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Heavy quarks within the electroweak multiplet

J. Besprosvany and R. Romero

Instituto de Fisica, Universidad Nacional Autéonoma de México,
Apartado Postal 20-364, Ciudad de México 01000, México

®  (Received 1 December 2015; published 2 April 2019; corrected 1 May 2019)

Standard model fields and their associated electroweak Lagrangian are equivalently expressed in a
shared spin basis. The scalar-vector terms are written with scalar-operator components acting on quark-
doublet elements, and shown to be parametrization-invariant. Such terms, and the t- and b-quark
Yukawa terms are linked by the identification of the common mass-generating Higgs operating upon the
other fields, after acquiring a vacuum expectation value v. Thus, the customary vector masses are related

to the fermions’, fixing the t-quark mass m, with the relation m? + m,% = 1?/2, either for maximal
hierarchy, or given the b-quark mass m,. A sum rule is derived for all quark masses that generalizes this
restriction. An interpretation follows that electroweak bosons and heavy quarks belong in a multiplet.

DOI: 10.1103/PhysRevD.99.073001

I. INTRODUCTION

The standard model (SM) describes elementary-particle
features and their interactions, which is praiseworthy, given
its relatively limited required input, consisting of specific
gauge and flavor symmetries, representations, and param-
eters, yet aspects remain within the model whose origin
and connection to other tenets is absent and that need to be
addressed.

Thus, among its successes, the SM predicts mass values
for the W and Z bosons [1] that carry the short-range
electroweak interaction, in terms of electroweak parame-
ters, through the Higgs mechanism [2,3]. However, one
salient SM problem is that the fermion sector and its masses
remain arbitrary, as they arise from Lagrangian terms,
independent from the boson elements.

The electroweak sector hints that it may provide this
link, given that the W and Z vectors have universal
couplings to SM fermions, and the Higgs field collec-
tively gives mass to fermions and bosons. In addition, the
similar order of magnitude of the measured masses [4]
of the W, Z, the recently discovered scalar excitation,
associated with the Higgs [5], and the top quark (with the
bottom quark’s the next highest), suggests connections
among them, and thus, a common energy scale.
Furthermore, fermions occupy the spin-1/2 and funda-
mental representations of the Lorentz and scalar groups,
respectively, as vector bosons belong to the adjoint
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representation of each group,]’2 which implies bosons
can be constructed in terms of fermions, suggesting
composite structures and/or a common origin.

The above inspires looking for a formalism that takes
account of discrete degrees of freedom (d.o.f.) in a single
basis, including group representation properties, such as the
fermion-boson fundamental-adjoint duality for the Lorentz-
scalar representations, and that describes the combined
action of operators on fields.

A previously proposed SM extension [6], based on a
shared extended spin space, with a matrix formalism,
satisfies these requirements, as it replicates SM fields with
their features, and matrix multiplication accounts for
operator action on fields. This space contains a (3 4 1)-
dimensional subspace and one beyond 3+ 1, linked,
respectively, to Lorentz and scalar d.o.f. [7]. At each
dimension, a finite number of Lorentz-invariant partitions
are generated with specific symmetries and representations,
reproducing particular SM features, where the cases
with dimension 5+ 1 [8], 7+ 1 [9], and 9 + 1 [10] were
studied.

In this connection, it is worth recalling that a basis or
representation choice can be useful, even essential, in the
description of a system and its dynamics. It may reveal
otherwise-hidden connections between its components,
and provide a simpler framework to understand physical
properties. Such a basis may describe effective d.o.f.
[11] accounting for collective interactions, allowing for
a simpler near free-particle description, in a first

'As the Higgs occupies the SU; (2) fundamental representa-
tion.

*For the Abelian hypercharge group U(1),, gauge invariance
ensures boson-fermion quantum-number additivity.
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approximation. For example, nucleon and associated
boson interactive configurations give a tractable account
of nuclear-motion modes [12]. Within condensed matter
and low-temperature superconducting systems, a residual
attractive interaction related to phonons couples electrons
into Cooper pairs [13], which propagate freely, and lead to
frictionless currents. In an application of this theory to
quantum field theory and elementary particles [14], a four-
fermion interaction produces fermion and composite-boson
masses, linking their values. The quark model [15] con-
ceives mesons and baryons in terms of constituent (dressed)
quarks.

Leaving aside the more speculative nature of the spin SM
extension, but complementarily to it, in this paper, we use it
as a basis to derive SM connections, and the fields’ mass
values in particular: SM heavy-fermion (F), vector (V), and
scalar (S) fields are equivalently expressed in terms of the
obtained common basis [6] for both Lorentz and electro-
weak d.o.f., in turn, recasting their Lagrangian components
L= Lry+ Lgy + Lgp; the identification of the scalar
operator within the L and Ly, vertices links univocally
its defining (mass) parameters. Indeed, such universal
electroweakly-invariant terms lead, under the Higgs mecha-
nism, to a scalar whose lowest-energy condensate state
pervades space, and generates particle masses through its
vacuum expectation value v. Within the spin basis, this
mechanism is similarly represented; as these fields shape
elements on a matrix space, with a single associated scalar
operator acting upon the others, their mass-generation
property relates their coefficients.

Next, as we give the paper’s organization, we sketch the
argument in more detail. Section II reviews the applied
spin-extended space for symmetry generators and states.
The paper focuses then on the (7 + 1)-dimensional case
that can describe the electroweak sector, and a quark
doublet. For all sectors, Lry, Lgy, Lsr, the conventional
and spin-space Lagrangian are equivalent, which is shown
term-by-term in Appendixes A and B. Section III chooses
one among two vector bases within Ly, in which vectors
with chiral properties are adequate. Section IV writes Lgy
equivalently with combinations of the scalars and their
conjugates, with universal couplings to vectors, shown
explicitly in Appendix B, and similarly for the spin-base
representation, in which these two scalars induce a pro-
jection to flavor-doublet components (as t, b quarks).
Schematically, given the spin-space basis element B for
a field f(x), we write Lgy in terms of By containing these
two scalar components, obtaining the vector mass squared
within Ly as [Bg, By]'[By, By]. In Sec. V, we show that
the fermion masses within Lgz can be written [Bg, By],
where B contains two terms with appropriate Yukawa
coefficients. Within the spin-basis formalism, we derive
that By, Bg have the same operator structure; given their
mass-giving nature, the identification of these operators and
their coefficients translates a v-normalization restriction on

Bg to By, implying a relation for the t and b quark masses.
Section VI shows a procedure exists that generalizes
consistently this relation to all quarks in terms of a sum
rule for their masses, taking advantage of the chiral
projection properties of the scalar field in the spin basis.
In Sec. VII, we draw conclusions. We work in the classical
framework afforded by the Lagrangian, and at tree-level,
but also rely on a quantum-mechanical interpretation.

II. SYMMETRY GENERATORS AND STATES
IN SPIN-EXTENDED SPACE

In the following, we introduce the spin basis and its main
features, where more information may be found in previous
treatments [7—10]. Mainly, it describes SM discrete d.o.f. in
a single scheme, namely, for the Lorentz and scalar groups,
and for both symmetry generators and state representations,
using a common matrix space:

A. Matrix space

Such a space is rendered by a Clifford algebra Cy,
generated by a set of even-N 2V/2 x 2V/2 gamma matrices,
obeying the defining property [16]

7/(17//} + 7//)’7/(1 = 29{1/)’9 (1)
where g, is the metric tensor with signature (.=, —)
and’ a,p=0,1,...3,5,..., N, whose combinations pro-

duce a complex matrix-space with dimension 2V.
The gamma matrices have Hermiticity properties

76 = 70,

vh=—rs 8=1,..3,5...N. (2)

B. Operators and symmetry transformations

The Lorentz generators and transformations acting on
spinors have standard expressions in the 4-dimensional

Clifford algebra C,, namely,
O zé[yﬂ,yy] with y,v =0, ..., 3, (3)

S(A) = emiow"” (4)

with the (3 + 1)-dimensional gamma matrices y, trans-
forming as vectors, while the remaining N —4 gamma
matrices y,, a =35, ..., N, and their products commuting
with 6,,, so they are indeed Lorentz scalars identified
with generators of continuous symmetries, either gauge or
global. Together with the four-dimensional pseudoscalar

Vs = —iyor17273 (5)

*Following standard practice, the label 4 is omitted.
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the scalars are accommodated in the unitary symmetry set

1

1
Sn-4 :E(l +75)UQ2N472) @ >

(1-75)U2M972). - (6)

where 1 stands for the N-dimensional identity matrix.

A projector operator P, obtained from elements of Sy_y,
within a limited number partitions, is chosen to fit as
closely the SM. The combined operator that acts on both
the Lorentz generators J,, = i(x,0, —x,0,) +30,, and
the Sy_4 symmetry-operator space is likewise projected

w =PI =P|i(x,0,—x,0,) + %aﬂy ,
N-4 = PSy_s. ()
Lorentz transformations are thus
S(A) = P ou (8)
and scalar transformations have the form
U = exp[-il,a,(x)]. ©)

with I, € S)_,. Symmetry generators within this space are
described schematically in Fig. 1 in Ref. [9]. The inner
product of two fields is defined according to a matrix space

(p¥) = (™). (10)

Under a unitary transformation, ¥ — UWU", given the
ket-bra matrix structure [7], with the bras interpreted as
conjugate states. Thus, a Hermitian operator O p within this
space characterizes a state ¥ with the eigenvalue rule

[0p. W] =AY, (11)

for real A. This definition is consistent with the action
of a derivative operator on a Hilbert space: [0,¥] =
[—5, ¥ =¥, 5] The direct product tr'¥)¥, is also con-
sistent associativity-wise with the operator rule, as
t[Op, ¥,|"¥, = w¥}[0p!, P,).

C. Field representation

Fields are usually assumed to exist on a Cartesian
basis; for example, a vector field has components
A,(x) = g,*A,(x); alternatively, in the spin basis, it is
expressed as A, (x)(yor") 5 (the af indices now specify the
vector character.)

More generally, a physical field with scalar quantum
numbers is associated with elements of Cy, classified by
operators from C; ® Sy_y4, so it has the structure

(elements of 3 + 1 space) x (elements of Sy_4).  (12)

Figure 2 in Ref. [9] shows the corresponding Lorentz
states: scalars, vectors, fermions, and antisymmetric ten-
sors, arranged in the same matrix space. Next, we provide
more details on the first three (physical) fields.

1. Fermion field

When ) is a spin-1/2 particle, it may be seen schemati-
cally conformed as W~ |¢)|a;F;)(F,|, with the ket
carrying spin-1/2 and gauge-group fundamental represen-
tation ;, a; quantum numbers, respectively, and both the
bra and ket carrying flavor group F;.

More specifically, a fermion can have the form

UG(x)LOPELG, (13)

where I'Y is an element of S)y_,, and L* represents a spin
polarization component, e.g., L' = (y; + iy,). The oper-
ator P is a projection operator, e. g., Pr = L5, where

Rs = Ls = (1-7s), (14)

| =

(1+7s),

| =

implying
Ppyt = y'Pi, (15)

with P§, = 1 — Pp, so that Lorentz and gauge generators
act trivially on its rhs when evaluating commutators as in
Eq. (11), since PSP = (1 — Pr)Pr = 0.

Thus, for U accounting for the Lorentz representation in
Eq. (8) and the scalar transformation in Eq. (9), ¥ trans-
forms, unlike vector and scalar fields, as

Y > UY. (16)

This leads to fermions transforming as the fundamental
representation of both the Lorentz and gauge groups.

2. Vector field

We may view vectors constructed as W~
[t ]a;){a,|{1),]|, with the bra-ket configuration producing
Lorentz vector and gauge group adjoint configurations,
given the vector and scalar y#, uy=0,...,3 and y*,
a=235,...,N, respective transformation properties. Thus
a vector field has form

Az('x)yoyﬂla’ (17)

where yyy, € C4 and 1, € S)_, is a generator of a given
unitary group.

073001-3



J. BESPROSVANY and R. ROMERO

PHYS. REV. D 99, 073001 (2019)

3. Scalar field

W~ i) ]a;Y{as|{1,|, with the bra-ket configuration
producing Lorentz scalar and gauge group fundamental
configurations. In this case, a ket contains right-handed and
a bra left-handed spin-1/2 components (or vice versa),
reproducing the mass term and Higgs quantum numbers.

¢“(x)70T . (18)

ith TS
with I'; an element of S)y_,.

D. Lagrangian formulation

Interactive Lagrangians [7] can be given in terms of
vector, scalar and fermion fields conforming to the general
structure of operator action as in Eq. (11) and the inner
product in Eq. (10). For example, a gauge-invariant
fermion-vector Lagrangian is given by

1
w0, = gAL ALY - MY, (19)
/

where W is a fermion field as in Eq. (13), g is the coupling
constant, M is an appropriate mass operator, and N
contains the normalization. In the next subsection, we
address the spin model in 7+ 1 dimensions in connection
with the SM, and whose basis states will allow to write
Lry, Lgy, Lgr in the next sections.

E. (7 + 1)-dimensional model

We next make a brief description of resulting states in
a (7 + 1)-dimensional spin space under a useful partition
for the SM description, sketching the way to obtain it, and
providing graphic description.

1. Operators

The Clifford algebra is generated by eight 16 x 16
matrices

Y0:V1s--os Vs (20)

The matrices y°, y/, i =1, 2, 3 correspond to the
Lorentz generators 6,,, given in general in Eq. (3) and
the remaining four matrices, together with all their
different products, comprise the set Sy_, of scalars, with
a cardinality of 32. This set is, from Eq. (6), &; =
P.U(4) ® P_U(4), with P =1(1£7s), 1 the 16 x 16
identity matrix and 75 the four-dimensional chirality
matrix. The elements of U(4) consist of four matrices
Ya» @ =15,...,8, siX pairs y,, = y.¥p, @ < b, four triplets
Yabe = Ya¥bYe» and one quadruplet ysygy7ys. The Cartan
subalgebra § of Sy_; contains eight elements, and a
suitable choice is given by

L, s, vsYe» Y7Yss YsYeY7Ys> YsVeVs» Y1Ys¥s» YsYeY7YsVs-
@)

Since b is conformed of all simultaneously diagonaliz-
able operators, it is convenient to recast this basis in terms
of the projection operators

Pg =%(1 +75)(1+ irsre) (1 + irqrs),
Pro Z%(l +75)(1 +irsys) (1 = ivqrs),
Pgs :%(1 +75)(1 = iysye) (1 + irsrs),
Py I%(l +75)(1 —irsye) (1 — irsys).
P 2%(1 = 75)(1 +irsys) (1 + irqrs),
Py Z%(l —7s) (1 +irsye) (1 — ir7rs),
P :%(1 —7s)(1 = iysye) (1 + irars),
Pu=g (=) ~irsr)(1 = irms).  (22)

which run along the diagonal in the matrix space (Fig. 1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1|Pr1 1
2 Pr1 2
3 [Pro) 3
4 Pro) 4
5 5
6 6
7 7
8 8
9 Pr1 9
10 Pry 10
11 Pro 11
12 Pro 12
13 13
14 14
15 15
16 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIG. 1. Matrix representation of the Cartan basis [cf. Eq. (21)]
in extended spin space in 74 1 dimensions. The eight-
dimensional basis is represented here in terms of the projection
operators Pg,;, i = 1,...,4. The subscripts R, L refer to the
chirality: R for operators containing 1 + 75 (right-handed), and L
for operators containing 1 — 75 (left-handed).
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The operators that classify the states, with examples in
terms of the projectors, consist of the baryon-number
operator

1 1
:6(1_”’576):g(PR3+PR4+PL3+PL4)’ (23)
the U(1) hypercharge generator

(4Pg3 — 2Py + P13+ Pry).

@|_ w|,_

(1 —=irsys) <1 + i% (1+ }75)7778)’ (24)

and /3 within the SU(2) weak isospin generators

(1 —75)(1 —iysye)r’.

38
i .
63 g(l —75)(1 — iysye)r®,
1 .
I3 E(Pm —Pr4) = (1 —7s)(1 —iysye)v7rs.  (25)

The charge operator is defined in the standard way by the
Gell-Mann—Nishijima relation

Q:I3+%. (26)

There are also flavor operators, forming the groups
SU(2), SU(2);, U(1);, and U(1);, and given by

i . )
fr=g+75)(1+ ir’y®)y’

i . )
fa=g(475)(1+ ir’y®)r®

fi= é(l +75)(1+ iy )"y, (27)
fi g(l—}’s)( + iy’ %)y
f2 é(l—}’s)( +ir’ )yt
1 é(l—%—,)( + iy’ %)yt (28)

respectively, for SU(2), and SU(2);, and
fo=ir'r°7s. (29)

fo=ir’y°, (30)

for U(1);, and U(1);. The operators f3, f3, fo and f
belong to §. In Fig. 1, the matrix space is represented
schematically. The diagonal operators classify the states
(off-diagonal) acting from the left for states in the same
row, and from the right for states in the same column, which
is consistent with matrix multiplication. We also define a
combination of diagonal flavor operators that classify
states, given by

(fo—4f3 — 8f3) (31)

2. States

States contain scalars, fermions, and vectors. Only the
first two are considered in this section. The matrix space
admits two Higgs doublets ¢b; and ¢, (Table I and Fig. 2).
They satisfy ¢p; = 7s¢p,. Their connection to Hermitian
and SU(2) conjugates is clarified in Sec. IV C.

Non-Higgs scalars can also be constructed that contrib-
ute to the diagonalization of massive states. Reference [9]
provides further information on their nature and their
application to obtain fermion properties.

The massless-fermion states satisfy the general struc-
ture of Eq. (12) and have massless quark quantum num-
bers, when classified by baryon number, isospin, and

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 2
3 3
4 4
5 Qg 5
6 Qr 6
7 Qr 7
8 Qg 8
9 fy 9
10 £s 10
11 fa 11
12 fa 12
13 QL 13
14 Qu 14
15 Qul |[15
16 QwL[16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIG. 2. Matn'x representation of operators, massless quarks
(Ujp - Dl g-i = 1,....4) and Higgs (¢}, ¢{,) d.o.f.in (7 + 1)-
dimensional spin space. The chiral projections of the diagonal
operators B, I3 and Y, are grouped together and represented by
the sets Qg=3(1+7s)(B.I5.Y,) and Q, =3(1—75)(B.Y,).
Following matrix multiplication rules, operators act from the
left on states in the same row, and from the right on states in the
same column.
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TABLE I. Scalar Higgs-like doublets.

Baryon number zero, Higgs-like scalars 15 Y, 0

b, = (¢T> _ (1 s(L=ir*)(r" + ir)ro ) 1/2 . 1
¢ (1=’ r®) (1 + iy Tr*75)70 ~1/2 0

b — (¢2+) _ ( g(1 —lJ/ YO (7 + ir*)¥sro ) 1/2 | 1
¢ § (L= i) L+ ir7r°75)7 7 o ~1/2 0

hypercharge. The matrix space admits four generations of
quarks of different flavor (Fig. 2), arranged in four SU(2),
doublets and eight right-handed singlets, shown in Tables II
and III, respectively. After electroweak symmetry breaking,
the Higgs generates a mass operator used in Sec. V to
obtain fermion mass states.

F. Fermion Yukawa elements

Bilinear fermion terms can be constructed that produce
scalar elements transforming quarks into their different
combinations. We use the (7 + 1)-dimensional space rep-
resented in Fig. 2, with particular and general properties
that can be distinguished.

There are two matrix configurations:

PiY = a0l =123 (32)
is contained in the Dirac projector with (a, f)-spin
components and (positive or negative)-energy; the three
PF™ are the same up to a phase; Q are U- or D-type
fermions obtained from Tables II and III, deﬁning F, the R,
L case taken as an example, and Q% = Q% TyE;

=2(¢7 + ¢7"). (33)
with ¢ defined in Table I. The i, j imply we choose a three-
generation (arbitrary) projection to reproduce the SM; we

TABLE II.

also note that Q‘RQ/}L =0 for i # .
On the other hand,

YF = 020"

®Q .j=12.3 (34)

defines the Yukawa basis (full flavor transition matrix) to
be used in Sec. VI, for the complete scalar-fermion SM
Lagrangian component. One can check that ¥ fj, YP are the
same (up to phases), so they are commonly labelled Yﬁ.
The set R, L, a is arbitrary and other choices will reproduce
(up to phases) the nine Yl-Fj terms. Indeed, although the
(7 + 1)-dimensional basis can accommodate four genera-
tions, the projection operator for, say, flavors 1,2,3

YP =yl + Y5 + Y, (35)

induces the three-generation subset with nine elements,
YFTYEYFS. As the set is closed under matrix multiplica-
tion, the fourth generation is discarded (see Sec. VI.)

The resulting projection operators may be understood
from the products of a fermion with matrix structure
|spin) (flavor| and an Hermitian conjugate one, resulting
in the form |[spin)(spin| for Eq. (32) and, inverting the
order, |flavor)(flavor| in Eq. (34).

Massless left-handed quark weak isospin doublets. Gauge and Lorentz operators act from the left and trivially from the

right. To obtain the —1/2 polarization, the replacement must be made (y° + y*) — (y! = iy?), for Ql,, Q},,and (° — ) - (v' — iy?),

for Q},, Ql,.

Baryon number 1/3, hypercharge 1/3 and polarization 1/2 (operator iBy'y?), .

left-handed quark doublets I3 (0] f3 f3 F

Q' — <UlL) _ (%(1 —7)(° = i) +ir*)(° + 1) ) 1/2 2/3 1/2 0 3/2
o ADy 16 (1=75)(7 = i) (1 = iy"7*)(r° +77) -2 -3 1)2 3/2
= () = (U + it ) B A V- T
*\Dy 16 (1=75)(r° = ir") (7 = ir*)(r* + 1)
L ( Ui, ) _ (}%(1 =7 = i) + lyg)yo(yo -7 ) _11//22 _21//33 0 }ﬁ i
Dy, 16 (1=75)(r° =i )1 =iy " )°(/° = 1)
L (UzllL) _ (%61(1 —75)@55— l'7_/66)( +iy’y )?(’)0(7(’)0 —f)) 1/2 2/3 0 —-1/2 0
t\Dy 16(1=75)(7° = ir*) (7 = ir*)r (" = ) -2 -1/3 -1/2
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TABLE III. Massless right-handed quark weak isospin singlets. Gauge and Lorentz operators act from the left and trivially from the
right. To obtain the —1/2 polarization, the replacement must be made (y°+y®) — (y! —iy?), for Ul,, Uls, D, DL, and
(° =73 = (' = iy?), for Ulg, Ulg, Dig, Dig.

Baryon number 1/3 and polarization 1/2 (operator 3 5 iBy'y?), A

right-handed quark singlets Y, 0 f f3 F
Ulg =1 (14+75)° —ir®) (" +ir®)°(F° +7°) 4/3 2/3 1/2 . 3/2
Dig =15(1+75)(7° = ir®) (1= ir"r* )y’ (" +7*) -2/3 -1/3 1/2 3/2
Ubg = 16 (1 +75)(r° = 6)(ler 9700 +77) 4/3 2/3 -1/2 . -1/2
D =15(1+75)(7° = ir )y = ir* )’ (r° + 1) -2/3 -1/3 -1/2 -1/2
Ulg = 16 (1+75) (P = i) (7 + ir*)(/° = 7%) 4/3 2/3 . 1/2 1
Dig =15 (1+75)(7° = ir" )1 = ir"y*)(y° = V) -2/3 -1/3 1/2 1
Ulg = 16 (1 +75) (" = 6)(1+W H° -7 4/3 2/3 . -1/2 .
Dip =15 (1+7:)(r" —ir )/’ —ir') (" = 1) -2/3 -1/3 -1/2

III. FERMION-VECTOR LAGRANGIAN:
CHIRAL BASIS IN SPIN SPACE

Concentrating on the heaviest fermions, the SM two-
quark” electroweak interaction Lagrangian [1] is’

Loy =010, + 3 Wgla) + B, |, 0

+ia(0) [0, + 38,0 et
+ Be(2) 10, = 308, |t 30

where the spin-1/2 fields consist of q; (x) = ( (< ))> aleft-

handed hypercharge ¥ = 1/3 SU(2),-doublet, and #z(x),
bg(x), right-handed Y = 4/3, —2/3 singlets, respectively;
each term contains two polarizations as, e.g., f;(x) =

(zﬁ] E ;), o (x) are wave functions® for quarks g = 1, b,
with spin components a = 1, 2, and chirality 7 = L, R;
Wi(x), a = 1,2, 3, and B,(x), are associated gauge-group
weak and hypercharge vector bosons, with coupling con-
stants, g, ¢, respectively; ¢ are the Pauli matrices repre-
senting the SU(2), generators.

An extended (7 + 1)-dimensional Clifford algebra com-
prises a sufficiently large space to describe heavy SM
particles [7,9], with the 4-dimensional Lorentz symmetry

‘A single generation is used, and CKM mixing is neglected;
Eq. (36) describes the electroweak interaction for one quark color,
and a sum is assumed over each such term.

'We use units with /2= ¢ = 1, and metric g, = (1
throughout

®For simplicity, spin and scalar representations are assumed
that give the states’ form.

—1L=1,-1)

maintained, and spin-component generators 5 3 Bo,,, where

[
6 = %74 7.), and p,v =0, ..., 3; additional scalar gen-
erators use ys, ..., 7s, producing the baryon-number oper-
ator B in Eq. (23), which conforms a spin-space projection
partition, and gives quarks 1/3 (—1/3 for antiparticles,) and
bosons 0.

Other scalar-symmetry generators include the hyper-
charge Y, in Eq. (24), with 75 = —iygy 7273, the weak
SU(2), terms in Eq. (25) and flavor generators in
Egs. (27)-(30); as required, [I;,1;] = ie;ply, [1;.Y,] =
[B7 Yo] = [B’Ii] = [3B0uw (] [330;4119[1‘] =0.

The (7 + 1)-dimensional space allows for a description
of quark fields,

Zw
Zw )T,
Zw x)Bf, (37)

x)T¢ + 4%, (x)BY,
Yr(x) =

Yyr(x) =

with hypercharges 1/3, 4/3, —2/3, respectively, and spinor
components chosen in Table IV, given explicitly in Tables II
and III; the quantum numbers A are obtained from the
operator structure [Op,¥] = A¥ for the weak component
15, hypercharge Y, (or charge Q =I5 + % Y,,), and spin-
polarization 3 By'y? operators.

The SM Lagrangian Ly in Eq. (36) can be equivalently
written’ in this basis: as derived in Ref. [7], and examined
in Ref. [17],

"The commutator is omitted as the operator acts trivially on
one side.
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Lpy = tr{‘IﬁqL(x) {ia,, + gI*Wj(x)
1
+ E.dYOBM (X>:| yoyﬂll‘qL (X)
. 1
+ \PjR(x) |:la/4 + Eg/YoBu(x>:| 707//“PtR ()C)

+ TZR(X) |:iaﬂ + %Q/YoBu(x)] VOV”LPhR(x)}Pf,
(38)

while gauge and Lorentz symmetries can be checked with
the above transformation rule, or given the equivalence to the
traditional formulation. A projection operator Py that con-
nects the two expressions [17] can be omitted by finding
phases for W, which translates into finding an adequate y,,
basis. The trace coefficient is usually 1, as the field
normalization factor accounts for reducible representations.
A complete proof of the equivalence is given in Appendix A.

The W-fermion vertex in Lry, Eq. (38), contains the

matrix element (F'|W:, |F), where the W contribution,

Wim = g}/Onyh (39)

describes the SU(2), inherently chiral action on fermion
states |F), |F'), as it carries the projection Ls = 1 (1 - 7s),
predicted by the spin basis [9]; it is thus the natural choice.
For example, this property is absent for Wf,iﬂ = gro¥ul}s
where I/ are the SU(2), generators without Ls. Although
an equivalent interaction term results within this space,
it requires the inclusion of Ls within the vertex; worse,
(Yo, I 5] #0.

IV. SCALAR-VECTOR LAGRANGIAN:
EXTENDED CHARGE-CONJUGATE SYMMETRY

A. Conventional Lgy
In the SM, the Higgs particle is present [1] in the
SU(2), x U(1), gauge-invariant interacting Lagrangian-
density component

Lsy = H (x)F* (x)F, (x)H(x), (40)

with
Fy(x) = i0, + 590 W,() + 3 9B,().  (41)
W, (x) = (W}(x), W2(x), W;(x)), and the Y = 1 complex-

doublet scalar
_ (%) +ina(x)
H(x) = V2 <173(x) + ing (x) >

composed of two charged (upper), and two neutral (lower)
fields.

B. Ly with Higgs and conjugate

Ly can be equivalently written (with B, (x) — —B,(x))
in terms of the orthogonal ¥ = —1 combination H(x) =
it,H*(x), which uses an antiunitary transformation C
expressing charge-conjugation invariance (in addition to
the CP symmetry in the electroweak sector, and approxi-
mate SU(2); x SU(2), symmetry [18]; a Hilbert space is
assumed;) this is also a consequence of the SU(2) property
that the conjugate representation is obtained from a
similarity transformation, which ensures independence of
the doublet choice. Appendix B shows that

Lsy =u[F,H,,

()] F¥H,,, (x), (42)

where H,, (x) = (v H(x), x,H(x)) is a 4 x 4 matrix, y,,
x5 are complex, and |y, |*> + |y,|> = 1, with

_ . 1 -
F,H,,, (x) = (lau + K9t Wﬂ(x>> H,,, (x)
+gH,, (x)B,(x)73, (43)

which is diagonal in H(x), H(x), and hence does not mix
them. Moreover, Ly is a sum of weighted positive-definite
terms, meaning only the combination |y,|*> + |y,|? results.
This generalizes the expression [19,20] for Lgy in terms of
H S (x). With the U(1) overall phase, a three-parameter
subspace of the norm-conserving constraint |y,|> + |y,|> =
1 is generated. We associate this isometry with the Lgy
invariance under C: —0,KF' H, , (x)1,K = F/ﬂﬁxj;x? (x),
with K the complex conjugate operator; Lgy is also
invariant under the 75 transformation defined as H, , (x) —
H, , (x)73, together with the combination Cr;.

Further extension can be made for the scalars in the spin
basis by attaching the 75 operator. Using the projection
operators in Eq. (14), Lgy in Eq. (42) is generalized with
the substitutions

F/u - (L5)4><4F//4 (44)

H - (L5)4><4(7/0)4><4I:I’ (45)

thus including spin d.o.f., leading to a combined spinor-
electroweak description. An intermediate expression that
connects to the spin basis, and ultimately to Yukawa
components, is obtained

1 _ . _
Lgy = Etr[LsFlﬂLsme,;(,, (x)] ILSI‘WLSVOH;(,;(,, (x) (46)

1 _ R _
= Ztr([LsF/yLsyoH;(,xb (x)]" + LsF',LsyoH,, ,, (x))

(LsF¥LsyoH,,, (x) + [LsF¥LsyH,,,, (x)]"),
(47)
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with the trace also over spin d.o.f., the second equality
using hermitian conjugates, RsLs = LsRs = 0, and trace
properties which lead to only two identical nontrivial terms.
These forms will prove useful in comparing with Yukawa
terms below.

C. Lgy in (7 + 1)-dimensional spin space

In the spin basis, the four-scalar doublet structure
above is reproduced. Indeed, it emerges naturally in the
(7 4+ 1)-dimensional spin basis, with the Higgs potential
not altered under different definitions (chiral ones or not.)
Table I presents two of these scalar elements (with two
additional as their conjugates.) Together with coordinate
dependence, they are

$1(x) = % () + ina (D) + % s x) + ing ()]0
$alx) = ;5 1 () + ina())d + é s x) + ina ()0,

(48)

and whose quantum numbers associate them to the Higgs
doublet. These are unique within the (7 4+ 1)-dimensional
space [9]. Although new scalar fields are introduced in
principle, here we concentrate on the SM-equivalent
projections. Given the SM Higgs conjugate representation
ﬁ(x) the scalar components are interpreted through the
assignments (see Table 1),

H(x) = ¢ (x) — ¢ (x)
H'(x) = ¢ (x) + 2 (x). (49)

This leads to the equivalent expressions,
Lsy = w{[F"(x), Hyy (0)]L[F" (x). Hyy ()] 1 oy (50)

B %tf{[F”(X), 7 (x) + HEp(0)]L[F (x), Hyp (x)
+H2f(x)}:t}sym’ (51)

where we introduced H,;(x) = a¢,(x) + f¢h,(x), and

) ) 1
F'(x) = laﬂ + QWL(X)Ii + 59/314(?5)1/0 yor*s  (52)

the subindex sym means only symmetric y,y, components
are taken, to avoid the Pauli components; and the £ index
means the commutator and the anticommutator should be
used for the temporal and spatial y, components, respec-
tively. The equality for Lgy, implies that it accommodates
SM parity-conserving scalar representations. The complex
parameters a, f, are constrained by the normalization rule

la|?> + |f|*> = 1. These properties for Lg, are shown
explicitly in Appendix B.

D. Lgy mass components in conventional
and (7 +1)-dimensional spin space
The spin representation can be connected with that
of H,, (x) with the expression H,;(x) = \/%(;(,H,(x)—f—
)(be(X)), where

H,(x) = ¢1(x) — ¢ (x). (53)

with ¢; defined in Eq. (48), and this parametrization applies
the unitary transformation y, = % (a+ 1) xp :\/%(a -f).

Under the Higgs mechanism, the SM scalars acquire
[2,3] a vacuum expectation value v, and only the neutral
field n5(x) survives: (n3(x)) = v, (H(x)) = \/LE((I)), while
the charged and imaginary components are absorbed into
vector bosons, as seen explicitly in the unitary gauge. Idem
in the spin basis, as can be proved by the Lagrangian
equivalence or directly; then,

(o (x)) = Hy = 5 GuHY + 2pH3). (54)

where the normalized Higgs operator H,, is defined, with

the same 0, + component conventions as for the ¢;,
implying, as trHOITHOj =26, i, j=1, b,

(H] ,(x)H,z(x)) = (|a* + [f})v?/2
= (lt* + o v?/2 = %72, (55)

The vector-Higgs vertex in Lgy determines the vector-
boson masses, and within the spin basis, the trace is taken
consistently with H,,. Thus, the mass component, extracted
from Eq. (50), taking for F” the W, Z field terms, and for
H,; its vacuum expectation value in Eq. (54),

/

¥
ACSVm = tl'< |:Hn7 gng(x>Im + % YoBO(x):|

W1+ 57,80

. (1800 Jror b
{t, (wien+Srpw)r ) 6o

is produced. For the neutral massive vector boson, one
derives the normalized Z,(x) = (—gW;(x) + ¢'B,(x))/

V¢*+¢?% and massless photon A,(x) = (¢W;(x)+
9B, (x))/\/g* + ¢?, giving, e.g., the O-component
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Lszmo = tr [Hm Wi (x)gl5 + Bo(x) >

1 T

_g/Y0:|
1

|:an WS(X)gI3 + BO(x) E.dYa:|

1 +
= Zz(x) 2 d2tr|:ng 13 _Eg/zy :|

1
|:Hn’92[3_§.d2Yo:| :Ezg(x)m%’ (57)

implying

1 i 1
H,, e 2H,,¢*1,——q%Y
gz+ 2 {\/_ w1 29 o:| {\/— 913 29 a}
=03 (7 +4%)/4. (58)

thus, m; = v\/¢> + ¢%/2, my = 0.

Similarly, for Lgy,,, the WL,, basis in Eq. (39) emerges,
and defines the masses of the charged boson fields
Wy (x) = 55 (W, (x) F iW}(x)). Thus, the charged-vector

boson component,

Lswmo = Wi (x)Wh(x)te[H,. Wio| [H,. W]
= myW§ (x)Wg (x), (59)

i, j = 1,2, contains mj, =tr[H,,, W/ |'[H,, W] =v>¢/4,

with W5, = ﬁgyoyﬂli, I+ = I, & il,. This assignment is

unique as this is the only way to maintain not only the
vertex condition (gauge invariance,) but also normalization
(above.) When written in terms of H = H,, + H,JQ, inter-
preted as a fermion Hamiltonian, m3, = tr[H, W] [H, W]
and the other part is not affected, as [HI, Wjﬂ] =0.

V. SCALAR-FERMION LAGRANGIAN:
HEAVY-QUARK DOUBLET’S MASS CONSTRAINT

The Yukawa fermion-scalar interaction can be similarly
parametrized in the Clifford basis,

—Lgp = tr ? [mllP;LR (x)H,(x) ¥, (x)

+ mh\I’:;L (O)H,(x)¥pr(x)] + {H.c.},  (60)
where m, and m,, are the top and bottom masses, respec-
tively, and the fermion fields ¥ are defined in Eq. (37).
We note that the Higgs scalar components have the
correct chiral action over fermions: under the projection
operators in Eq. (14) Ls, and Rs, e.g., RsH,(x)Ls = H,(x),
LsH,(x)Rs = Hy(x), LsH;(x)Rs =0, RsH,(x)Ls =0.
For Eq. (60), the underlying mass operator is H,,(x) =
2 (mH,(x) + m, H, (1)),
mechanism,

giving, under the Higgs

TABLE IV. (a) Quantum numbers of massless left-handed
quark weak isospin doublet, and (b) right-handed singlets, with
momentum along +Z, given explicitly in Tables II and III. The
spin component along Z, 3! By'y?, is used.

(a) Hypercharge 1/3 left-handed

doublet Iy 0) 3IBy'y?
T\ _ (UL 1/2 2/3 1/2
B! D!, -1/2  -1/3 1/2
(b) I3 = 0 right-handed singlets Y 0 3AByly?
Th=Ul, 4/3 2/3 1/2
Bk = D!, -2/3 -1/3 1/2
<Hm(x)> =H, :th?+mbH(b)' (61)

Examples of quark massive basis states are summarized on
Table V (see Tables II-IV), for both u- and d-type quarks,
with their quantum numbers. Only one polarization and one
flavor are shown, as a more thorough treatment of the
fermion-flavor states is given elsewhere [9].

This results in, e.g.,

H}, Ty = m,Ty, H}\ 5 = —m,Tj;.,
H" B}, = m,B),, H"BS} = —m,BS},  (62)
where H", = H,, + H,,, and TS}, BS correspond to

negative-energy solution states (and similarly for opposite
spin components) and Eq. (62) justifies the m, and m; mass
interpretation.

Under the assumption of a single mass-producing field
operator, we match a reparametrized H, in Eq. (58) that
gives the Z mass, to the fermion-mass term H ,,, in Eq. (62),
resulting in /2H, = H,,; a multiplet structure is sug-
gested. In other words, the operator identification derives
from their mass eigenvalues, expressed schematically as
(Z|V2H,|Z)|> = m% and (1|H,, + H},|t) = m,, and the
proportionality constant is derived accordingly. In this
association, the simple real-field Z,(x) nature justifies its
use [similarly for each W/, (x)], as opposed to the complex
Wi (x). Similarly, Eq. (50) is chosen over Eq. (51),
as the latter adds the Higgs conjugate representation,

TABLE V. Massive quark eigenstates of H! given after
Eq. (62).

Massive quarks HY, ) 3 By'y?
T, = T(TL +Th) m, 2/3 12
Bl, = - (B} BY) my —1/3 1/2
wa‘ — (1l -T) —m, 2/3 1/2
L (BL + BY) —my ~1/3 12
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unlike the SM. Thus, the vacuum expectation value
reproduces the parametrization in Eq. (54) and identifies
X ¥p s Yukawa parameters:

Zt:mt/%v Zb:mb/%- (63)

The same argument can be made using the second scalar
form in Eq. (51), as it also leads to Eq. (58). This results in

—Lgp= trﬁ[\yjk () H () Wy (x)
+W ()M () Whr(0)] + {He ).  (64)

Using Eq. (55), we obtain the relation for the ¢, b quark
masses:

(lal + 1f1?)v?/2 = |m* + [my|> = v*/2. (65)

The commutator arrangement in Eq. (57) is used in the
above comparison; as it is set on the demand of a
normalized scalar, the argument strengthens on the use
of the same Z operator acting on fermions in Eq. (38). The
coefficient matching in Lgp derives from the underlying
freedom of choice in Lgy, and, in turn, from the underlying
three-parameter 73-C symmetry that can be equally imple-
mented in the spin basis. Looking at the matrix structure,
the y, operator within H,, makes it a rank-2 reducible-
representation operator, as expressed in Eq. (54) and can be
read in Eq. (46); indeed, H,, connects two fermion spin
polarizations, but hits a single W state’s components twice
as H,, duplicates the scalar representations, requiring the %

normalization factor. In yet another interpretation, this
relation is obtained from the normalization restriction in
the Yukawa term in Eq. (55), dividing out the energy scale
set by the vacuum expectation. To the extent that these
arguments rely on a common metric vector space, they are
geometric.

Equation (65) assumes the parity-conserving con-
dition, constraining the quark masses.® For maximal
hierarchy [7], with a, f dependence on one com-
parable large scale O(a)~O(f), (m, <m,), we get

\/iiv ~ 173.95, for v =246 GeV, m,;, = 0; alternatively,

the quark-b mass input predicts the top quark-mass as
m; = \/v?/2 —m2 ~173.90 GeV, for [4] m, =4 GeV

(while renormalization effects give [21] my(m,)~
2 GeV.) These two calculations are consistent with the
measured top pole mass [4] m, =173.21 £0.51%
0.71 GeV, where systematic and statistic errors are
quoted, respectively. Future precision improvements will

SWe neglect t-b mixing as the CKM matrix is nearly diagonal
[4], confirming this method can be applied here.

test the limits of this tree-level calculation, with view of
the bottom-quark influence.

VI. EXTENDED QUARK-MASS RELATION

We place the heavy-quark mass relation in Eq. (65) in the
larger SM context, and argue for a plausible generalization
for all quarks, based on it. For these purposes, we first
derive some SM field properties using the spin basis,
assuming they can be also derived within the conventional
SM basis, given their equivalent application. Needless
to say, we demand consistency with the SM, and with
experiment. At the section’s end, we identify some under-
laying general assumptions.

Thus, we concentrate on the SM three-generation subset
of the (7 4 1)-dimensional model [9], as can be effected by
the Yukawa operators in Eq. (34). Equation (65) uses that
the same single-scalar operator acts on the fermions and the
vector bosons: such an operator is reproduced in the SV
and SF terms, as the SV term admits a basis expression
that applies the associated C-symmetries in Sec. IV. This
connection implies the equivalent expression that can be
read from the Appendixes,

Lsy = x:*Lsvu + | 161> Lsva, (66)

which shows separation of quark i = u- and d-type Lgy;
components, depending on scalars, and no mixing among
them. We focus on the mass-generating scalar elements
corresponding to the neutral H?, HY, from Egs. (53) and
(54), and their hermitian conjugates. As mass relations are
considered, we assume fields after the Higgs mechanism is
applied.

In particular, a connection emerges between the normal-
ized bilinear Higgs term that gives masses to the vector
bosons, as the Z mass in Eq. (58), and the fermions.

1 . .
SUHy Hy = 2ur[(H,, T¢TS ) H,, TS TS

+ (H,,B%B;{")"H,, BB} |
= 2tr[H},H,, T¢T% T4 TS
+ H},H,,B4B By B3]
= 0*(y? +17), (67)

where H,, is defined in Eq. (61), T%, T¢, B%, Bf, are
quarks at rest, defined in Table 1V, y,, y, are H?, HY
coefficients, as given in Eq. (54), in the second equality
we use the trace property, and the third expresses the H,,
normalization condition. Factor 2 comes as only one spin
fermion component is used. Thus, L, elements can be
written as a sum of inner products between Yukawa and
SM scalar components. This relation derives from the
projective nature of Higgs normal and dual terms, accom-
panied by a fermion chirality operator in H,(x), H,(x)
in Eq. (53).
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Equation (67) can also be understood from the sub-
stitutions in trH,,"H,,

1 .
H} — HT{TR = -y TV T
t
1
HY) - H)B4BYT :nyquB%YquBZT , (68)

with terms extracted from Ly in Eq. (60), using the trace
permutation property. The identity in each substitution
provides the link to the ¢, b Yukawa constants for the ¢ = tb
doublet, ¢, b singlet cases. The arguments leading to the
mass relation in Eq. (65) imply yJ, = x;, yj, = x» as given
in Eq. (63), namely, a diagonal mass basis is assumed.
Since one can pick any fermion generation on Tables II
and I1I, the interpretation of the y,, y;, coefficients as Yukawa
constants within the SV term leads to a generalization to
other families and nondiagonal Yukawa elements. We now
consider the extension of L in Egs. (60) and (64) with a
fermion expansion that uses all Yukawa coefficients,

L —tr [ny;‘PZR () H, () ¥, (1),
iq

* ZyZiTLL (X)H, (x)¥r(x) Y], | +{Hc.},
| (69)

where the Yukawa operators Y from Eq. (34) are necessary
to connect the u- and d-type quark fields defined in Eq. (37),
and y;]i, yf])j are Yukawa coefficients, with the up, down,
charm and strange quarks, also included, relabelling singlets
i=u,ct j=d, s, b, and doublets g = ud, cs, tb.

The allowed Yukawa terms, diagonal and mixed, can
be included using all combinations of a three-generation set
of normalized fermions on Table II, where a projection
operator as in Eq. (35) is applied. We evaluate the trace of
bilinear Fyy = - yo:US YL.UR', Fp = J-yh D&Y% D, ¥
terms with Lgy components, extending Eq. (67), producing

2u|(H,,Fy) H, Fy+ (H,,Fp)"(H,,Fp)]
1
= S (YYPeH T HY + |yP [P HO) HY)

2
2(1yU 2 1 D |2
v*(ygil* + i 19)- (70)

which may be also obtained by the substitution of the
associated scalar coefficients in bilinear neutral Higgs
terms trH,,"H,,

1
H(x) » H)Fy = H?;yf{UZLYZU?R*
1

1

1
H,(x) - HYFp = Hgﬁyﬁ],D;?Rqu,DZ,LT. (71)

The correspondence of L in Egs. (60) and (64) to Lgpr in
Eq. (69) induces the sum of square mass-matrix elements in
Eq. (70), which is equal (given the property trM'M =
trM'"M', M a matrix, M’ its diagonal form) to the sum over
the square masses,

»? <%:ny{,-|2 + %:Iyé),-lZ) = Z(Zm% + zj:nﬁ) (72)

A generalization with such a sum is induced, similar to
relation Eq. (65), with the Higgs normalization condition,
Eq. (55). Since Eq. (70) maintains the same structure as
Eq. (67), following the generalization of Lsr to Lgpr,

m? + m2 4+ m2 + mi + m? +mi=1v*/2.  (73)
Implicitly, we used the SV-fermion symmetry, namely, no
fermion preference. With today’s uncertainties in the quark-
mass values, this relation is phenomenologically consistent
with Eq. (65), as the same maximal hierarchy or quark
b-mass input argument follows, and the rest of the quarks
have comparably negligible masses. As this relation is
independent of the mass diagonalization matrix, it is also of
the CKM matrix [22].

The two quark-mass conditions in Eqs. (65) and (73) are
interpreted. This paper shows SM features support a boson
and fermion connection leading to the ¢, b quark mass
condition in Eq. (65). If only such quarks belong in the
same class as the other massive SM bosons, a different
mass-generating mechanism is expected for the other
fermions; one concludes that they are not affected by such
dynamics, as their masses are comparably negligible. On
the other hand, if there is a common dynamics, as suggested
by the similar fermion-boson inner product, the all-quark
condition Eq. (73) applies, given the fermion symmetry,
and the structure similarity between Eqs. (67) and (70).

Initial fermion states within the three-generation set for
Lgpr in Eq. (69) remain within such a subspace, given the
commuting property of the projection operator Y** in
Eq. (35) with baryon-number, Lorentz, gauge and mass
operators (B, Bo,, I;, Y,, ¢;, i =1, 2.) In other words,
within the three-generation states, the substitution
YFTYEYF in Lgpr is valid. This implies that no operator
will connect the initial fermions outside the three gener-
ations. So is the case for the three-generation extension of
Lry in Eq. (38), requiring a sum over the (electroweak)
flavors. We conclude the three-generation spin-basis pro-
jection consistently describes the SM.

By construction, Eqs. (68) and (71) imply masses
represent O(m,/m,) corrections. This is also the order
of the Hamiltonian needed to obtain the other fermion
masses. More assumptions are necessary to get further
information on masses, and CKM matrix elements. For
example, hierarchy arguments on the masses’ order of
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magnitude difference were derived [9] that explain how the
associated W, Z, t, b, large scale mostly cancels for the
other fermions at the vertical level (within a doublet) and
horizontal level (between families). This leads to a con-
sistent description in which such mechanisms coexist with
the Higgs-generated one. While we produce above further
consistency arguments for their parameters, more stringent
constraints from the (7 4 1)-dimensions will be tested
elsewhere. Other arguments leading to hierarchy exist as
textures [23].

We conclude Yukawa coefficients, contained in rest
fermions as a device, connect to bilinear scalar combina-
tions containing mass-generating Higgs terms in Lgy,
keeping the Lorentz or gauge structure of SV unmodified,
and ultimately consistently with the SM. We show above
Lgpr in Eq. (69) induces a generalized sum rule for the
square quark masses in Eq. (73). The latter is a plausible
extension of Eq. (65), based on a subset of Ly, terms, after
the Higgs mechanism. The same type of argument can be
made for leptons, but given their smaller masses, their
influence will be lesser, while similar conditions as in
Eq. (67) will also lead to PNRS matrix [24] independence.

VII. CONCLUSIONS AND OUTLOOK

In summary, the formalism used places fields on a basis
that simultaneously contains SM bosons and fermions. SV
and SF terms are linked through the mass rendering of the
scalar operator within them, using the electroweak SV
vertex independence of its components acting on different
fermion-doublet elements, implicitly expected, but which
we now expose. Supporting a SM prediction of a unique
scalar, input from the normalized scalar-vector vertex, and
the mass-parameter interpretation in the SF vertex, relates v
and m,, cf Eq. (65), the main result in the paper. The same
relation can be argued by considering the scalar operator’s
matrix rank, or assuming normalized Yukawa components.
Based on chiral properties, the same Higgs-operator rule,
and a correspondence between fermion-boson inner prod-
ucts and Yukawa terms, a plausible extended sum rule for
the fermion square masses is proposed, given in Eq. (73).
Both relations are consistent with the SM, given today’s
particle-mass uncertainties. We conclude the spin basis is a
useful platform to obtain, within the SM, the quark-mass
electroweak relations.

The central argument input can be also read when V
terms in Ly, attached with the projector Ls in Eq. (14), are
carried into the intermediate Lgy chiral version in Eq. (46)
and, after the 1/2 factor cancellation in its mass compo-
nent, relate to F terms in the Yukawa L. The spin-basis
gives it further support as it classifies discrete degrees and
produces SM features. Thus, the matrix space restricts
representations, in turn, exhausting the space; electroweak
V fields belong to the adjoint, and S, F fields to the

fundamental representations. Additionally, the chiral prop-
erty in the F'V electroweak term, associated to V, translates
naturally to the SV interaction components. Normalized
fields define the Lagrangian terms, setting the trace
coefficient, and the stage for the Lgy, Lgr comparison.
In the spin-basis context, the S field’s chiral property is
nominal, but consistent, as Lgy contains the Ls projector
from V, and within Lgz, S acts on chiral fermion
components.

The scalar operator acting on vectors and fermions
links their matrix elements, connecting parameters. The
particles’ simultaneous participation in mass generation
through the Higgs mechanism and related SM vertices,
with assigned representations, implies a description with
common dynamics, and at a given energy scale, already at
the classical level, and suggests fields belong in a multiplet,
supporting a common-origin unification assumption [7].

It follows that the arguments provide a geometric
approach to address problems as the electroweak-symmetry
breaking origin. The formalism facilitates the fields’
composite description, as boson d.o.f. may be written in
terms of two fermions’. Expansions in such fields may be
useful, independently of whether compositeness is physical
or only a device.

Naturalness is hinted at in the ¢, ¢, associated single
scale, which produces a hierarchy effect [7]. Thus, while this
symmetry-breaking effect applies for heavy-quark masses, it
could be valid also horizontally between generations in
accordance with the fermions’ low masses. While here we
considered the top-quark mass, the other fermions, besides
the b-quark, may be included in this scheme, namely,
considering bilinear fermion components for scalar particles,
but they will have little influence on this result, as their SF
interaction is proportional to their masses.

As the spin basis connects the vector and quark sectors,
constraints may be derived for SM extensions as super-
symmetry [25], composite models that require dynamical
symmetry breaking [14] as technicolor [26] or, in an
extension of such models, top and bottom quarks [27] that
conform condensate-producing massive particles.

Besides the fields’ spin representation connecting the
scalar operator in two vertices, it highlights chiral compo-
nents of particles and interactions that maintain their SM
equivalence. Indeed, we showed two such valid chiral and
nonchiral scalar bases for the SV Lagrangian. This freedom
could be clarified in other vertices, as with a SM extension
with additional scalar d.o.f., whereas in this paper, we
considered only their SM projection.
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APPENDIX A: FERMION-VECTOR Lgy
FERMION-SCALAR - Ls; LAGRANGIANS

In this appendix we show the Lagrangians’ equivalence
in the conventional and spin bases by considering explicit
expressions with accompanying wave functions (or fields).
With hindsight, we use the same Lagrangian label in
both bases.

First, we use an iterative procedure [16] to obtain a
(7 + 1)-dimensional y* representation. Starting with the

Pauli matrices 6', 62, and 6>, we get the (3 + 1)-dimensional
representation
A =c'®c a =-ic’®
=5LQic o =1,Q ic% (A1)
then, the (5 + 1)-dimensional representation
F="®s pl=d®d,
P=®5 P=d®d,
ﬁs :I4®i61 /}6:I4®i02, (AZ)
and finally, the (7 + 1)-dimensional representation
P=P R y=pd,
P=pPRc P=Fd,
P=FRc 1=pQdc,
Y =1 ®ic' ¥ =1I; ® ic’. (A3)

The commuting property of the Lorentz and scalar
symmetry operators implies that they can be represented
as a tensor product. To compare with the spin-space
basis, we write the conventional-basis generators as tensor
products, choosing the (7 + 1)-dimensional space to re-
present them; thus the spin-1/2 and SU(2), terms,
expressed by the 4 x 4 Clifford basis, and Pauli matrices,
respectively, generalize to, e.g., 73 ® lp,o ~ I3 and
Lioxo ® EPLY172)0xa ~ 5 Pryiva, With 73 the 3-Pauli
matrix, and corresponding spin and weak isospin unit
operators 15, 1,79, respectively.

Similarly, states in the conventional basis can be
obtained that are represented in (7 + 1)-dimensional space.
For example, a left-handed (L), spin-1/2 polarization (1),
top (T), state |L1T) satisfies 3 (1 —75)|L1T) = —|L1T),
iLPLyp LIT) = LLIT), LILIT) = L|L1T),

Equation (36) implies spinors are labeled by the 4 x 4
spin operator in the Dirac representation éyl}/z, and the
weak SU(L); 73 component. While most of the results in
the paper are representation independent, a unitary trans-
formation may be applied to the (7 + 1)-dimensional
matrices to show the conventional-basis description used
in Eq. (36). Indeed, £P,y,7, has a Dirac form with

the unitary transformation y, = U'{by” Up with Up =
% (1 =y'y*)y’7?y? (actually, it exchanges y' and y°) and
|L1T) is represented, after the unitary transformation
U, by (0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0). Next, we write
all the conventional-basis states in this basis, and their
association to the spin-extended basis states, with corre-

sponding quantum numbers (notation used in Table IV and
Ref. [7], written inbetween):

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0) < T',, U,
(0,0,-i,0,0,0,0,0,0,0,0,0,0,0,0,0) <> T*,, U?,
(0,0,0,0,0,0,-,0,0,0,0,0,0,0,0,0) <> T'x, U' |1
(0,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0) <> T?¢, U ¢
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,—i) <> B',, D',
(0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0) <» B>,,D?;

(0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0) <> Bz, D5
(A10)

(0,0,0,0,0,0,0,0,0,0,0,—i,0,0,0,0) <> B2, D* .
(All)

where the spin-basis states are shown in extenso in Tables 11
and IIL.

For the fermion wave functions ¢§,(x), we use polar

coordinates, where the conventional and spin terms contain,
respectively,
1 (x) X [ ()] <> W (x) explicty ()], for
quarks g =1t, b, with spin components a=1, 2,
and chirality 4 = L, R. The magnitude part can be shown
to be the same for both cases, as can be derived by
comparing, e.g., the mass term. The vectors Wj(x),
B, (x) are real fields.

The phases appear in each term in both bases. For
example, for the conventional basis and for the two

polarizations #; (x) = (%L gg) within the left-handed hyper-
tL

charge Y = 1/3 SU(2),-doublet, we use the association
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0 0
0 0
0 —i
0 0
0 0
0 0
0 0
0 0
1p(x) = Yl (x)explip' L (x)]Up 0 + 9% (x) exp [ip*, (x)]Up o |’
0 0
0 0
0 0
0 0
0 0
1 0
0 0

with Up applied to transform back from the Dirac representation, and we used the terms in Eqs. (A4) and (AS5); for the spin

basis, W, (x) = 9, (x) exp lic! (0T} + 92, (x) exp [ic?, (x)] T3

The Lagrangians’ identity is shown, by checking that the same terms are reproduced in both bases, and finding
independent constant phases that connect the two representations. In the following, we present the fermion-vector Lry
Lagrangian components: interactive (weak and hypercharge), kinetic, and also the fermion-scalar (Yukawa) Ly Lagrangian.
The subtitle contains the two-basis Lagrangian expressions in a concise notation, and then one component is given in an
expanded form; the equations that link the phases in the two representations are written as they derive from the terms.

1. Weak
qr(x) 5 gt Wi (x)r*qp (x) < tr{¥,. (x) gl Wi (x)y°r" ¥, (x)}

NSRS}

((W5(x) = Wio(x))ih!pr (x) 2 = 2((cos(ppr (x) = plin (X)) W'o(x)

—cos(p'pr(x) = Pl (x)) W (x) +sin(p'p (x) = plip (1)) (W2 (x) = W25(x)))9p" 1. (x)
+ (sin(p' . (x) = ppr (%))W (x) = cos(p' . (x) = p7pr (x)) W (x)) 9% (x)

— (cos(p'p(x) = P (X)W (x) = (sin(p' . (x) = p?ur (x)) Wy(x)

+sin(p'pp (x) = p?L(x)) W21 (x) 4 cos(p' pr (x) = p? i (x)) W25 (x))p? 1 (x)) ' (x)

+ W)l L (x) 2 = Wis(x)p" i (x) > = (W (x) + Ws(x))ap?p. (x) *

+ Wi (x)p? (x) 2 + W3 (X)T/’ZzL( )2

=2cos(p'yp (x) = p?iL (%)W (x)ap! L (x)ap? . (x)

+2sin(p'yp (x) = P ()W ()" 1 (%)% (x)

= 247, (x)((cos(p?p (x) = P2 (x))W'o(x) + cos(p?pp (x) = p?ip (x)) W5 (x)
+sin(p? (x) = P (x)) (Wo(x) + W25 (x))) 9 . (x)

= (cos(p' i (x) = PP (X)W (x) = sin(p i (x) = p?p(x)) Wy ()

=sin(p' i (x) = p?p. (%)) (W21 (x) = cos(p' i (x) = p?p (x)) W25 (x)) 9" 1. (x)))-

X

~—_ —

Comparing the corresponding expression in the spin basis, we derive the following phase relations (which retroactively

provide such an expression):
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'y (x) = pwi + Pl (x) +g (A13)
() =pwat+plulx)+7 (Al4)
pr (%) = pws + pPp (%) +g (A15)
() = pwa+pPu(x) +7 (Al6)

pr(X) = pz1 + PPpr(x) (A17)

(%) = pz + pPr(x) (A18)
cyr(x) = pz +plor(x) +7 (A19)
c'iw(x) = pz+ plr(x) + 7, (A20)

for arbitrary real constants pyw;, pw2, Pw3s> Pwas> Pz1» P72, Tequiring the identities py; = pw3 = Pwa = Pwa-

2. Hypercharge

‘IL(X)% (X)Y”QL( ) +1 ( )[ ( )}?’”fR( ) + BR(X)[_%Q'Bu(X)]V“bR(x) < tr{‘I’qL(x)T%dYoBﬂ(x)YOY”‘I'qL(X)‘*‘
Wi x)59Y 0B, (x)7 " ¥ g (x) + ¥ hr(x X)59Y 0B, (x)y " ¥pr(x)}

o

((Bo(x) = B3(x))ap' p.(x)* = 2(cos(p' p. (x) = p?p(x))By (x)

—sin(p'yL(x) = p?pr (%) B2 (%)) (X)3' 1 (x) = 2B (X)) pr (x)* = 2B3(x)ap" g (x)?

+ Bo(x)' 1. (x)> = B3 (x)4' 1. (x)* + 4By (x)4' 1 (x)* + 4B3(x)3" 1 (x)* + (Bo(x) + B3(x)) 4y, (x)?

= 2By (x)4%pr(x)* + 2B3(x)p? pr ()7 + Bo(x)9p? . (x)7 + B3 (x)ah? 1 (%) + 4By (x)4p% g (x)* — 4B3(x)2p? p(x)?
+4cos(p'pr(x) = pPpr(x)) By (x)9' pr (x)17 g (x) — 4 sin(p' g (x) = pPpr(%))Ba (X)) r ()9 e ()

—2cos(p' i (x) = p?L(x))By ()Y 1 ()32 1 (x) + 2sin(p' i (x) = p?ip (%)) Ba (%) 1. (%)% 1. (%)

—8cos(p'ir(x) = p?r(x))B1(x)1' g (X)9% g (x) + 8sin(p' g (x) = p? k(%)) B (X)) 1 (%)% (). (A21)

3. Kinetic

Q. (x)id0,7"qp(x) + Tr(x)i1 0,07 tr (x) + br(x)i1 0,y br(x) < tr%{‘P;L(x)iaﬂOY”‘PqL (x) + q‘jR(x)iauyoyﬂq]tR(x)+

W) (1)i0,1°7* Wi (x)}
Using the fields’ integrability property (belonging to Hilbert space), integration by parts has been applied to make the

derivative substitution id, — i10,.
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= (x) 2(0.p% 1 (%)) + % r(x) *( 0% r(x)) = 28in[p' & (x) = p?pr ()] e (x )@bsz(x)(ﬁyple(x))

! ( )—P bR(x)]'%ble(x)ll’sz( )( ayP bR ( )) +2COS[p1bR(x) P ( )]¢2bR(x)(ay’¢le(x))
+cos[p! i (x) = PP ()7 (x)( Oy1p' i (x)) + cos[p! iz (x) = P2k ()] 1k (x) ( Oy1p' (X))

= 2cos[p'pr(x) = P2pr(0)]" pr (X)( 0,40 4r (%)) + 2c08[p' & (xX) = P?pr(X)]%" i (x) 1% & (%) ( Dup' i ()
+2c08[p' pr(x) = P2pr (X)) ok ()R (x) ( Oxp?pr(x)) + 28in[p' pr (x) = P?or (X)]9 () ( Ox1b' pr (%))
+sin[p',(x) = p zL(x)] L (X)(0pt (%)) + sin[p! g (x) = p? e (0)]97 1 (x) ( Ox2p' (%))

= 2sin[p' ,r(x) = p2pr(X)]" pr(X) (0312 pr (X)) = ' L (x) (cos[py (x) = p?,L(x)]( 3y1/’21L(x))

+ 4% () (sin[p' L (x) = p?L(x)]( O vP 'L (x)) +sin[p! L (x) = po (0)]( 8yp21L(x))

—cos[p' L (x) = p*L (0)](0up' 1L (x) + 0yp?p(x))) +sin[ply (x) = p?L ()] Dep? (%))

— ' g (x)(cos[p' ir (x) = p?r(x)]( 8v¢2tR(x)> + % r () (sin[p' g (x) = p? e (%)]( aypltR<x>)

+sin[p! g (x) = p?ir(x)]( szzR( ) = cos[p'ig(x) = p*r()]( Dop' k(%) + 0rp? k(X))

+sin[p' g (x) = p2r(0)]( 0% R (%)) = 200" pr(x) >( 9,0 pr(x))

=l () 2(=(9.p" (%) + Oip' (%) = Y k(%) *(0.p"(x) + 0,p iR (%))

= 2407 (x) 2( 0,07 pr (%)) = 7L (x) 2( 0,p%1L(x)) = 71 (x) 2( 9,p% k(%)) (A22)

—2sin[p',

4. Yukawa

<2t (2 A (2) () +mp @ (0 () g ()] + {He. o2 m, Wi (0 (0) W () +m, Wy (0)H (1) Wi ()] + {Hoc.}

The representation of scalars in the conventional and spin bases uses the association, e.g., Hy%,., — H,; the conventional
phases, written explicitly in Appendix B, are set to fit the spin basis, as both operators act equally on fermions, and we
applied the gamma-matrix representation freedom of choice.

% [cos (pw2— P21 — Pn (x) - Plor (x)+ Pl (x))mpn"y (x)’)ble(x)tblzL (x) +cos(pwr = Pz2 — Pno(x)
+pl i (x) = Pl (X)) m o ()P R (X)W 1 (x) + 1 (x) (SIn(pywa = P22 + Pyt (X) + Pl (x) = Pl er (X)) man” (x) 3 g (x)
=sin(pys = pz1 + Pno(x) +p' (x) - Plor (x))mw%(x)wlm (x)) —cos(pwr—pz1 — Pn (x) - Por (x)
+ P? i (X)) mpn” (X) 42 o (x) % 1, (x) = coS(pwa — P22 — Pyo(x) + P21 (x)
- P (x))mtﬂro(x)¢2tL (x)¢2tR (x)+ (%3 (x)(sin(pw2 — pz1 + qu(x) + P (x) = Por (x))mbﬂro(x)¢2bk (x)
—sin(pws — pzo + py1 (X) + pPpr(x) = p2r(x))mn”y (x) 9% g (x))]. (A23)

requiring the identities pz — 7 = pzp — % = pwi-

APPENDIX B: SCALAR-VECTOR LAGRANGIAN Lgy; CONJUGATE-HIGGS INVARIANCE

For the scalar components, we also use expressions in polar coordinates, and in which the phase is written explicitly, to
see its workings. Thus, for the conventional basis,

1[0 (x)eip! om0
H(x) = — Bl
G (Wro(X)eiP0f+in0(x) By

() = 1 ([ =ino(x)e?’r=ipn) (82)
* _\/i iﬂr1(x)eiplb‘i1’wl(x) 7
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where p';,, p';, p°,, p°, are charged and neutral phases, respectively, and H, , (x) = (y,H(x ) 2, H(x)) is a 4 x 4 matrix,
X X5 can be assumed to be real and their dependence in all terms is through the factor y? + ;(%,, so their explicit form
constitutes a likewise demonstration for L.

For the spin basis, we use a generalized expression for the scalar term with conjugated terms weighted by a multiplicative
parameter /, to keep track of terms, and with a normalization that makes Lg, 4 independent:

HEY (x) = [l () P (@ + ) + () 4P () 1 )] + gy 0] (x) e o7 (5 — )

1
NEs
+ 1y (x) =10 (9 — PO)T] + A [y} (x) e P (i 4 T + il (x) e i) (0 4 )]

+ Ayl (x) e a0 (- — pT) + i (x) P iPol) (9 — pY)]], (B3)

where ¢} s 2 are defined in Table I, and ¢',, ¢',,, #°,, #°;, are charged and neutral phases, respectively, and those with 1
correspond to the Hermitian- -conjugate function [see Egs. (50), (51)]. Given the chiral nature of the scalar components, they
do not mix with their Hermitian-conjugate components.

Thus, Lgy = H' (x)F*" (x)F,(x)H(x), with F,,(x) = i9, +§gr-w,,(x) +1gB,(x), W,(x) = (Wh(x), W2 (x), W3(x))
(cf Egs. (42) and (43)) is compared with 1 tr{[F"(x), H“M( LR (x), HY(x)] 1 g Where F7(x) = [id, + gWi(x) ]+
19B,(x)Y,]yor*; the subindex sym means only symmetric y,y, components are taken.

1. Square W
trH (x) 1 g7 - W, (x) S g7 - WH(x)H(x) < 2ae{[gWi (x)L,707°, B ()] [gWe (x) 1, 707° HGA (x)] + {gW () Lyyor!,
HE (0} {gWi () Lyor B (x) )

ST+ I + 1 ()W) W (). (B4)

2. Square B

wH' (x) 5 9B, (x) 3 B (x)H(x) < 5tr{[; g'Bo(x)Y,ror’. Hgy (0)]'[; 9 Bo(x)Y,ror®, H (x)] + {3 9B;(x)Yoror,
HEY ()} {5 9 Be(x)Yoror. HE (x)}

%9’2(;(? +23) (15(x)* + 117 (x)?) B, (x) B (x). (B5)

3. Cross B-W

tw{H(x)g7- W, (x)3¢B*(x)H(x) +H (x)3¢'B*(x) 5 g7- W, (x)H(x) } <> 3tr{ 3¢ By (x) Y , yor *. HG (x)] T [gWi (x) 1, 707"
HO ()] + [gWe () ,y0r° HS (x)] 9 Bo(X)Y oy0r" Hig ()] + {39 B; (x) Y yor! HS (x) } {gWi(x) L yor* Hig (x) }+
{gWr () Lyor!, Hg ()} {39 Be(x) Y oyor* HIG (x) } }

%99'()(? +23) (=Bo(x) W34 (x)17 0 (x)* + By (x) W31 (x)1" o (x)> 4 B (x) W3 (x)17"0 (x)* + B3 (x) W5 (x)7 o (x)

+ZCOS[P0z—P1b—Pno(x>+Pq1(x)]Bo(X)Wlo(x)’7ro( "1 (x) =2sin[p®, = p'y = pyo(x) + py1 ()] Bo () W2 (x)"o (x)1", (x)
~2c08[p°; = p'y = pyo(x) + Py (X)) B ()W ()"0 (x)" 1 (x) +2sin[p° = plyy = o (x) + piyr (1) By (X)W ()"0 (x)1" (x)
—2¢08[p°; = p'y = pyo(x) + Py ()] Ba () W ()"0 (x)1" 1 (x) +28in[p° = p1y = o (x) + Pyt (1) Bo () W25 ()10 (x)1" (x)
—2c0s[p’; = p'y = pyo(x) + Py (X)]B3 (X)W (x)n"o ()" 1 (x) +28in[p°; = p1yy = po (x) + py1 (¥)]B3 (x) W3 (x)n"o (x)n"1 (x)
+Bo(x)W o ()" (x)2 =By (x) W2 (x)171 (x)% = By (x) W2, (x)1"1 ()% = B3 (x) W23 ()" (x)?). (B6)

4. Cross W-derivative

tr{I:IT(x)%gt u(x )ioHH (x) — _T(x)iaj‘%gt -&Wﬂ(x)I:I(x)} < %tr{[ 180)/0;/0 H“’M(x)]T[gWS(x)Inyoyo, Hg’}f’l(x)]—k
[gW5 () Laror®, H“’”( ) [i00ror®, High (x)] + {=i0yor!, Higy (x)} {gW3 (x) Luyor®, High(x)} + {gW/ (x)Lyyor/,
HG (x) Y {i0cror®, HigA(x) }}
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<~
As for the kinetic term in Ly, the fields’ integrability property leads to derivatives in the form iéaﬂ; similarly for the
cross B-derivative and d’Alembert terms next.

%9()(? +23) (11 ()2 (W23(x) (0. iyt () + W25 (x) (Dy 1 (%)) + W21 (1) (0r1 (X)) = W (%) (0r Py (%))
=" () (W23 (x)(sin[p°, = p'y = o (%) + Pyt ()]0 () (9= pyo (x) + - py (x))
+cos[p’, —p'y— Pno(x) + P (0)](0:0"0(x)))
+ Wi (x)(=cos[p’, = p'y = pyo(x) + py (X)]n"
—cos[p°, = ply = pyo () + Pyt (X)W ()77 (x

x)(0;Py0(x) + 0, py1 (x)) +sin[p®, — pty = po(x) + Py (X)](0170(x)))
40(x)) +sin[p®, = ply = puo(x) + pyr (X)]W2 (x)17o(x) (Dy pyo(x))
—COS[P b P b Pno(x)+Pn1(x) le(x) (x) ;71( )) s1n[p b P b Pno( )+p,71(x)]W22(x)17’0( )( yP;;l(x))

( (
] ( )
] (0y
+sin[p®, — p'}, - pqo(x)+p,7,(x)]W]2(x)(8y;1’ (x)) +cos[p®, —p')— Pyo(X) + i (x )]sz(x)(aynro(x))
] (
] (
] (

0
)(Oyp +si
p +

0
—cos[p®, = 'y = Pyo(x) + Py (X)W (x)17o (x)

[p° 0(x) (8, pyo(x))
+sin[p®, = p'y = pyo(x) + Pyt ()]W? 1 ()10 (x) (8 pyo (x)) = c0s[p% = p'y = pyo(x) + Py (X)W (x)170 () (D Py (%))
+sin[p®, = p'y = ppo(x) + Pyt ()]W? 1 ()10 (x) (D iy (x)) +sin[p% = p''y = Pyo () + Pyt (X)]W' 1 (x) (Do () )
+c0s[p’, = Py = pyo(x) + Py (X)W1 (1) (9”0 (%)) +c0s[p% = p'iy = pyo(x) + Py (X)W ()17 (x) (0, pyo (%))
—sin[p®, = p', = pyo(x) + Py () ]W20 ()70 (x) (0: o (x)) +c0s[p% = Py = pyo (%) + pya (X)]W o (x)17 (x) (3, Py (%))
—sin[p®, = p'y, = pyo(x) + Py (X)W ()"0 (x) (0, g (x)) = sin[p% = p' = pyo(x) + Pt (X)]W o (x) (91170 (x))
—cos[p%, = p'y = Pyo(x) + Pyt ()W (x) (D10(%))) + 170 (x) (=W33(x)7"0 () (D-pyo(x))
+sin[p®, = p'y = pyo(x) + Py ()] W5 (x) (9171 (x)

(x

(x))

+c0s[p% = 'y = pyo(x) + Pyt (X)]W3(x) (0171 (x)) = W5 (x)17 (x) (8, pyo (%))

+sin[p®, = p'y = pyo(x) + Py (X)W (x) ("1 (x))

+cos[p% = 'y = pyo(x) + oyt (X)]W5(x) (D" () = W (x)1"0(x) (D pyo (%))

+sin[p®, = p'y = pyo(x) + Py (X)W1 (x) (01”1 (x))

+c0s[p% = 'y = pyo(x) + Pyt ()]W?1 (x) (91”1 (x)) + W (x)17 (x) (3, pyo (%))

=sin[p®, = p'y = pyo(x) + Py (X)]W o (x) (911 (x)) = cos[p% = p'jy = pyo(x) + Py (X)W (x) (1" (%)), (B7)

from which one derives the phase connections

T

Plu=ri=pli+ 4% -3 (B8)
¢]b:p0t_plt+¢0b_% (B9)
¢lt:p0h_p1b+¢0t+g (B10)
' =0"% =P+ "u +g- (B11)

5. Cross B-derivative

w{A'(x) L ¢B,(x)io*H(x) — H (x)id* L ¢B,(x )_( )} < jt{[- i y0r, HO (x)]'[5 9'Bo(x)Y y0r°, Higt (x)] +
[} ¢/Bo(x )YOYOJ/O HYY (x)]F[i0%707°, B (x)] + {=idyo7, H“’“(X)}T{é 9B (x)Y,yor*, HOMx)} + {5 9B (x)Y,ror.
HY9 (x)} {i0yor*, HO (x)}}
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% s +21)9 ((B3(x)(9.py(x)) + Ba(x)(0ypyo(x)) + By (x)(9xpyo(x)) = Bo(x) (9,240 (X))o (x)? + (B3(x)(9. Py (x))

+ B3(x)(0y Py (%)) + By (x) (01 (%)) = Bo(x) (0,9 (X)) )1 (x)?)-

In addition to the above equations, we derive

0

plr=-p"%+p'y+p'.

(B12)

(B13)

As the similarity transformation phases in e.g. H, H, this relation accounts for the sign change for complex conjugate

components.

6. d’Alembert
trH (x)00, H(x) < =L tr{ [Doror®, HO ()] [Ooror”, HSY (x)] = {0707, HGW(x) } {Opror*, HEP (x) }}

%0{% +x1) (007 (x))> +1"0(x)2 (9o (x))? + 17 (x)2(9. Py (x))? + (9170 (x))* + (O (x))? +170 (x)*(Oy Py (x))?
07 (x)2( 9y g1 () + (051" 0(x))? + (0] () +1"0(x)? (Do (X)) 417 (x)2 (D (X)) + (0”0 (x))? = (O (x))?

—1"0(x)*(9,y0(x))> =117 (x)* (0, Py (x)) = (01”0 (%))?).

(B14)

Each of the Lgy terms is indeed proportional to the combination y7 + y7?, which manifests the t-b symmetry of this
component, as the phases that connect the two representations were obtained.

We thus completed the demonstration of the SM Lagrangian terms’ equivalence in two bases; we conclude the spin-space
representation reproduces the same properties of SM generators.
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