

ΓðB → D̄�πÞ, i.e., how one relates the direct mea-
surements of the quantity that we call Γ3 (which is
obtained from events selected, usually, by means of a
cut on the D̄π mass in the three-body B → D̄ππ
process) to the quantity Γ2, which characterizes the
transition with the D̄� considered as a stable particle,
which would be a purely weak process;

(2) the meaning and theoretical estimate of the meas-
urement of the so-called D̄�

V “virtual” contribution to
B → D̄ππ. This is a complementary useful process,
but one whose measurement is not so well defined,
and whose theoretical evaluation is less clear.

We first consider the B0
d → D̄0π−πþ decay channel,

which is simpler to interpret theoretically; meanwhile
our considerations are general and we study also Bþ →
D−πþπþ and semileptonic B → D̄πl̄νl decays.

II. THE FULL CONTRIBUTION OF D̄� TO
ΓðB → D̄ππÞ VS THE ZERO-WIDTH

LIMIT ( g2 → 0)

The aim of this section is to display the difference
between the full resonance contribution of the D̄� to B →
D̄ππ and the computation of the B → D̄�π decay when the
D̄� is considered as a stable particle. In this section we
consider a final state, D̄0π−πþ, in which the decay D�− →
D̄0π− is allowed, when using the nominal mass values of
the particles involved. In Sec. IV C we study the Dþπ−π−

final state in which the decay D�0 → Dþπ− is forbidden, in
the same conditions.
From now on we use the following notations [1]:
s: the squared invariantmass of the (would-be) resonance;
m1 and p1: the mass and the modulus of the
3-momentum of the light meson stemming from
the decay of the resonance (in the resonance rest
system). The corresponding 4-vector is denoted by
P1, and a similar convention holds for the other
momenta involved;

m2 andp2: the mass and themodulus of the 3-momentum
of the “bachelor” light meson (in the resonance rest
system);

m12: the invariant mass of the pair of pions.
In terms of the momenta of the various particles involved

(bachelor πþ, final D̄, and π−) the amplitude for the decay
chain B0

d → D�−πþ; D�− → D̄0π− reads
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where g2 takes the value

g2 ¼ GF=
ffiffiffi
2

p
VudV�

cbfπ2mD�a1A0ðm2
πÞ ð2Þ

in the factorization scheme [2]. As for g≡ gD�−D̄0π−, it is
related to the D�þ → D0πþ partial width through

ΓD�−→D̄0π−ðsÞ

¼ g2

24π

1

8s5=2
½ðs− ðmD−m1Þ2Þðs− ðmDþm1Þ2Þ�3=2F2

RðsÞ

¼ g2

24π

p3
1

s
F2
RðsÞ; ð3Þ

where FRðsÞ is a damping factor that verifies FRðm2
D�Þ ¼ 1

(see below for details concerning those factors). There is
some arbitrariness in the form of the Breit-Wigner (see
[3,4]). We stick to the standard formulation, advocated for
instance in [5], Eq. (48.15), according to which the width in
the denominator of the Breit-Wigner is energy dependent.
Thus, ΓD� ðsÞ is the total width of the resonance taken at the
invariant mass

ffiffiffi
s

p
. This choice corresponds to what is

called BWδ in [6], which discusses those matters in detail;
−i

ffiffiffi
s

p
ΓðsÞ is precisely the absorptive part of the self-energy

generated by the Dπ loop calculated through Feynman
graphs (see the Appendix C).
A related ambiguity occurs regarding the numerator of

the resonance Breit-Wigner. In this note we use the form

gμν −
ðPDþP1ÞμðPDþP1Þν

s instead of the gμν −
ðPDþP1ÞμðPDþP1Þν

m2
D�

one suggested by the isobaric model [7]. When estimated in
terms of resonance rest frame quantities, the expression
inside the square brackets in Eq. (1) (which stems from the
first form above) reduces to 4p1p2 cosðθÞ [9] as expected
(see e.g., [10,11]) and assumed by the experimental
analyses; see in particular the D�

V .
Had we used the second form, an extra term would have

appeared, namely 4gg2
m2

D�−s
m2

D� s
ðm2

B−m2
2−sÞðm2

D−m2
1− sÞ.

This quantity does not depend on m12 and, consequently,
shows no dependence on cosðθÞ. This is due to the fact that
the propagator is no longer transverse when the resonance
is off shell, i.e., it has a scalar part in addition to the spin-1
component. The extra term vanishes at the resonance mass
but could give a relatively more important contribution at

the upper end of the phase space. However this would
concern the S-wave and, since we are interested here in the
P-wave channel, we keep the other form.
It is customary, in experimental papers, to introduce

damping factors in the analyses, the so-called “Blatt-
Weisskopf” functions, although their exact meaning is
not precisely stated. These functions have been introduced
in nuclear physics and used for particles emitted at very
low momenta within a quantum mechanical potential-well
description of the nucleus; therefore it is not clear whether
they can be used in high energy reactions. In the theoretical
formula for M above this amounts to introducing two
functions FBðsÞ and FRðsÞ, leading to

M0 ¼ 1

4

gg2FBðsÞFRðsÞ
s −m2

D� þ i
ffiffiffi
s

p
ΓD� ðsÞ
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�
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−
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�
: ð4Þ

It may be recalled that the expression for ΓD� ðsÞ contains
the term F2

RðsÞ [see Eq. (3)]. Those factors depend on s
through the momenta p2 (or p0

2) and p1. By convention the
value of the damping factors is 1 when the resonance is on
shell but, as we shall see, their influence is not negligible as
one integrates the (squared) amplitude over s to get Γ3.
According to Blatt and Weisskopf, for the case we are
interested in of a vector resonance, FR takes the form

FRðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ðrBWp1;D� Þ2Þ=ð1þ ðrBWp1Þ2Þ

q
. The form

of FB is similar except for the substitution of p1 by either
p2 (LHCb) or p0

2 (CLEO and B-factories). This dependence
introduces an extra parameter generically denoted by rBW
in the following [12] and consequently an extra source of
uncertainty.
Going back to expression (1), leaving aside any con-

tribution besides the resonance and squaring the amplitude
one gets for the resonant contribution to the three-body
decay width

Γ3 ≡ ΓðB0
d→D�−πþ;D�−→D̄0π−Þ

¼ g2g22
ð2πÞ3

1

256m3
B

Z
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ðs −m2
D� Þ2 þ sΓ2

D�ðsÞF
2
RðsÞ

× F2
BðsÞ

�
m2

B þm2
D þm2

1 þm2
2 − s − 2m2

12

−
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�
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: ð5Þ

The final integration with respect to the invariant mass of
the pions leads to
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Γ3 ¼
g22g

2

192π3

Z ðmB−m2Þ2

ðmDþm1Þ2
ds

s3=2
F2
BðsÞp03

2 ðsÞF2
RðsÞp3

1ðsÞ
ðs −m2

D� Þ2 þ sΓ2
D� ðsÞ ; ð6Þ

which can be rewritten as

Γ3 ¼
1

π

Z ðmB−m2Þ2

ðmDþm1Þ2
ds

ΓB0
d→D�−πþðsÞs1=2ΓD�−→D̄0π−ðsÞ
ðs −m2

D�Þ2 þ sΓ2
D� ðsÞ : ð7Þ

Thus, using the general formula

δðxÞ ¼ 1

π
lim
ϵ→0

ϵ

x2 þ ϵ2

one immediately gets

lim
ΓD�→0

Γ3 ¼ ΓB0
d→D�−πþðm2

D� Þ × BR; ð8Þ

with BR≡ BRD�−→D̄0π−ðm2
D�Þ being the branching ratio in

the channel under consideration, taken at
ffiffiffi
s

p ¼ mD� by
virtue of the δ function.
The value of the two-body decay width is

Γ2 ≡ ΓB0
d→D�−πþðm�

D
2Þ ¼ g22

8π

1

m2
D�

p03
2 ðm2

D� Þ: ð9Þ

III. NUMERICAL ASPECTS: DEPENDENCE
ON THE D� WIDTH

A. Dependence on g2 at fixed D� mass

In this section we measure the effect of changing the
value of the g coupling constant by introducing a scaling
parameter λ so that g2 is changed into λ × g2 or, equiv-
alently, ΓD�→DπðsÞ goes to ΓD�→Dπðs; λÞ≡ λ × ΓD�→DπðsÞ.
We change the total width in the denominator in the same
way so that the partial and total widths are both scaled
proportionally [13], getting

Γ3ðλÞ ¼
1

π

Z ðmB−m2Þ2

ðmDþm1Þ2
dsΓB0

d→D�−πþðsÞ

×
λs1=2

ðs −m2
D� Þ2 þ λ2sΓ2

D� ðsÞΓD�−→D̄0π−ðsÞ; ð10Þ

and we define RðλÞ≡ Γ3ðλÞ=ðΓ2 × BRÞ.
Letting λ vary from 0 to 1, one should get in the λ → 0

limit the result announced in the preceding section (zero-
width limit), limλ→0RðλÞ ¼ 1 while for λ ¼ 1 one recovers
the physical situation.
In Figs. 1 and 2 we show the behavior of RðλÞ. The

numerical values are taken from the Particle Data Group
review [5] and the coupling constants are fitted from the two-
body decay width formulas in order to reproduce their
experimental values without referring to a specific decay
mechanismweget: g¼16.8, seeAppendixB,a1A0 ¼ 0.576,
see Eq. (13) [14]. It is seen that the behavior is linear and that
the deviation from unity is rather large, of the order of 10% at
the physical value λ ¼ 1, although theD� is still very narrow.
The inclusion of the B-meson Blatt-Weisskopf factor (i.e., at
theweak vertex) results in an enhancement of the ratio, while,
on the contrary, the resonance damping induces a strong
depletion. We recall that the various groups (namely CLEO/
B-factories and LHCb) use different definitions for the
damping factors. Clearly, using the LHCb definition strongly
increases the effect, even though both conventions lead to
qualitatively similar effects: at the physical point (λ ¼ 1) it
amounts to a several percent effect.

B. Dependence on mD� at fixed coupling constant

In the previous subsection we have considered the
behavior of RðλÞ at fixed mD� as g goes to 0. Mean-
while, the value of g is determined by the strong interaction
and is independent of the mass to first approximation.
Therefore, since the nominal D� width is proportional to
g2p3

1;D� , one has to consider also the limit at fixed g, letting
p1;D� , and consequently the width, go to 0. Such a limit is

0.0 0.2 0.4 0.6 0.8 1.0

1.04

1.08

1.12

1.16

1.20
R

0.0 0.2 0.4 0.6 0.8 1.0

1.04

1.08

1.12

1.16

1.20
R

FIG. 1. Behavior of RðλÞ as function of λ and effect of the Blatt-Weisskopf damping factors: full line, blue: without any damping
factor, full line, black: with the resonance damping only, full line red: with the B-meson damping only, dashed, red: with both dampings.
On the left, the damping factor FB is evaluated using the momentum of the bachelor particle computed in the B rest frame whereas, on
the right, it is evaluated in the resonance rest frame. The parameter rBW is taken to be 1.6 GeV−1 in both cases.
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obtained by lowering the mass of the resonance so that it
becomes close to threshold. This corresponds to the actual
situation for the D�, whose narrowness is only due to the
proximity of its mass to the threshold.
Figures 3 and 4 show the behavior of Rð1Þ as a function

of the resonance mass. It is seen that, whatever damping
scenario is considered, Rð1Þ remains fairly constant and
significantly different from 1 when the resonance mass
varies from threshold to 2.1 GeV, which corresponds to a
variation of the width from 0 to 7 MeV. When the mass gets
close to the threshold, the low mass part of the resonance
peak shrinks to 0, which means that the departure from 0 is
mainly due to the real part of the propagator. This is similar
to the effect of the N pole in N − π scattering.

IV. COMPARISON WITH EXPERIMENT IN
HADRONIC B DECAYS

One now turns to the question of relating the above
calculations to experimental observations. As explained in
previous sections, we have to distinguish the following:
(1) The zero-width limit Γ2, which is a theoretical

concept describing the rate ΓB0
d→D�−πþ as a decay

to two stable particles. This is the quantity that
can be compared with corresponding theoretical
computations;

(2) the width obtained in three-body decays, Γ3, which
uses D̄0π−πþ events belonging to the decay B0

d →
D�−πþ; D�− → D̄0π− and is obtained by fitting the
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FIG. 2. Same as Fig. 1 with rBW ¼ 4 GeV−1 in both cases.
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FIG. 3. Behavior of Rð1Þ as a function of the mass mDπ of the resonance. The conventions are the same as in Fig. 1.
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FIG. 4. Same as Fig. 3 with rBW ¼ 4 GeV−1.
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corresponding decay rate over all the available
phase space.

In particle decay tables [5] the quantity Γ3 is generally
used when quoting decay branching fractions of heavy
mesons into three-body states, in which two of the emitted
particles come from an intermediate resonance.
The decay B0

d → D�−πþ is peculiar because a large
fraction of the D̄0π− mass distribution is concentrated over
a small interval, which contains the D�− mass and, usually,
only events that belong to such an interval are selected to
measure BRðB0

d→D�−πþÞ. Unfortunately, different experi-
ments are using different mass intervals [�3; <10 MeV=c2

by reference to mD� or mðDπÞ < 2.1 GeV=c2] and it is
not clear to understand, from present publications, how
(or even if) corrections are done, using simulated events, to
account for the presence of D� decays outside the selected
range (apart from resolution effects that are corrected).
Therefore one needs a precise definition of what is called
a D� in experimental measurements to be able to combine
results obtained in different analyses and have a clear link
with phenomenology when using simulated events. We
detail this recommendation in Sec. IVA. It must be recalled
that the B → D̄�π decay channel is used at the LHC to
normalize different measurements and it is important to
minimize uncertainties on this quantity.
On the other hand the tail of the D� extends up to large

Dπ mass values, with distances from the pole mass that are
thousands times larger than the width of the resonance. In
effect, as we have explained in Sec. III, the behavior of the
D� tail is similar to the one expected for other resonances,
with a higher mass. It is simply theD� intrinsic width that is
very small due to the proximity of mD� with the decay
channel threshold. Once the D� peak is eliminated by a cut
on the Dπ mass or when the Dπ threshold has a higher
value than mD� , only the tail of the D�, named D�

V ,
contributes in Dππ analyses. This component is usually
fitted without using any information relating its rate and
mass dependence to expectations from the D� tail. This
point is discussed in Sec. IV B by comparing present D�

V
measurements and expectations.

A. The B0
d → D�−π + decay channel

Measurements from Belle [15] and BABAR [16,17]
collaborations are based on a small fraction of their registered
statistics and their results are not in good agreement.
From the publications it is not clear if quoted branching

fractions are restricted to a given mass range centered on
the D�− mass or if measurements are corrected, using a
simulation, to correspond to BRðB0

d → D�−πþÞ over the
total available phase space.
Leaving aside these remarks and using values from [5]

we obtain

BRðB0
d→D�−πþÞ×BR¼ð1.855�0.089Þ×10−3; ð11Þ

with BR≡ BRðD�− → D̄0π−) as in previous sections.
The value for a1A0, is obtained in the zero-width approxi-
mation limit, by comparing this value to the corresponding
expectation,

BR2ðB0
d → D�−πþÞ × BR ¼

Γ2τB0
d

ℏ
BR: ð12Þ

Using the expression for Γ2 given in Eq. (9), this gives

a1A0 ¼ 0.576� 0.014: ð13Þ

1. Comparing our expectations and
experimental results

Taking into account the finite width of theD�−, expected
values for BRðB0

d → D�−πþÞ × BR are obtained by inte-
grating the B0

d → D̄0π−πþ partial decay width, given in
Eq. (5) over several D̄0π− mass intervals. Therefore we
define

BR3 ¼
Γ3τB0

d

ℏ
¼ BR3ðm < mcutÞ þ BR3ðm > mcutÞ: ð14Þ

In these evaluations, the value of a1A0, obtained in the zero
D�− width approximation, and given in Eq. (13), is used.
A relativistic Breit-Wigner distribution is used to

describe the D� resonance,

RD� ¼ 1

s −m2
D� þ i

ffiffiffi
s

p
ΓD� ðsÞ ; ð15Þ

with

ΓD�ðsÞ ¼
X∞
i¼1

Γi
D�

�
pi
1

pi
1;D�

�
3
�
mD�ffiffiffi

s
p

�
2

F2
Rðpi

1Þ; ð16Þ

as seen from Eqs. (1) and (3) or Eq. (47.18) of [5]. The
value of mD� is the resonance mass and Γi

D� is its partial
decay width for the i channel. pi

1 and p
i
1;D� are the breakup

momenta at the mass m ¼ ffiffiffi
s

p
and mD� , respectively. The

damping factor FR is equal to unity at m ¼ mD� . It
decreases the tail at large mass values of the resonance
and gives some enhancement below mD�. In the present
analysis two parametrizations are used for the damping
factor. The one derived from a model proposed for
nuclear physics by Blatt and Weisskopf and another
parametrization [18], used at B-factories in analyses
containing a D�, and which corresponds to an exponen-
tial distribution,

FRðpi
1Þ ¼ e−αðp

i
1
−pi

1;D� Þ: ð17Þ

For D�þ decays, we consider that the index i varies
between 1 and 3 and corresponds to the channels D0πþ,
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Dþπ0, and Dþγ, respectively. We have not considered
additional decay channels that should be present at high
masses.
Results are given in Table I; the consideredmDπ intervals

are those used in Belle [15], BABAR [19], and LHCb [20] in
their analyses of the B0

d → D̄0π−πþ three-body decay
channel. Values considered for rBW or α are representative
of those measured in different experiments, as indicated in
the last column of Table III.
When integrating over the whole Dalitz plane

(second line), the expected branching fraction decreases by
about 5% when α varies between 0 and 4 ðGeV=cÞ−1. This
variation is reduced below the 2 permil level if, e.g., a mass
range of �10 MeV=c2 is used to select D�− candidates.
Therefore, if the D�− production is measured within a

fixed mass range, around the D�− mass, comparison with
theoretical expectations, obtained in the same conditions,
can be of high accuracy and are not dependent on the
parametrization of damping form factors.
Ratios between expected widths in different mass inter-

vals and the value obtained in the narrow width approxi-
mation are independent of a1A0,

RðmcutÞ ¼
Γ3ðm < mcutÞ

Γ2 × BR
: ð18Þ

Without any cut on the D̄0π− mass, this ratio changes
from 1.077 if no damping form factors are included and
1.020 using form factors with an exponential dependence
and α ¼ 4 ðGeV=cÞ−1. This variation comes from the tails
in the mass distribution, outside theD�− region. Restricting
the mass interval to Δm < 10 MeV=c2, the ratio is equal to

unity and variations observed by considering different
hypotheses on damping factors are at the permil level.
We note also a variation of 2.5% on the value of the

branching fraction when considering the three mass inter-
vals given in Table I and used by different experiments.
This quantifies the importance of quoting the limits of the
Δm interval over which the branching fraction is evaluated
by the various analyses.
It is also possible to define the cut (m0

cut) on the D̄0π−

mass so that the corresponding integrated three-body decay
branching fraction corresponds to the value expected from
theory in the zero-width approximation. It is independent of
the value of the form factor a1A0 and almost also of the
damping factors,

m0
cut ¼ mD� þ ð9–10Þ MeV=c2: ð19Þ

These results are obtained with the momentum of the
bachelor pion, which enters in FBðpÞ, computed in the
B-meson rest frame, as was done at B-factories. This aspect
is developed in Sec. IV B.

2. Proposal to quote BRðB0
d → D�−π + Þ

To avoid uncertainties related to the unknown shape of
damping form factors and to account for effects related to
the choice of the mcut value, we advocate to quote
BRðB0

d → D�−πþÞ for events selected within a specified
mDπ interval. Measured quantities have to be corrected
for different experimental effects, using simulated events,
but no correction must be applied to account for the cut on
mDπ (apart for resolution effects) so that corrected events
correspond only to those situated in the quoted mass
interval before any experimental effect.
If experiments use different intervals in mDπ it is

necessary to correct individual measurements so that they
correspond to the same mass range, before computing the
average.
The obtained value is then essentially independent of

hypotheses for damping factors if the combinatorial back-
ground, present under the D�, in the selected mass interval,
can be estimated in a way that does not depend much on the
high mass tail of the signal. To compare with theory, the
value m0

cut, given in Eq. (19), is adequate.

B. Rate and branching fraction for the virtual
contribution B0

d → D̄�−
V π +

The measured fraction of B0
d → D̄�

Vπ
þ events in the

three-body B0
d → D̄0π−πþ final state, after vetoing the D̄�

mass region (mDπ > mcut), is of the order of 10% and is
concentrated at low D̄0π− mass values.

1. Theoretical expectations for the D�−
V component

In Table II, values for BR3ðm > mcutÞ ¼ BRðB0
d →

D�−
V πþÞ × BRðD�−

V → D̄0π−Þ are obtained using the value

TABLE I. Values for BR3ðm < mcutÞ ¼ BRðB0
d → D�−πþÞ ×

BR × 103 obtained for different choices of the mass range around
the D�− mass and using an exponential (first line) or the Blatt-
Weisskopf parametrization (second line) for the damping factors.
The theoretical expression, obtained in the zero-width approxi-
mation, is normalized to data to fix the value of the parameter
a1A0. The value for BR2ðB0

d → D�−πþÞ × BR is 1.855 × 10−3
[Eq. (11)]. It can be noted that BR3ðm < mcutÞ branching
fractions are almost independent of the value of the damping
parameter, rBW or α, once the measurement is done within a given
mass range; meanwhile their values depend on the chosen mass
interval.

rBW or α ðGeV=cÞ−1 0 1.6 4.0

No mass cut 1.998 1.930 1.890
1.998 1.966 1.914

Δm < 3 MeV=c2 1.840 1.840 1.840
1.840 1.840 1.840

Δm < 10 MeV=c2 1.855 1.854 1.853
1.855 1.855 1.855

mðD̄0π−Þ < 2.1 GeV=c2 1.887 1.880 1.873
1.887 1.886 1.882
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of a1A0 previously determined and for two parametriza-
tions of damping form factors. In the following we use the
notation BRV ≡ BRðD�−

V → D̄0π−Þ because this quantity
can have a value different from BR, which was defined at
the resonance mass.
Results given in the first two lines, for each mass range,

are obtained using the value of the bachelor pion momen-
tum, which enters in the damping factor FBðpÞ, computed
in the B rest frame. If, instead, we use the corresponding
momentum value obtained in the Dπ rest frame we get the
results given in the third line. In this case, one notes that, for
rBW ¼ 1.6 ðGeV=cÞ−1, branching fractions are higher than
without damping. This effect was also apparent in Fig. 1.
Such differences are obtained using the Blatt-Weisskopf
parametrization and we observe that using an exponential
distribution gives much more dramatic differences: the D�

V
component increases by more than one hundred times.
These effects are not usually mentioned in publications
because they are not present, either in B-factory analyses,
as they take the bachelor pion momentum evaluated in the
B rest frame, or in LHCb, which uses the resonance rest
frame but does not use any exponential form factor

distribution. It can be shown that, if the bachelor pion
momentum is evaluated in the B rest frame, then the
product FRðp1Þ × FBðp0

2Þ goes to 1 for large Dπ masses
(if the same function is used for FR and FB), whereas it can
take arbitrary large values if p2 is evaluated in the
resonance rest frame.
Let us recall that there are no really compelling theo-

retical arguments for the introduction of the Blatt and
Weisskopf damping factors, and even less for choosing
such or such momentum dependence. However results are
sensitive to them as can be concluded, for instance, from
Table II and this constitutes a source of uncertainty. Our
present conclusion, considering this arbitrariness in the
parametrization of damping factors, is to consider that the
bachelor pion momentum that enters in FB has to be
evaluated in the B rest frame. If the value of the damping
parameter, rBW , used in FB, is smaller than the one that
enters in FR, the total damping will be lower than unity at
large mDπ . This indicates also that dedicated studies are
needed to measure directly these form factors.

2. Experimental measurements of the D�−
V component

Measurements obtained by Belle, BABAR, and LHCb
collaborations are compared with expectations in Table III
and in Fig. 6. These values are extracted from Table II using
corresponding values for rBW and α.
In the Belle analysis, only statistical uncertainties

were quoted. The variation range for rBW (and α), between
0 and 3 ðGeV=cÞ−1 is chosen to illustrate the sensitivity of
theoretical expectations on the value of this parameter.
In the BABAR measurement, the dominant uncertainty

comes from the parametrization of the D̄0π− S-wave, in the
threshold region, including a “dabba” component.
In the LHCb measurement, the quoted uncertainty on

rBW is very small when compared with previous determi-
nations; meanwhile it does not include any systematic
uncertainty on this parameter [21].
From Table III it appears that measured and expected

values for the D�
V component are compatible, as already

observed by Belle [15]. Meanwhile experimental uncer-
tainties remain quite large (those from LHCb being under-
estimated) and are difficult to estimate because they

TABLE II. BR3ðm>mcutÞ¼BRðB0
d →D�−

V πþÞ×BRV ×104

expectations for different values of the damping parameter and
of the selected mass range. For each mass range, the first line
corresponds to the exponential parametrization of the damping
form factor, the second line is obtained with the Blatt-Weisskopf
parametrization, and the third line uses the same parametrization
but the bachelor pion momentum is computed in the resonance
rest frame.

rBW or α ðGeV=cÞ−1 0.0 1.6 3.0 4.0 5.0

Δm > 3 MeV=c2 1.578 0.899 0.615 0.499 0.420
1.256 0.893 0.742 0.638
1.769 1.131 0.900 0.751

Δm > 10 MeV=c2 1.427 0.753 0.476 0.363 0.288
1.105 0.743 0.594 0.492
1.617 0.980 0.751 0.604

mðD̄0π−Þ>2.1GeV=c2 1.111 0.494 0.254 0.165 0.110
0.797 0.456 0.326 0.244
1.297 0.682 0.473 0.346

TABLE III. Measurements of D�
V components in B0

d → D̄0π−πþ decays are compared with expectations. The latter are provided for
two choices of the damping factor parametrization, exponential, and Blatt-Weisskopf, respectively and using central values and
uncertainties on α or rBW quoted by corresponding experiments [apart from Belle for which we use a variation between 0 and
3 ðGeV=cÞ−1].

Experiment
BRðB0

d → D�−
V πþÞ×

BRðD�−
V → D̄0π−Þ × 104

Our evaluation
(exponential/Blatt-Weisskopf)

rBW or α
ðGeV=cÞ−1

Belle [15] 0.88� 0.13ðno syst:Þ 0.90þ0.68
−0.28=1.26

þ0.32
−0.37 1.6þ1.4

−1.6
BABAR [19] 1.39� 0.08� 0.16� 0.35� 0.02 0.36þ0.12

−0.07=0.59
þ0.15
−0.10 4� 1

LHCb [20] 0.78� 0.05� 0.02� 0.15 0.49=0.79 1.60� 0.25
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are mainly of theoretical origin, being dependent on the
assumed value for rBW (or α) and on hypotheses for the
variation of the damping factor with mDπ . It must be noted
also that the value of the D�

V component is dominated by
the low mass region.

3. Expected variation of the D�−
V component with mDπ

Experiments have usually assumed a relativistic
Breit-Wigner distribution for the D�−

V component (Belle,
BABAR). In the LHCb analysis [20], an arbitrary distribu-
tion is fitted on data,

RðsÞ ¼ e−β1ðs−5.4Þ−iβ2ðs−5.7Þ: ð20Þ

This distribution has two problems to describe a D�−
V

component: a very fast falloff versus mDπ and an unex-
pected phase variation (theD�−

V amplitude is expected to be
real and the phase to be constant, away from mD�). But no
experiment has really measured the D�−

V line shape.
It has to be noted that the expected mass distribution is

almost independent of the exact value of the D� total decay
width. This is illustrated in Fig. 5 from which it can be
concluded that theD�

V mass distribution is the one expected
from a simple pole, modified by damping form factors.

We display, in Fig. 6, comparisons between D�
V distri-

butions fitted by experiments and our expectations. The
latter are obtained with the exponential parametrization of
damping factors and we use α ¼ 1.6 ðGeV=cÞ−1.
It has to be recalled that our evaluations are based on the

D� production in the mass region of the resonance and are
therefore absolutely normalized. The distribution obtained
in Belle is compatible with our expectation. The agreement
in rate is not trivial. Meanwhile, for the mass variation, we
have used the same parametrization [exponential with
α ¼ 1.6 ðGeV=cÞ−1] as favored by Belle. BABAR and
LHCb observe a higher rate at low mass values.
Because the distribution is essentially fixed by the D�

pole, even in the presence of damping factors, we consider
that the D�

V component has a non-negligible contribution at
large masses. Therefore the fitted distribution by LHCb,
with a fast falloff, is not physical.

C. The B− → D +π − π − decay channel

The LHCb collaboration has obtained a high statistics
measurement of the decay B− → Dþπ−π− [22]. Previous
compatible results were obtained by Belle [18] and BABAR
[23] collaborations but systematic uncertainties were not
provided on theD�

V component. Experimentally this channel
has the interest, when compared with B0

d → D̄0π−πþ, that,
the π−π− final state being exotic, the decay amplitude is
easier to parametrize and the analysis is more sensitive to the

10-9

10-8

10-7

10-6

10-5

10
m2(Dπ)  [GeV2]

ΔB

no damping

pole only

Blatt-Weisskopf

exponential

FIG. 5. Comparison between the expected variation of the D�−
V

component versusm2ðDπÞ for different choices of damping form
factors. The black full line is obtained without damping whereas
Blatt-Weisskopf (red line) and exponential (blue line) damping
factors are used, with the same value for the parameter [α or
rBW ¼ 1.6 ðGeV=cÞ−1]. The black dashed line is obtained
assuming that the total D� decay width is equal to 0 (therefore,
in this case, the D� amplitude is of course real). Some difference
is observed at large masses [m2ðDπÞ > 10 ðGeV=c2Þ2], which
becomes nonvisible, once some damping is present. ΔB is the
expected branching fraction in a bin. There are 20 equal-size bins
between ð2.02 GeV=c2Þ2 and ðmB −mπÞ2.

10 -9

10 -8

10 -7

10 -6

10 -5

10
m2(Dπ)  [GeV2]

dB
/d

m
2 (D

π) Our result

BABAR

LHCb

Belle

FIG. 6. Comparison between fitted D�−
V components, in

BABAR, Belle, and LHCb (dashed lines), with our expectation.
For the latter, we use exponential damping factors with α ¼
1.6 ðGeV=cÞ−1 (full line), while the thin black lines on each side
of the expectation are obtained by changing the value of α
between 0. and 3. ðGeV=cÞ−1. Thin lines drawn for each of fitted
experimental curves correspond to quoted uncertainties on D�

V ,
given in publications.
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various components in the Dπ final state. Meanwhile,
for theory, this decay is more difficult to interpret, being
of class III. But, independently of any theoretical prejudice,
it is possible to verify if the measured D�

V component,

BRðB− → D�0
V π−Þ × BRðD�0

V → Dþπ−Þ
¼ ð1.09� 0.07� 0.07� 0.24� 0.07Þ × 10−4; ð21Þ

is compatible with the tail expected from the D�0.
In this comparison we use the measured contribution of

the D�0 in the decay B− → D�0π−; D�0 → D0π0, with a
branching fraction equal to ð4.90� 0.17Þ × 10−3 ×
ð64.7� 0.9Þ × 10−2 ¼ ð3.17� 0.12Þ × 10−3 [5].
We have computed the corresponding decay rate

by integrating the square of the decay amplitude
modulus, given in Eq. (22), over the D0π0π− phase space,
restricting the D0π0 mass interval to values below mDπ <
2.020 GeV=c2 to isolate the D�0 meson.

A ¼ CRD� ðmÞFBðp0
2ÞFRðp1ÞT1ðp2; p1; cosðθÞÞ: ð22Þ

As already discussed in Sec. IV B, this expression differs
from the one used by LHCb in the evaluation of the
damping FB for which we take the momentum of the
bachelor pion computed in the B rest frame in place of
the resonance frame.
The value of the normalization factor (noted C) is then

determined such that this evaluation corresponds to the
measured value.
To obtain the D�

V contribution in the B− → Dþπ−π−
decay channel we assume that it comes from the decay
chain, B− → D�0π−; D�0 → Dþπ−. The decay threshold
having a higher value than mD�0 , it is not possible to
compute the value of the decay momentum, at the reso-
nance mass, which enters in the expression of the partial
decay width given in Eq. (16). In such circumstances,
usually, an effective mass is introduced in published
analyses, which has a value much higher than the threshold.
Measurements of the corresponding D�

V component are
essentially independent of this choice, mainly because
fractions and not absolute decay rates are measured. In
practice, if one takes the expression for the mass dependent
decay width, as given in Eq. (3) which does not refer to the
decay width at the resonance mass, it is not needed to use
any effective mass. As for damping factors, we take them
equal to unity at the decay threshold.
The decay amplitude is symmetrized because there are

two possible Dþπ− mass values, noted respectively by
mmin : and mmax :

AD�
V
¼ Aðmmin :Þ þAðmmax :Þ; ð23Þ

where the amplitude AðmÞ is given in Eq. (22). The
expected decay rate is obtained by integrating C2jAD�

V
j2

over the plane defined by the variables m2
min : and m2

max :.

The values given in Table IV are obtained for different
hypotheses on the α or rBW parameters and using the
exponential and the Blatt-Weisskopf parametrizations
for FB;R.
Using the parametrization of LHCb with rBW¼

ð4�1ÞðGeV=cÞ−1, which is the value they assume for this
parameter, their measurement in Eq. (21) has to be
compared with our estimate given in the last line of
Table IV: 1.4þ0.5

−0.3 × 10−4.

V. THE B̄ → ½Dπ�lν̄l FINAL STATE

Similarly to what we have done for hadronic decays, we
consider two regions in the D� → Dπ mass distribution.
The low mass region is used to measure theD� component,
which plays an important role in the determination of the
jVcbj parameter. At higher masses, the tail of the D� mass
distribution is noted D�

V , as in previous sections. The
component, denoted as ½Dπ�broad, corresponds to experi-
mental measurements of Dπ final states, after a cut on mDπ

and from which D�
2 → Dπ decays are subtracted. The

interpretation of these ½Dπ�broad events in terms of physical
components has been problematic for a long time. It has
been most often considered that they are coming from
D�

0 → Dπ decays but this has not been established exper-
imentally and does not agree with theoretical predictions
[24] (see also the more recent discussion and references in
[25]). From theory it is expected that narrow states are
produced at a larger rate than broad states because
τ3=2ð1Þ > τ1=2ð1Þ, where τ3=2ðwÞ and τ1=2ðwÞ are the
Isgur-Wise form factors [26] and w is the product of the
4-velocities of the B and D mesons, and additionally
because of kinematical factors. Numerically, the expected
branching fractions are an order of magnitude higher for
narrow states whereas the experimental value

BRðB̄0
d → ½Dπ�narrowlν̄lÞ ¼ ð0.18� 0.02Þ% ð24Þ

is lower than the corresponding value for broad states,
obtained by averaging Belle [27] and BABAR [28,29]
measurements,

TABLE IV. BRðB− → D�0
V π−Þ × BRðD�0

V → Dþπ−Þ × 104 ex-
pectations for different values of the damping parameter. The
bachelor pion momentum, entering in the FB damping, is
computed in the B rest frame in the second and third lines,
and in the resonance frame in the last one. In the second line the
exponential parametrization is used whereas for the two other
lines we take the Blatt-Weisskopf expression.

rBW or α ðGeV=cÞ−1 0.0 2.0 3.0 4.0 5.0

BRðB− → D�0
V π−Þ

×BRðD�0
V → Dþπ−Þ

×104

2.81 0.68 0.43 0.30 0.22
2.81 1.77 1.27 0.98 0.78
2.81 2.86 1.89 1.37 1.06
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BRðB̄0
d → ½Dπ�broadlν̄lÞ ¼ ð0.42� 0.06Þ%: ð25Þ

Computations of BRðB̄ → ½Dπ�broadlν̄lÞ were done by
several authors in the framework of heavy quark and chiral
symmetries [30–33]. They obtain a broad component,
which can be large but their predictions vary over a wide
range depending on their definition for the resonant
component and on the cut on the soft pion momentum.
We have not used their detailed expressions for the decay
branching fraction and considered that the contribution
from the D� pole is dominant, as they had observed. Our
approach differs also because the coupling constant g has
now been accurately measured and because we give a well-
defined scheme to compare experimental measurements
with theoretical predictions. We have found that the value
expected for the D�

V component of the D� resonance is
compatible with the ½Dπ�broad measurements. Therefore, the
broad contribution is perhaps neither, as previously con-
sidered, the D�

0 one, which should be very small, nor one
coming from a radial excitation, as also suggested [34], but
the D�

V one. An excess of events at low Dπ mass values is
observed in Belle and BABAR analyses but the helicity
distribution measured by Belle does not favor the D�

V
hypothesis. Meanwhile present statistics are too low to
provide definite conclusions. Measurements of higher
values for B̄ → D�l−ν̄l branching fractions obtained by
fitting the inclusive lepton momentum distribution as
compared with those obtained with exclusive analyses
may point also to some missing D�

V component [35,36].

A. B̄ → D�l− ν̄l
The semileptonic decay width for this reaction is used to

measure the CKM parameter jVcbj by comparing the
corresponding experimental branching fraction with theo-
retical expectations, obtained in the hypothesis that the D�
is a stable particle.
Integrating over decay angles, the partial decay width

depends on two variables: mDπ ¼
ffiffiffi
s

p
and w, the latter

being related to q2, the invariant squared mass of the two-
lepton system,

w ¼ m2
B þ s − q2

2mB
ffiffiffi
s

p : ð26Þ

If one assumes that the D� is stable, then mDπ ¼ mD� and
the differential decay width becomes, in analogy to what
was found in the nonleptonic case,

dΓ
dw

¼ G2
Fm

3
B

48π3
r3ðmB −mD� Þ2χðwÞη2EWF 2ðwÞjVcbj2; ð27Þ

where r ¼ mD�=mB. The form factor F ðwÞ depends on
three form factors and is usually expressed in terms of one
of them, hA1

ðwÞ, and of the ratios, R1ðwÞ; R2ðwÞ, of the two
others relative to hA1

ðwÞ.

χðwÞF 2ðwÞ ¼ h2A1
ðwÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ðwþ 1Þ2

×

�
2

�
1 − 2wrþ r2

ð1 − rÞ2
��

1þ R2
1ðwÞ

w − 1

wþ 1

�

þ
�
1þ ð1 − R2ðwÞÞ

w − 1

1 − r

�
2
�
: ð28Þ

We use the parametrization of [37] for the functions that
enter in Eq. (28),

hA1
ðwÞ¼hA1

ð1Þ½1−8ρ2zþð53ρ2−15Þz2−ð231ρ2−91Þz3�;
R1ðwÞ¼R1ð1Þ−0.12ðw−1Þþ0.05ðw−1Þ2;
R2ðwÞ¼R2ð1Þþ0.11ðw−1Þ−0.06ðw−1Þ2; ð29Þ

where z ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p Þ. The values
obtained by the HFAG group [38] for the parameters, ρ2,
R1ð1Þ, and R2ð1Þ, that enter in Eq. (29) are the following:
ρ2 ¼ 1.205 � 0.026; R1ð1Þ ¼ 1.404 � 0.032 and R2ð1Þ ¼
0.854 � 0.020.
They have been determined from a fit to experimental

data that includes also the normalization for the decay rate,

ηEWF ð1ÞjVcbj ¼ ð35.61� 0.43Þ × 10−3: ð30Þ

Using these values, we have verified that, integrating
Eq. (27) over w, to obtain the semileptonic decay partial
width of the B0

d meson, we recover the central value of
4.88% for the corresponding measured decay branching
fraction which is given by HFAG. Corresponding central
values for the semileptonic decay width into a D�, consid-
ered as a stable particle, are respectively for the neutral
and the charged B meson: Γsl

2 ðB0
dÞ ¼ 2.113 × 10−14 GeV

and Γsl
2 ðB−Þ ¼ 2.116 × 10−14 GeV. The small difference

between these two values is attributed to differences in the
masses of the particles involved.

1. Virtual D* contribution

To evaluate the effects induced by the D* coupling to the
Dπ final state, one muliplies Eq. (27) by

RiðsÞ ¼ 1

π

ffiffiffi
s

p
ΓiðsÞ

ðs −m2
D� Þ2 þ ð ffiffiffi

s
p

ΓD� ðsÞÞ2 ; ð31Þ

where the index i refers to the relevant decay channel. In the
limit ΓD� ðsÞ→0, this expression corresponds to δðs −m2

D� Þ
and one recovers Eq. (27) multiplied by the branching
fraction of the D� into the i decay channel (Bi¼ΓiðmD� Þ=
ΓD� ðmD� Þ). Total and partial widths include the Blatt-
Weisskopf damping factor FR. By tradition, the FB
damping term is not used when computing semileptonic
decays.
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We have included three decay channels of theD�:D0πþ,
Dþπ0, and Dþγ for the charged state and D0π0, Dþπ−, and
D0γ for the neutral one. If we integrate over s and w, values
for the semileptonic decay widths, Γsl

3 , divided by Γsl
2 , are

given in Table V (we have adopted the same notation as for
hadronic B decays: the index 2 refers to a stable D�
particle).
Depending on the value of the damping parameter,

the semileptonic partial width obtained by integrating
over the D� mass distribution exceeds by 3% to 9% the
value obtained in the zero-width approximation. This is
a situation similar to the decay B → D̄�π studied in
Sec. IVA.
The mass interval, centered on mD� , which is such that

the integral restricted over this interval is equal to Γsl
2

corresponds to Δ3ðmÞ ¼ �ð9–10Þ MeV=c2 and the
obtained partial width is almost independent of the value
of the damping parameter (with relative variations <10−3).
To obtain the value for jVcbj one needs the value of F ð1Þ

and this quantity is evaluated for a stable D� particle.
Therefore we consider that theoretical expectations have to
be compared with the measured branching fraction
restricted to the interval Δ3ðmÞ. The event simulation must
not be used to correct for D� decays that are outside this
interval. One difficulty is to fix the level of the combina-
torial background under the D� signal, in the Δ3ðmÞ mass
interval, because the D� signal is still present at large Dπ
masses and its exact contribution depends on damping
factors and on the opening of other decay channels. It is
therefore important to have better experimental control of
the so-called D�

V mass distribution. In present publications
there is usually some missing information to understand
exactly how measurements were done. It would be nice if
the different experimental collaborations would clarify this
situation.

B. B̄ → D�
Vl

− ν̄l
As we have noted, in previous sections, the D�

V compo-
nent is not negligible in B̄0

d → D0πþπ− decays where it
corresponds to about 10% of remaining events, once theD�
peak is excluded. It is peaked at low Dπ mass values and it
extends over a large mass range.
To evaluate the branching fraction for B̄0

d → D�þ
V l−ν̄l

we have integrated the differential decay width d2Γ=dwds

over w and s for
ffiffiffi
s

p
> mD� þ 9 MeV=c2 (by comparison,

in Belle, they select events with
ffiffiffi
s

p
> mD� þ 1.5 MeV=c2

whereas BABAR uses
ffiffiffi
s

p
> mD þ 180: MeV=c2).

Therefore, comparing the values given in Table VI with
the measurement from Eq. (25), it appears that the D�

V
component can explain all or a large fraction of the
“missing” decay channel in B̄0

d → ½Dπ�broad�lν̄l.
In addition, the D�

V component can be identified exper-
imentally because it has characteristic mDπ (see Fig. 7) and
angular distributions. Therefore, B hadron semileptonic
decays offer a nice opportunity to study the Dπ mass
distribution of theD�

V component because of the absence of
any additional hadron in the decay final state. Such
measurements can be considered at LHCb because present
statistics from B-factory published analyses are too low for
such studies.

TABLE V. Partial decay widths for the channel B̄ → D�e−ν̄e
relative to the values obtained for a stableD� meson. The first line
gives the value [in ðGeV=cÞ−1 units] of the parameter rBW, used
in the Blatt-Weisskopf damping factor.

rBW ðGeV=cÞ−1 0 1 1.85 3 5

B̄0
d → D�þe−ν̄e 1.089 1.072 1.056 1.041 1.028

B− → D�0e−ν̄e 1.085 1.068 1.052 1.038 1.025

TABLE VI. Estimated semileptonic branching fractions (in %)
for the channel B̄ → D�

Ve
−ν̄e. The first line gives the value [in

ðGeV=cÞ−1 units] of the parameter rBW, used in the Blatt-
Weisskopf damping factor.

rBW ðGeV=cÞ−1 0 1 1.85 3 5

B̄0
d → D�þ

V e−ν̄e 0.48 0.38 0.29 0.21 0.14
B− → D�0

V e−ν̄e 0.49 0.39 0.29 0.21 0.13

0

0.02

0.04

0.06

0.08

0.1
x 10

-2

2 2.5 3 3.5
m(Dπ)  [GeV]

ΔB

D0π++D+π0

no damping

rBW=3 (GeV/c)-1

FIG. 7. Expected Dπ mass distribution for the D�
V component

in B̄0
d hadron semileptonic decays. The two curves correspond to

expectations without damping (black) and with (red) using the
Blatt-Weisskopf distribution with rBW ¼ 3 ðGeV=cÞ−1. ΔB is the
branching fraction expected in each m2

Dπ bin. There are 100
equal-size bins between ðmD�þ þ Δ3Þ2 and m2

B0
d
.
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VI. CONCLUSIONS

We have found that to compare expected branching
fractions with experiment in B̄ → D�π and B̄ → D�lν̄l
decays, that are always provided from theory in the zero-
width limit, one has to integrate the D�→Dπ mass dis-
tribution from threshold up tom0

cut¼mD� þð9–10ÞMeV=c2

[Eq. (19)]; this interval corresponds to more than one
hundred times the intrinsic resonance width. In this way,
the two values are expected to agree at the permil level,
independently of effects from damping factors that are
usually introduced in decay amplitudes (see Table I).
Such an accuracy supposes a precise control of the Dπ
combinatorial background level, within the selected mass
range. This is a priori nontrivial because of the presence of
D� decays at highmass values (the so-calledD�

V events) that
need to be estimated. Therefore it is also important to have a
good understanding of this component.
The D�

V component corresponds to mðDπÞ > m0
cut and

comes mainly from the real part of the D� propagator. We
have shown that its relative importance, when compared
with the zero-width limit, is essentially independent of the
value of the vector resonance intrinsic width (see Sec. III B)
when this quantity is computed according to Γ0 ∝ g2p�3

0 ,
the coupling g being a constant fixed by strong interactions.
This result is verified by changing the mass of a hypo-
thetical vector resonance, decaying into Dπ, between
threshold and 2.1 GeV=c2, which corresponds to Γ0 vary-
ing between ∼0 and 7 MeV. We find that the measured D�

V
production rate is compatible with expectations obtained
from the D� within uncertainties that are quite large at
present (see Table III). Specifically, predicted branching
fractions depend on the parametrization of damping factors
and on the way they are computed (see Table II). In this
article we have not really addressed some aspects that can
still affect the D�

V evaluation, such as the physical origin
and interpretation of damping factors, and the opening of
new decay channels at large masses.
We therefore consider that it is important to have

experimental control of the D�
V component. The B− →

Dþπ−π− seems promising in this respect because large
statistics can be analyzed and no resonance is expected in
the two-pion channel (see Sec. IV C). Another appealing
possibility is the semileptonic B̄ → Dπlν̄l decay because
of the absence of a third hadron in the final state and
because the D�

V component is expected to dominate the Dπ
channel (see Sec. V).
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APPENDIX A: AN ILLUSTRATIVE MODEL

We use a simplified model to display the physical origin
of the relatively large difference existing between the partial
decay widths Γ3 and Γ2 × BR, in spite of the extreme
smallness of ΓD� . The main simplifications are that
(1) we discard any damping factor;
(2) in the denominator of the propagator, we consider a

fixed width ΓD� depending only on the D� mass
instead of ΓðsÞ, which would be more respectful of
unitarity.

Differences between this simplified model and numerical
results quoted in the article, that were obtained using a
variable decay width, do not seem essential. The magnitude
of the effect is the same as in the more complete calculation.
The expression for Γ3 is given in Eq. (6). It can be

rewritten,

Γ3 ¼ C
Z ðmB−mπÞ2

ðmDþmπÞ2
ds

ϕðsÞ
ðs −m2

D� Þ2 þ ðmD�ΓD� Þ2 : ðA1Þ

The constantC is some combination of numerical factors
and coupling constants not relevant here since we discuss
only ratios. The function ϕðsÞ is equal to

ϕðsÞ ¼ p03
2 ðsÞp3

1ðsÞ
s3=2

: ðA2Þ

In the zero D� width limit one gets the equality [39]

lim
ΓD�→0

Γ3 ¼ Γ2 × BR ¼ Cπϕðm2
D� Þ=ðmD�ΓD� Þ:

The intermediate expression in the equation above
corresponds to ΓB0

d→D�−πþ × BR in Eq. (8).
To display the difference between Γ3 and its limit, one

may rewrite πϕðm2
D� Þ=ðmD�ΓD� Þ as the integral,

Z ðmB−mπÞ2

ðmDþmπÞ2
ds

ϕðm2
D� Þ

ðs −m2
D�Þ2 þ ðmD�ΓD�Þ2 : ðA3Þ

This is an approximation, but a very good one. It amounts
to replacing π

mD�ΓD� (which is the exact result for the same
integral, but with infinite bounds) by

π

mD�ΓD�

�
1 −

mD�ΓD�

πA
−
mD�ΓD�

πB

�
; ðA4Þ

where A¼m2
D� − ðmDþmπÞ2 and B ¼ ðmB −mπÞ2 −m2

D� .
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The relative difference between the Γ3 and Γ2 × BR
decay widths is then equal to

R − 1 ¼ Γ3 − Γ2 × BR
Γ2 × BR

≃mD�ΓD�
1

πϕðm2
D� Þ

Z ðmB−mπÞ2

ðmDþmπÞ2
ds

×
ϕðsÞ − ϕðm2

D� Þ
ðs −m2

D� Þ2 þ ðmD�ΓD� Þ2 : ðA5Þ

In the factors in front of the integral, the critical depen-
dence of ΓD� on the mD� mass through the factor p3

1ðm2
D� Þ

[see Eq. (3)], which could lead one to believe that the
expression tends to 0 at threshold, is compensated exactly
by the same factor in ϕðm2

D� Þ. Displaying explicitly the
coupling constant factor, and taking into account that the
above expression involves the total width ΓD� instead of
the partial one given in Eq. (3) (BR ≈ 2=3), one ends with

R − 1 ≈
1

16π
g2D�Dπm

2
D�

1

π

1

p3
2ðm2

D� Þ

×
Z

ds
ϕðsÞ − ϕðm2

D�Þ
ðs −m2

D� Þ2 þ ðmD�ΓD� Þ2 :

One sees that there remains only a smooth dependence
on mD� in p3

2ðm2
D� Þ (B decay) and from the integral, as

observed in the numerical curves of Sec. III B. In particular,
the limit mD� → mD þmπ is finite and ≠ 0, although the
width goes to 0.
The magnitude of R − 1 is controlled by the magnitude

of the coupling constant: it is roughly proportional to g2D�Dπ .
One would recoverR ≈ 1 if this coupling was very small, as
shown in the beginning of the paper. But of course it is not
small in reality. The smallness of theD� width is accidental,
only due to the proximity to the threshold, and the coupling
is comparable to the one for other strong couplings like
gNNπ . Numerically, one finds for the physical value of
g2D�Dπ and for mD� very close to the threshold, in fact for an
arbitrarily small width, R − 1 ≈ 0.09.

APPENDIX B: THE DETERMINATION
OF THE gD�Dπ COUPLING CONSTANT

The value of gD�−D̄0π− is obtained from the measurement
of theD�þ hadronic decay width using the expression given
in Eq. (3).
Experiments have measured the total width of the D�þ

meson and the small contribution from electromagnetic
decays needs to be subtracted to obtain the hadronic
component. Using values quoted in [5] this gives

Γjexpt:D�þ→Dπ ¼ ð83.4� 1.8Þ × ð1 − 0.016� 0.004Þ keV
¼ ð82.1� 1.8Þ keV:

It corresponds to

gexpt:D�Dπ ¼ 16.81� 0.18:

This value is obtained using the hypothesis of I-spin
symmetry to relate the D0πþ and Dþπ0 decay channels
of the D�þ, taking into account the difference of the decay
momenta. The validity of this hypothesis can be checked by
comparing the measured ð67.7� 0.5Þ% and expected
ð67.6� 0.3Þ% values for BRD�þ→D0πþ.

APPENDIX C: ON THE s DEPENDENCE
OF THE IMAGINARY PART OF THE

RESONANCE PROPAGATOR

In this Appendix we demonstrate the statements and
claims formulated in the text about the s dependence of
−i

ffiffiffi
s

p
ΓðsÞ, i.e., of the imaginary part of the self-energy,

namely, that it is proportional to 1ffiffi
s

p times the usual factors

qðsÞ2lþ1, for an l decay partial wave [40], qðsÞ being the
decay momentum for a particle of mass

ffiffiffi
s

p
in its rest frame.

This conclusion is obtained by using a loop model.

1. Basis of the calculation

For the sake of simplicity, we make our demonstration
for the case of a scalar resonance of mass M decaying into
two identical scalars of mass m. The extension to the case
of a vector resonance like the D� is straightforward.
The propagator can be written as

1

s −M2 − ΣðsÞ ; ðC1Þ

with s ¼ p2 and ΣðsÞ being the self-energy contribution,
having in fact obviously a dimension mass squared. We are
here only interested in the imaginary part of ΣðsÞ, although
there is of course also a real s-dependent mass shift. In the
literature, this imaginary (absorptive) part is either denoted
as −i

ffiffiffi
s

p
ΓðsÞ or −iMΓMðsÞ. Note that in the beginning this

is only a matter of convention, if the quantities ΓMðsÞ or
ΓðsÞ are evaluated accordingly, with M ΓMðsÞ ¼

ffiffiffi
s

p
ΓðsÞ,

from the same imaginary part, but it may be a source of
confusion. The justification of such notations is to make the
dimension of a mass squared explicit and to recall the
relation with the physical width, let us say, which would
be defined at the pole mass. In fact, as is obvious in the
calculation, the absorptive cannot depend on the mass M,
but only on s and m, so that the notation −iM ΓðsÞ
introduces a dependence on M in both factors that is rather
artificial. We therefore stick to the notation −i

ffiffiffi
s

p
ΓðsÞ.

Now the only simple way to get an explicitly covariant
expression for −i

ffiffiffi
s

p
ΓðsÞ in accordance with the analyticity

and unitarity requirements of field theory is to use Feynman
diagrams and to generate the self-energy and its imaginary
part by the loop contributions, which are produced by
iteration of the (normal ordered) coupling of theM particle
to the two identical others,
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λ∶ ΦMðϕmÞ2; ðC2Þ

with λ being the (dimensionful) coupling constant to appear
also in the decay width, and ΦM;ϕm the fields correspond-
ing to the respective scalar particles. We therefore proceed
by applying the standard Feynman rules to the calculation
of the corresponding propagator.

2. Calculation

Let P be the momentum entering the loop and s ¼ P2.
The self-energy is generated by the series of loop diagrams,

i
s −M2

σ
i

s −M2
þ i
s −M2

σ
i

s −M2
σ

i
s −M2

þ � � �

with σ coming from the loop integral,

σ ¼ i2λ2

2

Z
d4K
ð2πÞ4

i2

ðK2 −m2ÞððP − KÞ2 −m2Þ : ðC3Þ

The factors in front of the integral come from twice the
vertex iλ, and a factor 1=2 for the bosonic loop. These loop
contributions, added to the bare i 1

s−M2, give

i
s −M2 − ΣðsÞ ; ðC4Þ

with Σ ¼ iσðsÞ, whence finally

Σ ¼ i
λ2

2

Z
d4K
ð2πÞ4

1

ðK2 −m2ÞððK − PÞ2 −m2Þ : ðC5Þ

It is obvious that Σ does not contain any dependence on the
mass M of the decaying scalar.
We need only the absorptive part of Σ, which we obtain

by means of the Cutkosky rule, i.e., the substitution,

1

u −m2
→ 2πiδðu −m2Þ; ðC6Þ

for each denominator u −m2 inside the loop. The calcu-
lation is easily done in the frame where p⃗ ¼ 0, yielding

−2i
ffiffiffi
s

p
ΓðsÞ ¼ DiscΣ ¼ iλ2

2

�
−

1

4π

qðsÞffiffiffi
s

p
�

ðC7Þ

ΓðsÞ ¼ 1

2

λ2

8π

qðsÞ
s

; ðC8Þ

with qðsÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
, i.e., the decay momentum of the

particle of mass
ffiffiffi
s

p
into two decay products with equal

mass m in its rest frame.

[1] p1, p2, and p0
2 are actually functions of s but we usually

omit to write explicitly this dependence, unless their values
at different energy scales must be distinguished. We denote
by p1;D� the value of p1 evaluated at the nominal mass of the
resonance. The bachelor meson momentum in the B-meson
rest system, p0

2, is related to p2 by p0
2 ¼ p2

ffiffiffi
s

p
=mB.

[2] M. Neubert and B. Stech, Adv. Ser. Dir. High Energy Phys.
15, 294 (1998).

[3] P. Lichard, Acta Phys. Slovaca 49, 215 (1999).
[4] N. Isgur, C. Morningstar, and C. Reader, Phys. Rev. D 39,

1357 (1989).
[5] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[6] A. Weinstein, Breit Wigners and form factors, cBX 99-55

(unpublished report).
[7] By isobaric model we mean effective field-theoretic models

including vector fields describing spin one resonances and
subject to Feynman rules; see for instance the treatment of
the Δ by Gourdin and Salin [8].

[8] M. Gourdin and P. Salin, Nuovo Cimento 27, 193 (1963).
[9] θ is the angle between the 3-momenta of the two pions, in

the resonance rest frame.
[10] C. Zemach, Phys. Rev. 140, B109 (1965).
[11] C. Zemach, Phys. Rev. 140, B97 (1965).

[12] Actually there are two parameters, since there is no a priori
reason why the two damping factors should be identical.

[13] Strictly speaking, this procedure is not fully correct since
there is no reason why the various channels contributing to
the total width should scale in the same way.

[14] Note, however, that our discussion is fully independent of
those numerical values.

[15] A. Kuzmin et al. (Belle Collaboration), Phys. Rev. D 76,
012006 (2007).

[16] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 75,
031101 (2007).

[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74,
111102 (2006).

[18] K. Abe et al. (Belle Collaboration), Phys. Rev. D 69,
112002 (2004).

[19] P. del Amo Sanchez et al. (BABAR Collaboration), Proc.
Sci., ICHEP2010 (2010) 250.

[20] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 92,
032002 (2015).

[21] The value of rBW measured by LHCb cannot be directly
compared with previous determinations because, in LHCb,
the damping FBðpÞ is evaluated using the momentum (p)
computed in the resonance rest frame instead of using the B
rest frame.

LE YAOUANC, LEROY, and ROUDEAU PHYS. REV. D 99, 073010 (2019)

073010-14

https://doi.org/10.1142/ASDHEP
https://doi.org/10.1142/ASDHEP
https://doi.org/10.1103/PhysRevD.39.1357
https://doi.org/10.1103/PhysRevD.39.1357
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1007/BF02812613
https://doi.org/10.1103/PhysRev.140.B109
https://doi.org/10.1103/PhysRev.140.B97
https://doi.org/10.1103/PhysRevD.76.012006
https://doi.org/10.1103/PhysRevD.76.012006
https://doi.org/10.1103/PhysRevD.75.031101
https://doi.org/10.1103/PhysRevD.75.031101
https://doi.org/10.1103/PhysRevD.74.111102
https://doi.org/10.1103/PhysRevD.74.111102
https://doi.org/10.1103/PhysRevD.69.112002
https://doi.org/10.1103/PhysRevD.69.112002
https://doi.org/10.1103/PhysRevD.92.032002
https://doi.org/10.1103/PhysRevD.92.032002


[22] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 94,
072001 (2016).

[23] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79,
112004 (2009).

[24] V. Morenas, A. L. Yaouanc, L. Oliver, O. Pène, and J.
Raynal, Phys. Rev. D 56, 5668 (1997).

[25] A. L. Yaouanc and O. Pène, Int. J. Mod. Phys. A 30,
1543009 (2015).

[26] N. Isgur and M. B. Wise, Phys. Rev. D 43, 819 (1991).
[27] D. Liventsev et al. (Belle Collaboration), Phys. Rev. D 77,

091503 (2008).
[28] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.

100, 151802 (2008).
[29] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.

101, 261802 (2008).
[30] T.-M. Yan, H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin,

and H.-L. Yu, Phys. Rev. D 46, 1148 (1992); 55, 5851(E)
(1997).

[31] C. L. Y. Lee, M. Lu, and M. B. Wise, Phys. Rev. D 46, 5040
(1992).

[32] G. Kramer and W. F. Palmer, Phys. Lett. B 298, 437 (1993).
[33] J. L. Goity and W. Roberts, Phys. Rev. D 51, 3459

(1995).
[34] F. U. Bernlochner, Z. Ligeti, and S. Turczyk, Phys. Rev. D

85, 094033 (2012).
[35] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79,

012002 (2009).
[36] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 95,

072001 (2017).
[37] I. Caprini, L. Lellouch, and M. Neubert, Nucl. Phys. B530,

153 (1998).
[38] Y. Amhis et al., Eur. Phys. J. C 77, 895 (2017).
[39] We recall that BR stands for BRD�−→D̄0π−ðm2

D� Þ.
[40] This differs from the expressions given in the new section 48.

Resonances in the 2018 edition of PDG [5], Eqs. (48.22)
and (48.23), where it is only ∝qðsÞ2lþ1.

LARGE OFF-SHELL EFFECTS IN THE D̄� … PHYS. REV. D 99, 073010 (2019)

073010-15

https://doi.org/10.1103/PhysRevD.94.072001
https://doi.org/10.1103/PhysRevD.94.072001
https://doi.org/10.1103/PhysRevD.79.112004
https://doi.org/10.1103/PhysRevD.79.112004
https://doi.org/10.1103/PhysRevD.56.5668
https://doi.org/10.1142/S0217751X15430095
https://doi.org/10.1142/S0217751X15430095
https://doi.org/10.1103/PhysRevD.43.819
https://doi.org/10.1103/PhysRevD.77.091503
https://doi.org/10.1103/PhysRevD.77.091503
https://doi.org/10.1103/PhysRevLett.100.151802
https://doi.org/10.1103/PhysRevLett.100.151802
https://doi.org/10.1103/PhysRevLett.101.261802
https://doi.org/10.1103/PhysRevLett.101.261802
https://doi.org/10.1103/PhysRevD.46.1148
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1103/PhysRevD.46.5040
https://doi.org/10.1103/PhysRevD.46.5040
https://doi.org/10.1016/0370-2693(93)91847-G
https://doi.org/10.1103/PhysRevD.51.3459
https://doi.org/10.1103/PhysRevD.51.3459
https://doi.org/10.1103/PhysRevD.85.094033
https://doi.org/10.1103/PhysRevD.85.094033
https://doi.org/10.1103/PhysRevD.79.012002
https://doi.org/10.1103/PhysRevD.79.012002
https://doi.org/10.1103/PhysRevD.95.072001
https://doi.org/10.1103/PhysRevD.95.072001
https://doi.org/10.1016/S0550-3213(98)00350-2
https://doi.org/10.1016/S0550-3213(98)00350-2
https://doi.org/10.1140/epjc/s10052-017-5058-4

