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Recent studies [J. High Energy Phys. 07 (2017) 112; Phys. Rev. D 97, 046004 (2018); J. High Energy
Phys. 11 (2018) 016] of six-dimensional supersymmetric gauge theories that are engineered by a class of
toric Calabi-Yau threefolds XN;M have uncovered a vast web of dualities. In this paper we analyze the
consequences of these dualities from the perspective of the partition functions ZN;M (or the free energy
FN;M) of these theories. Focusing on the case M ¼ 1, we find that the latter is invariant under the group
GðNÞ × SN , where SN corresponds to the Weyl group of the largest gauge group that can be engineered
from XN;1 and GðNÞ is a dihedral group, which acts in an intrinsically nonperturbative fashion and is of
infinite order for N ≥ 4. We give an explicit representation of GðNÞ as a matrix group that is freely
generated by two elements which act naturally on a specific basis of the Kähler moduli space of XN;1. While
we show the invariance of ZN;1 under GðNÞ × SN in full generality, we provide explicit checks by series
expansions of FN;1 for a large number of examples. We also comment on the relation of GðNÞ to the
modular group that arises due to the geometry of XN;1 as a double elliptic fibration, as well as the T duality
of little string theories that are constructed from XN;1.
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I. INTRODUCTION

The engineering of supersymmetric gauge theories [1,2]
in dimensions ≤ 6 through string- and M-theory con-
structions has been an active and fruitful field of
study throughout the years. Indeed, the numerous dual
approaches and formulations that are available on the string
theory side provide us with a large range of tools (both
computationally as well as conceptually) to explore hidden
symmetries, dualities, and even more sophisticated struc-
tures on the gauge theory side that would be very difficult to
study otherwise. An important feature of this approach is
that in many cases string theory methods give us access to
nonperturbative aspects of the gauge theories and allow us
to study them in an efficient manner [3–5]. One very
rich subclass of theories which has attracted a lot
of attention recently [6–9] are supersymmetric, UðMÞ
circular quiver gauge theories on R5 × S1, which can
(among other methods) be approached through F-theory
compactifications on a class of toric Calabi-Yau threefolds

XN;M.
1 The latter give rise to a quiver theory comprised of

N nodes of type UðMÞ (which we shall denote as ½UðMÞ�N
in the following). A particularity of these theories is the fact
that their UV completion in general contains not only point-
like particles, but also stringy degrees of freedom, although
gravity remains decoupled. Such theories are called little
string theories (LSTs), which were originally introduced
over a decade ago [11–19] and have recently received a lot
of renewed interest [8,20–27]. The fully refined, non-
perturbative partition function ZN;M of this theory is
captured by the (refined) topological string partition func-
tion on XN;M and can be computed very efficiently
[3–6,8,25] with the help of the (refined) topological vertex
[28–31] (see Refs. [32,33] for a general discussion of the
topological string partition function on elliptic Calabi-Yau
threefolds). Since the latter (for technical reasons) requires
a choice of preferred direction in the web diagram of XN;M,
this method provides different, but completely equivalent
expansions of ZN;M, which can be interpreted as instanton
expansions of different but dual gauge theories. While it is
straightforward to see [4,5,8] that in this fashion the theory
½UðMÞ�N is dual to ½UðNÞ�M, it was argued in Ref. [24] that
it is also dual to ½UðNM

k Þ�k, where k ¼ gcdðN;MÞ, thus
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1The numbers N, M ∈ N refer to the fact that XN;M has
the structure of a double elliptic fibration, where the two
fibrations have Kodaira singularities of types IN−1 and IM−1,
respectively [10].
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leading to a triality of gauge theories that are engineered
by XN;M.
The Calabi-Yau manifolds XN;M depend on NM þ 2

independent Kähler parameters and the corresponding
moduli space takes the form of a cone. The faces of the
latter (which we shall call walls in the following) are
(among others) comprised of singular loci where the area of
one or more of the curves in the web diagram of XN;M

vanish. From the perspective of the geometry of XN;M,
crossing such a wall (i.e., continuing to negative area) gives
rise to a new Calabi-Yau manifold, which corresponds to a
different (but dual) resolution of the singularity. With the
help of such flop transitions [34,35], the Kähler moduli
space of XN;M can be extended to include further regions
that allow the engineering of yet new gauge theories.
Indeed, it was argued in Ref. [22] that the Calabi-Yau
manifolds XN;M and XN0;M0 can be related through a series
of flop transformations if NM ¼ N0M0 and gcdðN;MÞ ¼
gcdðN0;M0Þ. Furthermore, nontrivial checks were pre-
sented in Ref. [22] that the topological string partition
functions associated with XN;M and XN0;M0 are the same
upon taking into account the nontrivial duality map.
This was shown explicitly in Ref. [25] for the cases
gcdðN;MÞ ¼ 1 and a suitable basis of independent
Kähler parameters was presented which is adapted to the
invariance under a series of flop transformations that is
instrumental in the duality XN;M ∼ XN0;M0.2 Combining this
invariance of ZN;M with the triality of gauge theories
proposed in Ref. [24], it was argued in Ref. [26] that
the theory ½UðMÞ�N is in fact dual to all theories of the
form ½UðM0Þ�N0

for any N0, M0 with NM ¼ N0M0 and
gcdðN;MÞ ¼ gcdðN0;M0Þ. It was furthermore argued in
Ref. [27] that the extended moduli space [36–40] of XN;M

contains different decompactification regions, which engi-
neer different five-dimensional gauge theories with various
gauge structures and matter content.
While previous works have focused on interpreting

different expansions of ZN;M as instanton partition func-
tions of different gauge theories, thereby establishing a
large network of dual theories, in this paper we discuss the
consequences of these dualities from the perspective of
symmetries of ZN;M. Focusing on the cases M ¼ 1, rather
than switching between different expansions of the parti-
tion function ZN;1 (or more concretely the free energy
FN;1), we shall focus on one particular expansion (as a
power series in a suitable basis of Kähler parameters of
XN;1) and recast the results of Refs. [22,24,26] in the form
of highly nontrivial identities among the expansion coef-
ficients of FN;1. From the perspective of any of the
gauge theories of the type ½UðM0Þ�N0

, where ðN0;M0Þ
are relative primes and N0M0 ¼ N, these correspond to

generically nonperturbative symmetries that act in a highly
nontrivial fashion on the spectrum of Bogomol’nyi-Prasad-
Sommerfield (BPS) states of the theory. Furthermore, since
the combination of any two of these symmetries itself has to
be another symmetry, they have the structure of a group
ĜðNÞ which acts naturally on the vector space spanned by
the independent Kähler parameters of XN;1.
We shall analyze ĜðNÞ first with the help of the explicit

examples N ¼ 1, 2, 3, 4, where we can study it (or its
subgroups) explicitly as a matrix group. Based on these
examples, we find a pattern, which allows us to prove for
generic N that ĜðNÞ has a subgroup of the form

G̃ðNÞ ≅ GðNÞ × SN with G̃ðNÞ ⊂ ĜðNÞ; ð1:1Þ

where SN is the Weyl group of the largest simple gauge
group that can be engineered from XN;1 [i.e., UðNÞ] and
GðNÞ is isomorphic to a dihedral group,3 namely,

GðNÞ ≅

8>>><
>>>:

Dih3 if N ¼ 1;

Dih2 if N ¼ 2;

Dih3 if N ¼ 3;

Dih∞ if N ≥ 4.

ð1:2Þ

Here Dih∞ is a finitely generated group of infinite order
[while ordðDihnÞ ¼ 2n for finite 2 ≤ n ∈ N].
In particular the group GðNÞ in Eq. (1.1) combines

nontrivially with other known symmetries and dualities
of XN;1.
(1) Modularity: Owing to the fact that XN;1 has the

structure of a double elliptic fibration, the partition
function transforms as a Jacobi form under two
copies of the modular group SLð2;ZÞτ and
SLð2;ZÞρ.4 Since G̃ðNÞ acts nontrivially on
the modular parameters ðτ; ρÞ the combined sym-
metry group is in general larger than simply
G̃ðNÞ × SLð2;ZÞτ × SLð2;ZÞρ. In the simplest case
N ¼ 1, which we shall discuss in Sec. III, we are in
fact able to explicitly analyze the resulting group and
we can show that it is isomorphic to Spð4;ZÞ, which
is the automorphism group of the genus-2 curve that
is the geometric mirror of the Calabi-Yau manifold
X1;1 (see Refs. [10,29]). For N > 1, the symmetry is
more difficult to analyze, and we are only be able to
make statements about a specific region in the
moduli space.

2This transformation is explained in detail in Appendix A and
the basis is reviewed in the following section.

3For n ∈ N the dihedral group Dihn is freely generated by two
elements a, b of order 2 that satisfy a certain braid relation:
Dihn ¼ hfa; bja2 ¼ b2 ¼ 1 and ðabÞn ¼ 1gi. The group Dih∞
corresponds to the limit n → ∞ and is of infinite order.

4Our notation follows the naming convention of the modular
parameters as in, e.g., Ref. [8].
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(2) T duality: As mentioned above, the UV completion
of the gauge theory ½Uð1Þ�N is an LST with eight
supercharges, which was called type IIb little string
theory in Ref. [8]. The latter is T dual to type IIa
little string theory, whose low-energy behaviour is
described by the dual gauge theory ½UðNÞ�1 (see
Refs. [8,20,21,41] for the discussion of T duality of
LSTs engineered from double elliptic Calabi-Yau
threefolds). Denoting the partition functions of these
little string theories by ZIIb and ZIIa, respectively, it
was proposed in Ref. [8] that the partition functions
of these two little string theories are captured by
ZN;1,

ZIIaðτ; ρ;KÞ ¼ ZN;1ðτ; ρ;KÞ; and

ZIIbðτ; ρ;K0Þ ¼ ZN;1ðρ; τ;K0Þ; ð1:3Þ

where for simplicity we have only explicitly dis-
played the dependence on the modular parameters
ðτ; ρÞ and only schematically indicated the depend-
ence on the remaining Kähler parameters throughK
and K0, respectively. Furthermore, in Ref. [8] it was
proposed that the T duality of the IIa and IIb LSTs
simply amounts to

ZIIaðτ; ρ;KÞ ¼ ZIIbðρ; τ;K0Þ; ð1:4Þ

which, from the perspective of the Calabi-Yau
manifold XN;1, corresponds to an exchange of the
two elliptic curves: one in the fiber and one in the
base (with a duality map relating K and K0). Since
the group G̃ðNÞ in Eq. (1.1) acts nontrivially on the
modular parameters ðτ; ρÞ (and in general mixes
them in a nontrivial fashion), it extends the
incarnation (1.4) of T duality to a nontrivial group
acting on the full spectrum of the LSTs.

This paper is organized as follows. In Sec. II we first review
the important aspects of the computation of the partition
function ZN;1, in particular the choice of basis of the
independent Kähler parameters. Furthermore, we discuss
in more detail our strategy for finding the group G̃ðNÞ in
Eq. (1.1). Finally, for the sake of readability, we also give a
summary of the results obtained in the subsequent sections.
In Secs. III–VIwe discuss in detail the examplesN ¼ 1, 2, 3,
4, respectively. For each of these cases we construct G̃ðNÞ
and provide nontrivial evidence that it is a symmetry of the
FN;1 by computing the leading orders in the expansion of the
former as a power series of the Kähler parameters. In
Sec. VII we generalize a pattern that emerges from the
previous examples andwhich allows us to proveEq. (1.2) for
generic N ∈ N. Finally, Sec. VIII contains our conclusions
and directions for future research. Furthermore, this paper is
accompanied by two Appendixes, which review a particular
duality transformation for the web diagrams of XN;1 and a

finite representation of the group Spð4;ZÞ, respectively.
These technical details are relevant for the computations
performed in the main body of this work.

II. REVIEW, GENERAL STRATEGY,
AND SUMMARY OF RESULTS

A. Review: Partition function and free energy

The web diagram for a general XN;1 is shown in Fig. 1.
Each line is labeled by the area of the curve that they
represent: horizontal lines are labeled by h1;…;N, vertical
lines by v1;…;N, and diagonal lines by m1;…;N. Not all of
these areas are independent of one another, but they are
subject to 2N consistency conditions (for i ¼ 1;…; N),
related to the N hexagons Si of the web diagram

Si∶ hi þmi ¼ hi þmiþ1;

vi þmi ¼ viþδ þmiþ1; ð2:1Þ

where miþN ¼ mi and viþN ¼ vi. A general solution of
these conditions is given by vi ¼ viþ1 and mi ¼ miþ1 for
i ¼ 1;…; N − 1. Another solution, which is more adapted
to the computations in the remainder of this work, is
provided by the blue parameters in Fig. 1, which equally
represent an independent set of Kähler parameters of the
Calabi-Yau manifold XN;1. Physically, from the perspective
of (one particular) gauge theory engineered by XN;1, the
parameters â1;…;N correspond to the (affine) roots of the
gauge group UðNÞ (i.e., the vacuum expectation values of
the vector multiplet scalars), while the parameter R is
related to the coupling constant and S to the mass parameter

FIG. 1. Web diagram of XðδÞ
N;1.
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of the matter sector. As shown in Ref. [24], however, this
assignment is not unique and the Calabi-Yau manifold XN;1

in fact engineers several different gauge theories with
different gauge groups5 and possibly different matter
content. In the following we will therefore not be too
concerned with the physical interpretation of the parame-
ters ðâ1;…;N; SÞ. Instead, we shall treat the dependences of
the partition function ZN;1ðâ1;…;N; S; R; ϵ1;2Þ (associated
with XN;1) on all of these parameters on equal footing. The
former can be computed from the web diagram in Fig. 1
with the help of the refined topological string. Here the
constants ϵ1;2 ∈ R represent the refinement and can be
thought of as a means of regularizing the partition function,
which would otherwise be ill defined.
An efficient method of computing ZN;1 from Fig. 1 (for

arbitrary δ) was given in Ref. [25] (see also Refs. [3,5]) by
computing a general building block Wα1;…;αN

β1;…;βN
that depends

on the Kähler parameters (â1;…;N; S) and is labeled by 2N
integer partitions α1;…;N and β1;…;N , which encode how the
legs of the (various) building block(s) are glued together
(for details, see Ref. [25]). While the formalism developed
in Ref. [25] is more general and allows the computation of a
much larger class of partition functions, in the present case
we have

ZN;1ðâ1;…;N; S; R; ϵ1;2Þ

¼
X
fαg

�YN
i¼1

Qjαij
mi

�
Wα1;…;αN

αN−δþ1;…;αN−δðâ1;…;N; S; ϵ1;2Þ; ð2:2Þ

with (our conventions for the normalization ofWα1;…;αN
β1;…;βN

are
adapted to Fig. 1)

Wα1;…;αN
αN−δþ1;…;αN−δðâ1;…;N; S; ϵ1;2Þ

¼ WN
∅ðâ1;…;NÞ

�ðt=qÞN−1
2

QN−δ−1
ρ

�jα1jþ���þjαN j

×
YN
i;j¼1

ϑαiαjðQ̂i;j; ρÞ
ϑαi;αjðQ̄i;j

ffiffiffiffiffiffiffi
q=t

p
; ρÞ :

Here we have used the following notation:

Qmi
¼ e−mi; ρ ¼ i

2π

XN
k¼1

âk; Qρ ¼ e−
P

N
k¼1

âk ;

q ¼ e2πiϵ1 ; t ¼ e−2πiϵ2 ;

where mi¼1;…;N refer to the areas of the diagonal lines in
Fig. 1 expressed as functions of (α̂1;…;N; S; R) with the help
of the consistency conditions (2.1). Furthermore, WN

∅ is a

normalization factor (which from a physical perspective in
particular encodes the perturbative contribution to the
partition function) and ϑμν is a class of theta functions
that is labeled by two integer partitions μ and ν

ϑμνðx; ρÞ ¼
Y

ði;jÞ∈μ
ϑðx−1q−νtjþi−1

2t−μiþj−1
2; ρÞ

×
Y

ði;jÞ∈ν
ϑðx−1qμtj−iþ1

2tνi−jþ1
2; ρÞ;

with the further definition

ϑðx; ρÞ ¼ ðx1
2 − x−

1
2Þ
Y∞
k¼1

ð1 − xQk
ρÞð1 − x−1Qk

ρÞ: ð2:3Þ

Finally, the arguments of the ϑ functions can be defined as
Q̂i;j ¼ e−zij and Q̄i;j ¼ e−wij , where zij and wij are implic-
itly defined in Fig. 2 with respect to (part of) the web
diagram [the labels on the diagonal and horizontal lines in
Fig. 2 (and Fig. 1) indicate how they are glued together].
With the partition function ZN;1, we can define the free

energy as the plethystic logarithm

FN;1ðâ1;…;N; S; R; ϵ1;2Þ
¼ PLogZN;1

¼
X∞
k¼1

μðkÞ
k

lnZN;1ðkâ1;…;N; kS; kR; kϵ1;2Þ; ð2:4Þ

where μðkÞ is the Möbius function. We can expand the free
energy in the following fashion:

FIG. 2. Definition of the arguments of the ϑ functions appear-
ing in ZN;1.

5The nonaffine part of the gauge groups, however, is in general
a subgroup of UðNÞ.
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FN;1ðâ1;…;N; S; R; ϵ1; ϵ2Þ

¼
X∞
n¼0

X∞
i1;…;iN¼0

X
k∈Z

fi1;…;iN ;k;nðϵ1; ϵ2ÞQ̂i1
1 …Q̂iN

N Q
k
SQ

n
R;

ð2:5Þ

with Q̂i¼e−âi (for i¼1;…;N), QS ¼ e−S, and QR ¼ e−R.
Apart from a first-order pole, FN;1 has a power-series
expansion in ϵ1;2, which allows to compute the Nekrasov-
Shatashvili limit [42,43] and the unrefined limit in a
straightforward fashion. For later convenience we therefore
also introduce the expansion of the leading term in both
parameters (which we simply denote as NS),

lim
ϵ1;2→0

ϵ1ϵ2FN;1ðâ1;…;N; S; R; ϵ1; ϵ2Þ

¼
X∞
n¼0

X∞
i1;…;iN¼0

X
k∈Z

fNSi1;…;iN ;k;n
Q̂i1

1 …Q̂iN
N Q

k
SQ

n
R; ð2:6Þ

where fNSi1;…;iN ;k;n
∈ Z.

B. Symmetry transformations: Strategy
and summary of results

In Refs. [22,24,25] different duality transformations were
discussed that involve flop transformations [34,35] of
various curves of XN;1, SLð2;ZÞ transformations as well
as cutting and regluing of the web diagram. While these
duality transformationswere shown inRef. [25] to leaveZN;1

(and thus alsoFN;1) invariant, they generically act in a rather
nontrivial fashion on the web diagram in Fig. 1. Indeed, a
particular example of such a transformation is reviewed in
Appendix A, which shifts δ → δþ 1 and transforms the
areas of all curves fh1;…;N; v1;…;N; m1;…;Ng in a nontrivial
fashion. In general, the web diagram in Fig. 1 is transformed
to a similar “staircase” diagram as shown in Fig. 3 (possibly
with δ0 ≠ δ), where the areas of the new curves can be
rewritten as functions of the old areas,

fh01;…;N; v
0
1;…;N; m

0
1;…;Ng

¼ fh01;…;Nðh1;…;N; v1;…;N; m1;…;NÞ;
v01;…;Nðh1;…;N; v1;…;N; m1;…;NÞ;
m0

1;…;Nðh1;…;N; v1;…;N; m1;…;NÞg: ð2:7Þ

Furthermore, since both ðâ1;…;N; S; RÞ (as defined in Fig. 1)
and ðâ01;…;N; S

0; R0Þ (as defined in Fig. 3) are amaximal set of
independent Kähler parameters, the areas fh1;…;N; v1;…;N;
m1;…;Ng can be expressed as linear combinations of both of
these bases. Therefore, Eq. (2.7) gives a set of linear
equations which have a unique solution of the form

ðâ1;…; âN; S; RÞT ¼ G · ðâ01;…; â0N; S
0; R0ÞT; ð2:8Þ

where G is an invertible ðN þ 2Þ × ðN þ 2Þ matrix with
integer entries. Finally, using the result [25] that the partition
function ZN;1 is invariant under the duality transformation,
i.e.,ZN;1ðâ1;…;N; S; RÞ ¼ ZN;1ðâ01;…;N; S

0; R0Þ, the matrixG
in Eq. (2.8) is a symmetry of the partition function. More
concretely, at the level of the free energy, we have the
following relations for the expansion coefficients appearing
in Eq. (2.5):

fi1;…;iN ;k;nðϵ1; ϵ2Þ ¼ fi0
1
;…;i0N;k

0;n0 ðϵ1; ϵ2Þ
for ði01;…; i0N; k

0; n0ÞT ¼ GT · ði1;…; iN; k; nÞT: ð2:9Þ

The transposition ofG in this relation is due to the fact that the
transformation (2.8) is a passive one from the perspective of
the coefficients fi1;…;iN ;k;n.
For given XN;1 there are in general numerous different

transformations G of the type described above. Since the
concatenation of two such transformations defines a new
transformation, the latter form a group. In the following
sections we shall determine at least a subgroup of this
group for the simplest examples N ¼ 1, 2, 3, 4, which in
Sec. VII can be generalized to generic N ∈ N. However,
before doing so and for ease of readability, we summarize
our results. For generic N ∈ N, we identify a finitely
generated group of symmetry transformations of the type
(2.8), which can be written as

FIG. 3. Web diagram of Xðδ0Þ
N;1 after a duality transformation of

Fig. 1.
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G̃ðNÞ ≅ GðNÞ × SN with

GðNÞ ≅

8>>><
>>>:

Dih3 if N ¼ 1;

Dih2 if N ¼ 2;

Dih3 if N ¼ 3;

Dih∞ if N ≥ 4:

ð2:10Þ

The group SN is generated by simple relabelings of the web
diagram of XN;1 and physically corresponds to the Weyl
group ofUðNÞ, which is the largest gauge group that can be
engineered by XN;1. For genericN, the groupGðNÞ is freely
generated by two ðN þ 2Þ × ðN þ 2Þ matrices of order 2,
which satisfy a specific braid relation,6

GðNÞ ≅ hfG2ðNÞ;G0
2ðNÞjðG2ðNÞÞ2 ¼ ðG0

2ðNÞÞ2
¼ ðG2ðNÞ · G0

2ðNÞÞn ¼ 1gi; ð2:11Þ

where n ¼ 3 for N ¼ 1, 3 and n ¼ 2 for N ¼ 2, but for
N ≥ 4 we find n → ∞, which means that there is no braid
relation in these cases. Explicitly, the generators are given
by the following lower and upper triangular matrices:

G2ðNÞ ¼

0
BBBBBB@

0 0

1N×N
..
. ..

.

0 0

1 � � � 1 −1 0

N � � � N −2N 1

1
CCCCCCA
; and

G0
2ðNÞ ¼

0
BBBBBB@

−2 1

1N×N
..
. ..

.

−2 1

0 � � � 0 −1 1

0 � � � 0 0 1

1
CCCCCCA
: ð2:12Þ

These matrices are symmetry transformations of the par-
tition functionZN;1 and the free energy FN;1 in the sense of
Eq. (2.9), which can be checked in explicit examples. In the
case N ¼ 1, combining the group G̃ðNÞ with the modular
group SLð2;ZÞ acting on one of the modular parameters of
X1;1 generates the group Spð4;ZÞ. For the cases with
N > 1, the combination with the modular group is more
difficult to analyze at a general point in the moduli space of
XN;1. However, in the region in moduli space where
â1;…;N ¼ â in Fig. 1, this analysis is simpler and we can
prove that the combination ofGðNÞwith the modular group
is a subgroup of Spð4;ZÞ. This is in line with the checks
performed in Ref. [22] to provide evidence for the
duality XN;M ∼ XN0;M0 [for NM ¼ N0M0 and gcdðN;MÞ ¼
gcdðN0;M0Þ] of Calabi-Yau threefolds.

III. EXAMPLE: ðN;MÞ= ð1;1Þ
A. Dualities and Dih3 group action

The simplest (albeit somewhat trivial) example to illus-
trate the idea explained in Sec. II B is the configuration
ðN;MÞ ¼ ð1; 1Þ. The corresponding web diagram is shown
in Fig. 4(a). Through simple SLð2;ZÞ transformations (as
well as cutting and regluing) the former can also be
presented (among other ways) in the form of Figs. 4(b)
and 4(c).
Each diagram can be parametrized in terms of the

parameters ðh; v;mÞ or, respectively, ðâ; S; RÞ, ðâ0; S0; R0Þ,
or ðâ00; S00; R00Þ. The latter can be expressed in terms of
ðh; v;mÞ as

â ¼ hþ v; S ¼ h; R − S ¼ m;

â0 ¼ hþm; S0 ¼ m; R0 − S0 ¼ v;

â00 ¼ hþm; S00 ¼ h; R00 − S00 ¼ v: ð3:1Þ

Inverting these relations, ðh; v; mÞ can be expressed as
linear combinations of ðâ; S; RÞ, ðâ0; S0; R0Þ, or ðâ00; S00; R00Þ,
respectively,

(a) (b) (c)

FIG. 4. Three different representations of the web diagram of X1;1 with a parametrization of the areas of all curves. The parameters
ðh; v; mÞ are independent of each other and the blue parameters represent an alternative parametrization in line with Fig. 1.

6In the following, hEi denotes the group freely generated by
the ensemble E.

BRICE BASTIAN and STEFAN HOHENEGGER PHYS. REV. D 99, 066013 (2019)

066013-6



h¼ S¼ â0 − S0 ¼ S00; v¼ â− S¼ R0 − S0 ¼ R00 − S00;

m¼ R− S¼ S0 ¼ â00 − S00: ð3:2Þ

These equations also furnish linear transformations
between ðâ; S; RÞ, ðâ0; S0; R0Þ, or ðâ00; S00; R00Þ,
0
B@

â

S

R

1
CA¼ G1 ·

0
B@

â0

S0

R0

1
CA¼ G2 ·

0
B@

â00

S00

R00

1
CA; with

G1 ¼

0
B@

1 −2 1

1 −1 0

1 0 0

1
CA; G2 ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA: ð3:3Þ

The matrix G1 is of order 3 (i.e., G1 ·G1 · G1 ¼ 13×3),
while G2 is of order 2 (i.e., G2 ·G2 ¼ 13×3). Thus, by also
introducing the matrices7

E¼13×3; G3¼G1 ·G1; G4¼G1 ·G2; G5¼G2 ·G1;

ð3:4Þ

the ensemble Gð1Þ ¼ fE;G1; G2; G3; G4; G5g forms a
finite group, whose multiplication table is

E G1 G2 G3 G4 G5

E E G1 G2 G3 G4 G5

G1 G1 G3 G4 E G5 G2

G2 G2 G5 E G4 G3 G1

G3 G3 E G5 G1 G2 G4

G4 G4 G2 G1 G5 E G3

G5 G5 G4 G3 G2 G1 E

ð3:5Þ

from which we can read off Gð1Þ ¼ fE;G1; G2; G3;
G4; G5g ≅ Dih3 ≅ S3. The latter can be formulated more
elegantly as the free group generated by the elements

a ¼ G4 ¼ G1 ·G2 ¼

0
B@

1 −2 1

0 −1 1

0 0 1

1
CA; and

b ¼ G5 ¼ G2 ·G1 ¼

0
B@

1 0 0

1 −1 0

1 −2 1

1
CA; ð3:6Þ

furnishing the following representation:

Gð1Þ ≅ Dih3

≅ hfa; bja2 ¼ b2 ¼ 13×3; ðabÞ3 ¼ 13×3gi: ð3:7Þ

B. Invariance of the nonperturbative free energy

As a check of the fact that G1;2 defined in Eq. (3.3) are
indeed symmetry transformations of Z1;1, we can consider
the coefficients in the expansion of the associated free
energy F 1;1. Indeed, for N ¼ 1, the expansion (2.5) can be
written as

F 1;1ðâ;S;R;ϵ1;ϵ2Þ¼
X∞
n;i¼0

X
k∈Z

fi;k;nðϵ1;ϵ2ÞQ̂iQk
SQ

n
R; ð3:8Þ

with Q̂ ¼ e−â. As explained in Sec. II B, in order to be a
symmetry, the coefficients fi;k;nðϵ1; ϵ2Þ (which are func-
tions of ϵ1;2 with a first-order pole) need to satisfy

fi;k;nðϵ1; ϵ2Þ ¼ fi0;k0;n0 ðϵ1; ϵ2Þ
for ði0; k0; n0ÞT ¼ GT

l · ði; k; nÞT; ∀ l ¼ 1; 2: ð3:9Þ

Below we tabulate examples of the coefficients fi;k;n with
i ≤ 8 for n ¼ 1, i ≤ 4 for n ¼ 2, and i ≤ 2 for n ¼ 3 that
are related byG1;2: Tables I and II show the relations forG1

and G2, respectively.

C. Modularity and Spð4;ZÞ symmetry

The action of Gð1Þ as presented in Eq. (3.7) combines
with SLð2;ZÞ × SLð2;ZÞ to become Spð4;ZÞ, which is
(a subgroup of) the automorphism group of X1;1. To see
this, instead of considering the action of Gð1Þ on the vector
space spanned by ðâ; S; RÞ, we consider the vector space
spanned by (τ ¼ hþ v, ρ ¼ mþ v, v). Arranging the latter
in the period matrix

Ω ¼
�
τ v

v ρ

�
; ð3:10Þ

there is a natural action of Spð4;ZÞ, as reviewed in
Appendix B. The action of G1;2 on Ω is

G1∶ Ω →

�−2vþ ρþ τ τ − v

τ − v τ

�
;

G2∶ Ω →

�
τ τ − v

τ − v −2vþ ρþ τ

�
: ð3:11Þ

Based on this action, we can equivalently represent the
action of Gð1Þ by G0

1;2 ∈ Spð4;ZÞ,

7In the same manner as G1 and G2, these matrices can also be
read off from web diagrams as in Fig. 4 with a suitable exchange
of ðh; v;mÞ, which, however, we do not show explicitly.
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TABLE II. Action of G2: The indices are related by ði01; i02; k0; n0ÞT ¼ GT
2 · ði1; i2; k; nÞT.

ði; k; nÞ ði0; k0; n0Þ fi;k;nðϵ1;2Þ ¼ fi0;k0;n0 ðϵ1;2Þ
ð2;−3; 1Þ ð1;−3; 2Þ −

ffiffiffi
qt

p
ðq−1Þðt−1Þ

ð2;−2; 1Þ ð1;−2; 2Þ q3t2þq2tðt2þ2tþ2Þþqð2t2þ2tþ1Þþt
ðq−1Þqðt−1Þt

ð2;−1; 1Þ ð1;−1; 2Þ q4ð−t2Þðtþ1Þ−q3tðt3þ3t2þ4tþ1Þ−q2ðt4þ4t3þ7t2þ4tþ1Þ−qðt3þ4t2þ3tþ1Þ−tðtþ1Þ
ðq−1Þq3=2ðt−1Þt3=2

(2,0,1) (1,0,2) q5t3þq4t2ð2t2þ3tþ2Þþq3tðt4þ3t3þ8t2þ6tþ2Þþq2ð2t4þ6t3þ8t2þ3tþ1Þþqtð2t2þ3tþ2Þþt2

ðq−1Þq2ðt−1Þt2
(2,1,1) (1,1,2) q4ð−t2Þðtþ1Þ−q3tðt3þ3t2þ4tþ1Þ−q2ðt4þ4t3þ7t2þ4tþ1Þ−qðt3þ4t2þ3tþ1Þ−tðtþ1Þ

ðq−1Þq3=2ðt−1Þt3=2
(2,2,1) (1,2,2) q3t2þq2tðt2þ2tþ2Þþqð2t2þ2tþ1Þþt

ðq−1Þqðt−1Þt
(2,3,1) (1,3,2) −

ffiffiffi
qt

p
ðq−1Þðt−1Þ

ð3;−3; 1Þ ð1;−3; 3Þ − ðqþ1Þðtþ1Þðqtþ1Þ
ðq−1Þ ffiffi

q
p ðt−1Þ ffiffi

t
p

ð3;−2; 1Þ ð1;−2; 3Þ q5t3þq4t2ð2t2þ3tþ2Þþq3tðt4þ3t3þ8t2þ6tþ2Þþq2ð2t4þ6t3þ8t2þ3tþ1Þþqtð2t2þ3tþ2Þþt2

ðq−1Þq2ðt−1Þt2
ð3;−1; 1Þ ð1;−1; 3Þ − ðqþ1Þðtþ1Þðq5t3þq4t2ðtþ1Þ2þq3tðt4þ2t3þ6t2þ4tþ1Þþq2ðt4þ4t3þ6t2þ2tþ1Þþqtðtþ1Þ2þt2Þ

ðq−1Þq5=2ðt−1Þt5=2
(3,1,1) (1,1,3) − ðqþ1Þðtþ1Þðq5t3þq4t2ðtþ1Þ2þq3tðt4þ2t3þ6t2þ4tþ1Þþq2ðt4þ4t3þ6t2þ2tþ1Þþqtðtþ1Þ2þt2Þ

ðq−1Þq5=2ðt−1Þt5=2
(3,2,1) (1,2,3) q5t3þq4t2ð2t2þ3tþ2Þþq3tðt4þ3t3þ8t2þ6tþ2Þþq2ð2t4þ6t3þ8t2þ3tþ1Þþqtð2t2þ3tþ2Þþt2

ðq−1Þq2ðt−1Þt2
(3,3,1) (1,3,3) − ðqþ1Þðtþ1Þðqtþ1Þ

ðq−1Þ ffiffi
q

p ðt−1Þ ffiffi
t

p

ð1;−3; 2Þ ð2;−3; 1Þ −
ffiffiffi
qt

p
ðq−1Þðt−1Þ

ð1;−2; 2Þ ð2;−2; 1Þ ðqtþ1Þðq2tþqðtþ1Þ2þtÞ
ðq−1Þqðt−1Þt

(1,2,2) (2,2,1) ðqtþ1Þðq2tþqðtþ1Þ2þtÞ
ðq−1Þqðt−1Þt

(1,3,2) (2,3,1) −
ffiffiffi
qt

p
ðq−1Þðt−1Þ

ð1;−3; 3Þ ð3;−3; 1Þ − ðqþ1Þðtþ1Þðqtþ1Þ
ðq−1Þ ffiffi

q
p ðt−1Þ ffiffi

t
p

(1,3,3) (3,3,1) − ðqþ1Þðtþ1Þðqtþ1Þ
ðq−1Þ ffiffi

q
p ðt−1Þ ffiffi

t
p

TABLE I. Action of G1: The indices are related by ði01; i02; k0; n0ÞT ¼ GT
1 · ði1; i2; k; nÞT.

ði; k; nÞ ði0; k0; n0Þ fi;k;nðϵ1;2Þ ¼ fi0;k0;n0 ðϵ1;2Þ
(1,0,1) ð2;−2; 1Þ ðqtþ1Þðq2tþqðtþ1Þ2þtÞ

ðq−1Þqðt−1Þt
(1,1,1) ð3;−3; 1Þ − ðqþ1Þðtþ1Þðqtþ1Þ

ðq−1Þ ffiffi
q

p ðt−1Þ ffiffi
t

p

(1,2,1) ð4;−4; 1Þ qtþ1
ðq−1Þðt−1Þ

ð2;−2; 1Þ ð1;−2; 2Þ q3t2þq2tðt2þ2tþ2Þþqð2t2þ2tþ1Þþt
ðq−1Þqðt−1Þt

(2,1,1) ð4;−5; 2Þ q4ð−t2Þðtþ1Þ−q3tðt3þ3t2þ4tþ1Þ−q2ðt4þ4t3þ7t2þ4tþ1Þ−qðt3þ4t2þ3tþ1Þ−tðtþ1Þ
ðq−1Þq3=2ðt−1Þt3=2

ð3;−3; 1Þ ð1;−3; 3Þ − ðqþ1Þðtþ1Þðqtþ1Þ
ðq−1Þ ffiffi

q
p ðt−1Þ ffiffi

t
p

ð1;−1; 2Þ ð2;−1; 1Þ q4ð−t2Þðtþ1Þ−q3tðt3þ3t2þ4tþ1Þ−q2ðt4þ4t3þ7t2þ4tþ1Þ−qðt3þ4t2þ3tþ1Þ−tðtþ1Þ
ðq−1Þq3=2ðt−1Þt3=2

(1,1,2) ð4;−3; 1Þ q4ð−t2Þðtþ1Þ−q3tðt3þ3t2þ4tþ1Þ−q2ðt4þ4t3þ7t2þ4tþ1Þ−qðt3þ4t2þ3tþ1Þ−tðtþ1Þ
ðq−1Þq3=2ðt−1Þt3=2

(1,3,2) ð6;−5; 1Þ −
ffiffiffi
qt

p
ðq−1Þðt−1Þ

ð2;−3; 2Þ ð1;−1; 2Þ q4ð−t2Þðtþ1Þ−q3tðt3þ3t2þ4tþ1Þ−q2ðt4þ4t3þ7t2þ4tþ1Þ−qðt3þ4t2þ3tþ1Þ−tðtþ1Þ
ðq−1Þq3=2ðt−1Þt3=2

ð1;−2; 3Þ (2,0,1) q5t3þq4t2ð2t2þ3tþ2Þþq3tðt4þ3t3þ8t2þ6tþ2Þþq2ð2t4þ6t3þ8t2þ3tþ1Þþqtð2t2þ3tþ2Þþt2

ðq−1Þq2ðt−1Þt2
(1,1,3) ð5;−3; 1Þ − ðqþ1Þðtþ1Þðq5t3þq4t2ðtþ1Þ2þq3tðt4þ2t3þ6t2þ4tþ1Þþq2ðt4þ4t3þ6t2þ2tþ1Þþqtðtþ1Þ2þt2Þ

ðq−1Þq5=2ðt−1Þt5=2
(1,2,3) ð6;−4; 1Þ q5t3þq4t2ð2t2þ3tþ2Þþq3tðt4þ3t3þ8t2þ6tþ2Þþq2ð2t4þ6t3þ8t2þ3tþ1Þþqtð2t2þ3tþ2Þþt2

ðq−1Þq2ðt−1Þt2
(1,3,3) ð7;−5; 1Þ − ðqþ1Þðtþ1Þðqtþ1Þ

ðq−1Þ ffiffi
q

p ðt−1Þ ffiffi
t

p
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G0
1 ¼ HK ¼

0
BBB@

1 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 1

1
CCCA; and

G0
2 ¼ K ¼

0
BBB@

1 0 0 0

1 −1 0 0

0 0 1 1

0 0 0 −1

1
CCCA; ð3:12Þ

where K and H are defined as in Appendix B. This implies
that Gð1Þ ⊂ Spð4;ZÞ. Moreover, combining Gð1Þ with the
SLð2;ZÞρ symmetry8 acting on the modular parameter9

ρ as

Sρ∶ ðτ; ρ; vÞ ↦
�
τ −

v2

ρ
;−

1

ρ
;
v
ρ

�
;

Tρ∶ ðτ; ρ; vÞ ↦ ðτ; ρþ 1; vÞ; ð3:13Þ

generates the complete action of Spð4;ZÞ: the generators
ðSρ; TρÞ can be expressed as Sρ ¼ L3 and Tρ ¼
L9HL10H ¼ X2. Furthermore, we have G0

2G
0
1 ¼ L5KL7

such that we can write

X1 ¼ G0
2G

0
1S

2
ρ; X2 ¼ Tρ; X3 ¼ SρG0

1G
0
1Sρ;

X4 ¼ G0
1G

0
2TρG0

1G
0
2; X5 ¼ G0

1G
0
2S

2
ρ;

X6 ¼ S3ρG0
1G

0
2S

2
ρG0

1G
0
2; ð3:14Þ

with X1;2;3;4;5;6 defined in Eq. (B2). This indicates that

hG0
1; G

0
2; Sρ; Tρi ⊃ hX1; X2; X3; X4; X5; X6i ≅ Spð4;ZÞ;

ð3:15Þ

where the last relation was shown in Ref. [44]. From
Eq. (3.12), and using the representation of Spð4;ZÞ given
in Ref. [45], it follows that

hG0
1; G

0
2; Sρ; Tρi ⊂ hK;Li ≅ Spð4;ZÞ; ð3:16Þ

which implies hG0
1; G

0
2; Sρ; Tρi ≅ Spð4;ZÞ.

IV. EXAMPLE: ðN;MÞ= ð2;1Þ
A. Dualities and Dih2 group action

In this section we generalize the analysis of the previous
section and, using the simplest nontrivial example [namely,
ðN;MÞ ¼ ð2; 1Þ], explain how the duality transformations
advocated in Refs. [24,26] lead to nontrivial symmetries at
the level of the set of independent Kähler parameters of
X2;1. In the following subsection we give further evidence
for this symmetry at the level of the partition function Z2;1.
The starting point is the web diagram shown in Fig. 5 along
with a parametrization of the areas of all curves involved.
The latter are not all independent of one another, but for
each of the two hexagons S1;2, they have to satisfy the
following consistency conditions:

S1∶ h2 þm2 ¼ m1 þ h2; v1 þm1 ¼ m2 þ v2;

S2∶ h1 þm1 ¼ m2 þ h1; m1 þ v1 ¼ m2 þ v2: ð4:1Þ

A solution for these conditions was provided in Ref. [25] in
the form of the parameters ðâ1;2; S; RÞ as indicated in Fig. 5,

â1 ¼ v1 þ h2; â2 ¼ v2 þ h1;

S ¼ h2 þ v2 þ h1; R − 2S ¼ m1 − v2: ð4:2Þ

Indeed, all of the areas ðh1;2; v1;2; m1;2Þ can be expressed as
a linear combination of ðâ1; â2; S; RÞ:

h1 ¼ S − â1; h2 ¼ S − â2; v1 ¼ v2 ¼ â1 þ â2;

m1 ¼ m2 ¼ â1 þ â2 þ R − 3S: ð4:3Þ

Mirroring the diagram and performing an SLð2;ZÞ trans-
formation, Fig. 5 can also be presented in the form of
Fig. 6(a). Cutting the latter along the curve labeled v1;2 and
regluing along the curves labeled m1;2 leads to the diagram
in Fig. 6(b). The consistency conditions of this web are the

FIG. 5. Web diagram of X2;1 with a parametrization of the areas
of all curves. The blue parameters represent an independent set of
Kähler parameters.

8Notice that the symmetry group is isomorphic to SLð2;ZÞ
rather than PSLð2;ZÞ, since S2ρ ≠ 1, as can be seen from the
action of S2ρ on the period matrix Ω → ð τ − v − vρ Þ.

9We could also choose the modular group SLð2;ZÞτ which acts
in a similar fashion on the modular parameter τ. More precisely,
SLð2;ZÞτ is generated by Sτ ¼ HSρH and Tτ ¼ HTρH.
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same as Eq. (4.1). Furthermore, the web diagram in
Fig. 6(b) is of the same form as Fig. 5 and thus allows
for a solution of Eq. (4.1) in terms of the parameters
ðâ01; â02; S0; R0Þ:

â01 ¼ m1 þ h1; â02 ¼ m2 þ h2;

S0 ¼ h2 þm1 þ h1; R0 − 2S0 ¼ v2 −m1: ð4:4Þ

Indeed, we can express the areas ðh1;2; v1;2; m1;2Þ in terms
of the latter,

h1 ¼ S0 − â02; h2 ¼ S0 − â02;

v1 ¼ v2 ¼ â01 þ â02 − 3Sþ R0;

m1 ¼ m2 ¼ â01 þ â02 − S0: ð4:5Þ

Comparing Eq. (4.3) with Eq. (4.5) gives rise to a linear
relation between ðâ1; â2; S; RÞ and ðâ01; â02; S0; R0Þ:
0
BBB@
â1
â2
S

R

1
CCCA¼G1 ·

0
BBB@
â01
â02
S0

R0

1
CCCA; where

G1 ¼

0
BBB@
1 0 −2 1

0 1 −2 1

0 0 −1 1

0 0 0 1

1
CCCA with

detG1¼ 1;

G1 ·G1¼ 14×4:
ð4:6Þ

We can obtain another symmetry transformation by cut-
ting the diagram in Fig. 5 along the line labeled v2 and
regluing it along the line h1 to obtain Fig. 7(a). Mirroring
the latter, it can also be presented in the form of Fig. 7(b)
which takes the form of a web diagram with the shift δ ¼ 1.
The latter can be parametrized by ðâ001; â002; S00; R00Þ,

â001 ¼ h2 þ v2; â002 ¼ h1 þ v1;

S00 ¼ v1; R00 − S00 ¼ m1; ð4:7Þ

which allows to uniquely express all areas ðh1;2; v1;2; m1;2Þ

h1 ¼ â002 − S00; h2 ¼ â001 ¼ S00; v1 ¼ v2 ¼ S00;

m1 ¼ m2 ¼ R00 − S00: ð4:8Þ

Comparing Eq. (4.8) with Eq. (4.5) gives rise to a trans-
formation between ðâ1; â2; S; RÞ and ðâ001; â002; S00; R00Þ,
0
BBB@

â1
â2
S

R

1
CCCA ¼ G2 ·

0
BBB@

â001
â002
S00

R00

1
CCCA; where G2 ¼

0
BBB@

1 0 0 0

0 1 0 0

1 1 −1 0

2 2 −4 1

1
CCCA;

with
det G2 ¼ −1;
G2 ·G2 ¼ 14×4:

ð4:9Þ

Finally, cutting the diagram in Fig. 7(b) along the curve
labeled v1 and regluing it along the line m2 yields the
diagram in Fig. 8(a), which [after mirroring and performing
an SLð2;ZÞ-transformation] can also be presented in the
form of Fig. 8(b). This diagram is parametrized by
ðâ0001 ; â0002 ; S000; R000Þ,

â0001 ¼ h1 þm1; â0002 ¼ h2 þm2;

S000 ¼ m2; R000 − S000 ¼ v2; ð4:10Þ

which provide a parametrization of all of the areas,

h1 ¼ â0001 − S000; h2 ¼ â0002 − S000;

v1 ¼ v2 ¼ R000 − S000; m1 ¼ m2 ¼ S000: ð4:11Þ

(a) (b)

FIG. 6. (a) Web diagram of Fig. 5 after mirroring and an SLð2;ZÞ transformation. (b) The same web diagram after cutting along the
lines v1;2 and regluing along the lines m1;2.

BRICE BASTIAN and STEFAN HOHENEGGER PHYS. REV. D 99, 066013 (2019)

066013-10



Comparing Eq. (4.11) with Eq. (4.3) provides a linear
transformation between the parameters ðâ1; â2; S; RÞ and
ðâ0001 ; â0002 ; S000; R000Þ,

0
BBB@

â1
â2
S

R

1
CCCA¼ G3 ·

0
BBB@

â0001
â0002
S000

R000

1
CCCA; with G3 ¼

0
BBB@

1 0 −2 1

0 1 −2 1

1 1 −3 1

2 2 −4 1

1
CCCA;

and
det G3 ¼ −1;
G3 ·G3 ¼ 14×4:

ð4:12Þ

The matrices G1;2;3 together with the identity matrix E ¼
14×4 form a discrete group of order 4, whose multiplication
table is given by

E G1 G2 G3

E E G1 G2 G3

G1 G1 E G3 G2

G2 G2 G3 E G1

G3 G3 G2 G1 E

ð4:13Þ

The latter is identical to the multiplication table of Dih2,
i.e., the dihedral group of order 4 (which is isomorphic to
the Klein four-group). We therefore have10

Gð2Þ ≅ fE;G1; G2; G3g ≅ Dih2: ð4:14Þ

(a) (b)

FIG. 7. (a) Web diagram obtained from Fig. 5 after cutting along the line labeled v2 and regluing along h1. (b) Alternative
representation of the same diagram.

(a) (b)

FIG. 8. (a) Web diagram obtained from Fig. 7(b) by cutting the curve labeled v1 and regluing along m2. (b) Alternative representation
of the same diagram.

10For further reference, we remark that Gð2Þ can also be
presented as the group freely generated by G1;2, i.e., Gð2Þ ≅
hfG1; G2gi, where G2

1 ¼ 14×4 ¼ G2
2 and ðG1 ·G2Þ2 ¼ 14×4.
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An overview of G1;2;3 and their relations to different
representations of the web diagram in Fig. 5 is given in
Fig. 9 (which corresponds to the cycle graph of Dih2). We
remark that all other representations of the web [including
webs related by a transformation F (Appendix A)] only
give rise to coordinate transformations that differ from
fE;G1; G2; G3g by the action of

R ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1
CCCA; ð4:15Þ

which exchanges â1 ⟷ â2 and commutes with
G1;2;3. Since R generates the group S2, we can define
G̃ð2Þ ¼ Gð2Þ × S2 as a nontrivial symmetry group
of F 2;1.

B. Invariance of the nonperturbative free energy

It was shown in Ref. [25] that the web diagrams in
Figs. 5, 6(b), 7(b), and 8(b) give rise to the same partition
function, and the linear transformations G1;2;3 in Eqs. (4.6),
(4.9), and (4.12) correspond to symmetries of the free
energy F 2;1ðâ1;2; S; R; ϵ1; ϵ2Þ, as defined in Eq. (2.4). In
this section we provide evidence for this symmetry by
considering the expansion

FIG. 9. Representations of web diagrams related to X2;1. The transformations G1;2;3 act on the basis of independent Kähler parameters
ðâ1; â2; S; RÞ. The organization of web diagrams and transformations is reminiscent of the cycle graph of Dih2.
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F 2;1ðâ1; â2; S; R; ϵ1; ϵ2Þ

¼
X∞
n¼0

X∞
i1;i2¼0

X
k∈Z

fi1;i2;k;nðϵ1; ϵ2ÞQ̂i1
1 Q̂

i2
2 Q

k
SQ

n
R; ð4:16Þ

with Q̂i ¼ e−âi (for i ¼ 1, 2),QS ¼ e−S, andQR ¼ e−R. As
explained in Sec. II B, we have

fi1;i2;k;nðϵ1; ϵ2Þ ¼ fi0
1
;i0
2
;k0;n0 ðϵ1; ϵ2Þ

for ði01; i02; k0; n0ÞT ¼ GT
l · ði1; i2; k; nÞT; ∀ l ¼ 1; 2; 3:

ð4:17Þ

Below we tabulate the coefficients fi1;i2;k;n with i1 þ i2 ≤ 3

for n ¼ 1 and i1 þ i2 ≤ 2 for n ¼ 2 that are related by
G1;2;3: Tables III–V show the relations for G1, G2, and G3,
respectively.

C. Modularity at a particular point of the moduli space

For the case N ¼ 1, we showed that the combination of
Gð1Þ ≅ Dih3 with the modular group acting as in Eq. (3.13)
generates the group Spð4;ZÞ. The case N ¼ 2 is more
complicated. However, in the following we shall show that
in a particular region of the moduli space Gð2Þ ≅ Dih2 in

Eq. (4.14) can be understood as a subgroup of Spð4;ZÞ.
This region is characterized by imposing âð0Þ1 ¼ âð0Þ2 ¼ â,11

which implies h1 ¼ h2 ¼ h [while the consistency con-
ditions (4.1) already impose v1¼v2¼v and m1¼m2¼m].
This region is also a fixed point of S2 generated by R in
Eq. (4.15). The remaining independent parameters can be
organized in the period matrix

Ω ¼
�
τ v

v ρ

�
; with

τ ¼ mþ v;

ρ ¼ hþm:
ð4:18Þ

Furthermore, the symmetry transformations G1 in Eq. (4.6)
and G2 in Eq. (4.9) can be reduced to act on the subspace
ðâ; S; RÞ,

GðredÞ
1 ¼

0
B@

1 −2 1

0 −1 1

0 0 1

1
CA; and GðredÞ

2 ¼

0
B@

1 0 0

2 −1 0

4 −4 1

1
CA;

ð4:19Þ

or on the space ðτ; ρ; vÞ,

G̃ðredÞ
1 ¼ D−1

2 ·GðredÞ
1 ·D2 ¼

0
B@

1 0 0

1 1 −2
1 0 −1

1
CA;

with D2 ¼

0
B@

0 1 0

0 2 −1
1 4 −4

1
CA;

G̃ðredÞ
2 ¼ D−1

2 ·GðredÞ
2 ·D2 ¼

0
B@

1 4 −4
0 1 0

0 2 −1

1
CA:

Rewriting the latter as elements of Spð4;ZÞ that act as in
Eq. (B3) on the period matrix Ω in Eq. (4.18), they take the
form

TABLE III. Action of G1: The indices are related by
ði01; i02; k0; n0ÞT ¼ GT

1 · ði1; i2; k; nÞT .

ði1; i2; k; nÞ ði01; i02; k0; n0Þ fi1;i2;k;nðϵ1;2Þ ¼ fi0
1
;i0
2
;k0;n0 ðϵ1;2Þ

(0,1,0,1) ð0; 1;−2; 2Þ ðqþtÞðqð1þtðqþtþ2ÞÞþtÞ
ðq−1Þqðt−1Þt

ð0; 2;−1; 1Þ ð0; 2;−3; 2Þ − ðqþ1Þðtþ1ÞðqþtÞðq2þt2Þ
ðq−1Þq3=2ðt−1Þt3=2

(1,0,0,1) ð1; 0;−2; 2Þ ðqþtÞðqðtðqþtþ2Þþ1ÞþtÞ
ðq−1Þqðt−1Þt

ð1; 1;−1; 1Þ ð1; 1;−3; 2Þ − 2ðq2ðtðtþ3Þþ1Þþqðtð3tþ7Þþ3Þþtðtþ3Þþ1Þ
ðq−1Þ ffiffi

q
p ðt−1Þ ffiffi

t
p

ð2; 0;−1; 1Þ ð2; 0;−3; 2Þ − ðqþ1Þðtþ1ÞðqþtÞðq2þt2Þ
ðq−1Þq3=2ðt−1Þt3=2

ð0; 1;−2; 2Þ (0,1,0,1) ðqþtÞðqðtðqþtþ2Þþ1ÞþtÞ
ðq−1Þqðt−1Þt

ð0; 2;−3; 2Þ ð0; 2;−1; 1Þ − ðqþ1Þðtþ1ÞðqþtÞðq2þt2Þ
ðq−1Þq3=2ðt−1Þt3=2

ð1; 0;−2; 2Þ (1,0,0,1) ðqþtÞðqðtðqþtþ2Þþ1ÞþtÞ
ðq−1Þqðt−1Þt

ð1; 1;−3; 2Þ ð1; 1;−1; 1Þ − 2ðq2ðtðtþ3Þþ1Þþqðtð3tþ7Þþ3Þþtðtþ3Þþ1Þ
ðq−1Þ ffiffi

q
p ðt−1Þ ffiffi

t
p

ð2; 0;−3; 2Þ ð2; 0;−1; 1Þ − ðqþ1Þðtþ1ÞðqþtÞðq2þt2Þ
ðq−1Þq3=2ðt−1Þt3=2

TABLE IV. Action of G2: The indices are related by
ði01; i02; k0; n0ÞT ¼ G2 · ði1; i2; k; nÞT .

ði1; i2; k; nÞ ði01; i02; k0; n0Þ fi1;i2;k;nðϵ1;2Þ ¼ fi0
1
;i0
2
;k0;n0 ðϵ1;2Þ

ð0; 0;−1; 1Þ ð1; 1;−3; 1Þ − 2
ffiffi
q

p ffiffi
t

p
ðq−1Þðt−1Þ

ð1; 2;−3; 1Þ ð0; 1;−1; 1Þ − ðqþ1Þðtþ1ÞðqþtÞ
ðq−1Þ ffiffi

q
p ðt−1Þ ffiffi

t
p

ð2; 1;−3; 1Þ ð1; 0;−1; 1Þ − ðqþ1Þðtþ1ÞðqþtÞ
ðq−1Þ ffiffi

q
p ðt−1Þ ffiffi

t
p

TABLE V. Action of G3: The indices are related by
ði01; i02; k0; n0ÞT ¼ G3 · ði1; i2; k; nÞT .

ði1; i2; k; nÞ ði01; i02; k0; n0Þ fi1;i2;k;nðϵ1;2Þ ¼ fi0
1
;i0
2
;k0;n0 ðϵ1;2Þ

ð0; 2;−2; 1Þ ð0; 2;−2; 1Þ ðqþtÞðq2þt2Þ
ðq−1Þqðt−1Þt

ð1; 1;−2; 1Þ ð1; 1;−2; 1Þ 4ðqþ1Þðtþ1Þ
ðq−1Þðt−1Þ

ð1; 2;−3; 1Þ ð0; 1;−1; 1Þ − ðqþ1Þðtþ1ÞðqþtÞ
ðq−1Þ ffiffi

q
p ðt−1Þ ffiffi

t
p

ð2; 0;−2; 1Þ ð2; 0;−2; 1Þ ðqþtÞðq2þt2Þ
ðq−1Þqðt−1Þt

11This is the same region in the moduli space that was used in
Ref. [22] for a nontrivial check that ZN;M ¼ ZN0;M0 for NM ¼
N0M0 and gcdðN;MÞ ¼ gcdðN0;M0Þ.
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G̃ðred;SpÞ
1 ¼ K and G̃ðred;SpÞ

2 ¼ HKL6KH; ð4:20Þ
where K, L, andH are defined in Appendix B. This implies
that the restriction of Gð2Þ to the particular region of the
Kähler moduli space explained above is a subgroup of
Spð4;ZÞ. However, unlike the case N ¼ 1, we cannot

conclude that the group freely generated as hG̃ðred;SpÞ
1 ;

G̃ðred;SpÞ
2 ; Sρ; Tρ; Sτ; Tτi is isomorphic to Spð4;ZÞ.

V. EXAMPLE: ðN;MÞ= ð3;1Þ
A. Dualities and Dih3 group action

Following the previous example of Xðδ¼0Þ
2;1 , we can also

analyze Xðδ¼0Þ
3;1 in a similar fashion. The starting point is the

web diagram shown in Fig. 10, which includes labels for
the areas of all of the curves. The consistency conditions

associated with the three hexagons Sð0Þ1;2;3 take the forms

Sð0Þ1 ∶ h2 þm2 ¼ m1 þ h2; v1 þm1 ¼ m2 þ v2;

Sð0Þ2 ∶ h3 þm3 ¼ m2 þ h3; v2 þm2 ¼ m3 þ v3;

Sð0Þ3 ∶ h1 þm1 ¼ m3 þ h1; m1 þ v1 ¼ v3 þm3: ð5:1Þ

A solution of these conditions is provided by the
parameters ðâð0Þ1;2;3; S

ð0Þ; Rð0ÞÞ,

âð0Þ1 ¼ v1þh2; âð0Þ2 ¼ v2þh3; âð0Þ3 ¼ v3þh1;

Sð0Þ ¼ h2þv2þh3þv3þh1;

Rð0Þ−3Sð0Þ ¼m1−v2−v3; ð5:2Þ

such that the areas ðh1;2;3; v1;2;3; m1;2;3Þ can be expressed as
the linear combinations

h1 ¼ Sð0Þ − âð0Þ1 − âð0Þ2 ; h2 ¼ Sð0Þ − âð0Þ2 − âð0Þ3 ;

h3 ¼ Sð0Þ − âð0Þ1 − âð0Þ3 ;

m1 ¼ m2 ¼ m3 ¼ 2ðâð0Þ1 þ âð0Þ2 þ âð0Þ3 Þ þ Rð0Þ − 5Sð0Þ;

v1 ¼ v2 ¼ v3 ¼ âð0Þ1 þ âð0Þ2 þ âð0Þ3 − Sð0Þ: ð5:3Þ

The web diagram of Xðδ¼0Þ
3;1 allows various other repre-

sentations: by mirroring the diagram and performing an
SLð2;ZÞ transformation, the web can be drawn in the form
of Fig. 11(a). Furthermore, cutting the diagram along the
lines labeled v1;2;3 and regluing them along the lines labeled
m1;2;3 gives Fig. 11(b). The latter is again a web diagram
with δ ¼ 0, which can thus be parametrized by

ðâð1Þ1;2;3; S
ð1Þ; Rð1ÞÞ, as indicated in Fig. 11(b),

âð1Þ1 ¼ m3 þ h3; âð1Þ2 ¼ m2 þ h2;

âð1Þ3 ¼ m1 þ h1; Sð1Þ ¼ h3 þm2 þ h2 þm1 þ h1;

Rð1Þ ¼ v3 −m2 −m1; ð5:4Þ

such that the areas can be expressed in the following
manner:

h1 ¼ Sð1Þ − âð1Þ1 − âð1Þ2 ; h2 ¼ Sð1Þ − âð1Þ1 − âð1Þ3 ;

h1 ¼ Sð1Þ − âð1Þ2 − âð1Þ3 ;

v1 ¼ v2 ¼ v3 ¼ Rð1Þ þ 2ðâð1Þ1 þ âð1Þ2 þ âð1Þ3 Þ − 5Sð1Þ;

m1 ¼ m2 ¼ m3 ¼ âð1Þ1 þ âð1Þ2 þ âð1Þ3 − Sð1Þ: ð5:5Þ

Moreover, as explained in Sec. II B, comparing
Eq. (5.5) with Eq. (5.3) gives rise to a symmetry of
the partition function as a linear transformation relating

ðâð1Þ1;2;3; S
ð1Þ; Rð1ÞÞ to ðâð0Þ1;2;3; S

ð0Þ; Rð0ÞÞ,
0
BBBBBBBB@

âð0Þ1

âð0Þ2

âð0Þ3

Sð0Þ

Rð0Þ

1
CCCCCCCCA

¼G1 ·

0
BBBBBBBB@

âð1Þ1

âð1Þ2

âð1Þ3

Sð1Þ

Rð1Þ

1
CCCCCCCCA
; whereG1¼

0
BBBBBBBB@

2 1 1 −4 1

1 2 1 −4 1

1 1 2 −4 1

2 2 2 −7 2

3 3 3 −12 4

1
CCCCCCCCA

with
detG1¼ 1;

G1 ·G1¼15×5:
ð5:6Þ

In order to obtain another symmetry generator we first
perform a transformation F as explained in Appendix A.

The corresponding geometry is of the type Xðδ¼1Þ
3;1 and a

parametrization of the various curves through an indepen-
dent set of Kähler parameters is shown in Fig. 12. The
duality map of F is explicitly given by

FIG. 10. Web diagram of X3;1 with a parametrization of the
areas of all curves. The blue parameters represent an independent
set of Kähler parameters, as explained in Eq. (5.2).
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v01 ¼ v1 þ h1 þ h2; v02 ¼ v2 þ h2 þ h3;

v03 ¼ v3 þ h1 þ h3; m0
1 ¼ m1 þ h1 þ h2;

m0
2 ¼ m2 þ h2 þ h3; m0

3 ¼ m3 þ h1 þ h3: ð5:7Þ

As was shown in Ref. [25] for generic XðδÞ
N;1, the

independent parameters ðâð0Þ1;2;3; S
ð0Þ; Rð0ÞÞ are invariants

of F in the sense that the parameters appearing in
Fig. 12 are the same as the ones defined in Eq. (5.2).12

While the transformation F itself therefore does not
generate a new nontrivial symmetry transformation,
one can consider different representations of Fig. 12.
Indeed, by mirroring the latter and performing an
SLð2;ZÞ transformation, one obtains Fig. 13(a).
Cutting the latter along the lines labeled −h1;2;3 and
regluing them along the lines labeled m1;2;3 yields the
representation in Fig. 13(b). The set of independent

parameters ðâð2Þ1;2;3; S
ð2Þ; Rð2ÞÞ,

âð2Þ1 ¼ v02 þm0
3; âð2Þ2 ¼ v01 þm0

2; âð2Þ3 ¼ v03 þm0
1;

Sð2Þ ¼ v02 þm0
1 þ v03; Rð2Þ − 2Sð2Þ ¼ −h3 −m0

1;

ð5:8Þ

gives rise to a new parametrization of all of the curves
of the original diagram in Fig. 13,

h1 ¼ −âð2Þ1 − âð2Þ2 − Rð2Þ þ 3Sð2Þ;

h2 ¼ −âð2Þ1 − âð2Þ3 − Rð2Þ þ 3Sð2Þ;

h3 ¼ −âð2Þ2 − âð2Þ3 − Rð2Þ þ 3Sð2Þ;

v1 ¼ v2 ¼ v3 ¼ âð2Þ1 þ âð2Þ2 þ âð2Þ3 þ 2Rð2Þ − 5Sð2Þ;

m1 ¼ m2 ¼ m3 ¼ 2ðâð2Þ1 þ âð2Þ2 þ âð2Þ3 Þ þ 2Rð2Þ − 7Sð2Þ:

ð5:9Þ

Comparing Eq. (5.12) with Eq. (5.3) gives rise to a
symmetry of the partition function as a linear trans-

formation relating ðâð2Þ1;2;3; S
ð2Þ; Rð2ÞÞ to ðâð0Þ1;2;3; S

ð0Þ; Rð0ÞÞ,

FIG. 12. Web diagram after a transformation F of Fig. 10. The
blue parameters are the same as defined in Eq. (5.2).

(a) (b)

FIG. 11. (a) Alternative representation of the web diagram in Fig. 10. (b) The web diagram obtained by cutting along the lines labeled
v1;2;3 and regluing them along the curves labeled m1;2;3.

12The only δ dependence (and thus dependence on F ) appears
in the coefficient of Sð0Þ in the defining equation of Rð0Þ (see the
generic parametrization of XðδÞ

N;1 in Fig. 1).
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0
BBBBBBBB@

âð0Þ1

âð0Þ2

âð0Þ3

Sð0Þ

Rð0Þ

1
CCCCCCCCA

¼G2 ·

0
BBBBBBBB@

âð2Þ1

âð2Þ2

âð2Þ3

Sð2Þ

Rð2Þ

1
CCCCCCCCA
; whereG2¼

0
BBBBBBBB@

1 0 0 −2 1

0 1 0 −2 1

0 0 1 −2 1

0 0 0 −1 1

0 0 0 0 1

1
CCCCCCCCA

with
detG2¼1;

G2 ·G2¼15×5:
ð5:10Þ

One can find another symmetry transformation by
cutting the diagram in Fig. 12 along the line labeled
−h1 and regluing it along the line labeled v03. After
mirroring the diagram, it can also be presented in the
form of Fig. 14, which corresponds to a web diagram

of the form Xðδ¼1Þ
3;1 . The latter can thus be parametrized by

ðâð3Þ1;2;3; S
ð3Þ; Rð3ÞÞ, as shown in Fig. 8:

âð3Þ1 ¼ v03 − h1; âð3Þ2 ¼ v02 − h3;

âð3Þ3 ¼ v01 − h2; Sð2Þ ¼ v02 − h2 − h3;

Rð2Þ − 2Sð2Þ ¼ m0
2 − v02: ð5:11Þ

Indeed, the areas ðh1;2;3; v1;2;3; m1;2;3Þ can be expressed in

terms of ðâð3Þ1;2;3; S
ð3Þ; Rð3ÞÞ,

h1 ¼ âð3Þ3 − Sð3Þ; h2 ¼ âð3Þ2 − Sð3Þ;

h3 ¼ âð3Þ1 − Sð3Þ; v1 ¼ v2 ¼ v3 ¼ Sð3Þ;

m1 ¼ m2 ¼ m3 ¼ Rð3Þ − Sð3Þ: ð5:12Þ

Since the partition functions computed from Figs. 14 and
10 are the same [25], comparing Eq. (5.12) to Eq. (5.3)
gives rise to a linear transformation that is a symmetry
of Z3;1.
Explicitly, one finds

0
BBBBBBBB@

âð0Þ1

âð0Þ2

âð0Þ3

Sð0Þ

Rð0Þ

1
CCCCCCCCA

¼ G3 ·

0
BBBBBBBB@

âð3Þ1

âð3Þ2

âð3Þ3

Sð3Þ

Rð3Þ

1
CCCCCCCCA
; ð5:13Þ

(a) (b)

FIG. 13. (a) Alternative representation of the web diagram in Fig. 12. (b) The web diagram obtained by cutting the lines labeled −h1;2;3
and regluing along the lines m1;2;3.

FIG. 14. Representation of the web diagram obtained by cutting
Fig. 12 along the line −h1 and gluing along the line v03.
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where the 5 × 5 matrix G3 is given by

G3 ¼

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 1 1 −1 0

3 3 3 −6 1

1
CCCCCCA

with
detG3 ¼ 1;

G3 · G3 ¼ 15×5:

ð5:14Þ

From Fig. 12 one can extract yet another symmetry
generator. Indeed, by cutting the diagram along the
curves v01;2;3 and regluing it along the lines m0

1;2;3 one
obtains Fig. 15(a). Furthermore, by cutting along
the line labeled −h1 and regluing along the line m0

3

one obtains Fig. 15(b) after performing an SLð2;ZÞ
transformation.
An independent set of parameters is given by

âð4Þ1 ¼ m0
2 − h3; âð4Þ2 ¼ m0

3 − h1;

âð4Þ3 ¼ m0
1 − h2; Sð4Þ ¼ m0

2 − h2 − h3;

Rð4Þ − 2Sð2Þ ¼ v02 −m0
2; ð5:15Þ

which allows to express ðh1;2;3; v1;2;3; m1;2;3Þ in the follow-
ing fashion:

h1 ¼ âð4Þ3 − Sð4Þ; h2 ¼ âð4Þ1 − Sð4Þ;

h3 ¼ âð4Þ2 − Sð4Þ; v1 ¼ v2 ¼ v3 ¼ Rð4Þ − Sð4Þ;

m1 ¼ m2 ¼ m3 ¼ Sð4Þ: ð5:16Þ

Comparing Eq. (5.16) to Eq. (5.3) gives rise to the
following linear transformation:

0
BBBBBBBB@

âð0Þ1

âð0Þ2

âð0Þ3

Sð0Þ

Rð0Þ

1
CCCCCCCCA

¼G4 ·

0
BBBBBBBB@

âð4Þ1

âð4Þ2

âð4Þ3

Sð4Þ

Rð4Þ

1
CCCCCCCCA
; whereG4¼

0
BBBBBBBB@

1 0 0 −2 1

0 1 0 −2 1

0 0 1 −2 1

1 1 1 −5 2

3 3 3 −12 4

1
CCCCCCCCA

with
detG4¼ 1;

G4 ·G4 ·G4¼15×5:
ð5:17Þ

The matrix G4 is of order 3, which means that G5 ¼
G4 ·G4 is a new symmetry element. It can also be
associated to a particular representation of the web diagram
of X3;1. To see this, we first perform a transformation F on
the web diagram in Fig. 12 to obtain Fig. 16.
Since F leaves the partition function invariant, the

parameters ðâð0Þ1;2;3; S
ð0Þ; Rð0ÞÞ are the same as those intro-

duced in Eq. (5.2). Furthermore, we have introduced the
areas

(a) (b)

FIG. 15. (a) Web diagram obtained by cutting the lines labeled v01;2;3 in Fig. 12 and regluing along the lines m0
1;2;3. (b) Alternative

representation of the same web diagram after cutting along the line −h1 and regluing along the line m0
3.
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v001 ¼ −h1 þ v01 þ v03; v002 ¼ −h2 þ v01 þ v02;

v003 ¼ −h3 þ v02 þ
0
3
; m00

1 ¼ m0
1 þ v02 þ v03;

m00
2 ¼ m0

2 þ v01 þ v03; m00
3 ¼ m0

3 þ v01 þ v02; ð5:18Þ

where we have used the definitions (5.7). Next, we cut the
diagram in Fig. 16 along the lines labeled v001;2;3 and reglue it
along the lines labeled m00

1;2;3 to obtain Fig. 17(a). Cutting
the diagram again along the line −v03, it can also be
presented in the form of Fig. 17(b), which is a diagram

with shift δ ¼ 0. It can be parametrized by

ðâð5Þ1;2;3; S
ð5Þ; Rð5ÞÞ,

h1 ¼ 3Sð5Þ − âð5Þ1 − âð5Þ2 −Rð5Þ;

h2 ¼ 3Sð5Þ − âð5Þ2 − âð5Þ3 −Rð5Þ;

h3 ¼ 3Sð5Þ − âð5Þ1 − âð5Þ3 −Rð5Þ;

v1 ¼ v2 ¼ v3 ¼ 2ðâð5Þ1 þ âð5Þ2 þ âð5Þ3 Þ− 7Sð5Þ þ 2Rð5Þ;

m1 ¼m2 ¼m3 ¼ âð5Þ1 þ âð5Þ2 þ âð5Þ3 − 5Sð5Þ þ 2Rð5Þ: ð5:19Þ

Comparing Eq. (5.19) to Eq. (5.3) indeed gives rise to the
following symmetry transformation:

0
BBBBBBBB@

âð0Þ1

âð0Þ2

âð0Þ3

Sð0Þ

Rð0Þ

1
CCCCCCCCA

¼G5 ·

0
BBBBBBBB@

âð5Þ1

âð5Þ2

âð5Þ3

Sð5Þ

Rð5Þ

1
CCCCCCCCA
; whereG5¼

0
BBBBBBBB@

2 1 1 −4 1

1 2 1 −4 1

1 1 2 −4 1

2 2 2 −5 1

3 3 3 −6 1

1
CCCCCCCCA

with
detG5¼ 1;

G5 ·G5 ·G5¼15×5:
ð5:20Þ

Other representations of the web diagram of X3;1 do not
give rise to symmetries other than G1;2;3;4;5, apart from a
permutation of the parameters â1;2;3. These latter

FIG. 16. Web diagram after a transformation F of Fig. 12. The
blue parameters are the same as defined in Eq. (5.2).

(a) (b)

FIG. 17. (a) The web diagram in Fig. 16 after cutting the lines v″1;2;3 and regluing alongm
″
1;2;3. (b) The web diagram after cutting along

the line −v03 and gluing along m″
2.
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symmetries form the group S3, which, from the point of
view of the gauge theory engineered by X3;1, corresponds to
the Weyl group of the gauge group Uð3Þ. Factoring out this
S3 (the 5 × 5 identity matrix E ¼ 15×5), the linear trans-
formations G1;2;3;4;5 form a finite group of order 6, which
commutewith S3 and whose multiplication table is given by

E G1 G2 G3 G4 G5

E E G1 G2 G3 G4 G5

G1 G1 E G5 G4 G3 G2

G2 G2 G4 E G5 G1 G3

G3 G3 G5 G4 E G2 G1

G4 G4 G2 G3 G1 G5 E

G5 G5 G3 G1 G2 E G4

ð5:21Þ

This table is the same as that of the dihedral group Dih3,
such that we have

Gð3Þ ≅ fE;G1; G2; G3; G4; G5g ≅ Dih3: ð5:22Þ
An overview of the group elements G1;2;3;4;5 and their
relations to different representations of the web diagram in
Fig. 10 are shown in Fig. 18.
For later use, we remark that the dihedral group (5.22)

can also be represented as the group that is freely generated
by G2 and G3,

Gð3Þ≅ hfG2;G3gi; with
G2 ·G2¼15×5¼G3 ·G3;

ðG2 ·G3Þ3¼15×5:
ð5:23Þ

B. Invariance of the nonperturbative free energy

As in the previous example, following the result of
Ref. [25], the linear transformations G1;2;3;4;5 in Eqs. (5.6),
(5.10), (5.14), (5.17), and (5.20) correspond to symmetries
of the free energy F 3;1ðâ1;2;3; S; R; ϵ1; ϵ2Þ, as defined in
Eq. (2.4). In this section we provide evidence for this
symmetry; however, for simplicity we limit ourselves to
checking the leading limit in ϵ1;2 of the free energy. To this
end, we introduce the following expansion:

lim
ϵ1;2→0

ϵ1ϵ2F 3;1ðâ1;2;3; S; R; ϵ1; ϵ2Þ

¼
X∞
n¼0

X∞
i1;i2;i3¼0

X
k∈Z

fNSi1;i2;i3;k;nQ̂
i1
1 Q̂

i2
2 Q̂

i3
3 Q

k
SQ

n
R; ð5:24Þ

where fNSi1;i2;i3;k;n ∈ Z and Q̂i ¼ e−âi (for i ¼ 1, 2, 3),
QS ¼ e−S, and QR ¼ e−R. As explained in Sec. II B, the
fact that the (shifted) web diagrams in Fig. 9 all give rise to
the same partition functions implies

fNSi1;i2;i3;k;n¼fNSi0
1
;i0
2
;i0
3
;k0;n0

for ði01;i02;i03;k0;n0ÞT ¼GT
l ·ði1;i2;i3;k;nÞT ∀ l¼1;2;3;4;5:

ð5:25Þ

In Tables VI–VIII we tabulate the coefficients fNSi1;i2;i3;k;n
with i1 þ i2 þ i3 ≤ 7 for n ¼ 1 and n ¼ 2 that are related
by G1;2;3;4;5.

13

C. Modularity at a particular point
of the moduli space

Similarly to the case N ¼ 2 above, we can analyze how
the group Gð3Þ is related to Spð4;ZÞ in the particular
region of the moduli space that is characterized by

âð0Þ1 ¼ âð0Þ2 ¼ âð0Þ3 ¼ â, which implies h1 ¼ h2 ¼ h3 ¼ h
[while the consistency conditions (4.1) already impose
v1 ¼ v2 ¼ v3 ¼ v and m1 ¼ m2 ¼ m3 ¼ m]. As in the
previous section, we can introduce the period matrix

Ω ¼
�
τ v

v ρ

�
; with

τ ¼ mþ v;

ρ ¼ hþm:
ð5:26Þ

Using the parametrization (5.23) of Gð3Þ, it is sufficient to
analyze the relation of the generators G2 and G3 to
Spð4;ZÞ. The restriction of these generators to the sub-
space ðâ; S; RÞ can be written in the form

GðredÞ
2 ¼

0
B@

1 −2 1

0 −1 1

0 0 1

1
CA; and GðredÞ

3 ¼

0
B@

1 0 0

3 −1 0

9 −6 1

1
CA:

ð5:27Þ

Furthermore, by rewriting them to act as elements of
Spð4;ZÞ in the form of Eq. (B3) on the period matrix
Ω in Eq. (5.26), they take the form

G̃ðred;SpÞ
2 ¼ HKL6HKHL6KH; and

G̃ðred;SpÞ
3 ¼ HKL6KL6KH; ð5:28Þ

where K, L, and H are defined in Appendix B. As in
the case of N ¼ 2, this implies that the restriction of
Gð3Þ to the particular region of the Kähler moduli space
ðâ; S; RÞ is a subgroup of Spð4;ZÞ. However, unlike
the caseN ¼ 1, we cannot conclude that the freely generated

group hG̃ðred;SpÞ
2 ; G̃ðred;SpÞ

3 ; Sρ; Tρ; Sτ; Tτi is isomorphic to
Spð4;ZÞ.

VI. EXAMPLE: ðN;MÞ= ð4;1Þ
A. Dualities and Dih∞ group action

Using the previous examples, we next consider Xðδ¼0Þ
4;1 ,

whose web diagram is shown in Fig. 19. While the method
we employ to study it is the same as in the previous cases,

13We do not display symmetries between coefficients that also
involve purely S3 transformations.
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we shall encounter a novel twist. The consistency con-
ditions stemming from the web diagram are

Sð0Þ1 ∶ h2 þm2 ¼ m1 þ h2; v1 þm1 ¼ m2 þ v2;

Sð0Þ2 ∶ h3 þm3 ¼ m2 þ h3; v2 þm2 ¼ m3 þ v3;

Sð0Þ3 ∶ h4 þm4 ¼ m3 þ h4; v3 þm3 ¼ m4 þ v4;

Sð0Þ4 ∶ h1 þm1 ¼ m4 þ h1; m1 þ v1 ¼ m4 þ v4; ð6:1Þ

while a solution is provided by the parameters

ðâð0Þ1;2;3;4; S
ð0Þ; Rð0ÞÞ,

âð0Þ1 ¼ v1 þ h2; âð0Þ2 ¼ v2 þ h3;

âð0Þ3 ¼ v3 þ h4; âð0Þ4 ¼ v4 þ h1;

Sð0Þ ¼ h2 þ v2 þ h3 þ v3 þ h4 þ v4 þ h1;

Rð0Þ − 4Sð0Þ ¼ m1 − v2 − v3 − v4: ð6:2Þ

The dihedral groups found in the previous examples were
generated by two transformations. The latter can in fact be
obtained in a simple fashion by considering two diagrams
that are obtained from Fig. 19 through a rearrangement and
a flop transformation, respectively.

FIG. 18. Representations of web diagrams related to X3;1. The transformations G1;2;3;4;5 act on the basis of independent Kähler

parameters ðâð0Þ1 ; âð0Þ2 ; âð0Þ3 ; Sð0Þ; Rð0ÞÞ. The organization of web diagrams and transformations is reminiscent of the cycle graph of Dih3.
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1. Rearrangement

A simple rearrangement of Fig. 19 is shown in Fig. 20(a).
The parametrization in terms of ðâð1Þ1;2;3;4; S

ð1Þ; Rð1ÞÞ as
indicated in Fig. 20(b) is distinct to the one in Fig. 19

by ðâð0Þ1;2;3;4; S
ð0Þ; Rð0ÞÞ. Indeed, the two bases are related

through a linear transformation given by

0
BBBBBBBBB@

âð0Þ1

âð0Þ2

âð0Þ3

âð0Þ4

Sð0Þ

Rð0Þ

1
CCCCCCCCCA

¼ G1 ·

0
BBBBBBBBB@

âð1Þ1

âð1Þ2

âð1Þ3

âð1Þ4

Sð1Þ

Rð1Þ

1
CCCCCCCCCA
;

where G1 ¼

0
BBBBBBBBB@

3 2 2 2 −6 1

2 3 2 2 −6 1

2 2 3 2 −6 1

2 2 2 3 −6 1

6 6 6 6 −17 3

16 16 16 16 −48 9

1
CCCCCCCCCA
: ð6:3Þ

The matrix G1 satisfies detG1 ¼ −1 and G2
1 ¼ 16×6.

2. Transformation F

Another symmetry transformation can be obtained
after performing a transformation F on Fig. 19, as shown
in Fig. 21.

TABLE VI. Action of G1 (left) and G2 (right): The indices are
related by ði01; i02; i03; k0; n0ÞT ¼ GT

1 · ði1; i2; i3; k; nÞT and
ði001; i002; i003; k00; n0ÞT ¼ GT

2 · ði1; i2; i3; k; nÞT .

ði1; i2; i3; k; nÞ ði01; i02; i03; k0; n0Þ fNSi1;i2;i3;k;n
ð0; 0; 0;−1; 1Þ ð1; 1; 1;−5; 2Þ −3
ð0; 0; 2;−2; 1Þ ð1; 1; 3;−6; 2Þ 4
ð0; 1; 1;−2; 1Þ ð1; 2; 2;−6; 2Þ 8
ð0; 1; 3;−3; 1Þ ð1; 2; 4;−7; 2Þ −5
ð0; 2; 2;−3; 1Þ ð1; 3; 3;−7; 2Þ −4
ð1; 1; 2;−3; 1Þ ð2; 2; 3;−7; 2Þ −25

ði1; i2; i3; k; nÞ ði001; i002; i003; k00; n00Þ fNSi1;i2;i3;k;n
(0,0,1,0,1) ð0; 0; 1;−2; 2Þ 12
ð0; 0; 2;−1; 1Þ ð0; 0; 2;−3; 2Þ −16
ð0; 0; 3;−2; 1Þ ð0; 0; 3;−4; 2Þ 6
ð0; 1; 1;−1; 1Þ ð0; 1; 1;−3; 2Þ −23
ð0; 1; 2;−2; 1Þ ð0; 1; 2;−4; 2Þ 18
ð0; 1; 3;−3; 1Þ ð0; 1; 3;−5; 2Þ −5
ð0; 2; 2;−3; 1Þ ð0; 2; 2;−5; 2Þ −4
ð1; 1; 1;−2; 1Þ ð1; 1; 1;−4; 2Þ 42
ð1; 1; 2;−3; 1Þ ð1; 1; 2;−5; 2Þ −25
ð1; 1; 3;−4; 1Þ ð1; 1; 3;−6; 2Þ 4
ð2; 2; 2;−5; 1Þ ð2; 2; 2;−7; 2Þ −3

TABLE VII. Action of G3: The indices are related by
ði01; i02; i03; k0; n0ÞT ¼ GT

3 · ði1; i2; i3; k; nÞT .

ði1; i2; i3; k; nÞ ði01; i02; i03; k0; n0Þ fNSi1;i2;i3;k;n
ð0; 0; 0;−1; 1Þ ð2; 2; 2;−5; 1Þ −3
ð0; 0; 1;−2; 1Þ ð1; 1; 2;−4; 1Þ 2
ð0; 0; 1;−1; 1Þ ð2; 2; 3;−5; 1Þ −8
ð0; 0; 2;−2; 1Þ ð1; 1; 3;−4; 1Þ 4
ð0; 0; 3;−2; 1Þ ð1; 1; 4;−4; 1Þ 6
ð0; 0; 4;−2; 1Þ ð1; 1; 5;−4; 1Þ 8
ð0; 1; 2;−2; 1Þ ð1; 2; 3;−4; 1Þ 18
ð0; 1; 3;−2; 1Þ ð1; 2; 4;−4; 1Þ 30
ð0; 2; 2;−2; 1Þ ð1; 3; 3;−4; 1Þ 28
ð1; 1; 1;−2; 1Þ ð2; 2; 2;−4; 1Þ 42
ð1; 1; 2;−2; 1Þ ð2; 2; 3;−4; 1Þ 112
ð1; 1; 6;−4; 1Þ ð0; 0; 5;−2; 1Þ 10
ð1; 1; 7;−4; 1Þ ð0; 0; 6;−2; 1Þ 12
ð1; 2; 6;−4; 1Þ ð0; 1; 5;−2; 1Þ 54
ð1; 3; 4;−4; 1Þ ð0; 2; 3;−2; 1Þ 48

ði1; i2; i3; k; nÞ ði01; i02; i03; k0; n0Þ fNSi1;i2;i3;k;n

ð1; 3; 5;−4; 1Þ ð0; 2; 4;−2; 1Þ 72
ð1; 4; 4;−4; 1Þ ð0; 3; 3;−2; 1Þ 60
ð2; 2; 4;−5; 1Þ ð0; 0; 2;−1; 1Þ −16
ð2; 2; 4;−4; 1Þ ð1; 1; 3;−2; 1Þ 208
ð2; 2; 5;−5; 1Þ ð0; 0; 3;−1; 1Þ −24
ð2; 2; 5;−4; 1Þ ð1; 1; 4;−2; 1Þ 312
ð2; 3; 3;−5; 1Þ ð0; 1; 1;−1; 1Þ −23
ð2; 3; 3;−4; 1Þ ð1; 2; 2;−2; 1Þ 286
ð2; 3; 4;−5; 1Þ ð0; 1; 2;−1; 1Þ −45
ð2; 3; 4;−4; 1Þ ð1; 2; 3;−2; 1Þ 540
ð3; 3; 3;−4; 1Þ ð2; 2; 2;−2; 1Þ 948
ð0; 1; 3;−5; 2Þ ð1; 2; 4;−7; 2Þ −5
ð0; 2; 2;−5; 2Þ ð1; 3; 3;−7; 2Þ −4
ð1; 1; 1;−5; 2Þ ð2; 2; 2;−7; 2Þ −3
ð1; 1; 2;−5; 2Þ ð2; 2; 3;−7; 2Þ −25

TABLE VIII. Action of G4 and G5: The indices are related by
ði01;i02;i03;k0;n0ÞT¼GT

4 ·ði1;i2;i3;k;nÞT and ði001 ; i002 ; i003 ; k00; n00ÞT ¼
GT

4 · GT
4 · ði1; i2; i3; k; nÞT , as well as ði1;i2;i3;k;nÞT ¼GT

5 ·
ði01;i02;i03;k0;n0ÞT and ði1;i2;i3;k;nÞT ¼GT

5 ·G
T
5 ·ði001 ;i002 ;i003 ;k00;n00ÞT .

ði1; i2; i3; k; nÞ ði01; i02; i03; k0; n0Þ ði001; i002; i003; k00; n00Þ fNSi1;i2;i3;k;n

ð0; 0; 2;−2; 1Þ ð1; 1; 3;−6; 2Þ ð1; 1; 3;−4; 1Þ 4
ð0; 1; 1;−2; 1Þ ð1; 2; 2;−6; 2Þ ð1; 2; 2;−4; 1Þ 8
ð0; 1; 3;−3; 1Þ ð0; 1; 3;−5; 2Þ ð1; 2; 4;−7; 2Þ −5
ð0; 2; 2;−3; 1Þ ð0; 2; 2;−5; 2Þ ð1; 3; 3;−7; 2Þ −4
ð1; 1; 2;−3; 1Þ ð1; 1; 2;−5; 2Þ ð2; 2; 3;−7; 2Þ −25
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Here we have introduced the variables

v01 ¼ v1 þ h1 þ h2; m0
1 ¼ m1 þ h1 þ h2;

v02 ¼ v2 þ h2 þ h3; m0
2 ¼ m2 þ h2 þ h3;

v03 ¼ v3 þ h3 þ h4; m0
3 ¼ m3 þ h3 þ h4;

v04 ¼ v4 þ h4 þ h1; m0
4 ¼ m4 þ h4 þ h1: ð6:4Þ

The parameters ðâð0Þ1;2;3;4; S
ð0Þ; Rð0ÞÞ, shown in blue in

Fig. 21, are the same as those appearing in Fig. 19, such
that the flop transformation alone does not lead to a
nontrivial symmetry transformation. However, starting
from the web diagram in Fig. 21, we can present it
in the form of Fig. 22. The parametrization in terms of

the variables ðâð2Þ1;2;3;4; S
ð2Þ; Rð2ÞÞ used in Fig. 22(b) can

be related to ðâð0Þ1;2;3;4; S
ð0Þ; Rð0ÞÞ in Fig. 19 through the

transformation

FIG. 19. Web diagram of X4;1. An independent set of Kähler
parameters is shown in blue.

(a) (b)

FIG. 20. (a) The mirrored web diagram in Fig. 19 after an SLð2;ZÞ transformation. (b) The same diagram after cutting the lines v1;2;3;4
and regluing the lines m1;2;3;4 [and performing an SLð2;ZÞ transformation].

FIG. 21. Web diagram after a transformation F of Fig. 19. The
blue parameters are the same as defined in Eq. (6.2).
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0
BBBBBBBBBB@

âð0Þ1

âð0Þ2

âð0Þ3

âð0Þ4

Sð0Þ

Rð0Þ

1
CCCCCCCCCCA

¼ G2 ·

0
BBBBBBBBBB@

âð2Þ1

âð2Þ2

âð2Þ3

âð2Þ4

Sð2Þ

Rð2Þ

1
CCCCCCCCCCA
; where G2 ¼

0
BBBBBBBBBB@

1 0 0 0 −2 1

0 1 0 0 −2 1

0 0 1 0 −2 1

0 0 0 1 −2 1

1 1 1 1 −7 3

4 4 4 4 −24 9

1
CCCCCCCCCCA
: ð6:5Þ

The matrix G2 has detG2 ¼ 1 but does not have finite order.14 This implies that the matrices G1 and G2 freely generate the
group Dih∞,

Gð4Þ ¼ hfG1; G2 ·G1gi ≅ Dih∞: ð6:7Þ

(a) (b)

FIG. 22. (a) The web diagram in Fig. 21 after cutting the lines m0
1;2;3;4 and regluing along the lines v01;2;3;4. (b) Representation of the

web diagram after cutting along the line −h4 and gluing along the line m0
3.

14Indeed, by complete induction one can show that

Gn
2 ¼ 16×6 þ n

0
BBBBBBBBB@

n − 1 n − 1 n − 1 n − 1 2 − 4n n

n − 1 n − 1 n − 1 n − 1 2 − 4n n

n − 1 n − 1 n − 1 n − 1 2 − 4n n

n − 1 n − 1 n − 1 n − 1 2 − 4n n

2n − 1 2n − 1 2n − 1 2n − 1 −8n 2nþ 1

4n 4n 4n 4n −8ð2nþ 1Þ 4ðnþ 1Þ

1
CCCCCCCCCA
; for n ∈ N: ð6:6Þ

which only resembles the identity matrix for n ¼ 0.
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B. A remark on infinite order

We have seen in the previous section that the symmetry
transformation G2 is of infinite order, which is markedly
different than what we have seen in the previous examples.
While we will present explicit checks that G2 is indeed a
symmetry of the free energy in the next subsection, we first
want to provide an intuitive explanation of what makes the
case ðN; 1Þ ¼ ð4; 1Þ different than all of the preceding ones.
Indeed, we will provide some indication that the extended
moduli space of X4;1 contains many more regions that are
represented by (a priori) very different looking web
diagrams. While this will not prove that G2 is of infinite
order (as we have already done in the previous section by
purely algebraic means), it will indicate the novel aspect of
X4;1 (in comparison to the previous examples).
Returning to Fig. 22(b), the latter is a web diagram of the

form Xðδ¼2Þ
4;1 . Another way of obtaining such a diagram is to

perform two transformations of the form F on Fig. 19, as is
shown in Fig. 23, with the new parameters

h01 ¼ −h1 þ v01 þ v04 ¼ h1 þ h2 þ h4 þ v1 þ v4;

h02 ¼ −h2 þ v01 þ v02 ¼ h1 þ h2 þ h3 þ v1 þ v2;

h03 ¼ −h3 þ v02 þ v03 ¼ h2 þ h3 þ h4 þ v2 þ v3;

h04 ¼ −h4 þ v03 þ v04 ¼ h1 þ h3 þ h4 þ v3 þ v4;

as well as

m00
1 ¼m0

1þ v04þv02 ¼ 2h1þ 2h2þh3þh4þm1þv2þ v4;

m00
2 ¼m0

2þ v01þv03 ¼ h1þ 2h2þ 2h3þh4þm2þv1þ v3;

m00
3 ¼m0

3þ v02þv04 ¼ h1þh2þ 2h3þ 2h4þm3þv2þ v4;

m00
4 ¼m0

4þ v04þv01 ¼ 2h1þh2þh3þ 2h4þm4þv1þ v3:

Notice that even upon imposing the consistency conditions
(6.1), the parametrization of the web diagram in Fig. 23
is different than that of the web diagram in Fig. 22(b).15

Thus, there is a duality transformation that transforms the

web Xð2Þ
4;1⟼Xð2Þ

4;1, however, with a nontrivial duality mapD
acting on the areas of all curves involved. The dualityD can

be repeatedly applied to Xð2Þ
4;1 in Fig. 22(b), thus producing

an infinite number of diagrams of the type Xð2Þ
4;1, each one

with an a priori different parametrization of individual
curves.
Moreover, since the blue parameters ðâð0Þ1;2;3;4; S

ð0Þ; Rð0ÞÞ
in Fig. 23 are the same as in Fig. 19, the duality mapD from
the perspective of the independent Kähler parameters
precisely corresponds to the symmetry transformation
G2. Therefore, the transition from Fig. 23 to Fig. 22(b)
gives a (new) geometric representation of G2 at the level of

web diagrams, which readily allows to also compute
arbitrary powers of G2.
Finally, notice that the above discussion does not

generalize to the cases N ¼ 2; 3 (but can be extended to
N > 4). Indeed, web diagrams with shifts δ ≥ 2 for N ¼ 2,
3 can readily be related (possibly through simple cutting
and regluing operations) to web diagrams with δ ∈ f0; 1g,
which only gave rise to symmetry transformations of finite
order.16 In other words, in the cases N ¼ 2, 3, the
equivalents of Figs. 22 and 23 are of the type δ ≤ 1, which
we have seen provide only transformations of finite order.

C. Invariance of the nonperturbative free energy

As a nontrivial check of the fact that G1 and G2 are
indeed symmetries ofZ4;1, we consider the nonperturbative
free energy associated with the latter. For simplicity, we
restrict ourselves to the leading term in ϵ1;2. To this end, we
define

lim
ϵ1;2→0

ϵ1ϵ2F 4;1ðâ1;2;3;4; S; R; ϵ1; ϵ2Þ

¼
X∞
n;ia¼0

X
k∈Z

fNSi1;i2;i3;i4;k;nQ̂
i1
1 Q̂

i2
2 Q̂

i3
3 Q̂

i4
3 Q

k
SQ

n
R; ð6:8Þ

where fNSi1;i2;i3;i4;k;n ∈ Z and Q̂i ¼ e−âi (for i ¼ 1, 2, 3, 4),

QS ¼ e−S, andQR ¼ e−R. In the same manner as explained
in Sec. II B, the symmetry transformationsG1 andG2 act in
the following manner on the coefficients fNSi1;i2;i3;i4;k;n:

FIG. 23. Web diagram after two transformations F of Fig. 19.
The blue parameters are the same as defined in Eq. (6.2).

15This can be seen by choosing the solution v1 ¼ v2 ¼ v3 ¼
v4 ¼ v and m1 ¼ m2 ¼ m3 ¼ m4 ¼ m.

16Notice, for example, that the only web diagrams in Figs. 9
and 18 that give rise to nontrivial symmetry transformations have
either δ ¼ 0 or δ ¼ 1. Thus, in these cases, there is in fact no
nontrivial equivalent of Fig. 22(b).
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fNSi1;i2;i3;i4;k;n ¼ fNSi0
1
;i0
2
;i0
3
;i0
4
;k0;n0

for ði01; i02; i03; i04; k0; n0ÞT ¼ GT
l · ði1; i2; i3; i4; k; nÞT

∀ l ¼ 1; 2: ð6:9Þ

We can explicitly check the relations (6.9) by computing
the relevant expansions of the free energies. However, since
the matrix G1 in Eq. (6.3) contains very large numbers, the
relations are easier to check for the matrices G1 ·G2 and
G2, with

G1 · G2 ¼

0
BBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 1 1 1 −1 0

4 4 4 4 −8 1

1
CCCCCCCCA
: ð6:10Þ

In Tables IX and X we tabulate examples of the coefficients
fNSi1;i2;i3;i4;k;n with i1 þ i2 þ i3 þ i4 ≤ 6 for n ¼ 1 and n ¼ 2

that are related by G1 ·G2 and G2, respectively.

D. Modularity at a particular point
of the moduli space

Similarly to the cases N ¼ 2, 3, we can analyze how the
group Gð4Þ is related to Spð4;ZÞ in the particular region in
the moduli space characterized by âð0Þ1 ¼ âð0Þ2 ¼ âð0Þ3 ¼
âð0Þ4 ¼ â, which implies h1 ¼ h2 ¼ h3 ¼ h4 ¼ h [while
the consistency conditions (4.1) impose v1 ¼ v2 ¼ v3 ¼
v4 ¼ v and m1 ¼ m2 ¼ m3 ¼ m4 ¼ m]. We can introduce
the period matrix

Ω ¼
�
τ v

v ρ

�
; with

τ ¼ mþ v;

ρ ¼ hþm:
ð6:11Þ

Using the parametrization (6.7) of Gð4Þ, it is sufficient to
analyze the relation of the generators G1 and G0

2 ¼ G2 ·G1

to Spð4;ZÞ. The restriction of these generators to the
subspace ðâ; S; RÞ can be written in the form

GðredÞ
1 ¼

0
B@

1 −2 1

0 −1 1

0 0 1

1
CA; and G0;ðredÞ

2 ¼

0
B@

1 0 0

4 −1 0

16 −8 1

1
CA:

ð6:12Þ

Furthermore, by rewriting them to act as elements of
Spð4;ZÞ in the form of Eq. (B3) on the period matrix
Ω in Eq. (6.11), they take the form

G̃ðred;SpÞ
1 ¼ HKL6KL6HKHL6KL6KH; and

G̃0;ðred;SpÞ
2 ¼ HKL6KL6KL6KH; ð6:13Þ

where K, L, and H are defined in Appendix B. As in
the cases of N ¼ 2; 3, this implies that the restriction of
Gð3Þ to the particular region of the Kähler moduli space
ðâ; S; RÞ is a subgroup of Spð4;ZÞ. However, unlike the
case N ¼ 1, we cannot conclude that the freely generated

group hG̃ðred;SpÞ
1 ; G̃0;ðred;SpÞ

2 ; Sρ; Tρ; Sτ; Tτi is isomorphic to
Spð4;ZÞ.

VII. GENERAL CASE ðN;1Þ
A. Symmetry transformations of generic webs

We can summarize all previous examples by introducing
the following matrices:

G2ðNÞ ¼

0
BBBBBB@

0 0

1N×N
..
. ..

.

0 0

1 � � � 1 −1 0

N � � � N −2N 1

1
CCCCCCA
; ð7:1Þ

as well as

TABLE IX. Action of G1 ·G2: ði01; i02; i03; i04; k0; n0ÞT ¼
ðG1 · G2ÞT · ði1; i2; i3; i4; k; nÞT .

ði1; i2; i3; i4; k; nÞ ði01; i02; i03; i04; k0; n0Þ fNSi1;i2;i3;i4;k;n
ð0; 0; 1; 0;−2; 1Þ ð2; 2; 2; 3;−6; 1Þ 2
ð0; 0; 1; 0;−1; 1Þ ð3; 3; 4; 3;−7; 1Þ −8
ð0; 0; 1; 1;−3; 1Þ ð1; 1; 2; 2;−5; 1Þ −1
ð0; 0; 1; 2;−2; 1Þ ð2; 2; 3; 4;−6; 1Þ 18
ð0; 0; 1; 2;−1; 1Þ ð3; 3; 4; 5;−7; 1Þ −45
ð0; 0; 1; 3;−3; 1Þ ð1; 1; 2; 4;−5; 1Þ −5
ð0; 0; 1; 3;−2; 1Þ ð2; 2; 3; 5;−6; 1Þ 30
ð0; 0; 1; 4;−3; 1Þ ð1; 1; 2; 5;−5; 1Þ −7
ð0; 0; 1; 4;−2; 1Þ ð2; 2; 3; 6;−6; 1Þ 42
ð0; 0; 1; 5;−3; 1Þ ð1; 1; 2; 6;−5; 1Þ −9
ð0; 0; 1; 5;−2; 1Þ ð2; 2; 3; 7;−6; 1Þ 54
ð0; 0; 0; 6;−2; 1Þ ð2; 2; 2; 8;−6; 1Þ 12

TABLE X. Action of G2: ði001; i002; i003; i004; k00; n0ÞT ¼ GT
2 · ði1; i2;

i3; i4; k; nÞT .

ði1; i2; i3; i4; k; nÞ ði01; i02; i03; i04; k0; n0Þ fNSi1;i2;i3;i4;k;n
ð0; 0; 1; 1;−3; 1Þ ð1; 1; 2; 2;−7; 2Þ −1
ð0; 1; 2; 2;−4; 1Þ ð0; 1; 1; 2;−6; 2Þ 2
ð1; 1; 1; 2;−4; 1Þ ð1; 1; 1; 2;−6; 2Þ 4
ð1; 1; 2; 3;−5; 1Þ ð0; 0; 1; 2;−3; 1Þ −3
ð1; 1; 2; 4;−5; 1Þ ð0; 0; 1; 3;−5; 2Þ −5
ð1; 1; 3; 3;−5; 1Þ ð0; 0; 2; 2;−5; 2Þ −4
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G∞ðNÞ ¼

0
BBBBBB@

−2 1

1N×N
..
. ..

.

−2 1

1 � � � 1 −2N þ 1 N − 1

N � � � N −2NðN − 1Þ ðN − 1Þ2

1
CCCCCCA
:

ð7:2Þ

The matrices G2ðNÞ and G∞ðNÞ for the examples previ-
ously studied are given explicitly as

N G2ðNÞ G∞ðNÞ Defined in

1 b G1 Eqs. (3.6) and (3.3)
2 G2 G3 Eqs. (4.6) and (4.12)
3 G3 G3 ·G2 Eqs. (5.10) and (5.14)
4 G1 ·G2 G2 Eqs. (6.3) and (6.5)

where the equation numbers refer to the definitions of the
matrices in the individual cases. The matrices G2 and
G∞ðNÞ furnish two symmetry relations for a web diagram
of the type ðN; 1Þ. To see this, in the following we shall
check explicitly the combinations of G∞ðNÞ · G2ðNÞ and

G∞ðNÞ, which at the level of the web diagrams are
generated by the same transformations we already dis-
cussed in the example of ðN; 1Þ ¼ ð4; 1Þ and which can be
generalized for generic N.

1. Rearrangement:

We first verify that G∞ðNÞ · G2ðNÞ is a symmetry. To this
end, we start from the configuration shown in Fig. 1 for
δ ¼ 0, which [after mirroring and performing an SLð2;ZÞ
transformation] can be presented as in Fig. 24(a). The
latter in turn can alternatively be presented in the form
of Fig. 24(b). The matrix G∞ðNÞ · G2ðNÞ [defined in
Eqs. (7.1) and (7.2), respectively] relates the parameters
in the web diagram in Fig. 1 to those in Fig. 24(b) in the
following way:

ðâ1;…; âN; S; RÞT ¼ G2ðNÞ · G∞ðNÞ · ðâ01;…; â0N; S
0; R0ÞT;
ð7:3Þ

where

G∞ðNÞ · G2ðNÞ ¼

0
BBBBBBBB@

−2N þ 2 1

AN×N
..
. ..

.

−2N þ 2 1

N2 − 3N þ 2 � � � N2 − 3N þ 2 −2N2 þ 4N − 1 N − 1

NðN − 2Þ2 � � � NðN − 2Þ2 −2Nð2 − 3N þ N2Þ ðN − 1Þ2

1
CCCCCCCCA
; ð7:4Þ

(a) (b)

FIG. 24. Alternative representations of the web diagram of Xðδ¼0Þ
N;1 from Fig. 1 for δ ¼ 0.
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with

AN×N ¼ ðN − 2Þ

0
BB@

1 � � � 1

..

. ..
.

1 � � � 1

1
CCAþ 1N×N:

Upon using the solution of the consistency conditions in
Eq. (2.1)

v1 ¼ v2 ¼… ¼ vN ¼ v and m1 ¼ m2 ¼…¼ mN ¼ m;

ð7:5Þ

which from Figs. 1 and 24(b) implies that (for i ¼ 1;…; N)

âi ¼ hiþ1 þ v; â0i ¼ hiþ1 þm;

S ¼
XN
k¼1

hk þ ðN − 1Þv;

S0 ¼ ρ0 −m ¼
XN
k¼1

â0k ¼
XN
k¼1

hk þ ðN − 1Þm;

R − NS ¼ m − ðN − 1Þv;
R0 − NS0 ¼ v − ðN − 1Þm; ð7:6Þ

we have indeed (with ρ0 ¼ P
N
k¼1 â

0
k ¼

P
N
k¼1 hk þ Nm)

âi ¼ â0i þ ðN − 2Þρ0 − ð2N − 2ÞS0 þ R0 ¼ hiþ1 þ v;

S ¼ ðN2 − 3N þ 2Þρ0 − ð2N2 − 4N þ 1ÞS0 þ ðN − 1ÞR0

¼
XN
k¼1

hk þ ðN − 1Þv;

R ¼ NðN − 2Þ2ρ0 − 2Nð2 − 3N þ N2ÞS0 þ ðN − 1Þ2R0

¼ N
XN
k¼1

hk þmþ ðN − 1Þ2v;

which proves Eq. (7.3).

2. Transformation F :

In a similar fashion we can show that G∞ðNÞ is a
symmetry transformation. To this end, we first consider a
transformation of the type F acting on the web diagram in
Fig. 1 for δ ¼ 0 which results in the web diagram shown in

Fig. 25, representing Xðδ¼1Þ
N;1 . The blue parameters in Fig. 25

are the same as in Fig. 1, and we have also introduced

v01 ¼ v1 þ h1 þ h2; m0
1 ¼ m1 þ h1 þ h2;

v02 ¼ v2 þ h2 þ h3; m0
2 ¼ m2 þ h2 þ h3;

..

. ..
.

v0N ¼ vN þ hN þ h1; m0
N ¼ mN þ hN þ h1:

Cutting the diagram in Fig. 25 along the lines v01;…;N−1 and
regluing it along the lines m0

1;…;N , we obtain the web
diagram shown in Fig. 26(a). Furthermore, by cutting the
latter diagram along the line −hN it can also be represented
in the form Fig. 26(b), which corresponds to a staircase
diagram with shift δ ¼ N − 2. The set of independent
Kähler parameters ðâ001;…;N; S

00; R00Þ can be related to
ðâ1;…;N; S; RÞ in the following manner:

ðâ1;…; âN; S; RÞT ¼ G∞ðNÞ · ðâ001;…; â00N; S
00; R00ÞT: ð7:7Þ

To show this, we use Eqs. (7.2) and (7.5) along with

â00i ¼ m0
iþ1 − hiþ2 ¼ mþ hiþ1; S00 ¼ m;

R00 − 2S00 ¼ v −m ð7:8Þ

to compute [with ρ00 ¼ P
N
k¼1ðm0

k − hkÞ ¼ NmþP
N
k¼1 hk]

âi ¼ â00i − 2S00 þ R00 ¼ mþ hiþ1 þ v −m ¼ hiþ1 þ v;

S ¼ ρ00 − ð2N − 1ÞS00 þ ðN − 1ÞR00 ¼
XN
k¼1

hk þ ðN − 1Þv;

R ¼ Nρ00 − 2NðN − 1ÞS00 þ ðN − 1Þ2R00

¼ N
XN
k¼1

hk þmþ ðN − 1Þ2v; ð7:9Þ

FIG. 25. Web diagram of Xð1Þ
N;1.
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which matches Eq. (7.6) and therefore shows that G∞ðNÞ is
a symmetry transformation.

B. Generators of the dihedral group

Having shown that the transformations G∞ðNÞ · G2ðNÞ
and G∞ðNÞ [and thus also G2ðNÞ] are symmetry trans-
formations of the partition function ZN;1, we shall now
discuss the group structure that they generate. The matrix
G2ðNÞ has order 2 [i.e., G2ðNÞ:G2ðNÞ ¼ 1ðNþ2Þ×ðNþ2Þ],
while G∞ðNÞ has the following order:

ordG∞ðNÞ ¼

8>>><
>>>:

3 if N ¼ 1;

2 if N ¼ 2;

3 if N ¼ 3;

∞ if N ≥ 4.

ð7:10Þ

Here, infinite order means ∄m ∈ N such that ðG∞ðNÞÞm ¼
1ðNþ2Þ×ðNþ2Þ. While we have shown all cases N ≤ 4

explicitly in previous sections, for N > 4 it is sufficient
to realize that

v⃗N ¼
�
1;…; 1|fflfflffl{zfflfflffl}
Ntimes

;
N þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðN − 4Þp
2

;

N
2
ðN − 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN − 4Þ

p
Þ
�

T
ð7:11Þ

is an eigenvector of G∞ðNÞ for the eigenvalue17

λN ¼ 1

2
ððN − 2Þ2 − 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN − 4Þ

p
ðN − 2ÞÞ ∈ R:

ð7:12Þ

Since λN > 1 for N ≥ 5 [and G∞ðNÞ is diagonalizable for
N ≥ 5], it follows that G∞ðNÞ is not of finite order in these
cases. Thus, upon introducing the matrix

(a) (b)

FIG. 26. (a) Alternative representations of the web diagram in Fig. 25. (b) Another representation in the form of a shifted web diagram
with δ ¼ N − 2.

17The remaining eigenvalues are þ1 (with degeneracy N) and
λ−1N .
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G0
2ðNÞ ¼ G2ðNÞ · G∞ðNÞ ¼

0
BBBBBB@

−2 1

1N×N
..
. ..

.

−2 1

0 � � � 0 −1 1

0 � � � 0 0 1

1
CCCCCCA
;

ð7:13Þ

which is of order 2 [i.e., G0
2ðNÞ:G0

2ðNÞ ¼ 1Nþ2×Nþ2],
we find that G2ðNÞ and G0

2ðNÞ freely generate a dihedral
group,

GðNÞ¼ hfG2ðNÞ;G0
2ðNÞgi≅

8>>><
>>>:

Dih3 if N¼ 1;

Dih2 if N¼ 2;

Dih3 if N¼ 3;

Dih∞ if N ≥ 4.

ð7:14Þ

For N ≥ 4, Eq. (7.10) shows that ∄n ∈ N with ðG2ðNÞ ·
G0
2ðNÞÞn ¼ 1ðNþ2Þ×ðNþ2Þ [which also implies ∄n ∈ N with

ðG0
2ðNÞ · G2ðNÞÞn ¼ 1ðNþ2Þ×ðNþ2Þ]. Furthermore, since

ðG2ðNÞÞ2 ¼ 1ðNþ2Þ×ðNþ2Þ ¼ ðG0
2ðNÞÞ2, this also implies

∄n ∈ N with G0
2ðNÞ · ðG2ðNÞ · G0

2ðNÞÞn ¼ 1ðNþ2Þ×ðNþ2Þ or
ðG2ðNÞ · G0

2ðNÞÞn · G2ðNÞ ¼ 1ðNþ2Þ×ðNþ2Þ.
18 This means

that there are no nontrivial (braid) relations between
G2ðNÞ and G0

2ðNÞ, which indeed shows that the group
GðNÞ ≅ Dih∞ for N ≥ 4.
Notice that G2ðNÞ is a lower diagonal matrix, while

G0
2ðNÞ is an upper diagonal ðN þ 2Þ × ðN þ 2Þ matrix.

Furthermore, the partition function is invariant under the
action of the group SN , which is generated by matrices of
the form

RðMÞ ¼

0
BBBBBB@

0 0

M ..
. ..

.

0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCCA
; ð7:15Þ

where M is an N × N matrix that acts by permuting the
â1;…;N . One can check that matrices of the form RðMÞ
commute with both G2ðNÞ and G0

2ðNÞ, such that we have
the following symmetry group of the partition func-
tion: G̃ðNÞ ≅ GðNÞ × SN .

C. Modularity at a particular point
of the moduli space

Using the general parametrization of the group GðNÞ in
Eq. (7.14), we once again ask the question of how the latter
is related to Spð4;ZÞ in the particular region in the moduli

space characterized by âð0Þ1;…;N ¼ âð0Þ4 ¼ â, which implies
h1;…;N ¼ h (while the consistency conditions already
impose v1;…;N ¼ v and m1;…;N ¼ m). We can similarly
introduce the period matrix

Ω ¼
�
τ v

v ρ

�
; with

τ ¼ mþ v;

ρ ¼ hþm:
ð7:16Þ

Using the parametrization (7.14) of Gð4Þ, it is sufficient to
analyze the relation of the generators G2ðNÞ and G0

2ðNÞ to
Spð4;ZÞ. The restriction of these generators to the sub-
space ðâ; S; RÞ can be written in the form

GðredÞ
2 ðNÞ ¼

0
B@

1 −2 1

0 −1 1

0 0 1

1
CA; and

G0;ðredÞ
2 ðNÞ ¼

0
B@

1 0 0

N −1 0

N2 −2N 1

1
CA; ð7:17Þ

or in the space ðτ; ρ; vÞ

G̃ðredÞ
2 ðNÞ ¼ D−1

N · GðredÞ
2 ðNÞ ·DN ¼

0
B@

ðN − 1Þ2 ðN − 2Þ2N2 −2NðN2 − 3N þ 2Þ
1 ðN − 1Þ2 2ð1 − NÞ

N − 1 NðN2 − 3N þ 2Þ −2N2 þ 4N − 1

1
CA;

G̃0;ðredÞ
2 ðNÞ ¼ D−1

N · G0;ðredÞ
2 ðNÞ ·DN ¼

0
B@

1 4 −4
0 1 0

0 2 −1

1
CA; with DN ¼

0
B@

0 1 0

0 N −1
1 N2 −2N

1
CA: ð7:18Þ

18For example, the former relation is equivalent to ðG2ðNÞ · G0
2ðNÞÞn ¼ G0

2ðNÞ. Squaring this relation [due to the fact that G0
2ðNÞ is of

order 2] would be equivalent to ðG2ðNÞ · G0
2ðNÞÞ2n ¼ 1ðNþ2Þ×ðNþ2Þ, which does not agree with Eq. (7.10).
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Furthermore, by rewriting these generators to act as
elements of Spð4;ZÞ in the form of Eq. (B3) on the period
matrix Ω in Eq. (7.16), they take the form

G̃ðred;SpÞ
2 ðNÞ¼ðHKL6HÞN−2KðHL6KHÞN−2

¼

0
BBB@
N−1 1−ðN−1Þ2 0 0

1 1−N 0 0

0 0 N−1 1

0 0 1−ðN−1Þ2 1−N

1
CCCA;

G̃0;ðred;SpÞ
2 ðNÞ¼HKðL6KÞN−1H¼

0
BBB@
−1 N 0 0

0 1 0 0

0 0 −1 0

0 0 N 1

1
CCCA;

where K, L, and H are defined in Appendix B. For N ∈ N,
the restriction ofGðNÞ to the particular region of the Kähler
moduli space ðâ; S; RÞ is a subgroup of Spð4;ZÞ. However,
for N > 1, we cannot conclude that the freely generated

group hG̃ðred;SpÞ
2 ðNÞ; G̃0;ðredÞ

2 ðNÞ; Sρ; Tρ; Sτ; Tτi is isomorphic
to Spð4;ZÞ.

VIII. CONCLUSIONS

In this paper, we studied the consequences of the web of
dualities among certain supersymmetric quiver gauge
theories on R5 × S1 which are engineered by a class of
toric Calabi-Yau threefolds XN;M. These dualities were
established in Refs. [22,24–26]; however, rather than
focusing on the different physical theories, here we have
analyzed their consequences from the perspective of the
partition function ZN;M. For the sake of simplicity, our
analysis has been limited to the caseM ¼ 1. We found that
the partition function ZN;1 associated to the geometries
XN;1 is invariant under the group G̃ðNÞ ≅ GðNÞ × SN
which acts on the vector space spanned by a maximal
set of independent Kähler parameters. Here SN has an
intuitive interpretation as the largest gauge group that can
be engineered by the given geometry, which is UðNÞ in this
case. The group GðNÞ was shown to depend on N as
derived in Eq. (7.14) and was found by exploiting the fact
that XN;1 can be related to various other geometries (that are
part of the same extended Kähler moduli space) through
flop and symmetry transformations. These geometries are
characterized by giving rise to the same topological string
partition function (i.e., the same ZN;1), but they are
described by web diagrams whose Kähler parameters are
related through a nontrivial duality map to those of the
initial geometry. By studying a collection of these “self-
duality” maps we showed that they form the group G̃ðNÞ.
A notable feature is the appearance of the infinite

dihedral group for N ≥ 4. By using the matrix representa-
tions of the generating elements, we have explicitly shown

in Sec. VII that for the cases N ≥ 4, the group GðNÞ is
generated by two matrices of order 2, which have no
nontrivial braid relations (implying the existence of a group
element of infinite order). An intuitive understanding of the
appearance of the infinite-order generator can be gained by
looking at the behavior under the series of flop trans-
formations F , reviewed in Appendix A. They can be used
to relate web diagrams that look identical but have a
nontrivial mapping between their Kähler parameters. By
iterating this procedure, it is thus possible to generate an
infinite series of inequivalent web diagrams, thus giving an
intuitive argument for the appearance of an infinite-order
group. For the cases with N ≤ 3 there is no such iterative
procedure for producing nontrivially related geometries,
due to the simpler nature of the diagram.
Furthermore, we showed that GðNÞ combines nontri-

vially with other known symmetry groups of the partition
function. For the case N ¼ 1, we showed explicitly that
Gð1Þ ≅ Dih3 together with the modular group SLð2;ZÞ
freely generate Spð4;ZÞ, which is known to be the auto-
morphism group associated to the mirror curve of X1;1

[10,29]. ForN > 1, we showed that in a particular region of
the Kähler moduli space, GðNÞ corresponds to a subgroup
of Spð4;ZÞ. Similarly, the group G̃ðNÞ mixes nontrivially
with the T duality (as specifically proposed in Ref. [8]) that
relates the IIa and IIb little string theories that are
engineered by XN;1. In both cases, it would be interesting
to extend this analysis and to characterize the full (non-
perturbative) U-duality group of the LSTs. We leave this
point for future work.
From the perspective of the various gauge theories

engineered by XN;1, the symmetry group G̃ðNÞ also has
important consequences: acting in the form of Eq. (2.9), it
identifies the multiplicities of certain single-particle BPS
states in the free energy. This symmetry acts a priori
nonperturbatively, since in particular an elementG ∈ GðNÞ
mixes all Kähler parameters of XN;1 (which from the
perspective of the BPS states of the gauge theory corre-
spond to various fugacities in the free energy) in an
arbitrary fashion. It is also important to remember that,
in general, there are several different gauge theories that are
engineered by XN;1: as argued in Ref. [26], the latter
engineers circular quiver gauge theories with M0 nodes of
type UðN0Þ for any ðN0;M0Þ, with N0M0 ¼ N and
gcdðN0;M0Þ ¼ 1. All of these theories are dual to one
another, in the sense that they have the same partition
function ZN;1 and thus also share the symmetry G̃ðNÞ. The
main difference is that the latter acts very differently from
the perspective of the BPS spectrum; indeed, these theories
differ in how the physical parameters (like coupling
constants or Coulomb branch parameters) are expressed
in terms of the Kähler parameters of XN;1. The action of
G̃ðNÞ on the latter thus leads to different (physical)
symmetries from the perspective of the various gauge
theories (in particular their BPS states).

BRICE BASTIAN and STEFAN HOHENEGGER PHYS. REV. D 99, 066013 (2019)

066013-30



Another important aspect concerns the relation of the
symmetry group G̃ðNÞ with other symmetries that have
previously been observed in the literature:
(1) In Ref. [21] it was found that (in a particular

region in the Kähler moduli space of XN;1) the
free energy FN;1 in the NS limit is fully captured
by F 1;1.

(2) In Ref. [23] it was argued that in the NS limit
a particular part ofZN;M (called the reduced partition
function) can be written as the partition function
of a symmetric orbifold conformal field theory,
giving rise to numerous Hecke-like relations be-
tween various terms in the corresponding free
energies.

(3) In Ref. [9] it was demonstrated through a large
number of examples that (in the unrefined limit), for
a particular choice of some of the Kähler parameters,
the partition functionZN;M can be written as the sum
over the weights of a single integrable representation
of the affine Lie algebra âN−1 associated with the
gauge group UðNÞ.

It is important that in all of these cases it was necessary to
choose particular values for (some of) the Kähler moduli
and/or the regularization parameters ϵ1;2, in one way or
another. The elements of the group G̃ðNÞ we found in the
current work are more general in the sense that they are
symmetries ofZN;1 (or the corresponding free energyFN;1)
at a generic point in the Kähler moduli space of XN;1 and
for generic values of ϵ1;2.

19 In the future, it will be
interesting to analyze how G̃ðNÞ combines with the addi-
tional symmetries mentioned above in the respective
regions of the moduli space.
At a generic point in the moduli space, it would be

interesting to analyze how G̃ðNÞ combines with other
symmetries of the partition function [such as the modular
groups SLð2;ZÞτ and SLð2;ZÞρ] to form an even larger
symmetry group. As the symmetries discussed in this work
impose severe constraints on the structure of ZN;1, it would
be interesting to investigate how much perturbative infor-
mation (from the perspective of either of the gauge theories
engineered by XN;1) on the spectrum is required to recover
the whole nonperturbative partition function. Questions of
this type were recently considered, e.g., in Ref. [46], where
the authors showed that the partition function can be
reconstructed by using information from the two-dimen-
sional world-sheet theories of the little string in combina-
tion with T duality.

Another interesting implication of the symmetries dis-
cussed in this work concerns the consequences at the level
of the gauge theories themselves. For example, in Ref. [47]
the authors used the well-known fiber-base duality of (a
limit of) XN;1 in order to argue for an enhancement of the
global symmetry group of a certain class of five-dimen-
sional theories at their superconformal fixed point. They
showed explicitly the appearance of characters of the
enhanced global symmetry group when expanding the
Nekrasov partition function in a specific set of Coulomb
branch parameters that are invariant under fiber-base
duality. While the theories we analyzed here are six-
dimensional and also do not have a superconformal fixed
point (rather, their UV completions are LSTs), one
might hope to gain information about some enhanced
global symmetry. We leave some of these points for future
work.
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APPENDIX A: DUALITY TRANSFORMATION F

Since it is frequently used in the main body of this paper,
in this Appendix we review a particular duality trans-
formation (called F ) that was first proposed in Ref. [22]
(see also Ref. [25]) and which acts on a shifted web
diagram as shown in Fig. 1 by changing δ → δþ 1. We
specifically recall the duality map.
Starting from the web diagram in Fig. 1 with shift

δ ∈ f0;…; N − 1g, the duality trans-formation F is com-
prised of flop transformations on the curves with areas
fh1;…; hNg, along with SLð2;ZÞ transformations and
cutting and regluing of the web diagram. The resulting
web diagram can again be presented in the form of
a shifted “staircase” diagram with shift δþ 1, as shown
in Fig. 27.
It is important to notice that the independent Kähler

parameters ðâ1;…;N; S; RÞ (shown in blue in Fig. 27) are in
fact the same parameters as in Fig. 1, which in Ref. [25]
were indeed shown to be invariant under the duality
transformation. Similarly, these parameters are a solution
of the consistency conditions imposed by the hexagons
S01;…;N , the latter being equivalent to the conditions (2.1)
stemming from the hexagons S1;…;N in the web diagram in
Fig. 1. While the basis of the Kähler parameters
ðâ1;…;N; S; RÞ is invariant under F , the individual curves
ðh1;…;N; v1;…;N; m1;…;NÞ are not invariant under the trans-
formation F . Indeed, with respect to Fig. 27 we have the
following duality map:

19Indeed, the group G̃ðNÞ is based on dualities among web
diagrams, which themselves are blind to ϵ1;2. Furthermore, while
we considered the NS limit (combined with the unrefined limit) in
Secs. V B and VI C, the latter was only a convenience to
minimize computational complexity when performing certain
checks of the symmetry transformations. The latter, however,
hold in full generality.
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v01¼v1þh1þh2; m0
1¼m1þh1þhδþ2;

v02¼v2þh2þh3; m0
2¼m2þh2þhδþ3;

..

. ..
.

v0N−δ¼vN−δþhN−δþhN−δþ1; m0
N−δ¼mN−δþh1þhN−δ

..

. ..
.

v0N ¼vNþh1þhN; m0
N ¼mNþhNþhδþ1; ðA1Þ

where hiþN ¼ hi for i ¼ 1;…; N.

APPENDIX B: REPRESENTATION OF Spð4;ZÞ
AND MODULARITY

In Ref. [45] a representation of Spð4;ZÞ was given in
terms of two generators (satisfying eight defining rela-
tions). The latter are of order 2 and 12, respectively,

K ¼

0
BBB@

1 0 0 0

1 −1 0 0

0 0 1 1

0 0 0 −1

1
CCCA; and

L ¼

0
BBB@

0 0 −1 0

0 0 0 −1
1 0 1 0

0 1 0 0

1
CCCA; ðB1Þ

which satisfy

K2¼L12¼14×4; ðKL7KL5KÞL¼LðKL5KL7KÞ;
ðL2KL4ÞH¼HðL2KL4Þ;
ðL3KL3ÞH¼HðL3KL3Þ; ðL2HÞ2¼ðHL2Þ2;
LðL6HÞ2¼ðL6HÞ2L; ðKL5Þ5¼ðL6HÞ2;

where H ¼ KL5KL7K. We also mention that another
representation [44] (in terms of six generators and 18
defining relations) is given by X1;2;3;4;5;6, which can be
expressed in terms of L and K as follows:

X1 ¼ L5KL; X2 ¼ L9HL10H; X3 ¼L8KL10;

X4 ¼HL9HL10; X5 ¼HL6; X6 ¼ L9HL6H: ðB2Þ
Furthermore, the group Spð4;ZÞ acts in a very natural form
on the period matrix

Ω ¼
�
τ v

v ρ

�

of a genus-2 Riemann surface,
�
A B

C D

�
∶ Ω ↦ ðAΩþ BÞðCΩþDÞ−1: ðB3Þ

Here A, B, C, D are 2 × 2 matrices that satisfy

ATD − CTB ¼ 12×2 ¼ DAT − CBT;

ATC ¼ CTA; BTD ¼ DTB: ðB4Þ
For convenience, we provide the action of some of the
generators on the period matrix Ω,

K∶ Ω →

�
τ τ − v

τ − v −2vþ ρþ τ

�
;

L3∶ Ω →

� τ − v2
ρ

v
ρ

v
ρ − 1

ρ

�
;

L6∶ Ω →

�
τ −v
−v ρ

�
;

L9∶ Ω →

� τ − v2
ρ − v

ρ

− v
ρ − 1

ρ

�
;

H∶ Ω →

�
ρ v

v τ

�
;

L2KL4∶ Ω →

�
τ v − 1

v − 1 ρ

�
;

L9HL10H∶ Ω →

�
τ v

v ρþ 1

�
;

HL9HL10∶ Ω →

�
τ þ 1 v

v ρ

�
: ðB5Þ

FIG. 27. Web diagram after a transformation F of XðδÞ
N;1.
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