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The Ostrogradski ghost problem that appears in higher derivative theories containing constraints has
been considered here. Specifically, we have considered systems where only the second class constraints
appear. For these kinds of systems, it is not possible to gauge away the linear momenta that cause the
instability. To solve this issue, we have considered the PT symmetric aspects of the theory. As an example,
we have considered the Galilean invariant Chern-Simons model in 2þ 1 dimensions which is a purely
second class system. By solving the constraints, in the reduced phase space, we have derived the PT
similarity transformed Hamiltonian and putting conditions on we found that the final form of the
Hamiltonian is free from any linear momenta and bounded from below.
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I. INTRODUCTION

Higher derivative (HD) theories are important when one
considers renormalization [1], regularization, and problems
like ultraviolet divergences. By higher derivative we refer
to those theories where the Lagrangian explicitly contains
higher time derivatives of the field variables. Sometimes
these HD theories are considered as some correction terms
or perturbative terms. In modern day theoretical physics,
application of HD theories are wide, e.g., cosmology [2,3],
supersymmetry [4,5], noncommutative theory [6], gravita-
tion [7–10], etc. Despite their wide range of usage these
theories are plagued by a crucial issue called the
“Ostrogradski instability.” HD theories are, in general,
degenerate in nature and for this reason, while quantizing,
one should very carefully choose the proper phase space. It
has been seen that the Hamiltonian of the HD theories
contains terms linear in some of the momenta. Now, when
quantization is done in the proper phase space, after
removing the constraints, these linear momenta terms give
rise to states with a negative norm. It is because the
Hamiltonian is not bounded from below and consequently
the quantized theory becomes unstable. This instability is
very serious and an open problem.
The concept of PT quantum mechanics was introduced

by Bender [11]. It was mainly introduced to deal with the
non-Hermitian Hamiltonians that initially appeared in cases
like the quantum system of hard spheres [12], Reggeon
field theory [13], and Lee-Yang edge singularity [14,15].

PT symmetric Hamiltonians, though complex and non-
Hermitian in nature, can have eigenvalues that are real [11].
Since then a series of investigations began on various
properties of thePT symmetric Hamiltonians. They include
various disciplines like nonlinear lattices [16], wave guides
with small holes [17], graphene nanocarbons [18], quantum
dot [19], electrodynamics [20], quantum field theory
[21,22], etc. As soon as a theory is introduced there are
also various experimental confirmations of the PT sym-
metry [23,24]. Despite the non-Hermitian nature of the PT
Hamiltonians they were shown to have real spectra [11].
Usually, the Euler-Lagrange equations of motion

for a higher derivative theory are calculated using the
Ostrogradski formulation [25]. In this method, all the
momenta corresponding to the higher derivatives are defined
in a nontrivial way. However, recently it has been shown that
this nontrivial Hamiltonian formulation, for some models,
leads to an incorrect calculation of the phase space [26] and
hence gives a misinterpretation of the quantum states. To
bypass this issue, HD models were, rather, treated as first
order systems via a redefinition of the fields. According to
this first order formulation, momenta definitions are
usual. Surprisingly, in both the cases, the Ostrogradski
method as well as the first order formulation, the canonical
Hamiltonian, contain terms linear in some of the momenta.
Classically, these linear momenta can access both the
positive and negative axes of the phase space and the
Hamiltonian as a result of this become unbounded. After
quantization, these linear momenta terms give rise to
negative norm states which are called the ghost states
[27]. All these facts are well known for HD theories. The
problem becomes more complicated if the systems are
nondegenerate. According to the Ostrogradski theorem,
all the nondegenerate systems contain the ghost states.
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As a solution to this problem, there exist few but successful
model dependent procedures adopted by different authors
[28,29].HDmodelswith constraintsmay have first class and
second class constraints or both. In [30], the issue of the
ghost problemwas addressed and solved for a systemhaving
first class constraints. However, this procedure lacks any
scope for the systems only with second class constraints.
In this paper, we have considered the case of a purely

second class system where one cannot gauge away the
constraints to remove the linear unwanted momenta.
Actually, for the second class systems, the reduced phase
space is obtained by solving the constraints and treating
them just as the identity between the phase space variables.
Even in the reduced phase space, the linear momenta
remain in the Hamiltonian and consequently the system
becomes unbounded along that particular momenta. This
problem of irreducibility of the linear momenta has been
addressed in the present paper. For that we have considered
the approach of Bender et al. [31] where, by applying a
similarity transformation on the PT symmetric HD
Hamiltonian, they have obtained a bounded from below
Hamiltonian. In the present paper we have generalized this
approach for the second class systems.
To implement the method discussed above we have

considered a model, namely the Galilean invariant Chern-
Simon’s model in 2þ 1 dimensions, which has only second
class constraints. First introduced by Lukiersky [32], this
Chern-Simon’s model in 2þ 1 dimensions has already
been explored by many authors which includes interesting
results relating noncommutative geometry [33,34], the
Berry phase [35], Hall effect [36], Newton-Hooke sym-
metry [37], twistors [38], anyon, etc. The model has the
symmetries of the Galilean group, i.e., time translation,
space translation, boost, and rotation [32]. These types of
Chern-Simon’s models have a central charge (in this case it
is m) and an additional central extension can provide only
for the D ¼ 2þ 1 which forms the exotic Galilean algebra
[39]. In fact the model in [32] was shown to have the same
dynamics as a charged nonrelativistic planar particle in an
external homogeneous electric and magnetic field [40].
The organization of the paper is as follows. In Sec. II we

shall consider the HD theory and its first order formulation.
Section III deals with thePT symmetric nature of these HD
theories. In Sec. IV we shall describe the 2þ 1 Galilean
invariant Chern-Simons model and its constraint analysis
by applying the Dirac method. In Sec. V we shall perform
the PT symmetric transformations to obtain the bounded
from below Hamiltonian of the model. Finally, we conclude
with Sec. VI.

II. HIGHER DERIVATIVE MODELS

A typical higher derivative Lagrangian is written as

L ¼ LðQ; _Q; Q̈…QðnÞÞ: ð1Þ

Here, “dot” represents the time derivative of the fields Q.
To avoid the Ostrogradski’s way of the Hamiltonian formu-
lation we redefine the configuration space by incorporating
new variables as Q ¼ q; _Q ¼ q1; Q̈ ¼ q2…Qðn−1Þ ¼ qn.
So the new Lagrangian is

L0 ¼ Lðq; q1; q2…qnÞ þ
X
i¼1;n

λiζi: ð2Þ

Here the λn’s are Lagrange multipliers incorporated to
account for the constraints

ζi ¼ qi − _qi−1 ð3Þ

in the new configuration space. It is evident that the Euler
Lagrange equation of motion for the Lagrangian (2) now
will be first order. The momenta can be found as

pi ¼
∂L0

∂ _qi ; ð4Þ

pλi ¼ 0: ð5Þ

Not all the momenta defined above are invertible for a
constraint system. Hence, these momenta will, in general,
give rise to the primary constraints at this stage. The
Hamiltonian can be written as

Hcan ¼
X
i¼1;n

ðpi _qi þ pλi
_λiÞ − L0: ð6Þ

It is to be noted that at this level the canonical Hamiltonian,
when simplified, will contain terms like pi−1qi. These
linear momenta will populate the positive as well as
negative regions of the phase space and hence will give
rise to states in quantized theory that have negative norms.
The interesting fact is that this is a model independent
outcome for all HD theories.
The total Hamiltonian of the theory is

HT ¼ Hcan þ ΛiΦi: ð7Þ

HereΛi’s are Lagrange multipliers which act as coefficients
linear to the primary constraints. Next, we find out the time
evolution of the primary constraints. Depending on the
systems, two scenarios can appear:

(i) Poisson brackets of the primary constraints with the
Hamiltonian are equal to some function of the phase
space variables but they do not include any of the
Lagrange multiplierΛi’s. In this case they are treated
as secondary constraints.

(ii) If the Poisson brackets of the primary constraints
with the Hamiltonian involve Lagrange multiplier
Λi, then equating them to zero we can find out the
Lagrange multipliers.
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In order to find out all the constraints of the theory at the
secondary and tertiary levels, the iteration process goes on.
We may group all these constraints as first class and second
class based on the nature of the Poisson brackets among
themselves. In the present paper, we are interested in
systems with only second class systems. Evidently, in this
case, all the Lagrange multipliers are solved and can be
used in the total Hamiltonian. In the reduced phase space,
we can get rid of all the second class constraints by treating
them as identities. One can expect that these constraints
might involve momenta like p1i and in the reduced phase
space the Hamiltonian is free from these unwanted linear
momenta. Unfortunately, such is not the scenario in most of
the cases. Rather, the Hamiltonian still is plagued with the
linear momenta and is unbounded from below. A mere
reduction of the phase space by applying the Dirac
procedure is no help for us because the system has only
second class constraints.

III. PT SYMMETRIES

In this section we point out only the basic features of
PT -symmetric quantum mechanics required to reach our
goal of finding out a bounded from below Hamiltonian for
the Higher derivative models only with second class
constraints.
Consider a linear operator P that effects any other

operator, some function of position and momentum,
through spatial reflection. The effect of P on the basic
operators like space x̂ and momentum p̂ is

Px̂ ¼ −x̂; ð8Þ

Pp̂ ¼ −p̂: ð9Þ

Also consider another operator which is antilinear and
effects the position and momentum as

T p̂ ¼ −p̂; ð10Þ

T x̂ ¼ x̂: ð11Þ

So, it is evident that a combination of the PT operation left
the momentum operator p̂ unchanged but the position
operator x̂ changes sign. States which are eigenstates of the
Hamiltonian are also simultaneously eigenstates of PT .
We know that the Hamiltonian of a theory gives the

energy eigenvalues of a system. If the Hamiltonian is real
and symmetric, consequently, the energy eigenvalues are
also real. Although, there is a stronger condition for this
reality of the energy spectrum and it is called the
Hermiticity of the Hamiltonian. For real spectrum of
the theory in [41] C. M. Bender showed the Hermiticity
of the Hamiltonian as a sufficient but not necessary
condition. In usual theories it is expected that the
Hamiltonian is bounded from below but the higher

derivative theories are usually devoid of this boundedness
due to the existence of the Ostrogradski ghosts. In the
general form, as in Eq. (6), which contains linear momenta
terms like p1iq2i, it is not bounded from below. This linear
momenta, in coordinate space, will make the Hamiltonian a
complex operator and consequently will become non-
Hermitian, H ≠ H†. To overcome this condition, Bender
et al. [11] proposed the concept that if the Hamiltonian is
complex and if it is not Hermitian then for the real energy
spectrum it should be PT symmetric, i.e., H ¼ HPT . To
dig more facts and for the outcome of PT theory, the reader
may refer to [41,42].
One might be curious about the state vectors and how the

Hilbert space is defined [43]. The state vectors for these
complex Hamiltonians give rise to negative norm states
while for a viable physical theory it is required that the
norm of the state vectors must be positive. For these types
of complex Hamiltonians, there exist a previously unno-
ticed symmetry operator denoted by C with the properties

C2 ¼ 1; ½C;PT � ¼ 0; ½C; H� ¼ 0: ð12Þ
In PT theory the operator C is defined in such a way so that
the inner product

hψ jχi ¼
Z

dx½CPT ψðxÞ�χðxÞ ð13Þ

is positive definite. This C operator has similarities with the
charge conjugation operator. C can be written as [44]

C ¼ eQP; ð14Þ
where Q is a real function of the dynamical variable or the
phase space variables.

IV. THE 2+ 1 CHERN-SIMON’S MODEL: FIRST
ORDER TREATMENT

As shown in [32] we consider the Galilean invariant
model in D ¼ 2þ 1 dimensions

L ¼ m_x2i
2

− kϵij _xiẍj ð15Þ
where k has a physical dimension of ½M�½T�. We convert the
Lagrangian into a first order form by redefining the field
variables as

q1i ¼ xi; ð16Þ
q2i ¼ _xi: ð17Þ

So in terms of these variables the Lagrangian becomes

L ¼ mq22i
2

− kϵijq2i _q2j þ λið _q1i − q2iÞ: ð18Þ
Corresponding to this Lagrangian, the momenta are

given by
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p1i ¼
∂L
∂ _q1i ¼ λ1i; p2i ¼ ϵijq2j; ð19Þ

pλi ¼ 0: ð20Þ

Hence we get the primary constraints which are

Φi ¼ p1i − λi ≈ 0; ð21Þ

Ψi ¼ p2i − kϵijq2j ≈ 0; ð22Þ

Ξi ¼ pλi ≈ 0: ð23Þ

Poisson brackets among these primary constraints are

fΦi;Ψjg ¼ 0; ð24Þ

fΨi;Ψjg ¼ −2kϵij; ð25Þ

fΦi;Ξjg ¼ −δij; ð26Þ

fΨi;Ξjg ¼ 0: ð27Þ

The canonical Hamiltonian is

Hcan ¼ p1i _q1i þ p2i _q2i þ pλi
_λi − L ¼ −

m
2
q22i þ λiq2i;

ð28Þ

whereas the total Hamiltonian is

HT ¼ Hcan þ Λ1iΦi þ Λ2iΨi þ Λ3iΞi: ð29Þ

At this level we want to find out the various Lagrange
multipliers by computing the Poisson brackets of the
primary constraints with the total Hamiltonian and equating
them to zero, which gives

Λ3i ¼ 0; ð30Þ

Λ2i ¼
1

2k
ðmq2j þ λjÞϵji; ð31Þ

Λ1i ¼ −q2i: ð32Þ

Thus, we see that there is no generation of new constraints.
The chain of constraints stops here with the second class
constraints. However, we can remove these constraints as
they are second class in nature. The constraints Φi and Ξi
can be removed by simply putting them to be zero.
Corresponding Dirac brackets between the phase space
variables remain unchanged and hence all the Poisson
brackets that were computed earlier remain the same under
these Dirac brackets. Now we are left with the second class
constraints Ψi. For their removal and construction of the
Dirac brackets we consider the matrix

Δij ¼ fΨi;Ψjg ¼ −2kϵij ð33Þ

and its inverse

Δ−1
ij ¼ 1

2k
ϵij: ð34Þ

Removing the second class constraints we get

HT ¼ Hcan: ð35Þ
We observe that the Hamiltonian still contains the term
linear in the momenta which actually gives rise to ghost
states, i.e., the negative norm states. It is a purely second
class theory and for that reason we do not have any way to
get rid of the ghost fields by just incorporating new
constraints in the form of gauge conditions.
In the next section we shall try to see if the theory is PT

symmetric or not. This will enable us to apply the treatment
of [31] to form a ghost free Hamiltonian.

V. PT SYMMETRY OF THE GALILIAN
INVARIANT CHERN-SIMON MODEL

In this section we shall try to fix this problem of
removing the ghost fields by considering the PT version
of the model. After solving the second class constraints the
total Hamiltonian (29), in the reduced phase space,
becomes

H ¼ −
m
2
q22i þ p1iq2i: ð36Þ

This Hamiltonian contains a term p1iq2i which is linear in
momenta. The Hamiltonian thus is not bounded from
below. We consider the isospectral (similarity) transforma-
tion as

q1i ¼ izi; ð37Þ
p1i ¼ −ipzi: ð38Þ

Replacing these in the Hamiltonian, we find out the new
Hamiltonian which is

H̃ ¼ −
m
2
q22i − ipziq2i: ð39Þ

Now, if we apply the transformations of (9) and (11) it can
easily be seen that the Hamiltonian obtained above is PT
symmetric. This Hamiltonian, however, is neither bounded
from below nor real. Also, this Hamiltonian is not even
Dirac Hermitian. To check if the removal of these ghost
fields are really possible or not, we shall analyze as follows.
We consider the usual transformation of the fields as

P̂zi ¼ zi; P̂pzi ¼ pzi; P̂q2i ¼ −q2i; P̂p2i ¼ −p2i:

ð40Þ
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Whereas, under the time reversal operator the transforma-
tions are

T̂ zi ¼ −zi; T̂ pzi ¼ pzi; T̂ q2i ¼ q2i; T̂ p2i ¼ −p2i:

ð41Þ
The effect of the combinedPT transformation H̃ leaves the
invariant

PT H̃ðPT Þ−1 ¼ H̃: ð42Þ
Although the Hamiltonian (39) is not Dirac Hermitian, it is
PT symmetric. The reason for considering the PT
symmetric Hamiltonian is that it gives a real spectrum
despite the fact that the unitarity is violated.
To find the C operator as defined in (14) we first find out

Q. AlthoughQ can be obtained perturbatively, we adopt the
definition given in [31] which is a bilinear function of
the phase space variables, which, for the present model of
the paper with the phase space fq1i; p1i; q2i; p2ig becomes

Q ¼ αpzip2i þ βziq2i; ð43Þ
where α, β are some parameters yet to be determined.

A. Finding α, β

To find the parameters α and β we recall the relations in
(12). The first two relations give an idea about the
properties of the C operator [see [41] for a detailed
explanation]. The third relation is interesting as one can
see that the C commutes with the Hamiltonian. Using this
identity and the non-Hermitian nature of the Hamiltonian
we can easily write

e−QHeQ ¼ H0 −H1: ð44Þ
The Hamiltonian as always, for unbroken PT theories, can
be decomposed into two parts with H0 being the usual
kinetic part which is Hermitian by construction and the H1

contains the non-Hermitian term.
Now we calculate the similarity transformations of the

phase space variables, which are

e−QzieQ ¼ ziCþDSp2i; e−QpzieQ ¼ pziCþ S
D
q2i;

ð45Þ
e−Qq2ieQ ¼ q2iCþDSp2i; ð46Þ

e−Qp2ieQ ¼ p2iCþ S
D
zi; ð47Þ

where we have taken D ¼
ffiffi
α
β

q
, S ¼ sin h

ffiffiffiffiffiffi
αβ

p
,

C ¼ cos h
ffiffiffiffiffiffi
αβ

p
. Using these transformation rules, one

can easily calculate the transformations for the functions.
The Hamiltonian transforms as

eQH̃e−Q ¼−
m
2

�
q22i cosh2

ffiffiffiffiffiffi
αβ

p
−
p2
zi

2
D2ðcosh2

ffiffiffiffiffiffi
αβ

p
− 1Þ

�

þ
�
q22i
D

sinh2
ffiffiffiffiffiffi
αβ

p
−
p2
zi

2
Dsinh2

ffiffiffiffiffiffi
αβ

p �

− ipziq2i

�
m
2
Dsinh2

ffiffiffiffiffiffi
αβ

p
þ cosh2

ffiffiffiffiffiffi
αβ

p �
:

ð48Þ

Putting this expression in (44) and using the expressions of
H0 and H1 we get an identity. Comparing the imaginary on
both sides we get a simplified form

cos h
ffiffiffiffiffiffi
αβ

p
¼ −

m
2

ffiffiffi
α

β

r
sin h

ffiffiffiffiffiffi
αβ

p
: ð49Þ

This is a very important relation we have obtained
between α and β.

B. The bounded from below Hamiltonian

It is clear that the linear momenta terms are still present
in Eq. (48). These terms can be removed if either they are
constraints of the system or the coefficients are such that
they yield to zero. The Dirac constraint analysis performed
in the previous section suggests that in the present system
pziq2i do not form any constraint. On the other hand, since
it is a purely second class system, we cannot remove them
by introducing these terms as gauge conditions. Contrary to
this approach of a Dirac constraint analysis, since this is a
PT symmetric system, we can apply a similarity trans-
formation to (36) and using (49) we get

H̃0 ¼ e−Q=2HeQ=2

¼ q22i

�
m2

4
DSþ S

D

�
þ p2

zi

2

�
m
2
D2ðC − 1Þ þ 2

m
C

�
:

ð50Þ
It is evident that all the terms involving phase space
variables are in the squared form and consequently the
above transformed Hamiltonian is bounded from below.
Thus, the PT transformations helped us to get rid of the
unwanted linear momenta that can give rise to negative
norm states. The eigenstates jψ̃i of the Hamiltonian (50)
have a positive inner product and are normalized hψ̃ jψ̃i ¼ 1
in the Dirac sense. This is guaranteed because the
states of the original Hamiltonian (39) are connected via
jψ̃i ¼ e−Q=2jψi. In PT theory these eigenstates are nor-
malized as

hψnje−Qjψmi ¼ δðm; nÞ;
X

jψnihψnje−Q ¼ 1:

ð51Þ
Thus, for the second class systems, the above algorithm

may be useful for other models also. Provided that, after the
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similarity transformation (38), the Hamiltonian should be
PT symmetric. For those models, the unboundedness may
be just an artifact which can be removed by taking into
account a more physical symmetry viz. the PT symmetry.

VI. CONCLUSIONS

Higher derivative theories have been seen in active use in
various branches of physics including gravity, string theory,
condensed matter physics, etc. One might argue the validity
of these theories as there are adequate reasons to question and
one of them is the Ostrogradski ghost problem [25,27]. To
remove these unphysical sectors from the theory, earlier
attempts were purely system dependent [28,30]. In general,
these HD models always contain constraint which includes
both first class and second class constraints. The problem for
solving the first class systems is proposed in [30] but the
method cannot deal with systems with only second class
constraints. This issuewas addressed here and away to solve
by considering thePT symmetries of the systemwas shown.
We have converted the HD theory into a first order theory

by redefining the field variables and incorporating appro-
priate constraints at the Lagrangian level. While performing
the Hamiltonian analysis, we have found out all the con-
straints in the theory. We have considered the problem of
systems only with second class constraints. As an example,
the Galilean invariant Chern-Simons model was considered
in 2þ 1 dimensions. These second class constraints were
removed by treating them to be zero and consequently
replacing all the Poisson brackets of the theory by

appropriate Dirac brackets. The main concern of the theory
was with the Hamiltonian which contained a term p1iq2i.
This term, linear in momenta, gives rise to negative norm
state when one goes for quantization of the theory. It is
evident from the constraint structure that none of the
constraints, which are second class indeed, contain the
momenta and hence we have no way to reduce this to get
the reduced phase space. To solve this issue of the linear
momenta we have considered PT symmetric aspects of the
model. Because of the existence of the linear momenta, after
performing an isospectral similarity transformation, the
Hamiltonian becomes imaginary. We noticed that although
the Hamiltonian now became non-Hermitian it is PT
symmetric. We calculated the PT transformations of the
phase space variables. The PT transformation of the
Hamiltonian is shown to be real and all the terms in the
transformed Hamiltonian are bounded from below.
Though it is a higher derivative theory, finally we got the

real and bounded from below Hamiltonian which is not
usual for this class of theories. Despite its constraint
structure, the inherent PT symmetric nature of the theory
was indeed a help to get rid of the linear momenta terms
causing the instability of the quantum version. Now the
Hamiltonian does not contain the Ostrogradski ghost term
and is free from the instabilities. The method described
above is applicable for systems where only second class
constraints appear. It would be worth investigating the
applicability of this method on more complex and physi-
cally viable models.

[1] K. S. Stelle, Renormalization of higher-derivative quantum
gravity, Phys. Rev. D 16, 953 (1977).

[2] I. P. Neupane, Consistency of higher derivative gravity in
the Brane background, J. High Energy Phys. 09 (2000)
040.

[3] S. Nojiri, S. D. Odintsov, and S. Ogushi, Cosmological and
black hole brane-world universes in higher derivative
gravity, Phys. Rev. D 65, 023521 (2001).

[4] J. Iliopoulos and B. Zumino, Broken supergauge symmetry
and renormalization, Nucl. Phys. B76, 310 (1974).

[5] F. S. Gama, M. Gomes, J. R. Nascimento, A. Yu. Petrov, and
A. J. da Silva, Higher derivative supersymmetric gauge
theory, Phys. Rev. D 84, 045001 (2011).

[6] C. S. Chu, J. Lukierski, and W. J. Zakrzewski, Hermitian
analyticity, IR/UV mixing and unitary of noncommutative
field theories, Nucl. Phys. B632, 219 (2002).

[7] A. J. Accioly, A classical approach to higher derivative
gravity, Rev. Bras. Fis. 18, 593 (1988).

[8] T. P. Sotiriou and V. Faraoni, fðRÞ theories of gravity, Rev.
Mod. Phys. 82, 451 (2010).

[9] I. Gullu, T. C. Sisman, and B. Tekin, Canonical structure of
higher derivative gravity in 3D, Phys. Rev. D 81, 104017
(2010).

[10] N. Ohta, A complete classification of higher derivative
gravity in 3D and criticality in 4D, Classical Quantum
Gravity 29, 015002 (2012).

[11] C. M. Bender and S. Boettcher, Real Spectra in Non-
Hermitian Hamiltonians Having PT Symmetry, Phys.
Rev. Lett. 80, 5243 (1998).

[12] T. T. Wu, Ground state of a Bose system of hard spheres,
Phys. Rev. 115, 1390 (1959).

[13] R. C. Brower, M. A. Furman, and M. Moshe, Critical ex-
ponents for theReggeonquantum spinmodel, Phys. Lett.76B,
213 (1978).

[14] J. L. Cardy and G. Mussardo, S matrix of the Yang-Lee
edge singularity in two dimensions, Phys. Lett. B 225, 275
(1989).

[15] A. B. Zamolodchikov, Two-point correlation function
in scaling Lee-Yang model, Nucl. Phys. B348, 619
(1991).

PAUL, DHAR, CHOWDHURY, and SAHA PHYS. REV. D 99, 065018 (2019)

065018-6

https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1088/1126-6708/2000/09/040
https://doi.org/10.1088/1126-6708/2000/09/040
https://doi.org/10.1103/PhysRevD.65.023521
https://doi.org/10.1016/0550-3213(74)90388-5
https://doi.org/10.1103/PhysRevD.84.045001
https://doi.org/10.1016/S0550-3213(02)00216-X
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/PhysRevD.81.104017
https://doi.org/10.1103/PhysRevD.81.104017
https://doi.org/10.1088/0264-9381/29/1/015002
https://doi.org/10.1088/0264-9381/29/1/015002
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRev.115.1390
https://doi.org/10.1016/0370-2693(78)90279-4
https://doi.org/10.1016/0370-2693(78)90279-4
https://doi.org/10.1016/0370-2693(89)90818-6
https://doi.org/10.1016/0370-2693(89)90818-6
https://doi.org/10.1016/0550-3213(91)90207-E
https://doi.org/10.1016/0550-3213(91)90207-E


[16] F. K. Abdullaev, Y. V. Kartashov, V. V. Konotop, and D. A.
Zezyulin, Solitons in PT -symmetric nonlinear lattices,
Phys. Rev. A 83, 041805(R) (2011).

[17] D. I. Borisov, On a PT -symmetric waveguide with a pair of
small holes, Proc Steklov Inst Math / Trudy Matematiche-
skogo instituta imeni VA Steklova 281, 5 (2013).

[18] M. Fagotti, C. Bonati, D. Logoteta, P. Marconcini, and M.
Macucci, Armchair graphene nanoribbons: PT -symmetry
breaking and exceptional points without dissipation, Phys.
Rev. B 83, 241406(R) (2011).

[19] L. Zhang, G. Zhan, Z. Li, and W.-J. Gong, Effect of PT
symmetry in a parallel double-quantum-dot structure, Phys.
Rev. A 96, 062133 (2017).

[20] K. A. Milton, E. K. Abalo, P. Parashar, N. Pourtolami, and J.
Wagner, PT -symmetric quantum electrodynamics and uni-
tarity, Phil. Trans. R. Soc. A 371, 20120057 (2013).

[21] J. Yang, Symmetry breaking of solitons in one-dimensional
parity-time-symmetric optical potentials, Opt. Lett. 39, 5547
(2014).

[22] İ. Gksel, N. Antar, and I. Bakrta, Solitons of ð1þ 1ÞD
cubic-quintic nonlinear Schrdinger equation with PT sym-
metric potentials, Opt. Commun. 354, 277 (2015).

[23] C. E. Rter, K. G. Makris, R. El-Ganainy, D. N. Christodou-
lides, M. Segev, and D. Kip Observation of paritytime
symmetry in optics, Nat. Phys. 6, 192 (2010).

[24] Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N.
Christodoulides, B. He, Y. Zhang, and M. Xiao, Observation
of Parity-Time Symmetry in Optically Induced Atomic
Lattices, Phys. Rev. Lett. 117, 123601 (2016).
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