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When fitting cross sections with several resonances or interfering background and resonances, one
usually obtains multiple solutions of parameters with equal fitting quality. In the present work, we find the
source of multiple solutions for a combination of several resonances or interfering background and
resonances by analyzing the mathematical structure of the Breit-Wigner function. We find that there are
2n fitting solutions with equal quality for nþ 1 resonances, and the multiplicity of the interfering
background and resonances depends on zeros of the amplitudes in the complex plane. We provide a simple,
general method to infer all other solutions with equal fitting quality from a known solution.
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I. INTRODUCTION

To date, most low-lying hadron states have been well
established, and physicists have begun to examine highly
excited states. Compared to low-lying states, mass gaps of
excited hadrons are rather small, while the widths of these
states are much larger. There are moments when the widths
of the involved states are comparable to their mass gaps,
and thus interference between them can change the Breit-
Wigner distribution of resonances. By contrast, resonance
parameters obtained from the mass spectrum or cross
sections should also depend on interference between the
involved states. When one fits the experimental data with
more than one resonance, one can usually obtain several
different solutions with equally good quality; i.e., the χ2 or
likelihood of different solutions are the same (e.g., see
Refs. [1,2]). However, among these solutions, only one
is physically reasonable. Thus, finding all the possible
solutions is the first step to properly decoding the exper-
imental data.
The multiple solutions problem resulting from two

resonances was discussed in Refs. [3,4], wherein the
authors indicated that there are two different solutions
with equal fitting quality when fitting experimental data
with two resonances, and they provided some analytical
formulas to derive another one from a known solution.

In Ref. [5], they extended to the case of three resonances
and obtained some constraint equations between four
different solutions. In the present work, we further extend
the investigation to the case of an arbitrary number of
resonances. By analyzing the mathematical structure of the
amplitude, we present the source of multiple solutions for
interfering resonances and obtain some simple relations
between different solutions for more than two resonances.
With these relations, we can easily derive all other solutions
from a known one.
Aside from the resonance contributions, a background

or a nonresonance contribution is also usually introduced
when fitting the cross sections or invariant-mass distribu-
tions. This background can be separated into noninterfering
and interfering backgrounds. The former does not interfere
with the resonance contributions; thus, it will not change
the shape of the Breit-Wigner distribution. For example, in
Ref. [1], the background of eþe− → πþπ−ψð2SÞ resulting
from the sideband background of J=ψ and ψð2SÞ signals in
the lepton pair invariant-mass spectrum is considered to be
a noninterfering background. Because the noninterfering
background does not interfere with the resonances, such a
background will not produce multiple fitting solutions.
As for the interfering background, it interferes with

resonance contributions; thus, it can change the line
shape of the Breit-Wigner distribution and lead to multiple
solutions. For example, in Ref. [6], the line shape of the
cross sections for eþe− → πþπ−hc was reproduced as a
coherent sum of one resonance near 4.2 GeV and a three-
body phase space as an interfering background, and two
different solutions are obtained [6]. Of course, it might be
possible that both noninterfering and interfering back-
grounds exist for a given process. For example, when
investigating the μþμ− invariant-mass spectra of the B →
Kμþμ− process [7], the background is parametrized by an
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Argus function [8]. The B meson decays into Kμþμ− via
the weak interaction; thus, the background is divided into
axial-vector and vector parts, where the former cannot
interfere with the resonance in the μþμ− invariant-mass
spectra, while interference between the vector background
and resonances should not be ignored because all reso-
nances in the μþμ− invariant-mass spectrum are vector
states. As discussed above, the noninterfering background
will not generate multiple solutions when fitting the
experimental data; thus, we will ignore such a background
and only discuss interfering backgrounds. For the interfer-
ing background, we try to reveal a criterion for multiple
solutions and simple methods for deriving a new back-
ground with equal fitting quality.
This paper is organized as follows. After the

Introduction, we take the case of two resonances as an
example to clarify the source of multisolutions in Sec. II
and then extend our analysis to the case of more than two
resonances in Sec. III. In Sec. IV, we discuss the interfer-
ence between an interfering background and resonances.
A short summary is provided in Sec. V.

II. INTERFERENCE BETWEEN
TWO RESONANCES

In particle physics, a resonance is usually described by a
relativistic Breit-Wigner function, e.g.,

FBWðs;M;ΓÞ ¼ 1

s −M2 þ iMΓ
¼ 1

s − p
; ð1Þ

where s is the square of the center-of-mass energy and M
and Γ are the mass and width of the resonance, respectively.
p ¼ M2 − iMΓ is the pole of the Breit-Wigner function. It
is interesting to note that the Breit-Wigner function is a
circle with center O0ð0;−i=ð2MΓÞÞ and radius 1=ð2MΓÞ in
the complex plane when we extend s from positive to
negative infinity.
In the present work, we take the resonance in the eþe−

annihilation process as an example, where the scattering
amplitude is related to the Breit-Wigner function by

Að ffiffiffi
s

p
;M;Γ; fR;ϕÞ

¼ Mffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πfRΓ

p
FBWðs;M;ΓÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φð ffiffiffi

s
p Þ

ΦðMÞ

s
eiϕ; ð2Þ

where fR ¼ Γeþe− × BRðR → fÞ, while Γeþe− and
BRðR → fÞ are the dilepton width of the resonance and
the branch ratio of R → f, respectively. Φð ffiffiffi

s
p Þ is the phase

space of eþe− → f, and ϕ is the phase angle, which is
usually assumed to be independent on s. Taking the case of
two resonances as an example, the cross section is

σðsÞ ¼ jAð ffiffiffi
s

p
;M0;Γ0; fR0

;ϕ0Þ þAð ffiffiffi
s

p
;M1;Γ1; fR1

;ϕ1Þj2:
ð3Þ

As indicated in Ref. [3], one can find two different
solutions with equal fitting quality. In this example, we
can set ϕ0 ¼ 0 in Eq. (3) without loss of generality; thus,
there are seven free parameters: M0, Γ0, fR0, M1, Γ1, fR1,
and ϕ1. In the following, we will show how to infer another
solution from a known solution. As indicated in Refs. [3,5],
the masses and widths of the resonances involved in two
sets of parameters are identical. Thus, we only need to
determine how to obtain another set of parameters f0R
and ϕ0

R from the known fR and ϕR. These two sets of
parameters satisfy

jAð ffiffiffi
s

p
;M0;Γ0; fR0;ϕ0Þ þ Að ffiffiffi

s
p

;M1;Γ1; fR1;ϕ1Þj
¼ jAð ffiffiffi

s
p

;M0;Γ0; f0R0;ϕ
0
0Þ þ Að ffiffiffi

s
p

;M1;Γ1; f0R1;ϕ
0
1Þj:
ð4Þ

Taking the amplitude expression defined in Eq. (2) into the
above identity and performing some simplification yields

jz0F0ðsÞ þ z1F1ðsÞj ¼ jz00F0ðsÞ þ z01F1ðsÞj; ð5Þ

with

zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ΓkfRk

p Mkffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦðMkÞ

p eiϕk : ð6Þ

Hereafter, we use the notion FkðsÞ ¼ FBWðs;mk;ΓkÞ for
simplicity.
Dividing by a factor z1F0ðsÞ in both sides of Eq. (5)

yields

���� z0z1 þ
F1ðsÞ
F0ðsÞ

���� ¼
���� z01z1

����
���� z00z01 þ

F1ðsÞ
F0ðsÞ

����: ð7Þ

One should notice that the ratio between two Breit-Wigner
functions satisfies

F1ðsÞ
F0ðsÞ

¼ 1 − ðp0 − p1ÞF1ðsÞ; ð8Þ

where p0 and p1 are the poles of F0ðsÞ and F1ðsÞ,
respectively. With the above identity, we can further
simplify Eq. (7) as follows,

jP − F1ðsÞj ¼
���� z01z1

����jP0 − F1ðsÞj; ð9Þ

where
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P ¼ z0=z1 þ 1

p0 − p1

; P0 ¼ z00=z
0
1 þ 1

p0 − p1

: ð10Þ

The geometric meaning of Eq. (9) is that the ratio
between the distances from any point on the circle defined
by F1ðsÞ to P and P0 is a constant, which is jz01=z1j. In other
words, P and P0 are a pair of reflection points on the circle,
as shown in Fig. 1(a). The ratio of the distances in Eq. (9)
can be evaluated as follows,

���� z01z1
���� ¼ jOPj

jOP0j : ð11Þ

whereO is the origin of the complex plane and on the circle
of F1ðsÞ. Furthermore, if P and P0 are a pair of reflection
points on the circle of F1ðsÞ, 1=P and 1=P0 are a pair of
reflection points on 1=F1ðsÞ, which is a line parallel to the
real axes, as shown in Fig. 1(b). The reciprocals of P and P0
are simply connected by

1

P0 þ p1 ¼
1

P� þ p�
1; ð12Þ

which will greatly simplify our estimation of P0 from the
known value of P.
Hereafter, we take eþe− → πþπ−J=ψ as an example to

illustrate interference between two Breit-Wigner functions.
We do not use the real experimental data here. Rather,
we assume the masses and widths of two resonances to be
M0 ¼ 4000 MeV, Γ0 ¼ 100 MeV, M1 ¼ 4200 MeV, and
Γ1 ¼ 150 MeV, respectively. We take fR0

¼ 1.00 eV,
fR1

¼ 0.700 eV, and ϕ1 ¼ π=4 as inputs. The interference
between these two states is constructive, as shown in
Fig. 2(a). In the following, we will show the process used
to infer another set of parameters from these inputs:

(i) Recombination of input variables.—By using the
definitions in Eqs. (6) and (10), we can estimate the
coordinates of P and O0, which are Pð−1.18; 0.357Þ
and O0ð0;−0.794Þ, respectively, in the present
example.

(ii) Estimating the coordinates of P0 and the values of
jz01=z1j and z00=z

0
1.—The coordinates of P0 can be

evaluated using Eq. (12), which is ð−0.274;−0.527Þ.
Then, jz01=z1j can be estimated with Eq. (11),
yielding jz01=z1j ¼ 2.08. With Eq. (10), one can
obtain z00=z

0
1 ¼ −0.430þ 0.802i.
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FIG. 1. Diagrams showing the relationship between P and P0 [diagram (a)] and their reciprocals [diagram (b)].
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FIG. 2. An example of interference between two Breit-Wigner distributions. The solid curve is the total cross section, and the dashed
curves are the individual contributions from the resonances.
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(iii) Determination of f0Rk
and ϕ0

k.—As for the new
parameters, we can also set ϕ0

0 ¼ 0 without loss
of generality, as it can be a global phase with any
value. Then, z00 will be positive real. With the values
of jz01=z1j and z00=z

0
1, we find that z00 ¼ 5.67 ×

104 MeV2 and z01 ¼ ð−2.94 − 5.49iÞ × 104 MeV2,
respectively. With Eq. (6), we can determine another
set of parameters, which are f0R0

¼ 2.43 eV,
f0R1

¼ 3.03 eV, and ϕ0
1 ¼ 4.22. In this case, the

interference between these two resonances is de-
structive, as shown in Fig. 2(b).

III. COMBINATION OF MORE THAN
TWO RESONANCES

Now, we extend our analysis in the above section to the
case of more than two resonances. Here, we consider
interference between nþ 1, (n ≥ 2) resonances. In this
case, Eq. (5) becomes

����Xn
k¼0

zkFkðsÞ
���� ¼

����Xn
k¼0

z0kFkðsÞ
����: ð13Þ

Dividing by a factor F0ðsÞ in both sides of Eq. (13) yields

����z0 þXn
k¼1

zk
FkðsÞ
F0ðsÞ

���� ¼
����z00 þXn

k¼1

z0k
FkðsÞ
F0ðsÞ

����: ð14Þ

Similar to Eq. (9), the above equation can be further
formalized as follows,

����A0 þ
Xn
k¼1

AkFkðsÞ
���� ¼

����A0
0 þ

Xn
k¼1

A0
kFkðsÞ

����; ð15Þ

where A0 ¼
P

n
i¼0 zi and Ak ¼ zkðpk − p0Þ, respectively.

As indicated in the Appendix, one can further factorize the
left side of Eq. (15) into the following form,

A0 þ
Xn
k¼1

AkFkðsÞ ¼ A0

Yn
i¼1

ð1þ aiFiðsÞÞ; ð16Þ

where ai can be estimated from Ak. Similar to the case of
interference between two resonances, we should obtain all
sets of fitting parameters or a0i with equal fitting quality
from the already obtained fitting parameters or ai, i.e.,����A0

Yn
i¼1

ð1þ aiFiðsÞÞ
���� ¼

����A0
0

Yn
i¼1

ð1þ a0iFiðsÞÞ
����: ð17Þ

One should notice that Fi → 0 when s → ∞; thus, we have
jA0j ¼ jA0

0j. Equation (17) can then be further simplified to

����Yn
i¼1

FiðsÞðai þ F−1
i ðsÞÞ

���� ¼
����Yn
i¼1

FiðsÞða0i þ F−1
i ðsÞÞ

����:
ð18Þ

Comparing the factors in both sides with index i, it is clear
that −ai and −a0i are a pair of reflections at F−1

i ðsÞ; thus, a0i
can be derived using Eq. (12), yielding

−a0i þ pi ¼ −a�i þ p�
i : ð19Þ

For the of case of nþ 1 resonances, one can determine a
new set of fitting parameters by replacing any subset of
faig by their reflections fa0ig. There are

P
n
i¼1 C

i
n such

replacements, and we finally have 1þP
n
i¼1 C

i
n ¼ 2n sets

of parameters with equal fitting quality.

TABLE I. Parameters estimated with the present method from one set of input parameters (solution I).

Solutions I (input) II III IV V VI VII VIII

M0 (MeV) 3700
Γ0 (MeV) 100
ϕ0 (rad) 0
fR0

(eV) 1.00 2.89 1.15 1.10 3.33 3.19 1.27 3.68

M1 (MeV) 3900
Γ1 (MeV) 200
ϕ1 (rad) 0.70 3.86 1.08 0.948 4.24 4.11 1.33 4.49
fR1

(eV) 1.00 4.68 1.98 1.46 9.27 6.85 2.90 13.6

M2 (MeV) 4200
Γ2 (MeV) 150
ϕ2 (rad) 1.40 5.30 4.43 2.05 2.84 0.462 5.87 3.49
fR2

(eV) 1.00 1.21 5.50 3.18 6.68 3.86 17.5 21.2

M3 (MeV) 4400
Γ3 (MeV) 250
ϕ3 (rad) 2.1 6.19 0.310 5.74 4.40 3.54 3.95 1.75
fR3

(eV) 1.0 1.16 2.37 7.67 2.76 8.93 18.2 21.2
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We generate the cross sections with a combination of
four resonances. Taking the parameters of solution I in
Table I as inputs, we can estimate the remaining seven sets
of parameters, which are also listed in Table I as solutions
II–VIII. The cross sections and individual resonance con-
tributions are presented in Fig. 3, where diagrams (a)–(h)
correspond to solutions I–VIII, respectively. From the
figure, one can find the resonance contributions are rather
different in different solutions.

IV. INTERFERENCE WITH BACKGROUND

We analyzed interference between resonances in the
preceding sections. In the present section, we further discuss
interference between the background and resonances. Such a
kind of interference is much more complicated than inter-
ference between resonances because the physical origin of
the background is usually unclear and the mathematical
formalization is not well determined. Some simple functions,
such as polynomial and exponential functions with real
parameters, are often used to describe the background.
Here, we consider an amplitude function DðsÞ, which is

a combination of Breit-Wigner functions FkðsÞ and an
interfering background function BðsÞ, i.e.,

DðsÞ ¼ z0BðsÞ þ
Xk¼n

k¼1

zkFkðsÞ: ð20Þ

Here, the Breit-Wigner functions’ coefficients zk are
defined as the same as that in Eq. (6). The cross section
and DðsÞ are connected by

σ ¼ 12πΦð ffiffiffi
s

p Þ
s

jDðsÞj2: ð21Þ

The background function here usually has no essential
singularity in any finite domain, and the Breit-Wigner
function Fk has a pole pk. Assuming Ds has zeros at
fq1; q2;…g, with the help of the Weierstrass factorization
theorem [9], the amplitudes can be factorized as

DðsÞ ¼
�Y

i

ðs − qiÞ
�
HðsÞ: ð22Þ

Thus, if one replaces any qi by its complex conjugate, i.e.,
q�i , the modulus of DðsÞ will not change if s is real. Here,
we take one of the zeros qm as an example to illustrate
such a replacement. Because qm is the zero point of DðsÞ,
we have

DðqmÞ ¼ z0BðqmÞ þ
Xk¼n

k¼1

zkFkðqmÞ ¼ 0; ð23Þ

and DðsÞ can be factorized as follows,

DðsÞ ¼ ðs − qmÞGðsÞ; ð24Þ

where GðsÞ ¼ ½Qi;i≠mðs − qiÞ�HðsÞ. One should notice
that GðsÞ might still have zeros other than qm, while
HðsÞ has no zeros.
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FIG. 3. Cross sections with interference between four resonances. Diagram (a) corresponds to input parameters, and diagrams (b)–(h)
denote solutions II–VIII estimated with the present methods.
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In principle, with the Weierstrass factorization theorem,
one can determine the particular expression of GðsÞ for a
given BðsÞ. Here, we notice that the Breit-Wigner function
satisfies

FkðsÞ − FkðqmÞ ¼ −
s − qm

ðs − pkÞðqm − pkÞ
; ð25Þ

then, we have

FkðsÞ ¼ −
s − qm
qm − pk

FkðsÞ þ
1

qm − pk

¼ −
s − qm
qm − pk

FkðsÞ þ FkðqmÞ: ð26Þ

The above property of the Breit-Wigner functions yields

GðsÞ ¼ DðsÞ
s − qm

¼ z0
s − qm

BðsÞ þ 1

s − qm

Xk¼n

k¼1

zkFkðqmÞ

−
Xk¼n

k¼1

zk
ðqm − pkÞ

FkðsÞ

¼ z0
s − qm

½BðsÞ − BðqmÞ� −
Xk¼n

k¼1

zk
ðqm − pkÞ

FkðsÞ:

ð27Þ

One can find the structure of GðsÞ is the same as that of
DðsÞ if one treats the first term as an interfering background
function. Replacing (s − qm) by (s − q�m) in Eq. (24), we
can obtain a new amplitude D0ðsÞ:

D0ðsÞ ¼ ðs − q�mÞGðsÞ

¼ z0ðs − q�mÞ
s − qm

½BðsÞ − BðqmÞ� −
Xk¼n

k¼1

zkðs − q�mÞ
ðqm − pkÞ

FkðsÞ

¼ z0BðsÞ þ
z0ðBðsÞ − BðqmÞÞðqm − q�mÞ

s − qm

þ
Xk¼n

k¼1

zkðq�m − pkÞ
qm − pk

FkðsÞ: ð28Þ

This new amplitude has the same modulus as DðsÞ, so
D0ðsÞ has the same cross section as DðsÞ. The above
analysis can be summarized as transformations on zk
and BðsÞ:

(
BðsÞ → BðsÞ0 ¼ BðsÞ þ ðqm−q�mÞ½BðsÞ−BðqmÞ�

s−qm
;

zk → z0k ¼ q�m−pk
qm−pk

zk:
ð29Þ

This transformation can be applied for each zero. If there
are n zeros in DðsÞ, there apparently are 2n combinations
with the same expected cross section because each zero
doubles the multiplicity of combinations.1

Here, we present examples with two kinds of back-
grounds to illustrate the transformations discussed
above, which are exponential and polynomial forms of
the interfering background. In the first case, the amplitude
DðsÞ is in the form
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FIG. 4. Interference between a resonance and an exponential background. The dashed and solid curves show the individual
contributions and the cross sections obtained with the input parameters [diagram (a)] and the new amplitudes obtained with the present
method [diagram (b)].

1The transformation in Eq. (29) can also be applied to the case
of interference between multiple Breit-Wigner functions, as
discussed in Sec. III. On both sides of Eq. (15), A0 and A0

0
can be treated as backgrounds. The transformation on A0 and Ak,
presented in Eq. (A6) is consistent with the transformation on
Eq. (29).
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DðsÞ ¼ z0e−s=Λ
2 þ z1

1

s − p
: ð30Þ

The input parameters are mR ¼ 4000 MeV, ΓR ¼
100 MeV, fR ¼ 0.592 eV, ϕR¼1.11 rad, Λ ¼ 3 GeV,
and z0 ¼ 0.15, respectively. One can estimate z1¼
ð0.0125þ0.025iÞGeV2 with Eq. (6). One zero of DðsÞ
is found at q ¼ ð15.41 − 1.25iÞ GeV2. One can calculate a
new amplitude from the replacements in Eq. (29),

D0ðsÞ ¼
�
z0e−s=Λ

2 þ z0ðq − q�Þðe−s=Λ2 − e−q=Λ
2Þ

s − q

�

þ z01
s − p

; ð31Þ

where z01 ¼ ð0.0219− 0.0420iÞ GeV2. The corresponding
new resonance parameters change to f0R ¼ 1.70 eV and
ϕ0 ¼ 5.19 rad. For a comparison, we present the contribu-
tions and cross sections in Fig. 4. One can find that the
background contributions are very similar for both ampli-
tudes. However, the phase angle of these two set solutions
are not equal, which indicates interferences between the
background and different resonances are much different,
leading to very different resonance contributions. In this
example, the explicit expression for the interfering back-
ground is changed.
In the second example, the amplitude DðsÞ is the

coherent sum of a second order polynomial and one
Breit-Wigner function:

TABLE II. Parameters estimated with the present method from one set of input parameters (solution I) with a second degree
polynomial background.

Solutions m1 (MeV) Γ1 (MeV) ϕ1 (rad) fR1
(eV) 104 × w2 ðGeV−4Þ 102 × w1 ðGeV−2Þ 10 × w0

I

4000 100

1.11 0.592

4.00

−1.92 3.10
II 5.27 0.543 −1.92 − 1.14i 1.47 − 2.74i
III 3.20 0.645 −1.92 − 1.12i 1.53þ 2.68i
IV 1.08 0.592 −1.92þ 0.02i 3.10 − 0.60i
V 4.87 9.18 −1.92 − 0.05i 3.10þ 1.62i
VI 2.76 8.43 −1.92þ 1.09i 1.62 − 2.58i
VII 0.68 10.00 −1.92 − 1.17i 1.38þ 2.84i
VIII 4.85 9.18 −1.92 − 0.03i 3.10þ 1.02i

(I)

4.0 4.5 5.0

(V)

(II)

4.0 4.5 5.0

(VI)

(III)

4.0 4.5 5.0

(VII)

(IV)

4.0 4.5 5.0

(VIII)

0

10

20

30

40

0

20

40

60

80

FIG. 5. The same as Fig. 4, but for polynomial background.
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DðsÞ ¼ w2s2 þ w1sþ w0 þ z1
1

s − p
: ð32Þ

With the input parameters (solution I) in Table II, one finds
that there are three zeros in the amplitude, which are
q1¼ð15.87−0.63iÞGeV2, q2 ¼ ð23.99þ 14.25iÞ GeV2,
and q3 ¼ ð24.13 − 14.02iÞ GeV2. One can use the method
discussed here to determine seven other sets of parameters
with moduli identical to that already known. In the present
example, after performing the transformation in Eq. (29),
one finds that the new background is still a second degree
polynomial, but with complex coefficients. We summarize
all the parameters in Table II. The cross sections and
individual contributions are presented in Fig. 5. One can
find that the parameter fR changes dramatically in solutions
V, VI, VII, and VIII. Such a phenomenon results from the
fact that the zero q1 is very close to the pole of the Breit-
Wigner function, which has a significant effect in the
transformation, as shown in Eq. (29).

V. CONCLUSIONS

Different solutions with equal fitting quality can be
obtained when one fits the experimental data with the
coherent sum of several Breit-Wigner functions or inter-
ference between a background and resonances. We first
take two resonances as an example to analyze the source of
multiple solutions. By analyzing the mathematical structure
of the amplitudes, we find that the Breit-Wigner function
FkðsÞ is a circle in the complex plane, which indicates that
there should exist a pair of reflection points (P, P0) in the
complex plane, while the ratio between the distances from
these two points to any point on the circle is a constant.
Furthermore, one can find (1=P, 1=P0) is also a pair of
reflection points at 1=FðsÞ, while 1=FðsÞ is a line parallel
to the real axis, which will further simplify our estimation.
In a similar way, we extend such an analysis to the case

of more than two resonances. We find that the amplitude
can be factorized after some mathematical simplification.
Furthermore, every factor is a constant plus a Breit-Wigner
function. We can then extend the methodology used to
analyze the case of two resonances to one involving more
than two resonances. We can easily infer all other solutions
from the known solution with equal fitting quality using the
present method.
We also discussed interference between background and

resonances. Generally, the source of an interfering back-
ground is very complicated. With the help of the
Weierstrass factorization theorem, we can factorize the
amplitude, which is the coherent sum of Breit-Wigner
functions and an interfering background. Assuming the
amplitude has a zero q, then, one can obtain a new
amplitude with the same modulus as the old amplitude
through a simple replacement, i.e., ðs − qÞ → ðs − q�Þ. We
can determine a new background and new parameters with
equal fitting quality.

The programs related to examples in the present work
are available on GitHub [10].
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APPENDIX: COEFFICIENTS ai

In this Appendix, we present a procedure for determining
the coefficients ai in Eq. (16). Using the property of Breit-
Wigner functions FiFj ¼ ðFi − FjÞ=ðpi − pjÞ and com-
paring the coefficients on both sides of Eq. (16) yields the
following equations:8>>>>>>>><
>>>>>>>>:

a1
�

a2
p1−p2

þ 1
��

a3
p1−p3

þ 1
�
� � �

�
an

p1−pn
þ 1

�
¼ A1

A0
;�

a1
p2−p1

þ 1
�
a2
�

a3
p2−p3

þ 1
�
� � �

�
an

p2−pn
þ 1

�
¼ A2

A0
;

..

.�
a1

pn−p1
þ 1

��
a2

pn−p2
þ 1

��
a3

pn−p3
þ 1

�
� � � an ¼ An

A0
:

ðA1Þ

For simplify, we further define Dk ¼ Ak=A0

Q
n
i¼1;i≠kðpk −

piÞ and αk ¼ ak − pk. Substituting these identities into
Eq. (A1) yields8>>>>><

>>>>>:

Q
n
i¼1ðαi þ p1Þ ¼ D1;Q
n
i¼1ðαi þ p2Þ ¼ D2;

..

.

Q
n
i¼1ðαi þ pnÞ ¼ Dn:

ðA2Þ

Expanding the left side of the identities in the above
equation yields

0
BBB@

1 p1 p2
1 … pn−1

1

1 p2 p2
2 … pn−1

2

… … … … …

1 pn p2
n … pn−1

n

1
CCCA
0
BBB@

Xn

Xn−1

…

X1

1
CCCAþ

0
BBB@
pn
1

pn
2

…

pn
n

1
CCCA¼

0
BBB@
D1

D2

…

Dn

1
CCCA;

ðA3Þ

where Xk ¼
PQ

k
i¼1 βi with fβ1; β2; � � � βkg is a k-element

subset of fα1; α2;…; αng. All equations in the above array
are linear equations of Xi; thus, this array could be solved
very easily.
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From the definitions of Xi and the Vieta theorem [11],
one can find that −αi, fi ¼ 1; 2;…ng are the roots of the
following nth degree equation with one unknown:

tn þ X1tn−1 þ X2tn−2 � � �Xn−1tþ Xn ¼ 0: ðA4Þ

By solving the linear equation in Eq. (A3) and the algebraic
equation in Eq. (A4), one can determine αi and ai. One can
then determine new sets of parameters a0i and α0i using
Eq. (19). It should be noticed that replacing ai with a0i is
equivalent to replacing αi with α�i . It is obvious that this
replacement changes Dm to D0

m in Eq. (A2), where D0
m is

D0
m ¼ α�i þ pm

αi þ pm
Dm: ðA5Þ

According to the definition of Dm, one finds that Am=A0

also transforms to A0
m=A0

0, where A0
m=A0

0 is

A0
m

A0
0

¼ α�i þ pm

αi þ pm

Am

A0

: ðA6Þ

As we discussed in Sec. III, one has jA0j ¼ jA0
0j. Here, we

can set A0 ¼ A0
0 because the phases of A0 and A0

0 could be
treated as global phases of the amplitudes. One can then
determine the transformation Am → A0

m, which is the same
as replacing zk in Eq. (29).
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