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Recent studies [J. High Energy Phys. 07 (2017) 112; Phys. Rev. D 97, 046004 (2018); J. High Energy
Phys. 11 (2018) 016] of six-dimensional supersymmetric gauge theories that are engineered by a class of
toric Calabi-Yau threefolds Xy j; have uncovered a vast web of dualities. In this paper we analyze the
consequences of these dualities from the perspective of the partition functions Zy ,, (or the free energy
F ) of these theories. Focusing on the case M = 1, we find that the latter is invariant under the group
G(N) x Sy, where Sy corresponds to the Weyl group of the largest gauge group that can be engineered
from X, | and G(N) is a dihedral group, which acts in an intrinsically nonperturbative fashion and is of
infinite order for N > 4. We give an explicit representation of G(N) as a matrix group that is freely
generated by two elements which act naturally on a specific basis of the Kéhler moduli space of Xy ;. While
we show the invariance of Zy | under G(N) x Sy in full generality, we provide explicit checks by series
expansions of Fy ; for a large number of examples. We also comment on the relation of G(N) to the
modular group that arises due to the geometry of X, ; as a double elliptic fibration, as well as the T duality

of little string theories that are constructed from Xy ;.
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I. INTRODUCTION

The engineering of supersymmetric gauge theories [1,2]
in dimensions < 6 through string- and M-theory con-
structions has been an active and fruitful field of
study throughout the years. Indeed, the numerous dual
approaches and formulations that are available on the string
theory side provide us with a large range of tools (both
computationally as well as conceptually) to explore hidden
symmetries, dualities, and even more sophisticated struc-
tures on the gauge theory side that would be very difficult to
study otherwise. An important feature of this approach is
that in many cases string theory methods give us access to
nonperturbative aspects of the gauge theories and allow us
to study them in an efficient manner [3-5]. One very
rich subclass of theories which has attracted a lot
of attention recently [6-9] are supersymmetric, U(M)
circular quiver gauge theories on R> x S!', which can
(among other methods) be approached through F-theory
compactifications on a class of toric Calabi-Yau threefolds
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Xy, M.l The latter give rise to a quiver theory comprised of
N nodes of type U(M) (which we shall denote as [U(M)]¥
in the following). A particularity of these theories is the fact
that their UV completion in general contains not only point-
like particles, but also stringy degrees of freedom, although
gravity remains decoupled. Such theories are called little
string theories (LSTs), which were originally introduced
over a decade ago [11-19] and have recently received a lot
of renewed interest [8,20-27]. The fully refined, non-
perturbative partition function Zy,, of this theory is
captured by the (refined) topological string partition func-
tion on Xy, and can be computed very efficiently
[3-6,8,25] with the help of the (refined) topological vertex
[28-31] (see Refs. [32,33] for a general discussion of the
topological string partition function on elliptic Calabi-Yau
threefolds). Since the latter (for technical reasons) requires
a choice of preferred direction in the web diagram of Xy »/,
this method provides different, but completely equivalent
expansions of Zy ,,, which can be interpreted as instanton
expansions of different but dual gauge theories. While it is
straightforward to see [4,5,8] that in this fashion the theory
[U(M)] is dual to [U(N)], it was argued in Ref. [24] that
it is also dual to [UMX)]¥, where k = ged(N, M), thus

'"The numbers N, M € N refer to the fact that X y.m has
the structure of a double elliptic fibration, where the two
fibrations have Kodaira singularities of types Iy_; and I,
respectively [10].
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leading to a triality of gauge theories that are engineered
by X N.M-

The Calabi-Yau manifolds Xy, depend on NM + 2
independent Kihler parameters and the corresponding
moduli space takes the form of a cone. The faces of the
latter (which we shall call walls in the following) are
(among others) comprised of singular loci where the area of
one or more of the curves in the web diagram of Xy »
vanish. From the perspective of the geometry of Xy,
crossing such a wall (i.e., continuing to negative area) gives
rise to a new Calabi-Yau manifold, which corresponds to a
different (but dual) resolution of the singularity. With the
help of such flop transitions [34,35], the Kihler moduli
space of Xy, can be extended to include further regions
that allow the engineering of yet new gauge theories.
Indeed, it was argued in Ref. [22] that the Calabi-Yau
manifolds X, and X can be related through a series
of flop transformations if NM = N'M’ and gcd(N, M) =
gcd(N’, M’). Furthermore, nontrivial checks were pre-
sented in Ref. [22] that the topological string partition
functions associated with Xy j; and X,y ,, are the same
upon taking into account the nontrivial duality map.
This was shown explicitly in Ref. [25] for the cases
gcd(N,M) =1 and a suitable basis of independent
Kihler parameters was presented which is adapted to the
invariance under a series of flop transformations that is
instrumental in the duality Xy 3 ~ Xy, M/'z Combining this
invariance of Zy, with the triality of gauge theories
proposed in Ref. [24], it was argued in Ref. [26] that
the theory [U(M)]" is in fact dual to all theories of the
form [U(M')]N" for any N, M’ with NM = N'M’ and
gcd(N, M) = gcd(N', M'). Tt was furthermore argued in
Ref. [27] that the extended moduli space [36—40] of Xy
contains different decompactification regions, which engi-
neer different five-dimensional gauge theories with various
gauge structures and matter content.

While previous works have focused on interpreting
different expansions of Zy j, as instanton partition func-
tions of different gauge theories, thereby establishing a
large network of dual theories, in this paper we discuss the
consequences of these dualities from the perspective of
symmetries of Zy ,;. Focusing on the cases M = 1, rather
than switching between different expansions of the parti-
tion function Zy; (or more concretely the free energy
Fn1), we shall focus on one particular expansion (as a
power series in a suitable basis of Kéhler parameters of
Xy.1) and recast the results of Refs. [22,24,26] in the form
of highly nontrivial identities among the expansion coef-
ficients of F, ;. From the perspective of any of the
gauge theories of the type [U(M')]V', where (N',M’)
are relative primes and N'M’ = N, these correspond to

*This transformation is explained in detail in Appendix A and
the basis is reviewed in the following section.

generically nonperturbative symmetries that act in a highly
nontrivial fashion on the spectrum of Bogomol’nyi-Prasad-
Sommerfield (BPS) states of the theory. Furthermore, since
the combination of any two of these symmetries itself has to
be another symmetry, they have the structure of a group
G(N ) which acts naturally on the vector space spanned by
the independent Kihler parameters of Xy ;.

We shall analyze G(N) first with the help of the explicit
examples N =1, 2, 3, 4, where we can study it (or its
subgroups) explicitly as a matrix group. Based on these
examples, we find a pattern, which allows us to prove for
generic N that G(N) has a subgroup of the form

G(N) 2 G(N) x Sy with G(N) c G(N),  (1.1)
where Sy is the Weyl group of the largest simple gauge
group that can be engineered from Xy [i.e., U(N)] and
G(N) is isomorphic to a dihedral group,’ namely,

Dih; if N =1,
Dih, if N =2,
G(N) = 1.2
(V) Dih; if N =3, (12)
Dih, if N >4.

Here Dih, is a finitely generated group of infinite order
[while ord(Dih,) = 2n for finite 2 < n € N].

In particular the group G(N) in Eq. (1.1) combines
nontrivially with other known symmetries and dualities
of Xy;.

(1) Modularity: Owing to the fact that X, ; has the
structure of a double elliptic fibration, the partition
function transforms as a Jacobi form under two
copies of the modular group SL(2,Z), and
SL(2,7) p.4 Since G(N) acts nontrivially on
the modular parameters (z,p) the combined sym-
metry group is in general larger than simply
G(N) x SL(2.Z), x SL(2,Z),. In the simplest case
N = 1, which we shall discuss in Sec. III, we are in
fact able to explicitly analyze the resulting group and
we can show that it is isomorphic to Sp(4, Z), which
is the automorphism group of the genus-2 curve that
is the geometric mirror of the Calabi-Yau manifold
X1 (see Refs. [10,29]). For N > 1, the symmetry is
more difficult to analyze, and we are only be able to
make statements about a specific region in the
moduli space.

*For n € N the dihedral group Dih, is freely generated by two
elements a, b of order 2 that satisfy a certain braid relation:
Dih, = ({a,b|a®> = b*> = 1 and (ab)" = 1}). The group Dihg,
corresponds to the limit n — oo and is of infinite order.

Our notation follows the naming convention of the modular
parameters as in, e.g., Ref. [8].
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(2) T duality: As mentioned above, the UV completion
of the gauge theory [U(1)]" is an LST with eight
supercharges, which was called type IIb little string
theory in Ref. [8]. The latter is 7' dual to type Ila
little string theory, whose low-energy behaviour is
described by the dual gauge theory [U(N)]! (see
Refs. [8,20,21,41] for the discussion of T duality of
LSTs engineered from double elliptic Calabi-Yau
threefolds). Denoting the partition functions of these
little string theories by Zy, and Zy,, respectively, it
was proposed in Ref. [8] that the partition functions
of these two little string theories are captured by
Zyi,

Zia(7.p. K) = Zy,(7,p.K), and

Zi (7,0, K') = Zy,(p. 7. K'), (1.3)
where for simplicity we have only explicitly dis-
played the dependence on the modular parameters
(z,p) and only schematically indicated the depend-
ence on the remaining Kéhler parameters through K
and K', respectively. Furthermore, in Ref. [8] it was
proposed that the 7 duality of the Ila and IIb LSTs
simply amounts to
Zyy(7,p. K) = Zipy(p. 7. K), (1.4)
which, from the perspective of the Calabi-Yau
manifold Xy ;, corresponds to an exchange of the
two elliptic curves: one in the fiber and one in the
base (with a duality map relating K and K’). Since
the group G(N) in Eq. (1.1) acts nontrivially on the
modular parameters (z,p) (and in general mixes
them in a nontrivial fashion), it extends the
incarnation (1.4) of T duality to a nontrivial group
acting on the full spectrum of the LSTs.
This paper is organized as follows. In Sec. I we first review
the important aspects of the computation of the partition
function Zy ;, in particular the choice of basis of the
independent Kihler parameters. Furthermore, we discuss
in more detail our strategy for finding the group G(N) in
Eq. (1.1). Finally, for the sake of readability, we also give a
summary of the results obtained in the subsequent sections.
In Secs. [II-VI we discuss in detail the examples N = 1,2, 3,
4, respectively. For each of these cases we construct G(N )
and provide nontrivial evidence that it is a symmetry of the
F n.1 by computing the leading orders in the expansion of the
former as a power series of the Ké&hler parameters. In
Sec. VII we generalize a pattern that emerges from the
previous examples and which allows us to prove Eq. (1.2) for
generic N € N. Finally, Sec. VIII contains our conclusions
and directions for future research. Furthermore, this paper is
accompanied by two Appendixes, which review a particular
duality transformation for the web diagrams of X, ; and a

finite representation of the group Sp(4,Z), respectively.
These technical details are relevant for the computations
performed in the main body of this work.

II. REVIEW, GENERAL STRATEGY,
AND SUMMARY OF RESULTS

A. Review: Partition function and free energy

The web diagram for a general Xy ; is shown in Fig. 1.
Each line is labeled by the area of the curve that they
represent: horizontal lines are labeled by h; p, vertical
lines by vy, and diagonal lines by m;
these areas are independent of one another, but they are
subject to 2N consistency conditions (for i =1,...,N),
related to the N hexagons S; of the web diagram

.....

Si: hi+mi:hi+mi+l,

Vi + m; = Vs + miiq, (21)
where m;, y = m; and v;,y = v;. A general solution of
these conditions is given by v; = v;,; and m; = m; | for
i=1,...,N — 1. Another solution, which is more adapted
to the computations in the remainder of this work, is
provided by the blue parameters in Fig. 1, which equally
represent an independent set of Kéhler parameters of the
Calabi-Yau manifold X ;. Physically, from the perspective
of (one particular) gauge theory engineered by Xy ;, the
parameters @,y correspond to the (affine) roots of the
gauge group U(N) (i.e., the vacuum expectation values of
the vector multiplet scalars), while the parameter R is
related to the coupling constant and S to the mass parameter

FIG. 1. Web diagram of Xg\f?].
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of the matter sector. As shown in Ref. [24], however, this
assignment is not unique and the Calabi-Yau manifold X ;
in fact engineers several different gauge theories with
different gauge groups5 and possibly different matter
content. In the following we will therefore not be too
concerned with the physical interpretation of the parame-
ters (4, n,S). Instead, we shall treat the dependences of
_____ v S.R;€e;,) (associated
with Xy ;) on all of these parameters on equal footing. The
former can be computed from the web diagram in Fig. 1
with the help of the refined topological string. Here the
constants €;, € R represent the refinement and can be
thought of as a means of regularizing the partition function,
which would otherwise be ill defined.

An efficient method of computing Z | from Fig. 1 (for
arbitrary o) was given in Ref. [25] (see also Refs. [3,5]) by
computing a general building block W " that depends

,,,,, ~»9) and is labeled by 2N
integer partitions a; __y and f;__y, which encode how the
legs of the (various) building block(s) are glued together
(for details, see Ref. [25]). While the formalism developed
in Ref. [25] is more general and allows the computation of a
much larger class of partition functions, in the present case
we have

.....

Zya(ar..n. S Ryer2)
= Z(H ol | w ) Wa a1 s Ss€12), (2.2)
{a}
with (our conventions for the normalization of WZ; Z:/’ are
adapted to Fig. 1)
Wa i s (@1,.vs S €1 2)
. (t/q) [y |+ ay]
- Wg( 1,..., N)|: N—o5—1
P
ﬂ aa Ql]’ )
j=1 (1 a; Qlj vV 4 p
Here we have used the following notation:
i N N A
Qm. =e M, P =~ &k’ Q/) = e_Zkzl k
i 2w =
q 2mie, t = e—Zﬂ'iez’
where m;_, _y refer to the areas of the diagonal lines in

.....

of the consistency conditions (2.1). Furthermore W is a

>The nonaffine part of the gauge groups, however, is in general
a subgroup of U(N).

normalization factor (which from a physical perspective in
particular encodes the perturbative contribution to the
partition function) and §,, is a class of theta functions
that is labeled by two integer partitions y and v

=[] oG g etz p)

(i.j)en

x ] o g7 it p),
(ij)ev

with the further definition

(o]
- [0

k=1

I(xip) = —-xQp)(1-x7'0p).  (2.3)

Fma]ly, the arguments of the 9 functions can be defined as
Ql] = ¢~ % and Q,] = e™"ii, where z;; and w;; are implic-
itly defined in Fig. 2 with respect to (part of) the web
diagram [the labels on the diagonal and horizontal lines in
Fig. 2 (and Fig. 1) indicate how they are glued together].

With the partition function Zy ;, we can define the free
energy as the plethystic logarithm

..... N’S R; s €1 2)
= PLogZN,l

2 ulk
:Z’%mz[v,mkal ,,,,, kS kR; keys),  (24)
k=1

where p(k) is the Mobius function. We can expand the free
energy in the following fashion:

j—N+6

j-N+d6+1

FIG. 2. Definition of the arguments of the § functions appear-
ing in Zy ;.
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.0\ 0k 0%,
(2.5)

with Q;=e™% (fori=1,...,N), Qg = ¢S5, and Qg = e F
Apart from a first-order pole, Fy; has a power-series
expansion in € 5, which allows to compute the Nekrasov-
Shatashvili limit [42,43] and the unrefined limit in a
straightforward fashion. For later convenience we therefore
also introduce the expansion of the leading term in both
parameters (which we simply denote as NS),

lim €16, F (. n.S.Ri€1,6,)

€1,—0 ’ ”
o0
=Y TS0 0h0k0n  (26)
n=0 iy,..., in=0 kez

where fﬁs ivin €Z

B. Symmetry transformations: Strategy
and summary of results

In Refs. [22,24,25] different duality transformations were
discussed that involve flop transformations [34,35] of
various curves of Xy, SL(2,Z) transformations as well
as cutting and regluing of the web diagram. While these
duality transformations were shown in Ref. [25] to leave Z) ;
(and thus also F ;) invariant, they generically act in a rather
nontrivial fashion on the web diagram in Fig. 1. Indeed, a
particular example of such a transformation is reviewed in
Appendix A, which shifts 6 - 6+ 1 and transforms the
areas of all curves {h;__y,v, . y.m;__y} in anontrivial
fashion. In general, the web diagram in Fig. 1 is transformed
to a similar “staircase” diagram as shown in Fig. 3 (possibly
with & # 8), where the areas of the new curves can be
rewritten as functions of the old areas,

.....

RN

(2.7)

.....

.....

these bases. Therefore, Eq. (2.7) gives a set of linear
equations which have a unique solution of the form

g 1 5
S’ o
N
h/ I ¢
1/
/ S; 2 2>
5/ 1 h/ !/ J
N | 2 ma
f .
My_541 .
S/
N—§"+1 !
N-o+1 g NS
§—1 d‘x
B ' \
5 o
/ W g/ M +1
my /" Sy o i
o g ,
N o1 /Mg

FIG. 3. Web diagram of Xg\fli after a duality transformation of

Fig. 1.

(@, ....,ay, S, )T =G-(a},....ay, S, RHT, (2.8)
where G is an invertible (N +2) x (N + 2) matrix with
integer entries. Finally, using the result [25] that the partition
function Z N is invariant under the duality transformation,
N S.R) = Zy (@) y. S, R'), the matrix G
in Eq. (2.8) is a symmetry of the partition function. More
concretely, at the level of the free energy, we have the
following relations for the expansion coefficients appearing

in Eq. (2.5):

.....

Firiykn(€1.€2) = fi s ww(€1,€2)

for (7} .... i K'.n')T = GT - (i1, ....iy. kon)T.  (2.9)

The transposition of G in this relation is due to the fact that the
transformation (2.8) is a passive one from the perspective of
the coefficients f; i -

For given Xy ; there are in general numerous different
transformations G of the type described above. Since the
concatenation of two such transformations defines a new
transformation, the latter form a group. In the following
sections we shall determine at least a subgroup of this
group for the simplest examples N = 1, 2, 3, 4, which in
Sec. VII can be generalized to generic N € N. However,
before doing so and for ease of readability, we summarize
our results. For generic N € N, we identify a finitely
generated group of symmetry transformations of the type
(2.8), which can be written as
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N2
h /n m

(a)

(b)

o> 1 2
ﬁ h %
a

h

(©

FIG. 4. Three different representations of the web diagram of X; ; with a parametrization of the areas of all curves. The parameters
(h, v, m) are independent of each other and the blue parameters represent an alternative parametrization in line with Fig. 1.

G(N) = G(N) x Sy with

Dih, if N=1,
Dih, if N =2,

G(N) = 2.10

(N) Dih, if N =3, (2.10)
Dih, if N > 4.

The group Sy is generated by simple relabelings of the web
diagram of Xy ; and physically corresponds to the Weyl
group of U(N), which is the largest gauge group that can be
engineered by X ;. For generic N, the group G(N) is freely
generated by two (N + 2) x (N + 2) matrices of order 2,
which satisfy a specific braid relation,’

G(N) = ({G2(N). Gy (N)|(G2(N))? = (G5(N))?

= (G(N) - G(N))" = 1}), (2.11)
where n =3 for N =1, 3 and n = 2 for N = 2, but for
N > 4 we find n — oo, which means that there is no braid
relation in these cases. Explicitly, the generators are given
by the following lower and upper triangular matrices:

0 0
Tnxn :
Gy(N) = o o, and
1 1 -1 0
N N =-2N 1
-2 1
Tyxn :
H(N) = -2 1 (2.12)
0 0 -1 1
0 0O 0 1

®In the following, (£) denotes the group freely generated by
the ensemble £.

These matrices are symmetry transformations of the par-
tition function Zy | and the free energy F  ; in the sense of
Eq. (2.9), which can be checked in explicit examples. In the
case N = 1, combining the group G(N) with the modular
group SL(2, Z) acting on one of the modular parameters of
X, generates the group Sp(4,Z). For the cases with
N > 1, the combination with the modular group is more
difficult to analyze at a general point in the moduli space of
Xy.1. However, in the region in moduli space where
a;...y = a in Fig. 1, this analysis is simpler and we can
prove that the combination of G(N) with the modular group
is a subgroup of Sp(4, Z). This is in line with the checks
performed in Ref. [22] to provide evidence for the
duality Xy y ~ Xy [for NM = N'M" and ged(N, M) =
gcd(N’, M")] of Calabi-Yau threefolds.

III. EXAMPLE: (N.M)=(1.1)
A. Dualities and Dihjz group action

The simplest (albeit somewhat trivial) example to illus-
trate the idea explained in Sec. II B is the configuration
(N, M) = (1,1). The corresponding web diagram is shown
in Fig. 4(a). Through simple SL(2, Z) transformations (as
well as cutting and regluing) the former can also be
presented (among other ways) in the form of Figs. 4(b)
and 4(c).

Each diagram can be parametrized in terms of the
parameters (h, v, m) or, respectively, (a, S, R), (&¢',S,R'),
or (a",8",R"). The latter can be expressed in terms of
(h,v,m) as

a=h+wo, S =h, R—-S=m,
a =h+m, S =m, R —S =,
@' =h+m,  S'=h  R'-S=v (3.1

Inverting these relations, (h,v,m) can be expressed as
linear combinations of (a, S, R), (&', S',R'), or (3", S",R"),
respectively,
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v=a-S=R-S=R'-5",
(3.2)

These equations also furnish linear transformations
between (a, S,R), (@’,S',R'), or (a",S",R"),

& &/ &//
S = G1 . S’ = G2 . S y with
R R/ R//
1 =21 0 01
G=|1 -1 0], G,=1010 (3.3)
1 0 0 1 00

The matrix G, is of order 3 (i.e., G| - G| - G| = 13,3),
while G, is of order 2 (i.e., G, - G, = 13,3). Thus, by also
introducing the matrices

E=1343, G3=G-G|, G4=G-Gy, Gs5=G,-Gy,

(3.4)

the ensemble G(1) = {E,G,G,,G;,G4,Gs} forms a
finite group, whose multiplication table is

E G G, G, G, Gs
E E G G, G, G, Gs

(3.5)

from which we can read off G(1)={E,G,,G,,Gs3,
G4,Gs} = Dih; = S3. The latter can be formulated more
elegantly as the free group generated by the elements

1 =2 1
a=G,=G,-G,=|0 -1 1|, and

0 0 1

1 0
b=Gs=G,-G,=|1 -1 0|, (3.6)

1 =2 1

"In the same manner as G, and G,, these matrices can also be
read off from web diagrams as in Fig. 4 with a suitable exchange
of (h,v,m), which, however, we do not show explicitly.

furnishing the following representation:

G(1) = Dihy

> ({a,bla® = b* = 13,3, (ab)’ = 13,3}).  (3.7)

B. Invariance of the nonperturbative free energy

As a check of the fact that G, defined in Eq. (3.3) are
indeed symmetry transformations of Z; ;, we can consider
the coefficients in the expansion of the associated free
energy ;. Indeed, for N = 1, the expansion (2.5) can be
written as

[Se]

F1.1(a,S,Rie1,6,) = Z Zfi,k,n(ehez)QiQéQ?ev (3.8)

n,i=0 kez

with Q = e % As explained in Sec. II B, in order to be a
symmetry, the coefficients f;; ,(€;,€,) (which are func-
tions of €, , with a first-order pole) need to satisfy

fikn(€r,€) = fipw(ere)

for (i',k',n")T =GL- (i,k,n)T, V £=1,2. (3.9)
Below we tabulate examples of the coefficients f;; , with
i<8forn=1,i<4forn=2,and i <2 for n = 3 that
are related by G ,: Tables I and II show the relations for G,

and G,, respectively.

C. Modularity and Sp(4,7) symmetry

The action of G(1) as presented in Eq. (3.7) combines
with SL(2,Z) x SL(2,Z) to become Sp(4,Z), which is
(a subgroup of) the automorphism group of X, ;. To see
this, instead of considering the action of G(1) on the vector
space spanned by (&, S, R), we consider the vector space
spanned by (z = h + v, p = m + v, v). Arranging the latter
in the period matrix

T v
2= (1)
vop
there is a natural action of Sp(4,Z), as reviewed in
Appendix B. The action of G|, on Q is

(3.10)

-20+p+1 T—0
G1:Q—> ,
T—0 T
T T—0
G,: Q- ( > (3.11)
T—v —2v+p+7

Based on this action, we can equivalently represent the
action of G(1) by G}, € Sp(4, Z),
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TABLE 1. Action of G: The indices are related by (i}, i, k', n')T = GT - (i1, iy, k,n)T.

(i.k.n) (' K.n') Jikn(€12) = frww(ein)
(1,0,1) (2,-2,1) (gr+1)(q* tq(t+1)*+1)
(q=1)q(1=1)t
(1,1,1) (3, -3, 1) _ (gD (r+1)(gr+1)
(g=1)y/q(t=1)V1
— qt+1
(1,2,1) (4,-4,1) ey
(2, -2, 1) (1, -2, 2) P LRPUPH242)+q (202 42041)+1
(g—1)g(t=1)t
(2,1,1) (4, -5, 2) ¢ (=) (t+ )= t(B+32 +41+1)—* (B +4P + T2 +41+1) —q (P +42 +31+1) —1(1+1)
(=D (1=1)r
(3,-3,1) (1,-3,3) _ (gD (r+1)(gr+1)
(¢=1)Va(=1)Vi
(1,-1,2) (2,-1,1) q* (=) (t4+1) =P 1(P 43P 4414+ 1)—g* (1 +483 + 72 4414 1) —q (P +42 4314 1)—1(1+ 1)
(g=1)g**(1=1)r’
(1,1,2) (4, -3, 1) ¢ (=) (1) =P (P32 4140 1) =g (A AP TP +41+1) —q (P42 131+1) =1 (14-1)
(g=1)g*?(1=1)P
(1,3,2) (6,=5,1) _%
q=1)(r—
(2’ -3, 2) (17 -1, 2) G (=) () =@ (P3P +41+1) =g (£ +48 +T2 441+ 1) —q (P +42+3t+1)—t(t+1)
(=D (1=1)r
(17 -2, 3) (2,0,1) PP+ 2P +3142)+ P (1 +32 482 +6142) +¢% (264468 +82 +31+1) +qt (22 +3142) +1>
(g-1)¢*(i=1)r*
(1,1,3) (5, -3, 1) (gD (D) (PP g P (14 1)+ 114 428 +62 4414 1)+¢* (1 +45 +6+21+1) +q1(1+1)* +12)
(g=D)g(1=1)r
(1,2,3) (6, —4, 1) PG P20 43t42)+ P (38 482 4-6142) +¢7 (21468 482 31+ 1) +qt (212 4+-3t42) 12
(g-1)g*(-=1)r*
(1,3,3) (7, =5,1) _ (gD (r+1)(gr+1)

(¢=1)ya(=1)vr

TABLE II.  Action of G,: The indices are related by (i}, i, k', n')T = GL - (i}, iy, k,n)T.

(i,k,n) (i, k', n') fikn(€12) = fipww(er2)
2,-3,1 1,-3,2 Vet
( ) ( ) (g-1)(-1)
(2,-2,1) (1,-2,2) PGP +2042)+q (22 +241) +1
(g=1)g(t=1)t
(2’ -1, 1) (17 -1, 2) G (=) (1) =P (P32 +41+1) =g (£ +45 +T2 441+ 1) —q (P +42+3t+1)—1(t+1)
(g-D)g*(1=1)P
(2,0,1) (1,0,2) PP+ P22 +3142)+ g3 (1 +3 +82 +6142) +¢* (264461 + 82 +31+1) +qt (212 +3142) +1>
(g-1)g*(1=1)7*
2,1,1) (1,1,2) G (=) (D)= t(P 3P+ 1) =P ( H4LP FTP H4H 1) —q (P42 4304 1) —1(141)
(g=1)g**(1=1)P
2,2,1) (1,2,2) PP+ P +2142)+q (2P 42141)+1
(q—l)ty_—l)f
2,3,1 1,3,2 _ qt
( ) ( ) (g=1)(1=1)
(3,-3.1) (1,-3,3) _ (gt (+D)(gr+1)
(¢=1)Va(-1)Vi
(3, -2, 1) (1, -2, 3) PG P20 43t42)+ P (38 482 4-6142) +¢> (214682 482 +31+1) +qt (212 4+314+2) +1
(=)’ (1=1)r*
(3, -1,1) (1, -1, 3) (gD (PP P (D) @ (P 428 462 +41H 1) +gP (1 +482 462421+ 1) g (1+1)2+2)
(g=D)g**(1=1)r?
3,1,1) (1,1,3) (@D D@ P+ P (141 4+ 1 425462 4414 1) +¢* (AP +6 2421+ 1) +q1(1+1)*+12)
(g=D)g**(i=1)r
(3,2,1) (1,2,3) PP+ P (202 43t42)+ @ 11 38 +812+6142) +¢* (214 +6£ +-82 +31+1) +qt (22 +3t4+2) +1
(g-1)g*(-=1)r*
(3,3.1) (1,3,3) _ (gt D)D) (gitD)
(g=1)y/a(t=1)V1
1,-3,2 2,-3,1 T
( ) ( ) (g=1)(1=1)
(1,-2,2) (2,-2,1) (gt41) (P r+q(+1)2+1)
(g-1)q(t=1)t
(1,2,2) 2,2,1) (gt4+1) (P r+q(1+1)*+1)
(q—l)fi;lw—lﬁ
1,3,2 2,3,1 _ gt
( ) ( ) (g-1)(-1)
(1,-3,3) (3.-3.1) _ g+ )(gr )
(g=1)y/a(t=1)V1
(1,3,3) (3,3,1) _ (gt ) (+1)(gr+1)

(g-1)vg(i-1)Vi
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1 -1 0 O
1 0 0 O
G| =HK = , and
0O 0 0 -1
0o 0 1 1
1 0 0 O
1 -1 0 O
G, =K= , 3.12
2 0 0 1 1 (3.12)
0O 0 0 -1

where K and H are defined as in Appendix B. This implies
that G(1) C Sp(4, Z). Moreover, combining G(1) with the
SL(2,7), symmetry® acting on the modular parameter’
p as

T,: (t.p,v) = (t.p+ 1, v), (3.13)

generates the complete action of Sp(4, Z): the generators
(S,.T,) can be expressed as S,=L% and T,=
L°HL'"H = X,. Furthermore, we have G,G| = L°KL’
such that we can write

Xl — GIZG/ISIZ), X2 — Tp’
X, = G,G,T,G,G),
Xe = S3G'G,S2G)Gb,

X; = $,G,G}S,,
X5 = G|G)S2,
(3.14)

quququ

<G/]7 G/27 S/)v T/}> D) <X17X25X37X45X57X6> = Sp(4’ Z)’
(3.15)

where the last relation was shown in Ref. [44]. From
Eq. (3.12), and using the representation of Sp(4, Z) given
in Ref. [45], it follows that

(G,.G).S,.T,) C (K.L) = Sp(4.Z), (3.16)

which implies (G, G5, S,.T,) = Sp(4, Z).

¥Notice that the symmetry group is isomorphic to SL(2,Z)
rather than PSL(2,Z), since S% # 1, as can be seen from the
action of S2 on the period matrix Q —» (7 —v —vp).

*We could also choose the modular group SL(2, Z)_ which acts
in a similar fashion on the modular parameter z. More precisely,
SL(2,Z), is generated by S, = HS,H and T, = HT ,H.

IV. EXAMPLE: (N.M)=(2,1)
A. Dualities and Dih, group action

In this section we generalize the analysis of the previous
section and, using the simplest nontrivial example [namely,
(N, M) = (2,1)], explain how the duality transformations
advocated in Refs. [24,26] lead to nontrivial symmetries at
the level of the set of independent Kéhler parameters of
X, ;. In the following subsection we give further evidence
for this symmetry at the level of the partition function Z, ;.
The starting point is the web diagram shown in Fig. 5 along
with a parametrization of the areas of all curves involved.
The latter are not all independent of one another, but for
each of the two hexagons §,,, they have to satisfy the
following consistency conditions:

Sithy+my=my+ hy, vi+m =my+ vy,

Syt hy+my=my,+hy, m+ov, =m+ v, (4.1)

A solution for these conditions was provided in Ref. [25] in
the form of the parameters (&, », S, R) as indicated in Fig. 5,

A

| =0+ hy,
S:h2+02+h1,

&2:U2+h],

R-2S=m; —v,. (4.2)

Indeed, all of the areas (h 5, v 5, m;,) can be expressed as
a linear combination of (&, @,, S, R):

hle—&l, hzzs—&z,
m1:m2:&1+&2+R—3S.

1)1:1]2:&1+&2,

(4.3)

Mirroring the diagram and performing an SL(2, Z) trans-
formation, Fig. 5 can also be presented in the form of
Fig. 6(a). Cutting the latter along the curve labeled v, , and
regluing along the curves labeled m, , leads to the diagram
in Fig. 6(b). The consistency conditions of this web are the

1

S, 2
hy /ﬁl
a

Sy
n v
ad 1/ my S, 2 Iy
| a
v /52/,
my -
3 2 P

FIG.5. Web diagram of X, ; with a parametrization of the areas
of all curves. The blue parameters represent an independent set of
Kéhler parameters.
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1
my
2 hy
a
m
2 Iy 1
m
hy vy !
a
1
ma
2
(a)

FIG. 6.
lines v, , and regluing along the lines m, 5.

same as Eq. (4.1). Furthermore, the web diagram in
Fig. 6(b) is of the same form as Fig. 5 and thus allows
for a solution of Eq. (4.1) in terms of the parameters
(@y.a,, S R):

Py
(11 = my +l’l1,

S’=h2+m1+h1,

~l
a2 = my + hz,

R/ - ZS, = Uy —my. (44)

Indeed, we can express the areas (h;,, v,,m;,) in terms
of the latter,

hle/—&/z, hzZS/—&/z,

Uy = Uy :&/1 +€l/2—3S+R/,

Comparing Eq. (4.3) with Eq. (4.5) gives rise to a linear
relation between (a,,a,,S,R) and (&}, a5, S',R'):

a al
a al
S2 =Gy Sf , Where
R R’
10 -21
01 -2 1 _ detG, =1,
G, = with (4.6)
0 0 -1 1 G1‘61:ﬂ4x4.
00 0 1

We can obtain another symmetry transformation by cut-
ting the diagram in Fig. 5 along the line labeled v, and
regluing it along the line £, to obtain Fig. 7(a). Mirroring
the latter, it can also be presented in the form of Fig. 7(b)
which takes the form of a web diagram with the shift 6§ = 1.
The latter can be parametrized by (af, a5, S".R"),

s \
m‘/@
11
o N
Sé hg U1

E’Ql 1 my 5
D ” 8 hy
K~ T T TTTT o ” a
=T /sg
1
Sl IT //
(b)

(a) Web diagram of Fig. 5 after mirroring and an SL(2, Z) transformation. (b) The same web diagram after cutting along the

21/1/ = h2 + Uy,

SN = vy,

&g:h1+vlﬂ

R'—S8"=m,, (4.7)

which allows to uniquely express all areas (/1 5, vy, 1y 5)

l’l1 = &/2/ - S”, h2 = 21/1/ = S”, V) = Uy = S//,

(4.8)

m; = nip = R’ — SH.

Comparing Eq. (4.8) with Eq. (4.5) gives rise to a trans-
formation between (a;, a,,S,R) and (af,a’,S”,R"),

a; a’l 1 0 0 O
a, iy 01 0 O
=G, ,  where G, = ,
S A\ 1 1 -1 0
R R 2 2 -4 1
det G, = —1,
with : (4.9)
Gy - Gy = T4y

Finally, cutting the diagram in Fig. 7(b) along the curve
labeled v, and regluing it along the line m, yields the
diagram in Fig. 8(a), which [after mirroring and performing
an SL(2, Z)-transformation] can also be presented in the
form of Fig. 8(b). This diagram is parametrized by
(&/1//’ &/2//’ S,//,RH/),

ay' = hy +my, ay' = hy + my,

§" = my, R" = 8" = v,, (4.10)
which provide a parametrization of all of the areas,

hl — 21/]” _ S/ll’ h2 — &/2// _ S//I’

V) = Uy = R”l - S/”, m; = nip, = Sm. (411)
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I
1
U2
hl Al
2
mo 01
2 hy ma
Al V2
1
1

(a)

FIG. 7.
representation of the same diagram.

1
%
b m
ha
a
V2
ma
a
[
hy
1 b
my
1
(a)

FIG. 8.
of the same diagram.

Comparing Eq. (4.11) with Eq. (4.3) provides a linear
transformation between the parameters (@, a,, S, R) and
(&/1// &/2// 11 R///)

a ay 10 =21
a, 6. ay with G, 01 -2 1
S sl 11 =31}
R R" 2 2 -4 1
ang 1O ="1 (4.12)
G3-G3 = T44.

The matrices G, ; together with the identity matrix £ =
1444 form a discrete group of order 4, whose multiplication
table is given by

02

I 2\
4 hy ?7/
= 2 U1 mq
190 B
[ S
Eill my //hQ vgl
K S// S// I
g7 ™o
(b)

(a) Web diagram obtained from Fig. 5 after cutting along the line labeled v, and regluing along 4;. (b) Alternative

1 s a Q\,//
S ho 2 \
S S
"
\l I a ‘h Sl
N Vo AU m
(ST , . 1
7 //5/// 1
\ L’ S///
S . U1
b
(b)

(a) Web diagram obtained from Fig. 7(b) by cutting the curve labeled v, and regluing along m,. (b) Alternative representation

E G G, Gy
E | E G G, Gy
G, | G E G, G,
G, | G, G E G
G, | Gy G, G, E

(4.13)

The latter is identical to the multiplication table of Dih,,
i.e., the dihedral group of order 4 (which is isomorphic to
the Klein four-group). We therefore have'”

G(2) = {E.G,.G,,G;} = Dih,. (4.14)

"For further reference, we remark that G(2) can also be
presented as the group freely generated by G,, i.e., G(2) =
<{G1,G2}>, where G% = ]]4><4 = G% and (Gl . G2)2 = ﬂ4><4'
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An overview of Gj,3 and their relations to different
representations of the web diagram in Fig. 5 is given in
Fig. 9 (which corresponds to the cycle graph of Dih,). We
remark that all other representations of the web [including
webs related by a transformation 7 (Appendix A)] only
give rise to coordinate transformations that differ from
{E, Gy, G,,G;} by the action of

which exchanges and commutes with
Gy ,3. Since R generates the group S,, we can define
G(2) =G(2) xS, as a nontrivial symmetry group
of F 2.1+

a; «— ay

B. Invariance of the nonperturbative free energy

It was shown in Ref. [25] that the web diagrams in
Figs. 5, 6(b), 7(b), and 8(b) give rise to the same partition

01 0 0 function, and the linear transformations G ;5 in Egs. (4.6),
1 000 (4.9), and (4.12) correspond to symmetries of the free
R= 001 0l (4.15)  energy F,,(@12,S,R;€1,¢€,), as defined in Eq. (2.4). In
this section we provide evidence for this symmetry by
0 0 0 1 considering the expansion
1 '\3\/’
hy Vo
2 '\Q\,’
me S
ho V1
%ll vy
[ L a
=T % ’
U1
S’ 2
web diagram in Fig. ?7(b)
Gy Gy
Ne
a hl my
2
U1 ();
ho mo
I
=T % /
G Mo
2 N2
G2
web diagram in Fig. 7?7
a U2 mo a my U1
' 2 S ' 2 3
hy G N hs e
E} 7777777777 (1 my E/) 7777777777 mo Vo
| I o | I 5
EC 2 m //hZ V2 E’ 2 v2 b mp
a K a
5'\. 42 S',,\. i
1 1
web diagram in Fig. 7?(b) web diagram in Fig. 77(b)

FIG.9. Representations of web diagrams related to X, ;. The transformations G, , 3 act on the basis of independent Kihler parameters

(a,a,, S, R). The organization of web diagrams and transformations is reminiscent of the cycle graph of Dih,.

066013-12




DIHEDRAL SYMMETRIES OF GAUGE THEORIES FROM DUAL ...

PHYS. REV. D 99, 066013 (2019)

103050k (4.16)

with Q; = e~ (fori = 1,2), Qg = e~
explained in Sec. II B, we have

S and Qg = e7R. As

= fi i wn(€r€)
- G; : (ih i27 k? n)T7

fil,iz,k.n(el , 62)

for (i1, i, k',n")T YV £=1,2,3.

(4.17)

Below we tabulate the coefficients f; ;, x, with i} + i, <3
for n=1 and i; + i, <2 for n =2 that are related by
G 53: Tables III-V show the relations for G|, G,, and G3,
respectively.

C. Modularity at a particular point of the moduli space

For the case N = 1, we showed that the combination of
G(1) = Dih; with the modular group acting as in Eq. (3.13)
generates the group Sp(4,Z). The case N =2 is more
complicated. However, in the following we shall show that
in a particular region of the moduli space G(2) = Dih, in

TABLE IIL
(i), i, k)T

Action of Gy: The indices are related by
= G{ . (il, llz,k, n)T.

(i i, kon) (.05 K ) fiiknl€12) = fiiwn(€rn)
(0,1,0,1) (0,1,-2,2) (q+t>(z]<_1;r>2zzif];2)>+r)
(0,2,-1,1) (0,2,-3,2) _(q+<;)_(ﬁ;3)/(2c;:r_t)1<)?;/2+t2)
(1,0,0,1) (1,0,-2,2) (q+t>((‘{]<i(lq):;(tj—21);l>+t>

(1, 1) (1,1,-3,2)  _ 2(q2(t(r+3>+<lq)_+lq)(r\/(§(tt+_7l))+¢3;)+r<t+3)+1)
(2 0,-1, 1) (2,0,-3,2) _(q+<:1)_(t1;113)/(2cz:r_t)1§zf/z+tz)

(0, ,2) (0,1,0,1) (q+t><&(i(]c/;(tt+_2]);1>+t)

(O 2,-3, 2) (0,2,-1,1) _(q+<:1)_<$‘113)/(261:r_ti§;132/2+r2)
(1,0,-2,2) (1,0,0,1) (q+t><z1<i(]q;(tt+_2|);1>+r>
(1,1,-3,2) (1,1,-1,1) _2(6/2(t(t+3)+<lq)+lq)(\/(_?(t+7))+j_)+t<t+3)+1)
(2,0,-3,2) (2,0,—1,1) (‘H&,WJ13)/(2‘??()73/2“2)
TABLE IV. Action of G,: The indices are related by

(i, 5, K, 0T = G, - (i1, iy, k,n)T.

(llylz,k ”) (lll»llz»k',n') fi,,iz.k.n(€1,2) = fi’l,i'z.k’,n’(el.Z)
1,1,-3,1 2,4Vt
(0.0 D ( ) T {g-D(-T)
(1 2,-3, 1) 0,1,-1,1) _ (gD (t+D(g+1)
(g=1)/q(1=1)1
2.1,-3.1)  (1,0,-1,1) _ LD )(gt)
(g=1)/q(1-1)1

TABLE V. Action of Gj:
(i, i, K n)T =

The indices are related by
G3 . (il, i2, k, n)T.

(i1, 1p, k. n) (l ,izakl n') fil.iz,k,n(ell) :fi;,i;,k’.n’(el,z)
(0 2,-2,1) (0,2,-2,1) (g+0)(g*+1%)
((i—l)q)((t—l))t
-2,1 1,1,-2,1 4(g+1)(r+1
(1, ) ( ) (g=D)(r=1)
(1 2,-3,1) (0,1,-1,1) _(q+1)(t+1)(q+f>
(g=1)Vq(r=1)V1
(2,0,-2,1) (2,0,-2,1) (g+0(g*+7)

(g—Dq(=1)1

Eq. (4.14) can be understood as a subgroup of Sp(4, Z).
This region is characterized by imposing &(10) = &gm =a,"
which implies h; = h, = h [while the consistency con-
ditions (4.1) already impose v| =v, =v and m; =m, =m].
This region is also a fixed point of S, generated by R in
Eq. (4.15). The remaining independent parameters can be

organized in the period matrix

T W
a=(i ;) m
vop =h

Furthermore, the symmetry transformations G in Eq. (4.6)
and G, in Eq. (4.9) can be reduced to act on the subspace
(a,S,R),

1 -2 1 1 0 0
G =10 -1 1], and GF=]2 -1 0],
0 0 1 4 -4 1
(4.19)

or on the space (z,p, v),

1 0 0
G(lred) — D5 ,G<lred> D=1 1 =21,
0 -1
0 1
with D, = )
1 4
1 4 —4
Ggred) G<2red> D,=[0 1 0
0o 2 -1

Rewriting the latter as elements of Sp(4, Z) that act as in
Eq. (B3) on the period matrix  in Eq. (4.18), they take the
form

""This is the same region in the moduli space that was used in
Ref. [22] for a nontrivial check that Zy , = Zyr )y for NM =
N'M’ and ged(N, M) = ged(N', M').
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G — k and GU**P) = HKLOKH,  (4.20)
where K, L, and H are defined in Appendix B. This implies
that the restriction of G(2) to the particular region of the
Kihler moduli space explained above is a subgroup of

Sp(4,7Z). However, unlike the case N =1, we cannot
conclude that the group freely generated as <G(lred’5p >,

GS‘“""SP), S,.T,.S..T,) is isomorphic to Sp(4, Z).

V. EXAMPLE: (N.M)=(3.1)

A. Dualities and Dihj; group action

Following the previous example of Xg}:o)

(6=0)
1

, we can also
analyze X in a similar fashion. The starting point is the

web diagram shown in Fig. 10, which includes labels for
the areas of all of the curves. The consistency conditions

associated with the three hexagons S 50%3 take the forms

Sgo):h2+m2:ml+h2, 1}1+m1=m2+1)2,

S§0)1h3+m3:m2+h3, Uy + my = ms3 + 03,

SO hy +my=my+h, mito=vs+ms. (5.1)

A solution of these conditions is provided by the
parameters (215(2.3, SO, RO),

(0)

&g(]) =7 +h2, &2 (O
s©

:’1)2+h3, &3
):h2+U2+h3+U3+h],

R(O> —35(0) =m|—vVy—03,

):U3+h1,

(5.2)

such that the areas (h; 5 3. v123.m,3) can be expressed as
the linear combinations

FIG. 10. Web diagram of X3; with a parametrization of the
areas of all curves. The blue parameters represent an independent
set of Kihler parameters, as explained in Eq. (5.2).

(5.3)
The web diagram of XF‘?IZO) allows various other repre-
sentations: by mirroring the diagram and performing an
SL(2, Z) transformation, the web can be drawn in the form
of Fig. 11(a). Furthermore, cutting the diagram along the
lines labeled v , 5 and regluing them along the lines labeled
my 55 gives Fig. 11(b). The latter is again a web diagram
with 6 =0, which can thus be parametrized by

(&(12’3, SM,RM), as indicated in Fig. 11(b),

aV=my+ny, ) =m+ b,
&gl):ml—i—hl, S(1>=h3—|—m2+h2—|—m1—|—h1,
R<1) = U3 —my —my, (54)

such that the areas can be expressed in the following
manner:

Moreover, as explained in Sec. IIB, comparing
Eq. (5.5) with Eq. (5.3) gives rise to a symmetry of
the partition function as a linear transformation relating

(@15, 8, RMY to (a\) 5, 5O, RO),

a a| 211 —4 1
ad a" 121 -4 1
&go) =G &gl) , whereG;=|112 —4 1
5() s 222 -7 2
R RO 333 -124
detG, =1,
with : (5.6)
G- Gy =Tsyxs.

In order to obtain another symmetry generator we first
perform a transformation F as explained in Appendix A.
The corresponding geometry is of the type Xg(?]:l) and a
parametrization of the various curves through an indepen-
dent set of Kihler parameters is shown in Fig. 12. The
duality map of F is explicitly given by
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1
mq
2 hq
my
3 ho U1
m m
3 hs s 1
m 1
ho /v ?
a
2
ms
3
(@)

FIG. 11.
v123 and regluing them along the curves labeled m 5 3.

—hl 1 %@
Sh v mb
/ 3 N
—hy S5 2V,
m / /
= 3 3 55 Y2 ms
\53 !
C\ll 1 , /—hs 3
| my S v
S0 S iy ~a
2 —
Q:‘T /52 K
mby
2"
S0

FIG. 12.  Web diagram after a transformation F of Fig. 10. The
blue parameters are the same as defined in Eq. (5.2).

vy = v+ hy + hy,
vy + hy + b,
m'2:m2+h2+h3,

vy = vy + hy + hj,
m'lzml—i—hl—i—hz,
m/3=m3+h1+h3.

S
SN
|

(5.7)

As was shown in Ref. [25] for generic X9 the

N1
independent parameters (&5%3,5(0),R(0>) are invariants

of F in the sense that the parameters appearing in
Fig. 12 are the same as the ones defined in Eq. (5.2)."2

“The only ¢ dependence (and thus dependence on .7-' ) appears

in the coefficient of S in the defining equation of R(*) (see the

generic parametrization of ng?l in Fig. 1).

III'\?

a a

(b)

(a) Alternative representation of the web diagram in Fig. 10. (b) The web diagram obtained by cutting along the lines labeled

While the transformation F itself therefore does not
generate a new nontrivial symmetry transformation,
one can consider different representations of Fig. 12.
Indeed, by mirroring the Ilatter and performing an
SL(2,7Z) transformation, one obtains Fig. 13(a).
Cutting the latter along the lines labeled —h,,5 and
regluing them along the lines labeled m, ;5 yields the
representation in Fig. 13(b). The set of independent

parameters (&@73, S R2)),

2) )

o / ~ (2)
= vy + m3, a,

— ! ~ — /
= V] + my, ay’ = vy +my,

a
( —28?) = —hy —m},

S@ = vy + m) + v}, R®
(5.8)

gives rise to a new parametrization of all of the curves
of the original diagram in Fig. 13,

hl _ _&(12) _ &(22) 2) + 3S(2)
hy = —a\? —al?) — R® 4 3502),
hy =—-al? —al?) — R® 4 3502),

P +ad +al +2R® — 55
- 7S<2>.
(5.9)

my =my, =my =2 +al? + al?) + 2R®

Comparing Eq. (5.12) with Eq. (5.3) gives rise to a
symmetry of the partition function as a linear trans-

formation relating (a<133 @ R?) to (&5(2’3,5(0),R(0)),
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(a)

FIG. 13.
and regluing along the lines m ;3.

a a 100 -21
ad a 010-21
&gﬂ) =G, &(32) , whereG, =001 =21
5(0) s@ 000 -11
R(©) R®@ 000 0 1
detG, =1,
with 2 (5.10)
G2'G2:ﬂ5x5‘

One can find another symmetry transformation by
cutting the diagram in Fig. 12 along the line labeled
—h; and regluing it along the line labeled v}. After
mirroring the diagram, it can also be presented in the
form of Fig. 14, which corresponds to a web diagram

of the form X g‘?lzl)

(51({2,3, SG), R)), as shown in Fig. 8:

. The latter can thus be parametrized by

A (3)

a,” = vy — hy, ay’ = vh— hs,
a) = v, —hy,  S® =0} —hy—h,
R —25?) = m)), — v}, (5.11)

Indeed, the areas (4,3, v123.M1,3) can be expressed in
terms of (&gj, SG), RG)),

h=a-s0, m=af -50,
I’L3 = (Al(lg) - S(3), V) = Uy = V3 = S(3),
m; =my =my = RO) — 5O, (5.12)

s AN
a UJ —h3
my Sl<2) 1 ?D@
S(Z) U{ —h
, ng) IT %\@
o s o
\6) 12 (2)
“l, ,,,,,,,, I om|
| —h3Sl V3

(b)

(a) Alternative representation of the web diagram in Fig. 12. (b) The web diagram obtained by cutting the lines labeled —, 5 3

Since the partition functions computed from Figs. 14 and
10 are the same [25], comparing Eq. (5.12) to Eq. (5.3)
gives rise to a linear transformation that is a symmetry
of 23’1.

Explicitly, one finds

a, a,

&go) &g@)

&go) =G;- &f) , (5.13)
S(0) SG3)

R©) R®)

—h1 m%

I (3) 1 =

(% 51 ?,:@
Sés) —h2 m’l
o, S§3> 2 g\@

_ mo Sé:ﬁ) —h3 m/2
T (3)

R 3/, s vyl 53

e 2 N W)

ET /Séii)////

1 ml,///,
S@3)

FIG. 14. Representation of the web diagram obtained by cutting
Fig. 12 along the line —h; and gluing along the line .

066013-16



DIHEDRAL SYMMETRIES OF GAUGE THEORIES FROM DUAL ...

PHYS. REV. D 99, 066013 (2019)

where the 5 x 5 matrix Gj is given by

100 0 0
010 0 0

. detG3:1,

Gi=|0 0 1 0 of wih "0 "

111 -1 0 R
333 -6 1

(5.14)

From Fig. 12 one can extract yet another symmetry
generator. Indeed, by cutting the diagram along the
curves v, and regluing it along the lines m,; one
obtains Fig. 15(a). Furthermore, by cutting along
the line labeled —/; and regluing along the line m)
one obtains Fig. 15(b) after performing an SL(2,Z)
transformation.

An independent set of parameters is given by

~4)

~ / !/

a,’ =mj— hs, a,’ = mj—hy,

~(4) ! 4 /

ay’ = mj — hy, S():mz—hz—h3,

(5.15)

which allows to express (%53, v123.m,3) in the follow-
ing fashion:

3
/
m
c— 3
—h3
—a
Us
i
m
b— 2
U1
—hy
c
)
/
m
a— E
v
3
—hy
b
!
/ Gt
/
ms
3
(a)

FIG. 15.

(5.16)

Comparing Eq. (5.16) to Eq. (5.3) gives rise to the
following linear transformation:

a a 100 —2 1
al at? 010 =21
&go) =Gy- a(34) , whereG,=|1001 -2 1
§00) NG 111 -5 2
RO R 333 -124
with eG+=1 (5.17)

The matrix G, is of order 3, which means that G5 =
G4 -Gy is a new symmetry element. It can also be
associated to a particular representation of the web diagram
of X3 ;. To see this, we first perform a transformation 7 on
the web diagram in Fig. 12 to obtain Fig. 16.

Since F leaves the partition function invariant, the

parameters (&5(2.3, S R©) are the same as those intro-

duced in Eq. (5.2). Furthermore, we have introduced the
areas

s NG
I —h1 ”Ug
m} 554) b Q;@
Sé‘l) —hg Ui
m, 5§4> ¢ %y
I ” sy | =l S
% (4)
N A Sy
I A N
=l / S
bt
S
(b)

(a) Web diagram obtained by cutting the lines labeled 1’/1.2,3 in Fig. 12 and regluing along the lines m’1.2,3- (b) Alternative

representation of the same web diagram after cutting along the line —%; and regluing along the line mj.
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" 2 N\
— 4 S1 %
" " "
1 U1 moy
1 3 =
—v} Sy %
= m 1! 1 "
N2 25 ] v mg
| —o. S
— 3 /i 2 3

= I
LT !
0 "
S 1 m

FIG. 16. Web diagram after a transformation F of Fig. 12. The
blue parameters are the same as defined in Eq. (5.2).

" / / " / /
v = —hy + 0] + 5, vy = —hy + v + 5,

" — _h / /
"o ! !
m, = m, + v; + v3,

n __ ! / /
my = mj + vy + 3,

my = mjy + v + v), (5.18)

where we have used the definitions (5.7). Next, we cut the
diagram in Fig. 16 along the lines labeled v , ; and reglue it
along the lines labeled m7 , 5 to obtain Fig. 17(a). Cutting
the diagram again along the line —v4, it can also be
presented in the form of Fig. 17(b), which is a diagram

3
4
a "
’Ul ’
vl
b "
/UQ ,
iy
" c
U3
i
"
U?) ,
v}
a
vy
3
(a)

with shift 6=0. It can be
(a5, 89, RO)),

parametrized by

Comparing Eq. (5.19) to Eq. (5.3) indeed gives rise to the
following symmetry transformation:

a a 211 -41
al? al 121 41
a0 |=Gs | o |- whereGs=|112 —4 1
50 506 222 =51
RO) R 333 -61
with 41O = 1 (5.20)

GS'GS'GSZ]]SXS'

Other representations of the web diagram of X5, do not
give rise to symmetries other than G, ;3 45, apart from a

permutation of the parameters a&;,3. These latter

%
a .
%

(b)

FIG. 17. (a) The web diagram in Fig. 16 after cutting the lines 121.2'3 and regluing along m’i,z,3- (b) The web diagram after cutting along

the line —; and gluing along 1.
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symmetries form the group S3, which, from the point of
view of the gauge theory engineered by X3 |, corresponds to
the Weyl group of the gauge group U(3). Factoring out this
S3 (the 5 x 5 identity matrix E = Ts,5), the linear trans-
formations G, 345 form a finite group of order 6, which
commute with S5 and whose multiplication table is given by
E G, G, G3 Gy Gs
E E G G, G; Gy Gs
G, G E Gs Gy G3 G,
G, G, G, E Gs G Gy
G; Gy Gs G, E G, G
Gy Gy, G, Gy Gy G5 E
Gs Gs G G G, E Gy

(5.21)

This table is the same as that of the dihedral group Dihs,
such that we have

G(3) = {E.G,.G,,G;.G,,Gs} = Dih;. (5.22)

An overview of the group elements Gy,345 and their
relations to different representations of the web diagram in
Fig. 10 are shown in Fig. 18.

For later use, we remark that the dihedral group (5.22)
can also be represented as the group that is freely generated
by G, and Gj,

G2'G2:ﬂ5><5:G3'G3’

G(3)=({G,,G3}), with (Gy-Gi) = Tsys.

(5.23)

B. Invariance of the nonperturbative free energy

As in the previous example, following the result of
Ref. [25], the linear transformations G ;345 in Eqgs. (5.6),
(5.10), (5.14), (5.17), and (5.20) correspond to symmetries
of the free energy F3,(a;,3.5,R;€1.€,), as defined in
Eq. (2.4). In this section we provide evidence for this
symmetry; however, for simplicity we limit ourselves to
checking the leading limit in €; , of the free energy. To this
end, we introduce the following expansion:

limo€1€2-7:3,1 (@123,S.R;e1,€)

€127
o0 o0
_ NS At Az A3 Hk Hn
= E E E :fil,iz,i3,k.n 1 0707 050k, (5.24)
1=0 i,.iy.i;=0 keZ

where fNS . €Z and Q;=e% (for i=1, 2, 3),
154256357,

Qs = e5, and Qg = e K. As explained in Sec. II B, the

fact that the (shifted) web diagrams in Fig. 9 all give rise to

the same partition functions implies

NS _ NS
i1.02,i3,k,n i b0 K

for (ill,l./z,l.g,k/,l’l/)T:G;'(il,iz,i3,k,n)T V= 1,2,3,4,5.
(5.25)

In Tables VI-VIII we tabulate the coefficients f}5 ; |,

with iy + i, ]—3# iz <7 forn =1 and n = 2 that are related
by G134

C. Modularity at a particular point
of the moduli space

Similarly to the case N = 2 above, we can analyze how
the group G(3) is related to Sp(4,7) in the particular
region of the moduli space that is characterized by
a\” = al" = al = 4, which implies i, = hy = hy = h
[while the consistency conditions (4.1) already impose
vy =1y =v3 =0 and m; = my = m3 = m]. As in the
previous section, we can introduce the period matrix

T v
Q:( ) with
vop

Using the parametrization (5.23) of G(3), it is sufficient to
analyze the relation of the generators G, and Gj to
Sp(4,7). The restriction of these generators to the sub-
space (@, S, R) can be written in the form

T=m-+ v,

b him (5.26)

1 =21 10 0
GrY={0 -1 1], and G =3 -1 0
0 0 1 9 —6 1

(5.27)

Furthermore, by rewriting them to act as elements of
Sp(4,7) in the form of Eq. (B3) on the period matrix
Q in Eq. (5.26), they take the form

GUSP) — HKLSHKHLCKH, and

GISP) — HKLOKLOKH, (5.28)

where K, L, and H are defined in Appendix B. As in
the case of N =2, this implies that the restriction of
G(3) to the particular region of the Kéhler moduli space
(a,S,R) is a subgroup of Sp(4,Z). However, unlike
the case N = 1, we cannot conclude that the freely generated

group <Géred.$p) ’ Ggred,Sp

Sp(4,2).

>,S/,,TP,S,, T,) is isomorphic to

VL. EXAMPLE: (N.M)=(4,1)

A. Dualities and Dih_, group action

Using the previous examples, we next consider Xffl:o),

whose web diagram is shown in Fig. 19. While the method
we employ to study it is the same as in the previous cases,

BWe do not display symmetries between coefficients that also
involve purely S; transformations.
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1 _
Y
—hi vl
>V,
my 2%
—hy
3 >
d my A @
2 g
mj ,
!
,,,,,,,,,,,,,,,,,,,,,,,, 5 a
S
web diagram in Fig. ??(b) web diagram in Fig. ??(b)
G 4 G5 G") Gl

Gy Gy Gyl | G Gs| | Gs
NGO
hy U3
mg 2 Q;O
hs vy

R®? — 952

web diagram in Fig. ??(b) web diagram in Fig. ??(b) web diagram in Fig. 77

FIG. 18. Representations of web diagrams related to X3 ;. The transformations G| ;345 act on the basis of independent Kihler

parameters (&EO), &50), Ezgm, §©O) RO ). The organization of web diagrams and transformations is reminiscent of the cycle graph of Dihs.

we shall encounter a novel twist. The consistency con- &gm =0, + hy, &g‘)) = v, + ha,
ditions stemming from the web diagram are 0 0
&3 :U3+h4, &4 :U4+h17
0) —

S(lo):h2+m2—m1+h2,vl+m1:m2+vz, § —h2+02+h3+1}3+h4+’04+h1,

RO —480) — ;. — v, — 11 — v, 6.2
S(ZO): h3+m3 :m2+h3, U2+m2:m3+1)3, m U2 U3 Uy ( )
Sgo): hy +my =m3 + hy, v3 +m3 = my + vy,
Sflo) S hy+my =my+hy,my+ v, =my + vy, (6.1) The dihedral groups found in the previous examples were

generated by two transformations. The latter can in fact be
obtained in a simple fashion by considering two diagrams
that are obtained from Fig. 19 through a rearrangement and
(&(1(2’3.4, SO, RO)), a flop transformation, respectively.

while a solution is provided by the parameters
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The indices are related by

Action of Gj:

Action of G, (left) and G, (right): The indices are TABLE VIL

TABLE VI.
related

G; . (il, i2, i3,k, n)T.

o2l ) / NT
and (), i, 5. k', n')

G{ . (il, i2, i3, k, T’l)T

k’,n’)T
g . (il, iz, i3, k, n)T.

=/
i%,

-/
I,

!
1°

(i

/A " NT
(i, iy, 15, K", n")

by

fNS

./ ! / !
i, 15, K n')

!/
1

(i

(i1, 2. i3, k, 1)

iy,ip,i3.k,n

-3

2

-8

4

6

8

18
30

28
42
112
10
12
54
48

AN AN AN AN AN N AN N N N S S N S
e v e v e e e e

AT AT Faalalal
e e |
NN FH TS en
AN~~~ —ddnaadSsS ~a
SR e e e T I S M e e e ]

RN NI g

NN AN AN N N N N N N N S S N
— o e e e e — —

S e I IR IS I SN IF N IF S TS IR
I e e e e |
S—H—=adr T ~aC NS
CO ST = — AN = — —
CSSSSSSSS S = =~ ==

T D D D D D T T

=25
=23
18

le»siz-iﬁ»k»"
fﬁstz is,k,n
12
-16
6

NN N S N N

AN
T
— A e en

! ! / !
i, i, k', n')

!
1°

(i
(i1, i, 1, K )

i1.ip,i3.kn

NS

! ! ! !
ih, i, k' n')

!/
1

(i

(i1, iy, i3,k n)

-5
-4
42
-25

N AN AN AN N N N S S N

SRS
I eI e e AR

— A~ Aol
SO — = = A= — —
SoocSSSS —~——ao

P N

P — o~
S| — o~ = - — N — e e e e e e = e — -
- P S N N - e e e e e e e e o« <t
o _, _, _, _, _, _, o M, _, _, _, _, _, _, _, _, _, _, ol
alea—=maa T —mand—=ana )
~lSS = == ~ 0,070’1’1,1,271’]71’2. ~—
S k=== Tl ———~da P
N|IE2=2=2=2=2 Nadl N AN TN TN IS NIINIINIIAD o

NOLVooTANNOWYO Wt
SO0 o —=AcoF<5 | | |
|l N en | ] v |

i N N L N T D s T s
T e — ] O] O O

AN —a—~a o~ oo
I e e |
o N I R e N N I N I I S I A I S I
NS —S——ad—~adadonddo
S~~~ —~S —a——dad

B N N N

NN N AN N N N N N S S S S S
— o e e e — (] O] O] O

T A F AT AT AT S n A n A
I O e L D e |
AT el a —al
ol RS IS RS I S I S N I I I S I I
——ddddadddaddadsS S~

— N N N N N N N N e T

ig. 20(a).

shown in Fi

(

S(l)’ R(l)) as

indicated in Fig. 20(b) is distinct to the one in Fig. 19

)

1
1,234

a

1. Rearrangement
SO, R©), Indeed, the two bases are related

A simple rearrangement of Fig. 19 is
The parametrization in terms of (
through a linear transformation given by

—

2. Transformation F

Another symmetry transformation can be obtained
after performing a transformation F on Fig. 19, as shown

in Fig. 21.

—

T T T

RS

<

NS

<<

Action of G, and G5: The indices are related by

TABLE VIII.

T.
5

=G

/A /) " INT
S,k )

:GST'GST

: (ll 7i27i3?k7n)T and (ill/’ l,Z/’ 1/3/’ kH’ n,l)T
(i

T
4

=G

GZGZ (il,iz,i3,k,n)T, as well as (il,iz,i3,k,n)T
(i, 5,15,k ,n")T and (iy, iy, i3,k,n)"

(i), 85,15,k ,n')"

(6.3)

iy,ip,i3,k,.n

A8

k/l, n/l)

1"
13,

1
by,

/A
1°

K.

o
3,

! ./
1012

(i

(i1, iy, i3,k n)

6

6

6
-17 3

2
2
3
6

2
3
2
6

16 16 16 —-48 9

16

where G| =

—1 and G% = ﬂ6x6~

The matrix G, satisfies detG,

066013-21



BRICE BASTIAN and STEFAN HOHENEGGER

PHYS. REV. D 99, 066013 (2019)

50 Nee
h1 mq
2

FIG. 19. Web diagram of X, ;. An independent set of Kihler
parameters is shown in blue.

Here we have introduced the variables

’L]/l:l]l—’—l’ll—’—hz, m’lzml—i—hl—i—hz,
U§:U2+h2+h3, m’2:m2—|—h2—|—h3,
Ug:U3+h3+h4, mg:m3—|—h3—|—h4,

U£:U4—|—I’l4—|—h1, m2:m4—|—h4+h1. (64)

(a)

FIG. 20.

FIG. 21. Web diagram after a transformation F of Fig. 19. The
blue parameters are the same as defined in Eq. (6.2).

The parameters (&5%3’4,5(0),R(0)), shown in blue in

Fig. 21, are the same as those appearing in Fig. 19, such
that the flop transformation alone does not lead to a
nontrivial symmetry transformation. However, starting
from the web diagram in Fig. 21, we can present it
in the form of Fig. 22. The parametrization in terms of

the variables (a\),,,S®,R®) used in Fig. 22(b) can

be related to (a<1(2’3‘4’5(0)’R(0)) in Fig. 19 through the
transformation

(b)

(a) The mirrored web diagram in Fig. 19 after an SL(2, Z) transformation. (b) The same diagram after cutting the lines vy 53 4

and regluing the lines m 34 [and performing an SL(2,Z) transformation].
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3
m/
c— 3
vh 5
—hg
d
vy
i
m
b— 2
vy L
—hs
—c
/ Uy
I
m
a— 1
Uy
Iy
!
v}
m)
d— 4
v
—hy
—a
Uy
m
3
(2)

(2) 1 =
s NG
—hy /U3
, 59 2 ?:@
58 ~h
¢ 3 N
S‘(Z) Ve
3 roml 2 %
" SéZ) | —hs v
ST S ANge
1My /
4 L —hs Vs
S(2) ) 52
vh o(2) T3 4
175
(2)
v} S
2
(b)

FIG. 22. (a) The web diagram in Fig. 21 after cutting the lines m , ; , and regluing along the lines v/ , 5 ,. (b) Representation of the
web diagram after cutting along the line —h, and gluing along the line m}.

&go) &gz)
&go) &éz)
~(0) ~(2)
as =G,- | © |, where G, =
&5 a®
4 4
$(0) S
RO R®

1 00 0 -2 1
01 0 0 -2 1
0 01 0 -2 1
0 001 =21
1111 -7 3
4 4 4 4 =24 9

(6.5)

The matrix G, has detG, = 1 but does not have finite order."* This implies that the matrices G| and G, freely generate the

group Dih,

G(4) = ({G,G, - G,}) = Dih,.

“Indeed, by complete induction one can show that
n—1 n-1 n-1
n—1 n-1 n-1
n—1 n-1 n-1
n—1 n-1 n-1
2n—1 2n—-1 2n-1
4n 4n 4n

which only resembles the identity matrix for n = 0.

066013-23
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n—1
n—1
n—1
2n —1
4n

2—4n n
2—4n n
2—4n n
, forneN.
2—4n n
—8n 2n +1

—8(2n+1) 4(n+1)

(6.7)
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B. A remark on infinite order

We have seen in the previous section that the symmetry
transformation G, is of infinite order, which is markedly
different than what we have seen in the previous examples.
While we will present explicit checks that G, is indeed a
symmetry of the free energy in the next subsection, we first
want to provide an intuitive explanation of what makes the
case (N, 1) = (4, 1) different than all of the preceding ones.
Indeed, we will provide some indication that the extended
moduli space of X, ; contains many more regions that are
represented by (a priori) very different looking web
diagrams. While this will not prove that G, is of infinite
order (as we have already done in the previous section by
purely algebraic means), it will indicate the novel aspect of
X, (in comparison to the previous examples).

Returning to Fig. 22(b), the latter is a web diagram of the
form Xflﬁ . Another way of obtaining such a diagram is to
perform two transformations of the form F on Fig. 19, as is
shown in Fig. 23, with the new parameters

Ry =—hy + vy + vy =hy +hy+ hy + v; + v,
]’l,z:—h2+U/1+U/2:h1+h2+h3+7jl+’l}2,
]’l/3:—h3+1/2+1]g:h2+h3+h4+ﬂ2+7}3,
]’l:l:—h4+1/3+1]:1:]’l1+h3+h4+7)3+7}4,

as well as

m{ =m| 4+ v, + vy =2h; +2hy + hy + hy +m; + vy + vy,
my =mh + v + vy = hy +2hy +2h3 + hy +my + vy + 03,
my =m5 + v + vy = hy + hy +2h3 4+ 2hy +m3 + vy + vy,
mjj = mj + v + v} = 2hy + hy + hy +2hy +my +v; + 03,

Notice that even upon imposing the consistency conditions
(6.1), the parametrization of the web diagram in Fig. 23
is different than that of the web diagram in Fig. 22(b)."

Thus, there is a duality transformation that transforms the

web Xfl)»—>Xf>, however, with a nontrivial duality map D

acting on the areas of all curves involved. The duality D can

be repeatedly applied to Xff in Fig. 22(b), thus producing

an infinite number of diagrams of the type Xfl), each one

with an a priori different parametrization of individual
curves.

Moreover, since the blue parameters (&\) 5 ,, S©, R©)
in Fig. 23 are the same as in Fig. 19, the duality map D from
the perspective of the independent Kihler parameters
precisely corresponds to the symmetry transformation
G,. Therefore, the transition from Fig. 23 to Fig. 22(b)
gives a (new) geometric representation of G, at the level of

15 . .
This can be seen by choosing the solution v| = v, = v; =
vy =vand my = my = m3 = my = m.

Si:s) 1 %w@
I —hy vy
| s 2N2e
(3" 7,
~ Sy — 4
= : 3 N
S‘U) 20
N 3 o 2 52
Loa R
S 0 B PANCD
47 "2 R Cpy S0
S(0) 1 s®
Loa(3) T !
1 'U3 S]()

FIG. 23. Web diagram after two transformations F of Fig. 19.
The blue parameters are the same as defined in Eq. (6.2).

web diagrams, which readily allows to also compute
arbitrary powers of G,.

Finally, notice that the above discussion does not
generalize to the cases N = 2,3 (but can be extended to
N > 4). Indeed, web diagrams with shifts 6 > 2 for N = 2,
3 can readily be related (possibly through simple cutting
and regluing operations) to web diagrams with § € {0, 1},
which only gave rise to symmetry transformations of finite
order.'® In other words, in the cases N =2, 3, the
equivalents of Figs. 22 and 23 are of the type 6 < 1, which
we have seen provide only transformations of finite order.

C. Invariance of the nonperturbative free energy

As a nontrivial check of the fact that G; and G, are
indeed symmetries of Z, |, we consider the nonperturbative
free energy associated with the latter. For simplicity, we
restrict ourselves to the leading term in €, ,. To this end, we
define

lim e,6,F41(@1234, S, Ry €1, €2)

€120

o0
o NS Al A Ais Al k
= D D S ka1 070507 050k, (6.8)

n,i,=0 kez

where fNS n €Z and Q;=e % (fori=1,2,3,4),

i1inisis
Qs = e5,and Qg = e, In the same manner as explained

in Sec. II B, the symmetry transformations G; and G, act in

the following manner on the coefficients /15 ; ; | :

"“Notice, for example, that the only web diagrams in Figs. 9
and 18 that give rise to nontrivial symmetry transformations have
either 6 = 0 or § = 1. Thus, in these cases, there is in fact no
nontrivial equivalent of Fig. 22(b).
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NS __ /NS
indy.izsigkon = S K
DA T 1 NT __ ] T
for (i, 45, 15,1y, k', n')" = Gf (i, 0o, 13, g, k, 1)
V ¢=1,2. (6.9)

We can explicitly check the relations (6.9) by computing
the relevant expansions of the free energies. However, since
the matrix G, in Eq. (6.3) contains very large numbers, the

relations are easier to check for the matrices G, - G, and
Gz, with
1 00 0 0 O
01 0 0 0 O
001 0 0 O
G, -G, = (6.10)
000 1 0 O
I 111 -1 0
4 4 4 4 -8 1

In Tables IX and X we tabulate examples of the coefficients
NS withiy +iy 4+ i3+ iy <6forn=1andn=2

i1,0n,13,i4,k,n

that are related by G; - G, and G,, respectively.

D. Modularity at a particular point
of the moduli space

Similarly to the cases N = 2, 3, we can analyze how the
group G(4) is related to Sp(4, Z) in the particular region in
the moduli space characterized by &(10) = &(20) = ago) =

a\” = &, which implies hy = h, = hy = hy = h [while

the consistency conditions (4.1) impose v; = v, = v3 =
vy = v and m; = my, = m3z = my = m]. We can introduce
the period matrix

T v T=m-+ v,
Q= < > with (6.11)

v op p=h+m
TABLE IX. Action of G;-Gy: (&),i5 8, i.K.n') =
(Gy-Gy)" - (iy, i, i3, iy, k, )"
(i1, ip, i3, Iy, k, 11) (&, i, 85, 8, k' n") leslz hisk
(0,0,1,0,-2,1) (2.2,2,3,-6.1) 2
(0,0,1,0,—1,1) (3.3.4.3,-7.1) -8
(0,0,1,1,-3,1) (1.,1,2,2,-5.1) -1
(0,0,1,2,-2,1) (2.2,3,4,-6,1) 18
(0,0,1,2,-1,1) (3,3,4,5,-7,1) —45
(0,0,1,3,-3,1) (1,1,2,4,-5,1) -5
(0,0.1,3,-2.1) (2.2,3,5,-6.1) 30
(0,0,1,4,-3,1) (1,1,2,5,-5,1) -7
(0,0,1,4,-2,1) (2.2,3,6,-6.1) 42
(0,0,1,5,-3,1) (1,1,2,6,-5.1) -9
(0,0,1,5,-2,1) (2.2,3.7.-6.1) 54
(0,0,0,6,-2,1) (2.2,2.8,-6.1) 12

TABLE X. Action of G,: (i/,#, i, i, k", n")T = G} - (i}, 15,
i3, i, k,n)T.

(iy, iy, 03,45k, 1) (i, 85,85, i), k', ') F v
(0,0,1,1,-3,1) (1,1,2,2,-7.2) -1
(0,1,2,2,-4,1) (0,1,1,2,-6,2) 2
(1,1,1,2,-4,1) (1,1,1,2,-6,2) 4
(1,1,2,3,-5.1) (0,0,1,2,-3,1) -3
(1,1,2,4,-5.1) (0,0,1,3,-5,2) -5
(1,1,3,3,-5.1) (0,0,2,2,-5,2) —4

Using the parametrization (6.7) of G(4), it is sufficient to
analyze the relation of the generators G| and G, = G, - G,
to Sp(4,7Z). The restriction of these generators to the
subspace (@, S, R) can be written in the form

1 -2 1 1 0 0
=0 -1 1], and GS"™V=]4 -1 0
0 0 1 16 -8 1

(6.12)

Furthermore, by rewriting them to act as elements of
Sp(4,7) in the form of Eq. (B3) on the period matrix
Q in Eq. (6.11), they take the form

Ggred,Sp) — HKLSKLSHKHLSKLKH, and

G5 — HKLOKLSKLSKH,

(6.13)

where K, L, and H are defined in Appendix B. As in
the cases of N = 2,3, this implies that the restriction of
G(3) to the particular region of the Kéhler moduli space
(a,S,R) is a subgroup of Sp(4,Z). However, unlike the
case N = 1, we cannot conclude that the freely generated
group <G(red -Sp) G;<r°d‘8p),S,,,T,,,S T.) is isomorphic to
Sp(4,2).

VII. GENERAL CASE (N,1)

A. Symmetry transformations of generic webs

We can summarize all previous examples by introducing
the following matrices:

0 0
1]N><N

Gy(N) = o of (71
1 1 -1 0
N .. N =2N 1

as well as
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) 1
ﬂNXN . .
Go(N) = ) 1
1 -« 1  —2N+1 N-—1
N -+ N =2N(N-1) (N-1)?

(7.2)

The matrices G,(N) and G (N) for the examples previ-
ously studied are given explicitly as

N G>(N) G (N) Defined in

1 b G, Egs. (3.6) and (3.3)

2 G, G; Egs. (4.6) and (4.12)
3 Gs Gs -G, Egs. (5.10) and (5.14)
4 G, -G, G, Egs. (6.3) and (6.5)

where the equation numbers refer to the definitions of the
matrices in the individual cases. The matrices G, and
G (N) furnish two symmetry relations for a web diagram
of the type (N, 1). To see this, in the following we shall
check explicitly the combinations of G (N) - G,(N) and
|

AN><N

G(N) - Gy(N) =
—-3N+2
N(N —2)?

(a)

FIG. 24. Alternative representations of the web diagram of XST

Go(N), which at the level of the web diagrams are
generated by the same transformations we already dis-
cussed in the example of (N, 1) = (4, 1) and which can be
generalized for generic N.

1. Rearrangement:

We first verify that G, (N) - G,(N) is a symmetry. To this
end, we start from the configuration shown in Fig. 1 for
& = 0, which [after mirroring and performing an SL(2, Z)
transformation] can be presented as in Fig. 24(a). The
latter in turn can alternatively be presented in the form
of Fig. 24(b). The matrix G (N)-G,(N) [defined in
Egs. (7.1) and (7.2), respectively] relates the parameters
in the web diagram in Fig. 1 to those in Fig. 24(b) in the
following way:

(@1, o, SR = Go(N) - Guo(N) - (&) ... 24, S, R)T

(7.3)
where
—2N +2 1
—2N +2 1 : (7.4)
—3N+2 —2N?24+4N -1 N-1
N(N-2)> -2N(2-3N+N?) (N-1)
i
= N =
n e~
‘7/\
: /L
& m
hy
,,,,,,,,,,,,,,, a
U1

(b)

from Fig. 1 for 6 = 0.

0)
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with

Anxy = (N =2) + Tyxw-

Upon using the solution of the consistency conditions in
Eq. (2.1)

Vp=vy=...=vy=0v and m;=my,=...=my =m,

(7.5)

which from Figs. 1 and 24(b) implies that (fori = 1, ..., N)

a;=hiy + v, a; = hiyy +m,
N
S=Y e+ (N=-1w,
k=1
N N
S/:p’—m:Za;{ Z hy + (N =1)m,
k=1 =1
R—-NS=m—(N-1)v,
R —NS'"=v—(N-1)m, (7.6)
we have indeed (with p' = > % &} =YV, hy + Nm)

a;=a+(N=2)p'=(2N -2)S"+R = h;y; + v,
S=(N?>=3N+2)p'—(2N>* 4N+ 1)S' + (N = )R’
N
=> h+(N=1),
k=1
R = N(N-2)%'—2N(2—3N + N?)S' + (N — 1)’R’

N
NY b+ m+ (N=1)%,
k=1

which proves Eq. (7.3).

2. Transformation F:

In a similar fashion we can show that G (N) is a
symmetry transformation. To this end, we first consider a
transformation of the type F acting on the web diagram in

Fig. 1 for 6§ = 0 which results in the web diagram shown in
Fig. 25, representing Xl(gjl). The blue parameters in Fig. 25

are the same as in Fig. 1, and we have also introduced

/ /

v m

N/l
Q —

<
<.
N-1
FIG. 25. Web diagram of Xx,)l.
Ullzﬂl+h1+h2, m'1=m1+h1+h2,
0'2:1)2+h2+h3, m/2=m2+h2+h3,
’U;V:UN—FI’ZN—FI’Z], m;vsz—f-hN—f-hl.
Cutting the diagram in Fig. 25 along the lines v} 5 _; and

.....

regluing it along the lines m
diagram shown in Fig. 26(a). Furthermore, by cutting the
latter diagram along the line —# it can also be represented
in the form Fig. 26(b), which corresponds to a staircase
diagram with shift 6 = N —2. The set of independent
Kihler parameters (a N,S“ R") can be related to

(@1, SR = G (N) - (&, ...k, S" . R")T. (1.7)

To show this, we use Eqs. (7.2) and (7.5) along with

&’/:m+1—hi+2=m+hi+1, S”:m,
R'=28"=v—m (7.8)
to compute [with p” = >N (m} —hy) = Nm+ YN | h

aj=a}=28"+R' =m+hi +v—m=h+v,

thJr

_ 1)2R1/

S=p"—(2N-1)§" + (N - DR" =
R=Np'—2N(N —1)S" + (N

N
th—l—m—i— - 1)
=1
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a
ml
UN-2 h
—hy-1
- 1
UN-1
ml
N -1 - N-2
Un-3
—hN_2

2 !
Uy h
3
v
1— my
N-1
—hy
2
Uy
m;\f—l
a
(a)
FIG. 26.
with 6 = N — 2.

which matches Eq. (7.6) and therefore shows that G, (N) is
a symmetry transformation.

B. Generators of the dihedral group

Having shown that the transformations G (N) - G,(N)
and G, (N) [and thus also G,(N)] are symmetry trans-
formations of the partition function Zy ;, we shall now
discuss the group structure that they generate. The matrix

gz(N) has order 2 [i.e., gz( ) gz( ) = ]] N+2) N+2)]’
while G (N) has the following order:

3 ifN=1,
2 it N=2,

ordG(N) = 3 i N=3 (7.10)
oo if N>4.

Here, infinite order means Zm € N such that (G, (N))™ =
T(vi2)x(n+2)- While we have shown all cases N <4
explicitly in previous sections, for N > 4 it is sufficient
to realize that

(b)

(a) Alternative representations of the web diagram in Fig. 25. (b) Another representation in the form of a shifted web diagram

N+ /NN=E)
-8

-

Ntimes

N
SN =2+ /NN -4)) ) (7.11)
is an eigenvector of G, (N) for the eigenvalue'’
1
Ay :E((N_2)2_2+ NIN-4)(N-2)) eR
(7.12)

Since Ay > 1 for N > 5 [and G (N) is diagonalizable for
N > 5], it follows that G, (N) is not of finite order in these
cases. Thus, upon introducing the matrix

""The remaining eigenvalues are +1 (with degeneracy N) and
AN
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-2 1
Ty o
Gy (N) = Go(N) - G (N) = -2 1|
0 0 -1 1
0 0 0 1
(7.13)

which is of order 2 [i.e., G5(N).G5(N) = Ty oxni2ls
we find that G,(N) and G,(N) freely generate a dihedral

group,

Dih; ifN=1,
Dih, ifN=2,
G(N) = ({G>(N).G,(N)}) = 7.14
(N) = ({G2(N).G5(N)}) Dihy if N=3, (7.14)
Dih,, if N>4.

For N > 4, Eq. (7.10) shows that An € N with (G,(N) -
G5(N))" = T(y42)x(n+2) [Which also implies An € N with
(G5(N) - Go(N))" = T(y42)x(n+2))-  Furthermore, since

(G2(N))? = Vnsapxvs2) = (G5(N))?, this also implies
An € N with g’z(N) (G2(N) - Go(N))" = Tny2)uin2) OF
(G2(N) - G5(N))" - Go(N) = Tn2)x(v+2)- *® This means
that there are no nontrivial (braid) relations between
G>(N) and G5(N), which indeed shows that the group
G(N) = Dih,, for N > 4.

Notice that G,(N) is a lower diagonal matrix, while
G,(N) is an upper diagonal (N +2) x (N + 2) matrix.
Furthermore, the partition function is invariant under the
action of the group Sy, which is generated by matrices of
the form

0 O
M
R(M) = 0o ol (7.15)
O 0 01 0
0O 0 O 0 1
|
(N-1)?
G V(N) = Dy - GYV(N) - Dy = 1
N -1
1 4
G (N) = DY -G (N) Dy = | 0 1
0o 2

where M is an N x N matrix that acts by permuting the

..... n- One can check that matrices of the form R(M)
commute with both G,(N) and G,(N), such that we have
the following symmetry group of the partition func-
tion: G(N) = G(N) x Sy.

C. Modularity at a particular point
of the moduli space

Using the general parametrization of the group G(N) in
Eq. (7.14), we once again ask the question of how the latter
is related to S p(4 Z) in the particular region in the moduli

.....

..........

Using the parametrization (7.14) of G(4), it is sufficient to
analyze the relation of the generators G,(N) and G,(N) to
Sp(4,7Z). The restriction of these generators to the sub-
space (a, S, R) can be written in the form

1 -2 1
grINy=[0 -1 1|, and
0 1
1 0 0
g =N -1 o], (7.17)
N2 2N 1
or in the space (z,p, v)
(N—-2)2N?  —2N(N*-3N +2)
(N —1)2 2(1 = N) ,
N(N>-3N+2) -2N>+4N-1
-4 0 1 0
, with Dy=[0 N -1 (7.18)
-1 1 N* —2N

"For example, the former relation is equivalent to (G, (N) - G4(N))" = G, (N). Squaring this relation [due to the fact that G} (N) is of

order 2] would be equivalent to (G,(N) - G5(N))** =

T (v+2)x(n+2)» Which does not agree with Eq. (7.10).
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Furthermore, by rewriting these generators to act as
elements of Sp(4, Z) in the form of Eq. (B3) on the period
matrix Q in Eq. (7.16), they take the form

GUSP/(NY = (HKLOH)N-2K (HLOKH)N~2

N—11-(N-1)? 0 0
1 1-N 0 0
| o 0 N-1 1|
0 0 1-(N-1)2 1-N
1N 0 0
Q;(red,sp)(N):HK(L6K)N—1H: 8 (1) _01 g ,
0 0 N1

where K, L, and H are defined in Appendix B. For N € N,
the restriction of G(N) to the particular region of the Kihler
moduli space (&, S, R) is a subgroup of Sp(4, Z). However,
for N > 1, we cannot conclude that the freely generated

>(red,S >/, (red
group (G (N), GV (N), §

.8,.T,.S;,T,) is isomorphic
to Sp(4,2).

VIII. CONCLUSIONS

In this paper, we studied the consequences of the web of
dualities among certain supersymmetric quiver gauge
theories on R> x S! which are engineered by a class of
toric Calabi-Yau threefolds Xy ;. These dualities were
established in Refs. [22,24-26]; however, rather than
focusing on the different physical theories, here we have
analyzed their consequences from the perspective of the
partition function Zy ,. For the sake of simplicity, our
analysis has been limited to the case M = 1. We found that
the partition function Zy ; associated to the geometries
Xy is invariant under the group G(N) = G(N) x Sy
which acts on the vector space spanned by a maximal
set of independent Kéhler parameters. Here Sy has an
intuitive interpretation as the largest gauge group that can
be engineered by the given geometry, which is U(N) in this
case. The group G(N) was shown to depend on N as
derived in Eq. (7.14) and was found by exploiting the fact
that Xy | can be related to various other geometries (that are
part of the same extended Kihler moduli space) through
flop and symmetry transformations. These geometries are
characterized by giving rise to the same topological string
partition function (i.e., the same Zy ), but they are
described by web diagrams whose Kéhler parameters are
related through a nontrivial duality map to those of the
initial geometry. By studying a collection of these “self-
duality” maps we showed that they form the group G(N).

A notable feature is the appearance of the infinite
dihedral group for N > 4. By using the matrix representa-
tions of the generating elements, we have explicitly shown

in Sec. VII that for the cases N > 4, the group G(N) is
generated by two matrices of order 2, which have no
nontrivial braid relations (implying the existence of a group
element of infinite order). An intuitive understanding of the
appearance of the infinite-order generator can be gained by
looking at the behavior under the series of flop trans-
formations F, reviewed in Appendix A. They can be used
to relate web diagrams that look identical but have a
nontrivial mapping between their Kihler parameters. By
iterating this procedure, it is thus possible to generate an
infinite series of inequivalent web diagrams, thus giving an
intuitive argument for the appearance of an infinite-order
group. For the cases with N < 3 there is no such iterative
procedure for producing nontrivially related geometries,
due to the simpler nature of the diagram.

Furthermore, we showed that G(N) combines nontri-
vially with other known symmetry groups of the partition
function. For the case N = 1, we showed explicitly that
G(1) = Dih; together with the modular group SL(2,Z)
freely generate Sp(4, Z), which is known to be the auto-
morphism group associated to the mirror curve of X
[10,29]. For N > 1, we showed that in a particular region of
the Kéhler moduli space, G(N) corresponds to a subgroup
of Sp(4, Z). Similarly, the group G(N) mixes nontrivially
with the T duality (as specifically proposed in Ref. [8]) that
relates the Ila and IIb little string theories that are
engineered by X ;. In both cases, it would be interesting
to extend this analysis and to characterize the full (non-
perturbative) U-duality group of the LSTs. We leave this
point for future work.

From the perspective of the various gauge theories
engineered by Xy, the symmetry group G(N) also has
important consequences: acting in the form of Eq. (2.9), it
identifies the multiplicities of certain single-particle BPS
states in the free energy. This symmetry acts a priori
nonperturbatively, since in particular an element G € G(N)
mixes all Kéhler parameters of X, ; (which from the
perspective of the BPS states of the gauge theory corre-
spond to various fugacities in the free energy) in an
arbitrary fashion. It is also important to remember that,
in general, there are several different gauge theories that are
engineered by X, ;: as argued in Ref. [26], the latter
engineers circular quiver gauge theories with M’ nodes of
type U(N') for any (N',M’), with N'M' =N and
gcd(N',M’) = 1. All of these theories are dual to one
another, in the sense that they have the same partition
function Z ; and thus also share the symmetry G(N). The
main difference is that the latter acts very differently from
the perspective of the BPS spectrum; indeed, these theories
differ in how the physical parameters (like coupling
constants or Coulomb branch parameters) are expressed
in terms of the Kéhler parameters of Xy ;. The action of
G(N) on the latter thus leads to different (physical)
symmetries from the perspective of the various gauge
theories (in particular their BPS states).
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Another important aspect concerns the relation of the
symmetry group G(N ) with other symmetries that have
previously been observed in the literature:

(1) In Ref. [21] it was found that (in a particular
region in the Kéhler moduli space of Xy ) the
free energy Fy; in the NS limit is fully captured
by F INE

(2) In Ref. [23] it was argued that in the NS limit
a particular part of Z , (called the reduced partition
function) can be written as the partition function
of a symmetric orbifold conformal field theory,
giving rise to numerous Hecke-like relations be-
tween various terms in the corresponding free
energies.

(3) In Ref. [9] it was demonstrated through a large
number of examples that (in the unrefined limit), for
a particular choice of some of the Kéhler parameters,
the partition function Zy ,,; can be written as the sum
over the weights of a single integrable representation
of the affine Lie algebra dy_; associated with the
gauge group U(N).

It is important that in all of these cases it was necessary to
choose particular values for (some of) the Kéhler moduli
and/or the regularization parameters €;,, in one way or
another. The elements of the group G(N) we found in the
current work are more general in the sense that they are
symmetries of Zy | (or the corresponding free energy F )
at a generic point in the Kéhler moduli space of X ; and
for generic values of 61.2.19 In the future, it will be
interesting to analyze how G(N) combines with the addi-
tional symmetries mentioned above in the respective
regions of the moduli space.

At a generic point in the moduli space, it would be
interesting to analyze how G(N) combines with other
symmetries of the partition function [such as the modular
groups SL(2,Z), and SL(2,Z),] to form an even larger
symmetry group. As the symmetries discussed in this work
impose severe constraints on the structure of Zy |, it would
be interesting to investigate how much perturbative infor-
mation (from the perspective of either of the gauge theories
engineered by Xy ;) on the spectrum is required to recover
the whole nonperturbative partition function. Questions of
this type were recently considered, e.g., in Ref. [46], where
the authors showed that the partition function can be
reconstructed by using information from the two-dimen-
sional world-sheet theories of the little string in combina-
tion with 7 duality.

“Indeed, the group G(N) is based on dualities among web
diagrams, which themselves are blind to €; . Furthermore, while
we considered the NS limit (combined with the unrefined limit) in
Secs. VB and VIC, the latter was only a convenience to
minimize computational complexity when performing certain
checks of the symmetry transformations. The latter, however,
hold in full generality.

Another interesting implication of the symmetries dis-
cussed in this work concerns the consequences at the level
of the gauge theories themselves. For example, in Ref. [47]
the authors used the well-known fiber-base duality of (a
limit of) X ; in order to argue for an enhancement of the
global symmetry group of a certain class of five-dimen-
sional theories at their superconformal fixed point. They
showed explicitly the appearance of characters of the
enhanced global symmetry group when expanding the
Nekrasov partition function in a specific set of Coulomb
branch parameters that are invariant under fiber-base
duality. While the theories we analyzed here are six-
dimensional and also do not have a superconformal fixed
point (rather, their UV completions are LSTs), one
might hope to gain information about some enhanced
global symmetry. We leave some of these points for future
work.
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APPENDIX A: DUALITY TRANSFORMATION F

Since it is frequently used in the main body of this paper,
in this Appendix we review a particular duality trans-
formation (called F) that was first proposed in Ref. [22]
(see also Ref. [25]) and which acts on a shifted web
diagram as shown in Fig. 1 by changing 6 - 6 + 1. We
specifically recall the duality map.

Starting from the web diagram in Fig. 1 with shift
6 €40,...,N — 1}, the duality trans-formation F is com-
prised of flop transformations on the curves with areas
{hy,...,hy}, along with SL(2,Z) transformations and
cutting and regluing of the web diagram. The resulting
web diagram can again be presented in the form of
a shifted “staircase” diagram with shift § 4+ 1, as shown
in Fig. 27.

It is important to notice that the independent Kihler
parameters (d;_ y,S.R) (shown in blue in Fig. 27) are in
fact the same parameters as in Fig. 1, which in Ref. [25]
were indeed shown to be invariant under the duality
transformation. Similarly, these parameters are a solution
of the consistency conditions imposed by the hexagons
- the latter being equivalent to the conditions (2.1)
..... » in the web diagram in
Fig. 1. While the basis of the Kihler parameters
(a1 n-S,R) is invariant under F, the individual curves
_..N»My__ ) are not invariant under the trans-
formation F. Indeed, with respect to Fig. 27 we have the
following duality map:

,,,,

.....
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FIG. 27. Web diagram after a transformation F of Xg\ffl.
’l]l1:111+h1+h2, m'l:m1+h1—|—h5+2,

1)/2:U2+h2+h3, m’2:m2+h2—|—h5+3,

/ _ / —
Un_s=UN-sthy-sthy_si1. My_s=my_s+h +hys

vy=vy+h +hy, my=my+hy+hs, (A1)

where h; y = h; fori =1,...,N.

APPENDIX B: REPRESENTATION OF Sp(4,7)
AND MODULARITY

In Ref. [45] a representation of Sp(4,Z) was given in
terms of two generators (satisfying eight defining rela-
tions). The latter are of order 2 and 12, respectively,

1 0 0 O
1 -1 0 O
K = , and
0o o0 1
0O 0 0 -1
00 -1 0
00 0 -1
L= , (B1)
1 0 1 0
01 0 O

which satisfy

K> =L" =14,
(L2KL*)H=H(L?*KL*),
(L3KL¥)H=H(L3KL?),

L(LSH)?=(LSH)2L,

(KL'KL’K)L=L(KL’KLK),

(L2H)? = (HL*),
(KL% =(L°H)?,

where H = KL3KL’K. We also mention that another
representation [44] (in terms of six generators and 18

sssss

expressed in terms of L and K as follows:

X, =LKL, X,=L°HL"H,
X,=HL°HLY, X5=HLS,

X; =LKLY,
X¢=L°HLSH. (B2)

Furthermore, the group Sp(4, Z) acts in a very natural form
on the period matrix

T W
2=, 1)
vop
of a genus-2 Riemann surface,

4B 1 Q AQ CcQ - B3
(5 5):aruarncan. ©

Here A, B, C, D are 2 x 2 matrices that satisfy
ATD — C'B = 1,,, = DAT — CBT,
ATC = CTA, B'D = D'B. (B4)

For convenience, we provide the action of some of the
generators on the period matrix €,

L*KL*: Q —>
L°HL°H: Q —

HL°HL': Q — (B5)
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