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By introducing an auxiliary parameter, we find a new representation for Feynman integrals, which
defines a Feynman integral by analytical continuation of a series containing only vacuum integrals. The
new representation therefore conceptually translates the problem of computing Feynman integrals to the
problem of performing analytical continuations. As an application of the new representation, we use it to
construct a novel reduction method for multiloop Feynman integrals, which is expected to be more efficient
than the known integration-by-parts reduction method. Using the new method, we successfully reduced all
complicated two-loop integrals in the gg → HH process and gg → ggg process.
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I. INTRODUCTION

Computation of Feynman loop integrals is in the heart of
modern physics, which is important both for testing the
particle physics standard model and for discovering new
physics. A good method to compute one-loop integrals was
proposed as early as the 1970s, the strategy of which is
to first express scattering amplitudes in terms of linear
combinations of master integrals (MIs) and then compute
these MIs [1–3]. Based on this method, one can compute
one-loop scattering amplitudes systematically and effi-
ciently if the number of external legs is no more than 4.
With further improvement of the traditional tensor reduc-
tion [4] and the development of unitarity-based reduction
[5–7], computation of multileg one-loop scattering ampli-
tudes is also a solved problem right now.
Yet, about 40 years later, it is still a challenge to compute

multiloop integrals, even for two-loop integrals with four
external legs. The mainstream approach to calculate multi-
loop integrals in the literature is similar to that at one-loop
level, by first reducing Feynman integrals to MIs and then
calculating these MIs. However, both of the two steps are
much harder to achieve than the one-loop case.
Although compact and explicit expressions for one-loop

MIs can be easily obtained [2,3], the computation of
multiloopMIs is very challenging. There are many methods

in the literature to compute multiloop MIs, such as the
sector decomposition [8–19], Mellin-Barnes representation
[19–34], and the differential equation method [35–40], but
none of them provides a fully satisfactory solution. In
Ref. [41], we proposed a systematic and efficient method
to calculate multiloop MIs by constructing and numerically
solving a system of ordinary differential equations (ODEs).
The differential variable, say η, is an auxiliary parameter
introduced to all Feynman propagators. With the ODEs,
physical results at η ¼ 0þ are fully determined by boundary
conditions chosen at η ¼ ∞, which can be obtained almost
trivially. Therefore,MIs can be treated as special functions in
our method, but it relies on a good reduction method to set
up ODEs.
Reduction of multiloop integrals is an even harder prob-

lem. Significantly different from the one-loop case, propa-
gators in amultiloop integral are usually not enough to forma
complete set to expand all independent scalar products, either
between a loop momentum and an external momentum or
between two loopmomenta. As a consequence, the unitarity-
based multiloop reduction [42–52] has difficulty fully
reducing scattering amplitudes. Although the integration-
by-parts (IBP) reduction [53–57] is general enough to reduce
any scattering amplitude to MIs, the incompleteness of
multiloop propagators makes it hard to generate efficient
reduction relations. Currently, IBP reduction is mainly based
on Laporta’s algorithm [54], which usually generates huge
number of linear equations, which is extremely hard to solve
for multiscale problems. For example, it cannot give a
complete reduction for Higgs pair hadroproduction at two-
loop order [58]. Improvements for IBP reductionmethod can
be found in [59,60] and references therein.
Inspired by our previous work [41], in this article we

construct a novel method to compute Feynman loop
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integrals. The key observation is that, after introducing the
auxiliary parameter η, any Feynman integral can be defined
as the analytical continuation of a calculable asymptotic
series, which contains only simple vacuum integrals. The
series can thus be thought of as a new representation of the
Feynman integral. Based on the new representation, we
construct an efficient reduction method for multiloop
integrals. We demonstrate the correctness and efficiency
of our reduction method with two cutting-edge examples.

II. A NEW REPRESENTATION FOR
FEYNMAN INTEGRALS

Following Ref. [41], we introduce a dimensionally
regularized L-loop Feynman integral with an auxiliary
parameter η,

MðD; s⃗; ηÞ≡
Z YL

i¼1

dDli

iπD=2

YN
α¼1

1

ðDα þ iηÞνα ; ð1Þ

where D is the spacetime dimension, Dα ≡ q2α −m2
α are

usual inverse Feynman propagators with mα being corre-
sponding masses and qα being linear combinations of loop
momenta li and external momenta pi, s⃗ ¼ ðs1;…; srÞ are
independent kinematic variables (including mass parame-
ters) in the problem, and να are powers of propagators
whose dependence is suppressed in the left-hand side of the
equation. The physical integral that we want to get is

MðD; s⃗; 0þÞ≡ lim
η→0þ

MðD; s⃗; ηÞ; ð2Þ

with 0þ defining the causality of Feynman amplitudes.
The study in Ref. [41] shows that, as η → ∞, there is

only one integration region for MðD; s⃗; ηÞ, where all
components of loop momenta are of the order of jηj1=2.
Therefore, all propagators can be expanded like

1

½ðlþ pÞ2 −m2 þ iη�ν

¼ 1

ðl2 þ iηÞν
X∞
j¼0

ðνÞj
j!

�
−
2l · pþ p2 −m2

l2 þ iη

�
j

; ð3Þ

where l is a linear combination of loop momenta li, p is a
linear combination of external momenta pi, and ðνÞj ≡
νðνþ 1Þ � � � ðνþ j − 1Þ is the Pochhammer symbol. After
the expansion, all external momenta and masses are not
present in denominators anymore; thus each term of the
expansion can be interpreted as vacuum integrals with
equal internal squared masses −iη. Inserting Eq. (3) into
Eq. (1) and rescaling all loop momenta by η1=2, we can
obtain an asymptotic expansion around η ¼ ∞,

MðD; s⃗; ηÞ ¼ ηLD=2−
P

α
να
X∞
μ0¼0

η−μ0Mbub
μ0 ðD; s⃗Þ; ð4Þ

where the superscript “bub” means vacuum bubble inte-
grals. Although asymptotic expansion of Feynman inte-
grals itself is not new [61,62], the novelty here is that our
expansion is with respect to an auxiliary parameter intro-
duced by hand and thus can be applied to any problem. In
Eq. (4),Mbub

μ0 ðD; s⃗Þ consist of vacuum integrals with equal
internal squared masses −i, which can be easily reduced to
vacuum MIs denoted by fIbubL;1ðDÞ;…; IbubL;BL

ðDÞg. Here BL

is the total number of L-loop equal-mass vacuumMIs, with
B1 ¼ 1, B2 ¼ 2, B3 ¼ 5 and so on. Thus, after the vacuum
reduction, we have the decomposition

Mbub
μ0 ðD; s⃗Þ ¼

XBL

k¼1

IbubL;kðDÞ
X
μ⃗∈Ωr

μ0

Cμ0…μr
k ðDÞsμ11 � � � sμrr ; ð5Þ

where μ⃗ is a r-dimensional vector in Ωr
μ0 ≡

fμ⃗ ∈ Nrjμ1 þ � � � þ μr ¼ μ0g, and Cμ0…μr
k ðDÞ are rational

functions of D.
As vacuum MIs can be easily calculated [63–68], the

series (4) defines an analytical function around η ¼ ∞,
which therefore determines MðD; s⃗; ηÞ for any value of η
based on analytical continuation. Especially, the desired
physical value at η ¼ 0þ is fully determined. As a result,
the expression (4) can be thought as a new series repre-
sentation of MðD; s⃗; 0þÞ. Then the problem of computing
Feynman integrals is translated to the problem of perform-
ing analytical continuations. This conceptual change of
interpretation of Feynman integrals may both deepen our
understanding of scattering amplitudes and result in power-
ful methods to compute scattering amplitudes.
Beginning in the next section, we are devoted to

constructing a powerful reduction method for Feynman
integrals based on the new representation. The reduction
method can not only reduce any Feynman integral to MIs
I⃗ðD; s⃗; ηÞ (note that there are more MIs after the intro-
duction of η), but also set up a system of ODEs for these
MIs,

∂
∂η I⃗ðD; s⃗; ηÞ ¼ AðD; s⃗; ηÞI⃗ðD; s⃗; ηÞ: ð6Þ

Then the analytical continuation from η ¼ ∞ to η ¼ 0þ can
be realized by solving the ODEs [41].

III. REDUCTION RELATIONS FROM THE
NEW REPRESENTATION

An important property of Feynman loop integrals is that
the number of MIs is finite [69]. More precisely, for loop
integrals constructed from any given set of propagators,
there exists a finite set of loop integrals called MIs so that

XIAO LIU and YAN-QING MA PHYS. REV. D 99, 071501 (2019)

071501-2



all other loop integrals can be expressed as linear combi-
nations of them, with coefficients being rational functions
of kinematic variables and spacetime dimension. The
reduction is to find relations among loop integrals and
eventually express all loop integrals by MIs.
Let us first study how to find relations among a given set

of loop integrals using the new representation. Suppose we
have a set of integralsG ¼ fM1;…;Mng. Linear relations
among them can be written as

Xn
i¼1

QiðD; s⃗; ηÞMiðD; s⃗; ηÞ ¼ 0; ð7Þ

whereQi are homogeneous polynomials of η and kinematic
variables s⃗. We denote the mass dimension of Mi by
DimðMiÞ and the degree ofQi by di, which are constrained
by

2d1 þ DimðM1Þ ¼ � � � ¼ 2dn þ DimðMnÞ: ð8Þ

Therefore, there is only one degree of freedom in fdig,
which can be chosen as dmax ¼ maxfdig.
For any given dmax ≥ 0, we can expand each QiðD; s⃗; ηÞ

as

QiðD; s⃗; ηÞ ¼
X

ðλ0;λ⃗Þ∈Ωrþ1
di

Qλ0…λr
i ðDÞηλ0sλ11 � � � sλrr ; ð9Þ

where Qλ0…λr
i ðDÞ are rational functions of D to be

determined [note that by definition QiðD; s⃗; ηÞ≡ 0 if
di < 0]. As the series (4) fully determines all analytical
functions Mi, it certainly also determines the relations
among them in Eq. (7). To determine the unknown
coefficients Qλ0…λr

i ðDÞ, we substitute Eqs. (4), (5), and
(9) into Eq. (7) and then expand it in terms of monomials of
IbubL;kðDÞ, η, and s⃗, which gives

X
k;ρ0;ρ⃗

fρ0…ρr
k IbubL;kðDÞηρ0sρ11 …sρrr ¼ 0; ð10Þ

where fρ0…ρr
k are linear functions of Qλ0…λr

i ðDÞ. As
IbubL;kðDÞηρ0sρ11 …sρrr are independent of each other, their
coefficients must vanish, which results in a system of linear
equations

fρ0…ρr
k ¼ 0; for each k; ρ0;…; ρr: ð11Þ

By calculating the series (4) to sufficiently high order in
1=η, we can generate enough linear equations to constrain
the solution space of Qλ0…λr

i ðDÞ. In practice, we find that it
is sufficient if the number of linear equations is larger than
the number of unknown coefficients Qλ0…λr

i ðDÞ by 30%.

Once the solution space is obtained, it provides us with all
relations among the integral set G with given dmax.

1

Now let us consider two sets of integrals, G1 and G2,
with the condition that integrals in G2 are all simpler than
integrals in G1. Assuming thatG1 can be reduced toG2, we
provide an algorithm to find out relations to realize this
reduction.

Algorithm 1
(1) Let G ¼ fG1; G2g and dmax ¼ 0.
(2) Generate and solve the linear equations in (11) to

obtain all possible relations.
(3) If the obtained relations are enough to express G1 in

terms of G2, stop; otherwise, increase dmax by 1 and
go to step 2.

According to our assumption, the iteration must termi-
nate after finitely many steps, because QiðD; s⃗; ηÞ are
polynomials with finite degree. Our algorithm is con-
structed to search for as simple as possible relations.
We emphasize that, although they are determined by the

region η → ∞, the obtained relations are correct for any
value of η and thus can be used to reduce physical Feynman
loop integrals.

IV. REDUCTION SCHEME

To reduce a given integral to simpler integrals, we still
need to choose G1, which includes the given integral as an
element, and G2, which includes only simpler integrals and
can express all integrals in G1. There are many possible
choices, but a good choice should satisfy the following:
(1) Relations among fG1; G2g are simple, so that they can
be easily found using algorithm 1; (2) the number of
integrals in G1 is not too large, so that one can efficiently
solve the obtained relations to reduce G1. To simplify our
discussion, in the following we only consider the reduction
of scalar integrals,2 which means integrals with no numer-
ator in the integrand.
Let us begin with introducing some notations. For a

given set of propagators, a scalar integral can be denoted by
its powers of corresponding propagators ν⃗ ¼ ðν1;…; νNÞ
ðνi ≥ 0Þ. A sector is a set of integrals that have exactly the
same 0s in the powers; e.g., (5,1,0,3) and (7,8,0,9) are in
the same sector. We introduce two sets of operators mþ
and m−, with positive integer m. If m > 1, we define

1In practice, we solve the solution space with some chosen
nonspecial values of D, e.g., D ¼ 1867=5281, and then recon-
struct the D-dependence for the solutions. Finite field technique
[59,70] is also used to speed up the calculation.

2Note that reduction of scalar integrals is already general
enough. First, any tensor integral can be easily expressed as scalar
integrals in a higher spacetime dimension [71–73]. Second,
recurrence relations to relate higher spacetime-dimension inte-
grals to lower spacetime-dimension integrals [72,74] can be
obtained by reduction relations of scalar integrals.
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m� ¼ ðm − 1Þ�1�. 1þ (1−) is defined so that, when
applying it on an integral ν⃗, it generates all integrals with
one nonvanishing νi increased (decreased) by 1. For
example, 1þð5;1;0;3Þ¼fð6;1;0;3Þ;ð5;2;0;3Þ;ð5;1;0;4Þg
generating integrals in the same sector, and 1−ð5; 1; 0; 3Þ ¼
fð4; 1; 0; 3Þ; ð5; 0; 0; 3Þ; ð5; 1; 0; 2Þg generating integrals
either in the same sector or in subsectors. Note that
mþn− ≠ n−mþ, which can be easily verified.

To figure out a good choice of fG1; G2g at multiloop
level, we should first take a look at the one-loop case to see
what we can learn. In this case, it is well known that quite
simple relations can be obtained to reduce integrals G1 ¼
1þν⃗ to simpler integralsG2 ¼ 1−1þν⃗ [75]. This reduction is
possible because there is only one MI in each sector at one-
loop level, and thus even integrals like 1þð1; 1; 0; 1Þ are
fully reducible.
As a natural generalization of one-loop strategy, we

propose to reduce integrals G1 ¼ mþν⃗ at multiloop level,
where m is usually larger than 1 because there is usually
more than one MI in each sector. The smallest allowed
value of m, which guarantees that all integrals mþν⃗ are
reducible to simpler integrals, can be found out within
our method. Alternatively, it can be easily determined by
investigating the distribution of MIs in the sector containing
ν⃗, because finding out MIs is a simple problem [76]. In the
following examples, we findm ¼ 2 or 3; thus there are only
dozens of integrals in G1.
A possible generalization for the set of simpler integrals

is then G2 ¼ f1−mþ; 2−mþ;…;m−mþgν⃗, or its subset
G2 ¼ f1−mþ; 1−ðm − 1Þþ;…; 1−1þgν⃗. In the following
examples, we use the latter choice and find that it can
already result in not too complicated relations.
There are exceptions where a reducible integral cannot

be included in any fully reducible setmþν⃗. This is harmless
because it only happens when this integral and some MIs
have the same jν⃗j. We can either put it in a partially
reducible set, or simply treat it as a redundant MI.
With the above strategy, we can express any reducible

integral as linear combinations of simpler integrals. Then
by iteration, we can reduce any integral to MIs.
Therefore, we realize a step-by-step reduction scheme

for multiloop integrals, which is similar to the one-loop
case. Comparing with the traditional IBP reduction method,
an advantage of our method is that we never encounter
large coupled linear systems. As a result, the computation
complexity of numerically solving the obtained reduction
relations to reduce N integrals to MIs is OðNÞ, rather than
OðN3Þ in the fully coupled case.

V. EXAMPLES

To test the power of our new reduction method, we apply
it to two cutting-edge processes. The first example is a two-
loop four-scale on-shell scattering gg → HH with a top
quark loop. The second one is two-loop five-gluon on-shell
scattering process with five independent scales. Integrals of

the two examples have not been fully reduced by the
traditional IBP reduction method [58].
We have tried integrals in many sectors, and found all

of them can be easily reduced using our method. Three
conclusions based on our test are as follows. First, as
expected the more external legs the harder the reduction is.
Second, reduction for nonplanar integrals is typically
harder than planar integrals, which may be caused by
the fact that there are usually more MIs in nonplanar
sectors. Finally, suppose that ν⃗ and e⃗ belong to the same
sector and that e⃗ is the simplest integral, which includes
only single power propagators; then the reduction for mþe⃗
is usually more difficult than the first-step reduction
for mþν⃗. This can be understood because the set
f1−mþ;…; 1−1þge⃗ contains fewer integrals in the leading
sector and thus has fewer flexible relations to express
desired reducible integrals. With these observations, we
then mainly discuss potentially difficult integrals.
For the first example, some typical diagrams are shown

in Fig. 1, and corresponding reduction information is
summarized in Table I. Here, in addition to two potentially
difficult nonplanar diagrams, we also show two planar
diagrams to compare with. We find that the six-propagator
nonplanar sector Fig. 1(c) is most difficult to reduce among
all sectors in this process. To reduce 3þe⃗ in this sector,
which contains 56 integrals, we need to set up 55 relations
with dmax ¼ 1 and 1 relation with dmax ¼ 5.
For the second example, we show all nonplanar five-leg

topologies in Fig. 2, and summarize corresponding reduc-
tion information in Table I. Among them, the most

(a) (b)

(c) (d)

FIG. 1. Some typical diagrams in the gg → HH process.
Diagrams (c) and (d) are obtained from (a) and (b) by shrinking
a gluon and a top quark line, respectively.

TABLE I. Main reduction information for sectors shown in
Figs. 1 and 2. See text for details.

gþ g → H þH gþ g → gþ gþ g

Sector Type dmax mþ Sector Type dmax mþ

1(a) 7-NP 1 3þ 2(a) 8-NP 1 3þ
1(b) 7-P 1 3þ 2(b) 8-NP 3 3þ
1(c) 6-NP 5 3þ 2(c) 7-NP 4 3þ
1(d) 6-P 4 2þ 2(d) 6-NP 2 3þ
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complicated one is the seven-propagator sector represented
by Fig. 2(c). To reduce 3þe⃗ in this sector, which contains 84
integrals, we need to set up 14 relations with dmax ¼ 0, 64
relations with dmax ¼ 1, 4 relations with dmax ¼ 2, and 2
relations with dmax ¼ 4.
Reduction relations for mþe⃗ of all sectors listed in

Table I were obtained on a laptop with 4 core Intel i7-
6500U CPU and 16 GB of RAM within 1 day, and final
analytical relations are available for download in electronic
form from an ancillary file in the arXiv version. For a given
phase space point, a given spacetime dimension D, and
assuming that values of all simpler integrals are already
known, then solving all thesemþe⃗ by Gaussian elimination
of obtained relations can be finished within 0.01 second,
which should be efficient enough to do phase space
integration. To compare with, FIRE5 [57] needs several
hours to reduce mþe⃗ to MIs at a given phase space point.
Though the final results obtained by FIRE5 are analytic in
spacetime dimension D, we expect that it will not reach as
high an efficiency as ours even if it works with a specific
value of D. We have checked point by point in phase space
that relations obtained by our method agree with that
obtained by FIRE5. Technical details will be given in a
forthcoming paper [77].

VI. SUMMARY AND OUTLOOK

In this article, we propose a new representation for
Feynman integrals, which is defined by analytical

continuation of an asymptotic series containing only
vacuum integrals. The new representation translates the
problem of computing Feynman integrals to the problem of
performing analytical continuations. This new perspective
of Feynman integrals may be helpful to deepen our
understanding of Feynman integrals and scattering
amplitudes.
As an application of the new representation, we construct

a systematic and efficient reduction method for multiloop
Feynman integrals. Different from the traditional IBP
reduction method based Laporta’s algorithm, we never
involve large coupled linear systems because our method
reduces integrals step by step, similar to the one-loop case.
Therefore, once reduction relations in our method are
obtained, the numerical evaluation can be much more
efficient than IBP reduction, especially when dealing with
multiscale problems. With two two-loop cutting-edge
examples, we find that our method is indeed very powerful
to reduce multiloop multiscale Feynman integrals.
In our reduction method, the appearance of additional

masses does not introduce too many difficulties, because
we have already introduced effective masses for each
propagator. Therefore, for instance, the reduction of two-
loop integrals in the five-gluon scattering process with a
massive quark loop and gg → tt̄g process, which are
exceedingly difficult problems in the view of IBP reduc-
tion, should be achievable based on our method.
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Note added.—Recently, several preprints appeared, e.g.,
[78–94], which are aimed at solving two-loop cutting-edge
problems with IBP reduction method but equipped with
many advanced techniques. Even with these improvements
of IBP reductions, our reduction method is still very
competitive.
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