
 

p̂ · Â vs x̂ · Ê: Gauge invariance in quantum optics and quantum field theory

Nicholas Funai,1,2 Jorma Louko,3 and Eduardo Martín-Martínez1,2,4
1Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

2Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
4Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario N2L 2Y5, Canada

(Received 20 July 2018; published 26 March 2019)

We compare the predictions of the fundamentally motivated minimal coupling (p̂ · Â) and the ubiquitous

dipole coupling (x̂ · Ê) in the light-matter interaction. By studying the light-matter interaction for
hydrogenlike atoms we find that the dipole approximation cannot be a priori justified to analyze the
physics of vacuum excitations (a very important phenomenon in relativistic quantum information) since a
dominant wavelength is absent in those problems, no matter how small (as compared to any frequency
scale) the atom is. Remarkably, we show that the dipole approximation in those regimes can still be valid as
long as the interaction time is longer than the light-crossing time of the atoms, which is a very reasonable
assumption. We also highlight some of the subtleties that one has to be careful with when working with the
explicitly gauge noninvariant nature of the minimal coupling, and we compare it with the explicitly gauge
invariant dipole coupling.
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I. INTRODUCTION

Whilst quantum theory was still in its infancy there was a
desire to integrate Schrödinger’s equation into the might of
electromagnetism. This was not only motivated by the want
of a theoretical framework for the quantum dynamics of
charged particles, but also by the need to design improved
experiments to test atom-field interactions, some of which
ultimately lead to the laser [1]. One of the main challenges
in this formalism was how to deal with the gauge freedom
of the electromagnetic (EM) field and ensure that physi-
cally measurable quantities, such as transition rates, also
respected this freedom. The constraining effect of the gauge
freedom when combined with a local gauge freedom for the
electron wave function lead to the derivation of the
minimally coupled Hamiltonian [2],

i
∂
∂tψðx; tÞ ¼

�
1

2μe
ðp̂ − qAðx; tÞÞ2

þ VðxÞ þ qUðx; tÞ
�
ψðx; tÞ; ð1Þ

where the wave function local gauge transformation is
given by ψ̃ðx; tÞ ¼ e−iqχðx;tÞψðx; tÞ so that (1) is invariant
under the usual EM vector and scalar potentials gauge
transformations,

Ãðx; tÞ ¼ Aðx; tÞ −∇χðx; tÞ; ð2Þ

Ũðx; tÞ ¼ Uðx; tÞ þ _χðx; tÞ: ð3Þ

Here μe refers to the reduced mass of the electron-nucleus
system.
This atom-field interaction seems to resolve the gauge

issue introduced by the EM field; however, historically the
improper use of different gauges predicted different tran-
sition rates; which, if correct, would have allowed an
experimentalist to isolate a physical gauge. In order to
resolve this gauge issue in 1931 Göppert-Mayer [3]
wrote down the electric dipole coupling, which approx-
imates (1) by

i
∂
∂tψðx; tÞ ¼

�
1

2μe
p̂2 þ VðxÞ þ qx̂ · Eðx; tÞ

�
ψðx; tÞ; ð4Þ

and makes Schrödinger’s equation free from any gauge
terms. The validity of this coupling required the dipole
approximation [4], an approximation that requests that all
plane waves in the EM field with a wave vector kmust obey
Rjkj ≪ 1 where R is the characteristic length of the support
of the electron wave function (e.g., Bohr radius). Under
these circumstances the EM field is approximately spatially
constant over the size of the atom. In addition to its
simplicity, this interaction was consolidated over time by
experiments [5] and is confidently used today [6,7].
The electric dipole coupling introduced by Göppert-

Mayer has worked well for the experimental regimes
accessible in the 20th century; however, the purpose built
minimally coupled Hamiltonian defying its gauge inde-
pendence by producing gauge dependent observable pre-
dictions was still a problem that required a solution.
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The solution to this problemwas produced byLamb et al. [8]
with the introduction of “physical observables”. The issue of
gauge noninvariance originated from a misuse of gauge
transformations via a change of EM gaugewithout perform-
ing the corresponding wave function gauge transformation.
In order to prevent such ambiguity all “physical observ-
ables”would be defined as functions of the position operator
x̂ and the “mechanical momentum”, i.e., a form of gauge
covariant derivative given by π̂ ¼ p̂ − qAðx; tÞ. Using the
mechanical momentum, Schrödinger’s equation (1)
becomes

i
∂
∂tψðx; tÞ ¼

�
1

2μe
π̂2ðx; tÞ þ VðxÞ þ qUðx; tÞ

�
ψðx; tÞ:

ð5Þ

In particular this concept of “mechanical” or “physical”
observables also restricts the set of measurable attributes;
for example the expectation value of momentum hp̂i ¼
hψ jp̂jψi is no longer an allowed measurement as a gauge
transformation of the state jψi reveals a gauge dependence
on the expectation value. Conversely the expectation value
of “physical” observables, e.g., hπ̂i, are allowed measure-
ments as any gauge transformation of the EM field produce
terms that are exactly balanced by the associated wave
function gauge transformations. This enforces that any
“physical” observable produced measurements are gauge
invariant, a necessary condition for any prediction that has
to match experimental results.
In summary, gauge invariant transition amplitudes must

be formulated as those between the eigenstates of the free
“mechanical” Hamiltonian,

Ĥ ¼ 1

2μe
π̂2ðx; tÞ þ VðxÞ: ð6Þ

As π̂ ¼ p̂ − qAðx; tÞ and p̂ ¼ −i∇, these eigenstates
depend on A, and they will in general not coincide with
the eigenstates of the q ¼ 0 Hamiltonian. The point
however is that the eigenstates of Ĥ can be expanded
perturbatively in q about the eigenstates of the q ¼ 0

Hamiltonian: this choice for the eigenstates of Ĥ provides
a perturbative expansion of gauge invariant transition
amplitudes that have a physical meaning, as the observable
transition amplitudes between eigenstates of the q ¼ 0
Hamiltonian. In particular Lamb et al. [8] demonstrated
that by following this approach and by using pointlike
atoms in classical EM fields (where the electric dipole
approximation holds) the minimally coupled Hamiltonian
yielded the same transition probabilities as the electric
dipole Hamiltonian. However, to prove this, it was assumed
in [8] that the atoms are pointlike, again relying on an
approximation that requires a dominant wavelength (or,
rather, a range of dominant/relevant wavelengths) of the
field to be much larger than the atomic size, e.g., a coherent

excitation of the field of peak wavelength much larger than
the size of the atom, or a process of spontaneous emission
where the gap of the atom has an associated wavelength
again much larger than the atomic radius.
In this paper we will study to what extent the dipole

approximation and the minimal coupling (with the correct
gauge considerations) coincide for finite-size hydrogenlike
atoms when no notion of dominant wavelength (or range of
dominant wavelengths) is present, e.g., vacuum excitations:
ground state atoms in the presence of the vacuum of the
quantum fields interacting for finite times. We will be
following a similar approach to Lamb et al. in order to
properly compare the electric dipole coupling with the
minimally coupled Hamiltonian with particular attention to
why the electric dipole coupling is so frequently consistent
with experimental results.
We wish to clarify that we will consider the dipole

expansion only. Higher order terms can be added to
improve the multipole approximation as shown by [9];
however we will compare the minimal model with the
dipole model, the simplest approximation and the most
commonly used, and show under what conditions the
dipole model can still be used even in the absence of
dominant wavelengths.
Our motivation is to validate the use of the dipole

approximation for relativistic quantum information scenar-
ios; in particular where EM fields are treated quantumly
and where rotating wave-type approximations are no longer
appropriate, denying us a means of defining a dominant
wavelength, i.e., beyond the assumptions of previous
works. This is the case when we study phenomena where
the initial state of the system is the field vacuum and the
ground state of the atom (such as e.g., the Fermi problem
[10,11] or vacuum entanglement harvesting [12–14], above
all when they are computed modeling realistic hydrogen-
like atoms [15]).
To summarize, the work presented here extends the

domain of the work by Lamb et al. by removing the
assumption of a dominant wavelength, allowing us to treat
a wider range of physical situations. Our work uses finite
sized atoms, quantum fields and the full hydrogen atom
Hilbert space; none of which were used by Lamb et al. In
our analysis we do not consider dissipative losses, only
concentrating on Schrödinger’s equation and the effects of
the different coupling type. In the discussion we also raise
the issue of switching the interaction on and off and its
effects of the dipole approximation.

II. THE MODELS

When treating the electric dipole coupling (4) we note
that the Hamiltonian is explicitly gauge invariant. The full
dipole model then consists of leaving the electron wave
function invariant under EM gauge transformations in order
to guarantee gauge invariant dynamics. This is a common
approach adopted by the quantum optics community,
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particularly exploiting this electron gauge invariance to
define their [preparation and measurement] basis of states
as eigenstates of 1

2μe
p̂2 þ Vðx̂Þ [16].

Conversely, as stated above, the minimal coupling
Hamiltonian (1) is not gauge invariant; therefore, we adopt
a local gauge transformation of the electron wave function
to guarantee gauge invariant physical quantities. These
local gauge transformations introduce the migraine of
deciding how to define the preparation and measurement
basis of states. Any choice of basis will be mathematically
correct, provided the relevant gauge transformations are
properly applied; however, experimental constraints would
ultimately arbitrate. Lamb et al.’s suggestion was to use
eigenstates of the mechanical energy, which dynamically
change with the field state; although, due to energy level
degeneracies these states do not seem to define an appro-
priate preparation and measurement basis consistent with
the usual jn; l; mi atomic states commonly used in light-
matter interactions. This issue is not addressed by Lamb
et al. as they restricted their atoms to 2-level systems.
Note our units are ℏ ¼ c ¼ ϵ0 ¼ 1. On some occasions

these constants will be explicitly restored for clarity.

A. The states

In following the spirit of Lamb et al. [8] we work
perturbatively to first order in q and define a “dressed” state
(assuming, for now, a classical field theory),

jψ̃ t;li ¼
X
k

ðδlk þ iqLlkðtÞÞjψki; ð7Þ

where (in our case) jψki are jn; l; mi eigenstates of the
standard atomic Hamiltonian 1

2μe
p̂2 þ VðrÞ, orbital angular

momentum L̂2 and z-orbital angular momentum L̂z respec-
tively. The coefficients Llk will be functions of the EM
potentials and are chosen such that the dressed state jψ̃ t;li is
“gauge” invariant; i.e., applying the wave function local
gauge transformation also gauge transforms the EM poten-
tials defining Llk, all to first order in a q perturbative
expansion.
Since jψ̃ t;li → jψ li as q → 0 and jψ li is an eigenstate of

the free Hamiltonian p̂2=2μe þ V then in order to attain
gauge invariance one could set jψ̃ t;li to be an eigenstate of
π̂2=2μe þ V, as suggested by Lamb et al. If all the
eigenenergies of the free Hamiltonian are nondegenerate,
this is accomplished by

LlkðtÞ ¼ −
hψkj Aðx̂;tÞ·p̂þp̂·Aðx̂;tÞ

2μe
jψ li

iðEl − EkÞ
: ð8Þ

If some eigenenergies are degenerate this idea has,
however, a technical difficulty because first order pertur-
bation theory muddles the energy eigenstates of the free
Hamiltonian within the degenerate sectors already at zeroth

order, and wewould lose our notion of “perturbing” the free
states jn; l; mi defined by energy and angular momentum.
A convenient way to avoid this issue is to choose

LlkðtÞ ¼
8<
:−

hψkjAðx̂;tÞ·p̂þp̂·Aðx̂;tÞ
2μe

jψ li
iðEl−EkÞ if El ≠ Ek;

−hψkj
R
t
0 dsUðx̂; sÞjψ li if El ¼ Ek;

ð9Þ

which ensures gauge invariance of the transition proba-
bilities under the minimal coupling. Stronger than that, in
fact this already ensures the gauge invariance of the
transition amplitudes, as we show in Appendix B. Note
that as q → 0 these states return to the usual atomic jn; l; mi
eigenstates.
One can interpret LlkðtÞ as defining the boundary

conditions for the perturbative solution of Schrödinger’s
equation, i.e., initial state jψ̃0;ii and final measurement state
jψ̃T;fi measured at time T. Physically, these dressed states
form an orthonormal basis whose measurements produce
physical quantities in the sense that the transition rates are
independent of the choice of gauge (shown in Appendix B).

B. The equations

The soon to be quantized Schrödinger equation in the
Coulomb gauge,

i
∂ψðx; tÞ

∂t ¼
�

1

2μe
ðp̂ − qAðx; tÞÞ2 þ VðrÞ

�
ψðx; tÞ; ð10Þ

to which we apply the gauge transformation (cf. Scully and
Zubairy [2] and also Appendix A),

ψ̃ðx; tÞ ¼ e−iqðAðx;tÞ·xÞψðx; tÞ; ð11Þ

finally yields (see Appendix A)

i
∂ψ̃ðx; tÞ

∂t ¼
�

1

2μe
ðp̂þ q½ðxi∇ÞAiðx; tÞ�Þ2

− qx · Eðx; tÞ þ VðrÞ
�
ψ̃ðx; tÞ: ð12Þ

Notice the term ðxi∇ÞAiðx; tÞ; this term can be considered
small if the variations of Ai are small on the length scale of
the support of the wave function. In Fourier terms this
means dominant Fourier modes of Ai must obey the relation
a0k ≪ 1 where a0 is the length scale of the support of the
wave function (for hydrogen orbitals a0 is the Bohr radius).
This is a slight reformulation of the dipole approximation.
We therefore have the two equations of motion for the
minimal and dipole models respectively,

i
∂ψðx; tÞ

∂t ¼
�

1

2μe
ðp̂ − qAðx; tÞÞ2 þ VðrÞ

�
ψðx; tÞ; ð13Þ
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i
∂ψ̃ðx; tÞ

∂t ¼
�

1

2μe
p̂2 − qx · Eðx; tÞ þ VðrÞ

�
ψ̃ðx; tÞ: ð14Þ

At this point we depart from the semiclassical model and
instate A and U as members of the fully relativistic
4-potential for EM field with quantum degrees of freedom.
As shown in Appendix B the transition rates between
dressed states is gauge invariant, and so we rewrite (9), (13)
and (14) with a quantized EM field. Specifically, the
Coulomb gauge for the EM field obeys

∇ · Â ¼ 0; ð15Þ

Û ¼ 0; ð16Þ

such that

Âðx; tÞ ¼
Z

d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p
X2
λ¼1

ϵλðkÞðâλðkÞe−iðωt−k·xÞ

þ â†λðkÞeiðωt−k·xÞÞ; ð17Þ

k · ϵλðkÞ ¼ 0; ð18Þ

Êðx; tÞ ¼ −
∂
∂t Âðx; tÞ; ð19Þ

and â†λðkÞ; âλðkÞ are the plane wave mode creation and
annihilation operators respectively.
Given that we are working in an interaction picture

where the EM free field evolution is encoded into the field
operators, we can write the following decomposition of the
total Hamiltonian (first order perturbation theory):

Ĥ ¼ Ĥ0 þ qĤI þOðq2Þ; ð20Þ

Ĥ0 ¼
1

2μe
p̂2 þ VðrÞ; ð21Þ

Ĥmin
I ¼ −

1

μe
Âðx; tÞ · p̂; ð22Þ

Ĥdip
I ¼ −x̂ · Êðx; tÞ: ð23Þ

For completeness the fully quantum dressed states take the
form,

jψ̃ t;l;ϕii ¼
X
k

ðδlk þ iqL̂lkðtÞÞjψkijϕii; ð24Þ

where jϕii is the state of the EM field and for the minimal
case,

L̂lkðtÞ ¼
(
−

hψkjÂðx̂;tÞ·p̂μe
jψ li

iðEl−EkÞ if El ≠ Ek;

0 if El ¼ Ek;
ð25Þ

since we are working in the Coulomb gauge and L̂lk ¼ 0
for the dipole case.
The main concern now is whether the quantum nature

of the EM field permits the existence of a “dominant
wavelength” and if this wavelength satisfies the dipole
approximation. This is particularly relevant when we study
phenomena where the initial state of the system is the field
vacuum and the ground state of the atom, such as is
commonly studied in relativistic quantum information.

III. DYNAMICS AND TRANSITION
PROBABILITIES

A. General field state

Our setup presumes an ability to prepare the electron in a
dressed state described by (24) and (25) at time t ¼ 0 and to
projectively measure the state in a dressed basis also
described by (24) and (25) at some final time t ¼ T.
Since we are working to first order in perturbation theory,
the wave function of the electron can be perturbatively
represented by

jψ̃ lðtÞ;ϕii ¼
X
k

ðδlk þ iqK̂lkðtÞÞe−iEktjψkijϕii; ð26Þ

i.e., jψ̃ lðtÞ;ϕiwould be a time evolved representation of the
dressed state corresponding to the undressed state jψ lijϕi.
Note that K̂lkð0Þ ¼ L̂lkð0Þ.
As shown in Appendix C, Schrödinger’s equation yields

_̂KlkðtÞ ¼ −hψkjĤ1jψ lieiðEk−ElÞt; ð27Þ

and therefore,

K̂lkðTÞ ¼ −
Z

T

0

dthψkjĤ1jψ lieiðEk−ElÞt þ L̂lkð0Þ: ð28Þ

These two equations give us a complete description of
the wave function at time T. Now our focus turns to
computing the probability amplitude of measuring the state
of the system in jψ̃T;f;ϕfi, which becomes

hψ̃T;f;ϕfjψ̃ iðTÞ;ϕii
¼ iqhϕfjðK̂ifðTÞe−iEfT − L̂ifðTÞe−iEiTÞjϕii; ð29Þ

where we have used the property L̂†
lk ¼ L̂kl. Note that we

will not measure the field jϕfi; instead, we will trace over
the field to attain a final probability amplitude.
After some computation these inner products can be

compressed into simplified expressions,
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hψ̃T;f;ϕfjψ̃ iðTÞ;ϕiimin ¼ T
q
μe

e−iEfT

Z
d3k

ð2πÞ3=2
ffiffiffiffi
ω

2

r X2
λ¼1

ϵλðkÞ · hϕfj
�
âλeiðΩ−ωÞ

T
2sinc

�
ðΩ − ωÞT

2

�
hψfj

eik·x∇
Ω

jψ ii

− â†λe
iðΩþωÞT

2sinc

�
ðΩþ ωÞT

2

�
hψfj

e−ik·x∇
Ω

jψ ii
�
jϕii; ð30Þ

hψ̃T;f;ϕfjψ̃ iðTÞ;ϕiidip ¼ −Tqe−iEfT

Z
d3k

ð2πÞ3=2
ffiffiffiffi
ω

2

r X2
λ¼1

ϵλðkÞ · hϕfjðâλeiðΩ−ωÞT2sinc
�
ðΩ − ωÞT

2

�
hψfjeik·xr̂jψ ii

− â†λe
iðΩþωÞT

2sinc

�
ðΩþ ωÞT

2

�
hψfje−ik·xr̂jψ iiÞjϕii; ð31Þ

where sincðxÞ ¼ sinðxÞ=x, Ω ¼ Ef − Ei and μe is the electron-proton reduced mass. Of particular importance here is the
sinc term. This introduces a weak polynomial type decay with increasing ω. This decay is a consequence of the “sudden
switching” of the interaction between the atom and the EM field. The weakness of this decay is the source of the difference
between the dipole and minimal models.
The form of (30) and (31) encourage us to define new variables for derivational simplicity,

hψ̃T;f;ϕfjψ̃ iðTÞ;ϕii ¼ hϕfj
Z

d3k
X2
λ¼1

ðh1;λâλ þ h2;λâ
†
λÞjϕii; ð32Þ

where h1;λ and h2;λ are chosen to match up with (30) and (31) for each of the Hamiltonians under investigation. Using this
compact expression we can determine the probability of transition,

X
ϕf

jhψ̃T;f;ϕfjψ̃ iðTÞ;ϕiij2 ¼
X2
λ;λ0¼1

hϕij
Z

d3kðh1;λâλ þ h2;λâ
†
λÞ†

X
ϕf

jϕfihϕfj
Z

d3k0ðh1;λ0 âλ0 þ h2;λ0 â
†
λ0 Þjϕii: ð33Þ

Now
P

ϕf
jϕfihϕfj ¼ I is the resolution of the identity for fields; therefore, the probability of transition from initial to final

states is

Pði → fÞ ¼
X2
λ;λ0¼1

�Z
d3k

Z
d3k0ðh�1;λðkÞâ†λðkÞ þ h�2;λðkÞâλðkÞÞðh1;λ0 ðk0Þâλ0 ðk0Þ þ h2;λ0 ðk0Þâ†λ0 ðk0ÞÞ

�
ϕi

: ð34Þ

This expression can be further simplified by exploiting the commutation relations of the field operators

Pði → fÞ ¼
�
∶
X2
λ;λ0¼1

Z
d3k

Z
d3k0ðh�1;λðkÞâ†λðkÞ þ h�2;λðkÞâλðkÞÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Pϕ

ðh1;λ0 ðk0Þâλ0 ðk0Þ þ h2;λ0 ðk0Þâ†λ0 ðk0ÞÞ∶
�

ϕi

þ
X2
λ¼1

Z
d3kh�2;λðkÞh2;λðkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P0

; ð35Þ

where the colons indicate normal ordering. In this sense we
detach the vacuum contributions (P0) from excited field
contributions (Pϕ). A quick inspection of (35) shows that
for jϕii ¼ j0i the Pϕ term will be zero and the P0 term
remains. Also by inspection we note that the P0 term is an
integral and sum over non-negative numbers, in contrast to
the Pϕ term that is the product of sums and integrals over
the complex plane, and so we intuit that the P0 term will be

significant for many cases and the Pϕ term becomes
relevant in very specific cases or for reasonably strong
EM field excitations.

B. Vacuum excitation and spontaneous emission

The natural first step is to compare predictions of the two
models for jϕii ¼ j0i, i.e., the vacuum state. Under these
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circumstances we attempt to compute (35). For the tran-
sition 1s → 2p we have (shown in Appendix C)

Pdip ¼
262144ℏ3ϵ0

177147c3q2Z2μ2e

×
Z

∞

0

dω
ω3

ð1þ 4a2
0

9c2Z2 ω2Þ6
sin2ððωþΩÞ t

2
Þ

ððωþ ΩÞ 1
2
Þ2 ; ð36Þ

Pmin ¼
262144ℏ3ϵ0

177147c3q2Z2μ2e

×
Z

∞

0

dω
ω3

ð1þ 4a2
0

9c2Z2 ω2Þ4
sin2ððωþΩÞ t

2
Þ

ððωþ ΩÞ 1
2
Þ2 ; ð37Þ

where q is the electron charge, Z is the proton number of
this Rydberg type atom, μe is the reduced mass of the
system. Here we have reintroduced fundamental constants
for completeness. We have also used Ω ¼ Ef − Ei, which
for Rydberg atoms is given by

Ef − Ei ¼
1

2
μeZ2α2

�
1

n2i
−

1

n2f

�
; ð38Þ

and α ¼ q2=4π (in natural units); where α is the fine
structure constant, ni is the principal quantum number of
the initial state and nf is the principal quantum number of
the final state.
Equations (36) and (37) have identical coefficients and

one significant difference, namely a different decay rate of
the integrand with respect to ω, which generates the
discrepancy between the two couplings. If high frequency
contributions could be dampened then these two integrands
could be well approximated by one another. This obser-
vation suggests more general conditions for the two models
to predict the same probabilities.
Indeed, in this form, it is easy to see why when there is a

dominant frequency, the dipole model approximates the
minimal one for long times: Consider if Ω < 0 (atom
initially in the excited state), then for ω ¼ −Ω we have
resonance and consequently, for long times, one can apply
Fermi’s golden rule (related to the single mode approxi-
mation) of the form,

lim
t→∞

sin2ðηt=2Þ
ðη=2Þ2t ¼ πδðη=2Þ: ð39Þ

In this case Ω becomes the field’s “dominant” frequency
and the dipole approximation criterion becomes Ωa0=z ≪
1. Such a condition, when coupled with the relevant zeroth
order Taylor expansion of (36) and (37) yields equal
predictions from both couplings. Notice, however, that if
Ω > 0 then the transition is an excitation and the sinc
contribution does not resonate (i.e., ∄ω ≥ 0 such that
ωþ Ω ¼ 0). In other words, this single-mode like approxi-
mation would not be justified if we were looking at the
vacuum excitation probability of the field for finite times.

However, this golden rule/single mode approximation is
not alone in isolating a single mode or ranges of modes that
dominate EM field behavior. Generally light-matter inter-
actions may include intrinsic field UV cutoffs, time
dependence in the interaction strength or secondary non-
radiative processes introducing nonperturbative time
dependences; any of which, we argue, could, in principle,
be used to satisfy the dipole approximation (ωa0=Z ≪ 1),
and hence zeroth order Taylor expansions of (36) and (37)
become

Pdip →
262144ℏ3ϵ0

177147c3q2Z2μ2e

Z
ω≪ Z

a0

0

dωω3
sin2ððωþΩÞ t

2
Þ

ððωþ ΩÞ 1
2
Þ2 ;

ð40Þ

Pmin →
262144ℏ3ϵ0

177147c3q2Z2μ2e

Z
ω≪ Z

a0

0

dωω3
sin2ððωþΩÞ t

2
Þ

ððωþ ΩÞ 1
2
Þ2 ;

ð41Þ
which, after substituting numerical values becomes

Pdip; Pmin → 2.68 × 10−41s2
Z

ω≪ 1
a0

0

dωω3
sin2ððωþ ΩÞ t

2
Þ

ððωþΩÞ 1
2
Þ2 :

ð42Þ
Under normal circumstances the dipole approximation

criterion is not satisfied by higher frequency modes, and we
therefore ask how large are the contributions from these
nondipole approximation modes and how large is the
subsequent difference between the models. This will
identify scales for which the dipole approximation is
accurate even if there is no dominant frequency. As we
will discuss below, for example, this would include
interactions where the atom and the field are in their
ground states but the interaction lasts longer than the
light-crossing time of the atom.
From (36) and (37) we cannot, a priori, know the exact

effect of the high frequency modes on the transition
probabilities. Our only expectation is that the introduction
of higher order multipoles would reduce the discrepancy
between the two models; however, that is not relevant to
this manuscript. We reemphasize that we want to assess the
validity of this approximation in processes like vacuum
excitations where there is no range of dominant frequencies
and the duration of the interaction is what will dictate
whether the approximation is good.

C. Excited fields

When considering optical experiments, one of the most
common excited fields considered is the coherent state.
This is the state usually associated with a laser, and for our
purposes we will model it with a Gaussian frequency
spectrum,
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jϕii ¼ N exp

�Z
dk

X2
λ¼1

Gλðk; k0Þâ†λðkÞ
�
j0i; ð43Þ

where Gλðk; k0Þ is some Gaussian centered at k0 and N is the appropriate normalisation factor. Coherent states are
eigensates of the field annihilation operator, using this fact we can simplify (35) as

Pði → fÞ ¼
X2
λ¼1

Z
d3kðh�1;λðkÞG�

λðk; k0Þ þ h�2;λðkÞGλðk; k0ÞÞ
X2
λ¼1

Z
d3k0ðh1;λ0 ðk0ÞGλ0 ðk0; k0Þ þ h2;λ0 ðk0ÞG�

λ0 ðk0; k0ÞÞ

þ
X2
λ¼1

Z
d3kh�2;λðkÞh2;λðkÞ;

¼




X2
λ¼1

Z
d3kðh�1;λðkÞG�

λðkÞ þ h�2;λðkÞGλðkÞÞ




2 þX2

λ¼1

Z
d3kh�2;λðkÞh2;λðkÞ: ð44Þ

For the transition 1s → 2p we have

hdip�;λ ¼ � 128
ffiffiffi
2

p
ℏ3=2 ffiffiffiffiffi

ϵ0
p

t

243
ffiffiffi
π

p
qZμe

×
e−

it
2
ð2Ef=ℏ�ω−ΩÞsincðω∓Ω

2
tÞ ffiffiffiffi

ω
p

sinðθkÞ
ð1þ 4a2

0

9c2Z2 ω2Þ3
; ð45Þ

hmin
�;λ ¼ � 128

ffiffiffi
2

p
ℏ3=2 ffiffiffiffiffi

ϵ0
p

t

243
ffiffiffi
π

p
qZμe

×
e−

it
2
ð2Ef=ℏ�ω−ΩÞsincðω∓Ω

2
tÞ ffiffiffiffi

ω
p

sinðθkÞ
ð1þ 4a2

0

9c2Z2 ω2Þ2
; ð46Þ

where the� subscript refers toþ → 1, − → 2, and θk is the
spherical coordinate polar angle of k. Here we have
reintroduced the physical constants for completeness.
As with the vacuum contributions the minimal coupling

and the dipole approximation differ only in the decay rate
of h�;λ with respect to ω. Unlike the vacuum contributions
(36) and (37), the asymptotic behavior of Gλðk; k0Þ make it
possible to enforce the dipole approximation ωa0=Z ≪ 1
for all significantly contributing modes. In this case we can
implement a zeroth order Taylor expansion to obtain

hdip�;λ → � 128
ffiffiffi
2

p
ℏ3=2 ffiffiffiffiffi

ϵ0
p

t

243
ffiffiffi
π

p
qZμe

e−
it
2
ð2Ef=ℏ�ω−ΩÞ

× sinc

�
ω ∓ Ω

2
t

� ffiffiffiffi
ω

p
sinðθkÞ; ð47Þ

hmin
�;λ → � 128

ffiffiffi
2

p
ℏ3=2 ffiffiffiffiffi

ϵ0
p

t

243
ffiffiffi
π

p
qZμe

e−
it
2
ð2Ef�ω−ΩÞ

× sinc

�
ω ∓ Ω

2
t

� ffiffiffiffi
ω

p
sinðθkÞ; ð48Þ

which are equal, as expected when the dipole approxima-
tion criterion is satisfied.
Therefore, if the field dependent term of (35) is

dominant over the vacuum contribution, and the field
is excited in dipole approximation satisfying modes, then
we expect that the dipole model can be successfully and
reliably used.

IV. RESULTS

Given the nature of the integrals in question we resort
to numerical integration in order to study the discrepan-
cies between dipole and minimal models. In particular
our interest lies in how the probability of transition varies
with the size of the electron orbital. Scully and Zubairy
[2] seem to suggest that in the limit of an infinitely small
atom the two models should converge; however that
derivation was based around classical fields whilst
assuming the energy gap Ω remains constant as the
atom is shrunk.

A. Vacuum fields

1. Vacuum excitation

Consider first the transition 1s → 2p with the initial EM
field in the vacuum.
In Fig. 1 the transition probabilities have been plotted as

a function of time. At a glance these two figures appear
similar; however, the two graphs are offset by 2.6 × 10−4.
Since the graphs do not detail extremely small times we
must presume that this offset arises in the very early
evolution of the electron, an artifact of using different
models combined with a “sudden switching”. This already
suggests that a significant difference is present for short
time scales, i.e., t < Ω−1.
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In Fig. 2, as expected, the transition probability decays
with Z given that the energy gap increases without an
increase in the interaction strength. However in spite of the
electron orbital size decreasing as 1=Z the predictions of
the dipole and minimal model remain distant; in particular,
the relative error is also seen to increase.
This behavior goes against our expectations given the

dipole criterion Rjkj ≪ 1. Mathematically [see (36) and

(37)] this behavior is a consequence of the ð1þ 4a2
0

9c2Z2 ω2Þ
term increasing the number of dipole approximation sat-
isfyingmodes,whilst increasing the sensitivity to previously
“dormant” UV modes via the ω3sinc2ððωþ ΩÞ t

2
Þ ∼ ω

growth. These competing effects ensure that the two
predictions never coincide.

2. Spontanous emission

Now consider the transition 2p → 1s in the vacuum. In
this case we would expect that if Ωa0=Z ≪ 1 then the
single mode approximation would limit the integration
domain of (36) and (37) to a dipole approximation

satisfying domain, and therefore we expect the dipole
model to be good.
In Fig. 3 the emission probabilities as a function of time

are plotted. Their long time behavior coincides with
Fermi’s golden rule, where both models yield the same
gradient, implying coincidence of the models. This can be
justified using the single mode approximation, which is
valid for long times; i.e.,

lim
t→∞

t2sinc2
�
ðωþΩÞ t

2

�
∼ πtδ

�
ωþ Ω

2

�
; ð49Þ

and the fact that ΩðZ ¼ 1Þ satisfies the dipole approxima-
tion. For short times the single mode approximation is no
longer applicable, and this generates the offset seen in the
graphs.
Figure 4 shows the progression of the asymptotic

emission rate with Z. As Z increases the atom size
decreases; however when implementing the single mode
approximation the dipole approximation criterion becomes
Ωa0=Z ≪ 1. So the atomic size decreases as 1=Z but the
energy gap Ω increases as Z2; therefore as Z → ∞ the
dipole criterion is increasingly violated. Of interest is the
relative error graph in Fig. 4. The linear vs quadratic
behavior results in a minimum in the relative error

FIG. 2. Long time transition probability as a function of Z and
the relative error between the two models. As Z increases the
atom becomes smaller; however, contrary to Scully and Zubairy,
the models diverge. Minimal model is dashed.

FIG. 1. Vacuum transition probability 1s → 2p for Z ¼ 1

atom. The short time behavior, i.e., t ∈ ð0; 40Ω−1Þ, corresponds
to all vacuum modes constructively contribution with very minor
phase differences. In the long time limit all modes are dephased
with one another, leading to a constant transition proba-
bility. The dashed lines correspond to analytic results
obtained from (36) and (37) via limt→∞ sin2 ððωþ ΩÞ t

2
Þ ¼ 1

2
.

From these analytic expressions we know that the offset
is 2.58 × 10−4.
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occurring at Z ≈ 3, the optimal proton number for coinci-
dence of minimal and dipole models.
Note that if a temporal switching is introduced this may

help the dipole model converge on the minimal model, at
the cost of invalidating any use or interpretations of the
single mode approximation.

B. Excited fields

Finally consider the transitions concerning excited
fields, i.e., field states where Pϕ from (35) is not zero.
In particular we focus on “spatial pulses” of coherent
“light”. In order to explore the effects of model choice on
Pϕ alone the following section will involve plots and
discussions of Pϕ alone; note that P0 is independent of
the field state so the discussion in previous sections
generally holds.
The initial field state used was

jϕi ¼ N exp

�X
λ

Z
d3kGλðkÞâ†λðkÞ

�
j0i; ð50Þ

where

GλðkÞ ¼
δλ;λ0e

iωT�

ð2πÞ3=4
e
−ðkx−k0xÞ2

4σ2x e
−
ðky−k0yÞ2

4σ2y e
−
ðkz−k0z Þ2

4σ2zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxσyσz

p ; ð51Þ

where k0 is the central wave vector of the wave packet,
λ0 is the polarization of the field excitation, T� dictates
the wave packets initial position and N is the appro-
priate normalisation factor. Note that GλðkÞ is L2

normalized.
For the numerical work presented here σx ¼ σy ¼ σz ¼

Ω=100 and k0 ¼ Ωex, i.e., a resonant wave packet.
Figure 5 shows the Pϕ contribution to the transition
probability as a function of time. There is a rapid
increase in the transition probability as the wave packet
passes through the atom; finally the probability becomes
almost constant as the field locally returns to the vacuum.
The relative error between the two models is very small;
in fact it is very similar to the relative error shown in
Fig. 4 for small Z. Note that as we change Z then
Ω ∼ Z2; this includes changing the EM field.

FIG. 4. Vacuum emission transition rates as a function of Z.
Note that as Z increases and the atom becomes smaller the two
models diverge. Minimal model is dashed. By implementing the
single mode approximation in (36) and (37) one can show that the
transition rates are given by R ¼ 6.26×108Z4

ð1þ3.33×10−6Þn, where n ¼ 4, 6 for

the minimal and dipole coupling respectively.

FIG. 3. Vacuum transition probability 2p → 1s for Z ¼ 1 atom.
The short time behavior corresponds to the region where the
single mode approximation is invalid. During this time the dipole
approximation is violated and the observed offset is generated.
The dashed line corresponds to the single mode approximation.
Note that for longer times the curve becomes linear as dictated by
the single mode approximation.
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In Fig. 6 the asymptotic transition probability is shown
along with the relative error between the models as a
function of Z. As in previous cases as Z increases the
dominant mode Ω no longer satisfies the dipole approxi-
mation, and therefore there is no expectation that the two
models should give the same predictions.

V. DISCUSSION

As can be seen from the plots above there seem to be
cases when the dipole model is valid and others when it is
not. These can be explained by the existence or not of a
dominant mode and whether this mode satisfies the dipole
approximation.
In the case of vacuum excitations there is no notion

of a dominant mode in the EM field. The vacuum
fluctuations cause all modes of all wavelengths to interact
with the electron, with short wavelength modes suppressed
by the Fourier properties of the atom itself. In particular the
equation describing the contributions of each mode is
given by (36) and (37). It can be rewritten to highlight
key aspects as

P ¼ K
Z

dω
1

ð1þ 4a2
0
ω2

9Z2 Þn|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Geometry& coupling

ω3
sin2ððωþΩÞ t

2
Þ

ððωþΩÞ 1
2
Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Intrinsic&Switching

; ð52Þ

where K is some constant and n ¼ 4, 6 depending on the
model. The intrinsic and switching term dictates the
“dominant” or “range of dominant” modes. When consid-
ering the dipole approximation ω ≪ Z=a0 this can be
interpreted as saying “we want the intrinsic and switching
factors to decay long before the geometry and coupling
term begins to decay.” As was shown in Sec. III B treating
the geometry and coupling term as constant reduces the
minimal model to the dipole model. Inspection of (52)
shows that the intrinsic and switching term actually grows
with increasing ω, contrary to our needs, therefore creating
this discrepancy between the two models. If a smooth
switching function (with characteristic width T) could be
introduced, then the intrinsic and switching term would be
modified to suppress UV modes with ω≳ T−1, thereby
reducing the contributions to the transition probability from
high frequency modes and diminishing the difference
between the dipole and minimal models. We illustrate this

FIG. 6. Long time excitation probability (Pϕ only) as a function
of Z. Unlike the vacuum cases the dominant frequency is dictated
by the field excitation and not the single mode approximation;
however, since we chose the field excitation to remain resonant
with the atomic transition the relative error increases with Z as Ω
ceases to satisfy the dipole approximation.

FIG. 5. Excitation probability (Pϕ only) for a Gaussian coher-
ent pulse with central frequencyΩ (resonant). As the pulse arrives
the transition probability increases to 3 × 10−10. Once the pulse is
far from the atom the transition probability remains roughly
constant. Note that the relative error remains small throughout
2 × 10−3. Also note, the bump at early times is believed to be a
numerical imprecision.
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in Fig. 7, where we introduce a cutoff Λ (that would be
proportional to 1=T) and we see that the two models yield
identical predictions for small enoughΛ. This characteristic
appears in Fig. 1, where the high frequency modes cause an
offset in the transition probabilities on a very short time-
scale. However for longer times the two models predict
similar trends (i.e., for T such that IR unsuppressed modes
ω≲ T−1 satisfy the dipole criterion).
In the case of spontaneous emission Ω < 0 and so the

intrinsic and switching terms of (52) have a dominant

frequency (ω ¼ −Ω). It is the identity limt→∞
sin2ðηt=2Þ
ðη=2Þ2t ¼

πδðη=2Þ that gives us the dominant mode, not by sup-
pressing the higher frequency modes but by elevating a
single mode, i.e., the single mode approximation. If this
dominant mode satisfies the dipole approximation then the
geometry and coupling term will have the approximate
value of 1 and both models will be equivalent. However, if
Ω no longer satisfies the dipole approximation then the
models will begin to differ and this is what is shown in
Fig. 3. As Z becomes larger, Ω grows quadratically in Z,
and therefore at some point Ω > Z=a0.
In Sec. IV B the excited field contributions are shown,

demonstrating how similar the predictions of the two
models are when there is a dominant mode that satisfies
the dipole approximation. In particular Fig. 6 shows how
the models begin to diverge asΩ ceases to satisfy the dipole
approximation. These are the effective predictions given
under the rotating wave approximation, and they hold true
for stronger coherent amplitudes. This is the regime most
commonly found in experiments and therefore justifies the
widespread use of the dipole model.
In the case of spontaneous emission or stimulated

excitation we say that the dipole model is good because
the dominant frequency Ω satisfies the dipole approxima-
tion; however, there is still a relative error of 2 × 10−3. If we

consider the basis of the dipole approximation, i.e.,
approximating eik·x ≈ 1þ ik · x ≈ 1 then we note that the
first order error will be of Oðk · xÞ, which can be rewritten
as OðΩa0=ZÞ. Therefore the amount by which the dipole
approximation is satisfied provides an estimate for the error
between the two models. In particular note that for the
hydrogen atom Ωa0 ¼ 2.7 × 10−3. In the cases where a
dominant frequency exists, or a finite range of effective
modes exists, the dipole criterion can be used as a first order
estimate for the relative error. Hence if, experimentally, a0
can be made smaller without changing Ω then the dipole
model would become exact for all cases except for the
vacuum excitation case, where the probability of transition
would become divergent.

VI. CONCLUSION

In this paper we have evaluated the differences in the
predictions of the minimal coupling Hamiltonian (p̂ · Â)
and the dipole coupling (x̂ · Ê) of light-matter interaction
for the hydrogen atom. This comparison is nontrivial for
extended atoms due to the explicit gauge noninvariant
nature of the minimal coupling.
We have confirmed the validity of the predictions of the

dipole model for spontaneous emission and stimulated
excitation (situations where there is a dominant contribu-
tion from a particular frequency scale satisfying a dipole
approximation) in the long time regimes. In these situations
the relative difference between the models is approximately
given (to first order) by Ωa0, i.e., the magnitude evaluated
to coarsely assess the validity of the dipole approximation.
Crucially, we have found the situation to be much

different in the case of vacuum excitation, where the atom
starts in the ground state and the field in the vacuum. For
the cases of vacuum excitation, a dominant mode is absent,
and even considering a very small (pointlike) atom does not
guarantee that the dipole approximation is accurate, and
there can be indeed a discrepancy between dipole and
minimal model predictions. One cannot get away in this
case just saying that the atom is “small”, since there is no
characteristic field wavelength dominating the interaction
to compare it with. Entanglement harvesting and the Fermi
problem are two such scenarios where one considers finite-
time evolution of the ground state of atoms and the field
vacuum, and one may then need to be further justified to
use the dipole approximation.
For this case, we have characterized the regimes where

the dipole model does not suffice to predict the physics of
the light-matter interaction. In particular we found that
when considering vacuum excitations for short time inter-
actions the dipole coupling does not yield the same results
that the minimal coupling, which is of particular interest
when analyzing vacuum phenomena.
As (52) shows, this difference cannot be removed by

shrinking the atom, and we have shown that it is the

FIG. 7. Difference in asymptotic behavior between dipole and
minimal models for vacuum excitations, as a function of a hard
UV cutoff. The x-axis is normalized to dipole approximation
frequency cutoff. Λ ≪ 1 corresponds to an application of the
dipole approximation. This reflects the conclusion of (42).
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contribution of arbitrarily high frequency modes what
makes the two predictions diverge.
However, in practice, most light-matter interactions are

finite in time (preparation to measurement). We have shown
that the introduction of a smooth switching (which in turn
suppresses the influence of the higher frequency modes on
the atomic dynamics) ensures satisfaction of the dipole
criterion as long as the interaction time between atom and
field is longer than the light-crossing time of the radius of
the atom. This would justify the widespread use of the
dipole approximation in modeling light-matter interactions
even for vacuum fluctuations (as in the case of entangle-
ment harvesting [12–14] and the Fermi problem [10,11]),
but crucially not because of an argument of a “small atom”,
but instead for a “sufficiently long interaction time”.
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APPENDIX A: GAUGE TRANSFORMATIONS

If we begin by analyzing Schrödinger’s equation we
have

i
∂ψðx; tÞ

∂t ¼
�

1

2μe
ðp̂ − qAðx; tÞÞ2 þ VðxÞ þ qUðx; tÞ

�
× ψðx; tÞ: ðA1Þ

If we introduce a local phase to the wave function of the
form

ψ̃ðx; tÞ ¼ e−iqχðx;tÞψðx; tÞ; ðA2Þ
this will lead to a new Schrödinger’s equation,

i
∂
∂t ψ̃ðx; tÞ ¼

�
1

2μe
ðp̂ − q½Aðx; tÞ −∇χ�Þ2 þ VðxÞ

þ qðUðx; tÞ þ _χÞ
�
ψ̃ðx; tÞ: ðA3Þ

This new equation is also Schrödinger’s equation for a
gauge transformed EM field, i.e.,

Aðx; tÞ → Aðx; tÞ −∇χ; ðA4Þ
Uðx; tÞ → Uðx; tÞ þ _χ: ðA5Þ

Now if we start with Schrödinger’s equation in the
Coulomb gauge,

U ¼ 0; ðA6Þ
∇ · A ¼ 0; ðA7Þ

and then perform the gauge transformation

χ ¼ Aðx; tÞ · x; ðA8Þ

this will yield an equation

i
∂ψ̃ðx; tÞ

∂t ¼
�

1

2μe
ðp̂þ q½ðxi∇ÞAiðx; tÞ�Þ2

− qx̂ · Eðx; tÞ þ VðrÞ
�
ψ̃ðx; tÞ: ðA9Þ

Note that under the conditions of the dipole approximation
A is considered constant over the support of the wave
function; hence the term ½ðxi∇ÞAiðx; tÞ� will be zero,
exactly giving the dipole approximation.
This gauge transformation was chosen specifically

because for small atoms (with respect to some EM wave-
length) this will reproduce the dipole approximation, which
exactly the approximation we wish to test for different
parameter regimes.

APPENDIX B: GAUGE INVARIANCE OF
TRANSITION PROBABILITIES BETWEEN

DRESSED STATES

Consider the minimal model Hamiltonian

Ĥ ¼ 1

2μe
ðp̂ − eAðx̂; tÞÞ2 þ Vðx̂Þ þ qUðx̂; tÞ

¼ Ĥ0 þ qĤ1 þOðq2Þ; ðB1Þ

where we discardOðq2Þ terms since we shall be performing
a first order perturbative expansion. To first order the
dressed state can be written as

jψ̃ t;li ¼
X
k

ðδlk þ iqLlkðtÞÞjψki; ðB2Þ

where jψki are the Ek eigenstates of Ĥ0. These form the
measurement basis for the electron in the particular EM
gauge we choose.
Since we work to first order perturbation theory, the

evolving state of the electron can be expressed as

jψ̃ lðtÞi ¼
X
k

ðδlk þ iqKlkðtÞÞe−iEktjψki; ðB3Þ

where the initial condition is Klkð0Þ ¼ Llkð0Þ. In order to
determine the time evolution of KlkðtÞ we need to use
Schrödinger’s equation,
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i
∂
∂t jψ̃ lðtÞi ¼

X
k

ðδlk þ iqKlkðtÞÞEke−iEktjψki

−
X
k

q _KlkðtÞe−iEktjψki

¼ Ĥ0

X
k

ðδlk þ iqKlkðtÞÞe−iEktjψki

þ qĤ1

X
k

δlke−iEktjψki þOðq2Þ: ðB4Þ

By canceling out the appropriate terms and taking an inner
product with hψmj we are left with

_KlmðtÞ ¼ −hψmjĤ1jψ lieiðEm−ElÞt; ðB5Þ
and therefore,

KlkðTÞ ¼ −
Z

T

0

dthψkjĤ1jψ lieiðEk−ElÞt þ Llkð0Þ: ðB6Þ

In the main text we made the choice

LlkðtÞ ¼
8<
:−

hψkjAðx̂;tÞ·p̂þp̂·Aðx̂;tÞ
2μe

jψ li
iðEl−EkÞ if El ≠ Ek;

−hψkj
R
t
0 dsUðx̂; sÞjψ li if El ¼ Ek;

ðB7Þ

and stated that this will guarantee gauge invariance of the
transition amplitudes and hence gauge invariance of the
measurable transition probabilities. To prove this, consider
first the following inner product:

hψkjp̂ · ð∇χÞ þ ð∇χÞ · p̂jψ li ¼ hψkjðp̂ ·∇Þχ − p̂ · χ∇þ ð∇χÞ · p̂jψ li
¼ hψkjðp̂ ·∇Þχ − ð−i∇χÞ ·∇ − χp̂ · ∇þ ð∇χÞ · p̂jψ li
¼ hψkjðp̂ ·∇Þχ − ð∇χÞ · p̂ − χp̂ ·∇þ ð∇χÞ · p̂jψ li
¼ hψkjðp̂ ·∇Þχ − χp̂ ·∇jψ li
¼ ihψkjp̂2χ − χp̂2jψ li; ðB8Þ

where we have repeatedly implemented the product rule and the definition of the momentum operator. One can then exploit
the fact that Ĥ0jψki ¼ Ekjψki,

hψkj
p̂ · ð∇χÞ þ ð∇χÞ · p̂

2μe
jψ li ¼ ihψkj

p̂2

2μe
χ − χ

p̂2

2μe
jψ li

¼ ihψkj
�
p̂2

2μe
þ Vðx̂Þ

�
χ − χ

�
p̂2

2μe
þ Vðx̂Þ

�
jψ li

¼ ihψkjĤ0χ − χĤ0jψ li
¼ iðEk − ElÞhψkjχjψ li: ðB9Þ

Armed with this identity consider LlkðtÞ → L0
lkðtÞ under field gauge transformations. For El ≠ Ek, we have

L0
lkðtÞ ¼

hψkj − p̂·A0ðx̂;tÞþA0ðx̂;tÞ·p̂
2μe

jψ li
iðEl − EkÞ

¼
hψkj − p̂·Aðx̂;tÞþAðx̂;tÞ·p̂

2μe
jψ li

iðEl − EkÞ
þ
hψkj p̂·ð∇χÞþð∇χÞ·p̂

2μe
jψ li

iðEl − EkÞ

¼
hψkj − p̂·Aðx̂;tÞþAðx̂;tÞ·p̂

2μe
jψ li

iðEl − EkÞ
þ iðEk − ElÞhψkjχjψ li

iðEl − EkÞ
¼ LlkðtÞ − hψkjχðx̂; tÞjψ li: ðB10Þ

Similarly, for El ¼ Ek, we have
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Llk
0ðtÞ ¼ −hψkj

Z
t

0

dsU0ðx̂; sÞjψ li

¼ −hψkj
Z

t

0

dsðUðx̂; sÞ þ _χÞjψ li

¼ −hψkj
Z

t

0

dsUðx̂; sÞjψ li − hψkjχðx̂; tÞjψ li þ hψkjχðx̂; 0Þjψ li

¼ LlkðtÞ − hψkjχðx̂; tÞjψ li þ hψkjχðx̂; 0Þjψ li: ðB11Þ
Now consider the gauge transformation on Klk,

K0
lkðTÞ ¼ −

Z
T

0

dthψkjĤ0
1jψ lieiðEk−ElÞt þ L0

lkð0Þ

¼ −
Z

T

0

dthψkjĤ1 þ
p̂ · ð∇χÞ þ ð∇χÞ · p̂

2μe
þ _χjψ lieiðEk−ElÞt þ Llkð0Þ − hψkjχðx̂; 0Þjψ li

¼ −
Z

T

0

dthψkjĤ1jψ lieiðEk−ElÞt −
Z

T

0

dthψkjiðEk − ElÞχeiðEk−ElÞt þ _χeiðEk−ElÞtjψ li þ Llkð0Þ − hψkjχðx̂; 0Þjψ li

¼ KlkðTÞ −
Z

T

0

dt
d
dt
hψkjχeiðEk−ElÞtjψ li − hψkjχðx̂; 0Þjψ li

¼ KlkðTÞ − hψkjχðx̂; TÞjψ lieiðEk−ElÞT: ðB12Þ

As such, when considering measurement probability amplitudes (l ≠ k),

hψ̃T;kjψ̃ lðTÞi ¼
X
m

hψmjðδkm − iqL�
kmðTÞÞ

X
n

ðδln þ iqKlnÞe−iEntjψni

¼ iqKlke−iEkT − iqL�
kle

−iElT þOðq2Þ
¼ iqðKlkðTÞe−iEkT − L�

klðTÞe−iElTÞ þOðq2Þ: ðB13Þ

The gauge transformation properties of

K0
lkðTÞe−iEkT − L0�

klðTÞe−iElT ¼ KlkðTÞe−iEkT − hψkjχðx̂; TÞjψ lie−iElT − L�
klðTÞe−iElT þ hψkjχðx̂; TÞjψ lie−iElT

¼ KlkðTÞe−iEkT − L�
klðTÞe−iElT; ðB14Þ

therefore with our definition of Llk we now have gauge
invariant transition amplitudes. In order to see how this has
changed from the usual naïve approach, repeat the process
above with Llk ¼ δlk only.

APPENDIX C: PERTURBATIVE TIME
EVOLUTION OF A FULL QUANTUM MODEL

The models under scrutiny are the dipole model, com-
puting the transition probability between states j1si → j2pi
under the Hamiltonian (to first order perturbation theory),

Ĥ ¼ Ĥ0 − qr̂ · E; ðC1Þ
and the minimal model, which in the Coulomb gauge
(where p̂ and Â commute)

Ĥ ¼ Ĥ0 −
q
μe

A · p̂: ðC2Þ

For completeness,

Âðx; tÞ ¼
Z

d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p
X2
λ¼1

ϵλðkÞðâλðkÞe−iðωt−k·xÞ

þ â†λðkÞeiðωt−k·xÞÞ; ðC3Þ

k · ϵλðkÞ ¼ 0; ðC4Þ

Êðx; tÞ ¼ −
∂
∂t Âðx; tÞ: ðC5Þ

1. Initial condition and measurement
(also known as dressed states)

Taking the lead from the semiclassical derivation in
Appendix B, the dressed states are
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jψ̃ t;l;ϕii ¼
X
k

ðδlk þ iqL̂lkðtÞÞjψkijϕii; ðC6Þ

where

L̂min
lk ¼

(
−

hψkjÂðtÞ·p̂μe
jψ li

iðEl−EkÞ if El ≠ Ek;

0 if El ¼ Ek;
ðC7Þ

L̂dipole
lk ¼ 0; ðC8Þ

and jϕii is the initial state of the EM field. Note that L̂lk are
now operators acting on the EM field’s Hilbert space.
Therefore the initial state will be jψ̃ t;i;ϕii, and the final
measurement will involve an inner product of the time
evolved state with jψ̃ t;f;ϕfi.
Furthermore for this derivation

Ĥ ¼ Ĥ0 þ qĤ1; ðC9Þ

Ĥmin
1 ¼ −

Â · p̂
μe

; ðC10Þ

Ĥdipole
1 ¼ −Ê · r̂: ðC11Þ

As shown in Appendix B these definitions ensure the
final measurement is gauge invariant (Appendix B’s results
are independent of classical or quantum fields as they only
require the gauge transformation properties of the EM
potentials).

2. Dynamics

Given that we are looking at first order perturbations, the
general state will be of the form,

jψ̃ lðtÞ;ϕii ¼
X
k

ðδlk þ iqK̂lkðtÞÞe−iEktjψkijϕii; ðC12Þ

with initial conditions K̂lkð0Þ ¼ L̂lkð0Þ. Recall that now
K̂lk is an operator acting on the EM field’s Hilbert space.
Schrödinger’s equation then becomes (EM field evolution

has been encoded into the field operators via the interaction
picture)

i∂tjψ̃ lðtÞ;ϕii ¼
X
k

ðδlk þ iqK̂lkðtÞÞEke−iEktjψkijϕii

þ q
X
k

− _̂KlkðtÞe−iEktjψkijϕii

¼ ðĤ0 þ qĤ1Þjψ̃ lðtÞijϕii
¼

X
k

ðδlk þ iqK̂lkðtÞÞEke−iEktjψkijϕii

þ qĤ1e−iEltjψ lijϕii þOðq2Þ: ðC13Þ

This leaves

_̂KlkðtÞ ¼ −hψkjĤ1jψ lieiðEk−ElÞt: ðC14Þ

Integration over time yields

K̂lkðTÞ ¼ −
Z

T

0

dthψkjĤ1jψ lieiðEk−ElÞt þ L̂lkð0Þ: ðC15Þ

Herein jψ̃T;fi refers to the dynamically changing dressed
state corresponding to the state jψfi and evaluated at time T.
jψ̃ iðTÞi refers to the dressed state of jψ ii, evaluated at time
t ¼ 0 and time evolved under the particular model to time T.

3. Inner product

Observe that

L̂†
lk ¼ L̂kl: ðC16Þ

Now

hϕf; ψ̃T;fjψ̃ iðTÞ;ϕii
¼ iqhϕfjðK̂ifðTÞe−iEfT − L̂ifðTÞe−iEiTÞjϕii; ðC17Þ

where jϕi;fi correspond to the initial and final states of the
EM field. Since there is no Oð1Þ term there is no need to
keep track of the Oðq2Þ terms. Expanding

hψ̃T;f;ϕfjψ̃ iðTÞ;ϕii ¼ iqe−iEfThϕfj
�
−
Z

T

0

dthψfjĤ1jψ iieiðEf−EiÞt þ L̂ifð0Þ − L̂ifðTÞeiðEf−EiÞT
�
jϕii; ðC18Þ

let Ω ¼ Ef − Ei,

hψ̃T;f;ϕfjψ̃ iðTÞ;ϕii ¼ iqe−iEfThϕfj
�
−
Z

T

0

dthψfjĤ1jψ iieiΩt þ L̂ifð0Þ − L̂ifðTÞeiΩT
�
jϕii: ðC19Þ
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4. Transition probability

Consider the inner product

hξ̃f;ϕfjξ̃i;ϕii ¼ hϕfjÔjϕii: ðC20Þ

Then the probability will be given by

jhξ̃f;ϕfjξ̃i;ϕiij2 ¼ hϕijÔ†jϕfihϕfjÔjϕii: ðC21Þ

In particular since our attention is on the transition amplitudes of the atom itself we need to trace out the final state of the
field jϕfi, leading to X

ϕf

jhξ̃f;ϕfjξ̃i;ϕiij2 ¼ hϕijÔ†
X
ϕf

jϕfihϕfjÔjϕii; ðC22Þ

hϕijÔ†IÔjϕii ¼ hϕijÔ†Ôjϕii; ðC23Þ

i.e., independent of ϕf. Therefore in the derivation that follows ϕf has already been traced out and as such the notation will
only make reference to ϕi,

hϕijjhψ̃T;fjψ̃ iðTÞij2jϕii¼q2hϕij
�Z

T

0

Z
dtdt0hψfjĤ1ðtÞjψ iihψ ijĤ1ðt0ÞjψfieiΩðt−t0Þ−

Z
T

0

hψfjĤ1jψ iieiΩt�L̂fið0Þ

−
Z

T

0

hψ ijĤ1jψfie−iΩtL̂ifð0Þþ
Z

T

0

hψfjĤ1jψ iieiΩtL̂fiðTÞe−iΩTþ
Z

T

0

hψ ijĤ1jψfie−iΩtL̂ifðTÞeiΩT

þ L̂ifð0ÞL̂fið0Þþ L̂ifðTÞL̂fiðTÞ− L̂ifð0ÞL̂fiðTÞe−iΩT− L̂fið0ÞL̂ifðTÞeiΩT
�
jϕii: ðC24Þ

a. Minimal model

hϕijjhψ̃T;fjψ̃ iðTÞij2jϕii ¼
q2

μ2e
hϕij

ZZ
∞

−∞
d3xd3x0

�Z
T

0

Z
dtdt0ψ�

fðxÞð−i∂aÞψ iðxÞψ�
i ðx0Þð−i∂ 0

bÞψfðx0ÞÂaðx; tÞÂbðx0; t0ÞeiΩðt−t0Þ

−
Z

T

0

dtψ�
fðxÞð−i∂aÞψ iðxÞÂaðx; tÞeiΩtψ�

i ðx0Þð−i∂bÞψfðx0ÞÂbðx0; 0Þ 1

−iΩ

−
Z

T

0

dtψ�
i ðxÞð−i∂aÞψfðxÞÂaðx; tÞe−iΩtψ�

fðx0Þð−i∂bÞψ iðx0ÞÂbðx0; 0Þ 1

iΩ

þ
Z

T

0

dtψ�
fðxÞð−i∂aÞψ iðxÞÂaðx; tÞeiΩtψ�

i ðx0Þð−i∂bÞψfðx0ÞÂbðx0; TÞ e
−iΩT

−iΩ

þ
Z

T

0

dtψ�
i ðxÞð−i∂aÞψfðxÞÂaðx; tÞe−iΩtψ�

fðx0Þð−i∂bÞψ iðx0ÞÂbðx0; TÞ e
iΩT

iΩ

þ ψ�
fðxÞð−i∂aÞψ iðxÞψ�

i ðx0Þð−i∂bÞψfðx0Þ
�
Âaðx; 0ÞÂbðx0; 0Þ 1

Ω2
þ Âaðx; TÞÂbðx0; TÞ 1

Ω2

− Âaðx; 0ÞÂbðx0; TÞ e
−iΩT

Ω2
− Âaðx; TÞÂbðx0; 0Þ e

iΩT

Ω2

��
jϕii; ðC25Þ

where the derivative operators only act on the wave function immediately to its right.
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jhψ̃T;fjψ̃ iðTÞij2 ¼
q2

μ2e

Z
∞

−∞

Z
d3xd3x0

�Z
T

0

Z
dtdt0ψ�

fðxÞð−i∂aÞψ iðxÞψ�
i ðx0Þð−i∂ 0

bÞψfðx0ÞeiΩðt−t0ÞhÂaðx; tÞÂbðx0; t0Þiϕi

−
Z

T

0

dtψ�
fðxÞð−i∂aÞψ iðxÞeiΩtψ�

i ðx0Þð−i∂bÞψfðx0Þ
1

−iΩ
hÂaðx; tÞÂbðx0; 0Þiϕi

−
Z

T

0

dtψ�
i ðxÞð−i∂aÞψfðxÞe−iΩtψ�

fðx0Þð−i∂bÞψ iðx0Þ
1

iΩ
hÂbðx0; 0ÞÂaðx; tÞiϕi

þ
Z

T

0

dtψ�
fðxÞð−i∂aÞψ iðxÞeiΩtψ�

i ðx0Þð−i∂bÞψfðx0Þ
e−iΩT

−iΩ
hÂaðx; tÞÂbðx0; TÞiϕi

þ
Z

T

0

dtψ�
i ðxÞð−i∂aÞψfðxÞe−iΩtψ�

fðx0Þð−i∂bÞψ iðx0Þ
eiΩT

iΩ
hÂbðx0; TÞÂaðx; tÞiϕi

þ ψ�
fðxÞð−i∂aÞψ iðxÞψ�

i ðx0Þð−i∂bÞψfðx0Þ
1

Ω2
hÂaðx; 0ÞÂbðx0; 0Þ þ Âaðx; TÞÂbðx0; TÞ

− Âaðx; 0ÞÂbðx0; TÞe−iΩT − Âaðx; TÞÂbðx0; 0ÞeiΩTiϕi

�
; ðC26Þ

where the final step was to ensure that the operators Â were all in the correct order (i.e., hψfjψ ii, f before i). Note that this
order is reversible; however, it must be consistent.

b. Dipole model

jhψ̃T;fjψ̃ iðTÞij2 ¼ q2
Z

∞

−∞

Z
d3xd3x0

Z
T

0

Z
dtdt0ψ�

fðxÞðraÞψ iðxÞψ�
i ðx0Þðr0bÞψfðx0ÞeiΩðt−t0ÞhÊaðx; tÞÊbðx0; t0Þiϕi

: ðC27Þ

Note that both (C26) and (C27) have been written down in this format for those who prefer to work with Wightman
functions.

APPENDIX D: NUMERICAL SETUP

In order to evaluate the transition probabilities shown in Appendix C certain simplifications are made prior to resorting to
numerical integration. These simplifications have been made with the aid of computer algebra software.

1. Minimal model

In order to optimize computational resources start with (operator equations over EM Hilbert space)

hψ̃T;fjψ̃ iðTÞi ¼ iqe−iEfT

�
−
Z

T

0

dthψfjĤ1jψ iieiΩt þ L̂ifð0Þ − L̂ifðTÞeiΩt
�
; ðD1Þ

and recall Ĥ1 ¼ − Â·p̂
μe
. Then
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hψ̃T;fjψ̃ iðTÞi ¼ i
q
μe

e−iEfThψfj
Z

d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p
X2
λ¼1

ϵλðkÞ
�
âλ

�Z
T

0

e−iωteiΩtdtþ 1

iΩ
−
e−iωTeiΩT

iΩ

�
eik·xp̂

þ â†λ

�Z
T

0

eiωteiΩtdtþ 1

iΩ
−
eiωTeiΩT

iΩ

�
e−ik·xp̂

�
jψ ii

¼ q
μe

e−iEfT

Z
d3k

ð2πÞ3=2 ffiffiffiffiffiffi
2ω

p
X2
λ¼1

ϵλðkÞ
�
âλeiðΩ−ωÞ

T
2

�
T
2 sin ððΩ − ωÞ T

2
Þ

ðΩ − ωÞT −
2 sin ððΩ − ωÞ T

2
Þ

Ω

�

× hψfjeik·x∇jψ ii þ â†λe
iðΩþωÞT

2

�
T
2 sin ððΩþ ωÞ T

2
Þ

ðΩþ ωÞT −
2 sin ððΩþ ωÞ T

2
Þ

Ω

�
hψfje−ik·x∇jψ ii

�

¼ q
μe

e−iEfT

Z
d3k

ð2πÞ3=2
ffiffiffiffi
ω

2

r X2
λ¼1

ϵλðkÞ
�
âλeiðΩ−ωÞ

T
2

�
T
2 sin ððΩ − ωÞ T

2
Þ

ðΩ − ωÞT
�
hψfj

eik·x∇
Ω

jψ ii

− â†λe
iðΩþωÞT

2

�
T
2 sin ððΩþ ωÞ T

2
Þ

ðΩþ ωÞT
�
hψfj

e−ik·x∇
Ω

jψ ii
�

¼ T
q
μe

e−iEfT

Z
d3k

ð2πÞ3=2
ffiffiffiffi
ω

2

r X2
λ¼1

ϵλðkÞ
�
âλeiðΩ−ωÞ

T
2sinc

�
ðΩ − ωÞT

2

�
hψfj

eik·x∇
Ω

jψ ii

− â†λe
iðΩþωÞT

2sinc

�
ðΩþ ωÞT

2

�
hψfj

e−ik·x∇
Ω

jψ ii
�
: ðD2Þ

2. Dipole model

hψ̃T;fjψ̃ iðTÞi ¼ −Tqe−iEfT

Z
d3k

ð2πÞ3=2
ffiffiffiffi
ω

2

r X2
λ¼1

ϵλðkÞ
�
âλeiðΩ−ωÞ

T
2sinc

�
ðΩ − ωÞT

2

�
hψfjeik·xr̂jψ ii

− â†λe
iðΩþωÞT

2sinc

�
ðΩþ ωÞT

2

�
hψfje−ik·xr̂jψ ii

�
: ðD3Þ

In both cases expressions of the form hψfje−ik·x∇jψ ii; hψfje−ik·xr̂jψ ii need to be evaluated. Firstly we note that

hψfjÔjψ ii ¼
Z

d3xψ�
fðxÞOðx; ∂xÞψ iðxÞ

¼
Z

d3xR�
nf;lf

ðrÞY�
lf;mf

ðx̂ÞOðx; ∂xÞRni;mi
ðrÞYli;mi

ðx̂Þ: ðD4Þ

This final expression above can be simplified by exploiting Clebsch-Gordon coefficients in reducing the product of
spherical harmonics into a sum of spherical harmonics. Importantly this will be a finite sum. Secondly, note that

eix·k ¼
X∞
l¼0

Xl

m¼−l
4πiljlðjxjjkjÞYlmðx̂ÞY�

lmðk̂Þ ¼
X∞
l¼0

Xl

m¼−l
4πiljlðjxjjkjÞY�

lmðx̂ÞYlmðk̂Þ: ðD5Þ

Using this identity our desired terms reduce to ψ�
f∇ψ i →

P
ðλ;μÞ∈SuλμYλμ; therefore,
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hψfje−ik·x∇jψ ii ¼
Z

d3x
X

ðλ;μÞ∈S
uλμYλμðx̂Þ

X∞
l¼0

Xl

m¼−l
4πiljlðjxjjkjÞY�

lmðx̂ÞYlmðk̂Þ

¼
X

ðλ;μÞ∈S

X∞
l¼0

Xl

m¼−l
4πiluλμjlðjxjjkjÞYlmðk̂Þδλlδμm

¼
X

ðλ;μÞ∈S
4πiλuλμjλðjxjjkjÞYλμðk̂Þ; ðD6Þ

where S is a finite set. Note that whilst this derivation may
seem abstract and ineffective, these steps can be followed
with computer algebra packages. The above can be
interpreted as an illustrated pseudocode.
The remainder of the calculation is straight-

forward, requiring eliminating the EM field creation

and annihilation operators via inner products and a series
of k space integrals, of which the angular parts can be
evaluated analytically and the radial part ω must be
evaluated numerically except for the special cases of
rotating wave approximation or for very long
times T ≫ a0=Z.
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