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Recent work explores the candidate phases of the 4D adjoint quantum chromodynamics (QCD4) with an
SU(2) gauge group and two massless adjoint Weyl fermions. Both Cordova-Dumitrescu and Bi-Senthil
propose possible low energy 4D topological quantum field theories (TQFTs) to saturate the higher ’t Hooft
anomalies of adjoint QCD4 under a renormalization-group flow from high energy. In this work, we
generalize the symmetry-extension method of Wang-Wen-Witten [Phys. Rev. X 8, 031048 (2018)] to
higher symmetries, and formulate a higher group cohomology and cobordism theory approach to construct
higher-symmetric TQFTs. We prove that the symmetry-extension method saturates certain anomalies, but
also prove that neither AP2ðB2Þ nor P2ðB2Þ can be fully trivialized, with the background 1-form field A,
Pontryagin square P2, and 2-form field B2. Surprisingly, this indicates an obstruction to constructing a fully
1-form center and 0-form chiral symmetry (full discrete axial symmetry) preserving 4D TQFT with
confinement, a no-go scenario via symmetry extension for specific higher anomalies. We comment on the
implications and constraints on deconfined quantum criticality and ultraviolet-infrared duality in 3þ 1

spacetime dimensions.
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I. INTRODUCTION AND SUMMARY
OF MAIN RESULTS

Recent work explores the candidate phases of the adjoint
quantum chromodynamics in four-dimensional (4D) space-
time (QCD4) with an SU(2) gauge group and two massless
adjoint Weyl fermions (equivalently, two massless adjoint
Majorana fermions, or one massless adjoint Dirac fermion)
[1–4].1 This adjoint QCD4 has a 1-form electric Z2 center
global symmetry, which is a generalized global symmetry
of a higher differential form [5]. This adjoint QCD4 has the
SU(2) gauge theory coupling to the matter fields in the
adjoint representation; thus, it gains a 1-form electric Z2

center symmetry, while the usual fundamental QCD4 has
the gauge theory coupling to the matter fields in the
fundamental representation, which lacks the 1-form sym-
metry. We will soon learn that this 1-form symmetry plays a

crucial rule to constrain the higher ’t Hooft anomaly
matching [6] of the quantum phases of the adjoint
QCD4. (See Sec. II for more detailed information regarding
the global symmetries and ’t Hooft anomalies of this
adjoint QCD4.)
Given the adjoint QCD4 at the high energy scale, it is

known that this theory is weakly coupled and thus
asymptotically free at ultraviolet (UV free) when the
number of the Weyl fermion flavor Nf ≤ 5. Viewing the
adjoint QCD4 as a UV completion of a quantum field
theory (QFT), we should ask what this QFT flows to under
a renormalization-group (RG) flow from UV to the low
energy at infrared (IR). Both Cordova-Dumitrescu [2] and
Bi-Senthil [3] propose its low energy candidate phases at
IR, saturating the higher ’t Hooft anomalies involving the
1-form symmetry.
In particular, Bi-Senthil [3] suggests a fully symmetric

4D TQFT to saturate higher ’t Hooft anomalies without
breaking any UV global symmetries of the adjoint QCD4.
Namely, an interesting RG flow from Bi-Senthil [3]
speculates that

Adjoint QCD4 at UV⟶
RG flow ð?Þ to a long distance

Massless 1 Dirac ð2WeylÞ fermion þ 4D TQFT at IR ð?Þ:
ð1Þ
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1In this case, we denote the adjoint Weyl fermion flavor
Nf ¼ 2 and the gauge group Nc ¼ 2 for SUðNcÞ.
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The IR theory only involves a massless free 1 Dirac (or 2
Weyl) fermion, and a decoupled 4D TQFT. Since the
massless 1 Dirac fermion has only the ordinary 0-form
symmetry but no 1-form symmetry, so the massless fermion
sector alone cannot saturate the higher anomaly of the
adjoint QCD4. Thus, the crucial and nontrivial check on the
Bi-Senthil [3] proposal of this UV-IR duality equation (1)
relies on the explicit construction of the fully symmetric
4D TQFT to saturate all higher ’t Hooft anomalies involving
1-form symmetry. One of the motivations of our present
work is to rigorously verify the validity of this symmetric
anomalous 4D TQFT.
In this work, we have two goals:
(1) We generalize the symmetry-extension method of

Wang-Wen-Witten [7] to higher symmetries. We
formulate a higher group cohomology or a higher
cobordism theory approach of Ref. [7] to construct
symmetric anomalous TQFTs that can live on the
boundary of symmetry protected topological states
(SPTs). The “symmetric anomalous TQFTs” is an
abbreviation of “the TQFTs that saturate the (higher)
’t Hooft anomalies of a given global symmetry by
preserving the global symmetry.” Previous works in
condensedmatter physics suggest that the long-range
entangled anomalous topological order (whose
effective low energy theory is a TQFT) can live on
the boundary of a short-range entangled SPT state;
see [8] and references therein on this exotic phenome-
non. The boundary of SPTs protected by symmetry
groupG (calledG-SPTs) has the ’t Hooft anomaly of
symmetryG. Reference [7] provides a systematicway
to construct the symmetric anomalous TQFTs for a
G-SPTs of a given symmetry G. In particular, among
other results, Ref. [7] proves the following:
“For any bosonic G-SPTs protected by a finite

group G (unitary or antiunitary time-reversal sym-
metry) in a two-dimensional spacetime (2D) or
above (≥2d), there always exists a finite group K
bosonic gauge theory which is a TQFT, saturating the
G-’t Hooft anomaly, that can live on the boundary of
G-SPTs, based on the symmetry-extension method
via a short exact sequence 1 → K → H → G → 1,
where all G, K, and H are finite groups of 0-form
symmetry.”
In this article, wewill explore the related phenome-

non of Ref. [7] but we improve the formulation by
replacing the 0-form G symmetry to include gener-
alized higher symmetries of Ref. [5].

(2) We apply the above generalized higher symmetry-
extension method from Ref. [7] either to construct
the higher-symmetric anomalous TQFTs, for adjoint
QCD4, or to show the invalidity of the TQFTs via a
symmetry-extension method.
Specifically, we find an obstruction to construct

certain symmetric 4D TQFTs via symmetry

extension, for the mixed anomaly mixing between
the discrete axial symmetry (here the 0-form
Z2NcNf

¼ Z8 symmetry, with Nc ¼ Nf ¼ 2) and
the 1-form electric center symmetry (denoted as
Ze

2;½1� ¼ Z2;½1�). This higher anomaly is abbreviated
as the type I higher anomaly in Ref. [3]. The type I
anomaly in 4D has a Z4 class (below k ∈ Z4 class)
and one can explicitly write down the 5D topological
(abbreviated as “topo.”) invariant [2] which is a
cobordism invariant (see mathematical details in [9]
and Sec. A),

Type I anomaly=topo: invariant∶ ei
kπ
2

R
A∪P2ðB2Þ: ð2Þ

Here A is the Z4-valued background 1-form gauge
field coupling to the 0-formZ8=ZF

2 ¼ Z4 part of the
axial global symmetry. The ZF

2 is the fermionic
parity symmetry which is ð−1ÞNF , assigning a minus
to the state of the systemwhen there is an odd number
of the total number of fermions NF. The B2 is the
Z2-valued background 2-form gauge field coupling
to the 1-form Ze

2;½1�-symmetry. The ∪ is the cup
product, and the P2 is the Pontryagin square; see
more details in Sec. II. In Sec. A, we will prove the
nonexistence of anomalous symmetric 4D TQFTs
(of finite groups or higher groups) for this 4D higher
anomaly (or equivalently, 5D higher SPTs) of
Eq. (2), via the symmetry-extension method. How-
ever, we clarify that our proof does not necessarily
imply a no-go theorem for the anomalous symmetric
4D TQFTs for Bi-Senthil [3]. In general, it could be
due to the limitation of the symmetry extension [7]
we used. Nevertheless, it is known that [7]’s method
is general and systematic enough to construct sym-
metric TQFT for all bosonic anomalies of the
ordinary 0-form finite group symmetries; thus, the
obstruction from [7] is severe and interesting by itself
to be presented here. This proof indicates a no-go
scenario for anomalous symmetric 4D TQFTs if we
only limit the construction under the symmetry-
extension construction of TQFTs.
In contrast, we find that the generalized symmetry-

extension method can indeed construct another sym-
metric 4D TQFT saturating a different higher mixed
anomaly, mixing between the background gravity (or
the curved spacetime geometry) and the 1-form center
symmetry (denoted as Z2;½1�). This higher anomaly is
abbreviated as the type II higher anomaly in Ref. [3].
We can explicitly write down the 5D topological
invariant [2] as the following cobordism invariant (see
mathematical details in [9] and Sec. A),

Type II anomaly=topo: invariant∶

eiπ
R

w2ðTMÞSq1B2 ¼ eiπ
R

w3ðTMÞB2 : ð3Þ
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Here wjðTMÞ has the wj as the jth Stiefel-Whitney
(SW) class [10], as the probed background spacetime
M connection over the spacetime tangent bundle TM.
Sq1 is the Steenrod operation. We demonstrate the
explicit construction of the 4D symmetric anomalous
TQFT for this 4Dhigher anomaly (or equivalently, 5D
higher SPTs) of Eq. (3) in Sec. III.

Physically, the above description concerns the physics
side of the story, relating to quantum field theory, QCD,
or the strongly correlated systems in condensed matter
physics.
Mathematically, we ask the following questions (corre-

sponding to the physics story above) and find an obstruc-
tion to a positive answer for a Bi-Senthil’s scenario [3] via
the symmetry extension alone, generalizing the method
of [7]:

Question 1. Can we trivialize the topological term A ∪
P2ðB2Þ via extending the global symmetry by the
0-form symmetry and 1-form symmetry? To answer
this, we deal with the trivialization problem of the
cobordism invariant A ∪ P2ðB2Þ of the bordism group

ΩSpin×Z2
Z8

5 ðB2Z2Þ.2 We prove that the answer is
negative.

Question 2. We also solve the trivialization problem of
the cobordism invariant P2ðB2Þ of the bordism group
ΩSO

4 ðB2Z2Þ: Can we trivialize the topological term
P2ðB2Þ via extending the global symmetry by the 0-
form symmetry and 1-form symmetry? We prove that
the answer is also negative.

The plan of the article goes as follows. In Sec. II, we
detail the related global symmetries and higher anomalies
relevant for our goal, following Ref. [2]. In Sec. III, we
discuss the higher symmetry-extension generalization of
[7], and successfully apply the method to construct a 4D
symmetric anomalous TQFT for the type II anomaly
equation (3). But this method shows an obstruction for
the type I anomaly equation (2). We conclude in Sec. IV.
We leave the rigorous but more formal and mathematical

details of the calculation to the Appendixes. In
Appendix A, we find a potential obstruction: The type I
anomaly equation (2) cannot be saturated by a symmetric
anomalous finite group/higher group TQFT, at least by a
symmetry-extension method. In Appendix B, we give a
counter example as the proof for the failure of the
symmetry-extension method applying to trivializing the
5D A ∪ P2ðB2Þ. In Appendix C, we show a similar
obstruction: The 4D P2ðB2Þ cannot be saturated by a
symmetric anomalous finite group/higher group TQFT,
at least by a symmetry-extension method. We note that

Appendixes A, B, and C are more technical and math-
ematically demanding. For readers who are not familiar
with the mathematical background for these three sections,
one can either consult [9,11] (e.g., the Appendix of [11]), or
simply skip them and proceed to Sec. IV in which we
summarize the physics interpretations of the above three
sections.
The mathematical details of our cobordism calculations

can be found in a companion paper [9].

II. THEORY OF ADJOINT QCD4

We have an SU(2) gauge theory coupled to 2 3 (Nf ¼ 2
for the 2, and the 3 for the triplet) adjoint Weyl fermions in
the adjoint representation of SU(2). The path integral (or
partition function) of this adjoint QCD4, in the Minkowski
signature, viewed as a UV QFT theory can be written as

ZUV ¼
Z

½Dψ �½Dψ̄ �½Da� expðiSUVÞ; ð4Þ

SUV ¼
Z

d4x
X
j¼1;2

i
g2

ψ̄b0
j σ̄

μð∂μ − igaa
0

μ ðTa0 Þb0bÞψ jb

−
1

g2

Z
TrðF ∧ ⋆FÞ þ…: ð5Þ

Equation (5) contains the first term as the Dirac
Lagrangian, and the second term as the Yang-Mills
Lagrangian. The ½D…� is the path integral measure for
the quantum fields. The σ̄μ ≡ ð1;−σ⃗Þ contains the standard
Pauli sigma matrices σ⃗. Here the Weyl fermion ψ jb

α has the
following:

(i) the flavor index j [of the classical U(2) flavor
symmetry, or more precisely the SUð2Þ×Z8

ZF
2

flavor

symmetry in a quantum theory, see later],
(ii) the gauge index b of the gauge SU(2) of the adjoint

triplet,
(iii) the Lorentz index α of the Lorentz group.

The Hermitian conjugation of the fermion field is

ψ̄b0
j ¼ψ jb0†. With the Lorentz index, we have ψ̄b0

_αj ¼ ψ jb0†
α ,

following the standard supersymmetry notation.
Here are some other comments:
(i) The g is the dimensionless Yang-Mills coupling,

which is a running coupling in the quantum theory.
(ii) The F is the SU(2) gauge field a’s 2-form field

strength. The ⋆F is the F’s Hodge dual.
(iii) One can consider the deformation of the theory as

extra terms in the …, such as the mass deformation
[4], e.g., ðmijδb0bψ

ib0
α ϵαβψ jb

β þ c:c:Þ. In the classical
theory, we can add the θ-term,

Z �
θ

8π2
TrF ∧ F

�
: ð6Þ

2In this work, we will use the term dd “cobordism invariant” to
describe the dd topological term or dd (higher) SPTs. On a
manifold with a boundary, the boundary of such a cobordism
invariant (or SPTs) has a ’t Hooft anomaly. We denote the
bordism group ΩG

d , while we denote the cobordism group Ωd
G.
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However, in the quantum theory, with the presence
of the fermion fields ψ , we can rotate the θ away. If
we have the mass term for the fermions, we can
absorb the θ-term into the complex fermion mass
matrix in the mass deformation.

A. Global symmetries

The global symmetries of the adjoint QCD4 equation (4)
has been analyzed systematically in [2]. Here we recap the
results and will write the results suitable for the cobordism
theory analysis later in Appendixes A to C.

(1) Flavor symmetry SUð2Þ×Z8

ZF
2

: The classical flavor sym-

metry of 2 triplet Weyl fermions is the flavor
Uð2Þ ¼ SUð2Þ×Uð1ÞA

ZF
2

. However, the axial symmetry

Uð1ÞA is broken down to a discrete axial symmetry
Z2NcNf;A, which is Z2NcNf;A ¼ Z8 here, due to the
Adler-Bell-Jackiw anomaly.3 It is a standard calcu-
lation of the Uð1ÞA-axial symmetry that is explicitly
broken by the dynamical SUðNcÞ-gauge instanton
down to the Z2NcNf;A-axial symmetry.

So the flavor symmetry is simply SUð2Þ×Z8;A

ZF
2

¼
SUð2Þ×Z8

ZF
2

for the quantum theory. The SUð2Þ is also
written as the SUð2ÞR as the R symmetry thanks to
the standard convention in N ¼ 2 supersymmetric
Yang-Mills theory (SYM) [13]. In the N ¼ 2 SYM,
the adjoint fermions are gauginos.

(2) The 1-form center symmetry Ze
2;½1� ≡ Z2;½1�: The

adjoint QCD has the matter in adjoint representation,
so the SUðNcÞ [here SU(2)] fundamental Wilson line
is charged under the 1-form electric center symmetry
Ze

2;½1� measured by a 2-surface “charge” operator.
The “charged” fundamental Wilson line [spin-1=2
representation of SU(2)] has an odd Z2 charge. The
odd half integer spin-n=2 representation of SU(2)
has an odd Z2 charge of 1-form symmetry. Wilson
lines of other integer spin-n representations (e.g., the
adjoint) of SU(2) have a trivial (namely, even) Z2

charge of 1-form symmetry.
Importantly, that the 1-form center symmetry

Ze
2;½1� is preserved means that the electric Wilson

loop (e-loop) is unbreakable, or called tension-ful
[3]. Since the adjoint QCD has the 1-form center
symmetry, we can use the 1-form center symmetry
charged object to detect the following:

(i) Confinement: If 1-form symmetry is preserved,
and all the Wilson loops (of all representations)
obey the area law.

(ii) Deconfinement: If 1-form symmetry is sponta-
neously broken, then the Wilson loops of odd
half integer spin-n=2 representation (e.g., fun-
damental representation) obey the perimeter law.

(3) Spacetime symmetry: In the Lorentz signature, we
have the Poincaré group symmetry which contains
the Lorentz group. We also have the discrete CPT
symmetries. There is no charge conjugation C for
SU(2) gauge theory due to the lack of SU(2) outer
automorphism. So there is only T and P symmetry
interchangeably thanks to the CPT theorem. If we
focus on orientable spacetime for the adjoint QCD
in dd, we can consider the SpinðdÞ spacetime
symmetry, for the purpose of classifying the ’t Hooft
anomalies through the cobordism theory [9,14]. If
we consider the nonorientable spacetime for the
adjoint QCD in dd, we should consider the Pin−ðdÞ
spacetime symmetry, for the purpose of classifying
the ’t Hooft anomalies through a cobordism theory;
see Refs. [9,14]. This adjoint QCD is a fermionic
theory, the spacetime symmetry Gspacetime and the
internal symmetry Ginternal share the fermionic parity
ZF

2 , so the precise way to write the full global
symmetry would be

�
Gspacetime ×Ginternal

ZF
2

�
≡Gspacetime ×ZF

2
Ginternal; ð7Þ

where the common ZF
2 is mod out, while the “×ZF

2
”

notation follows [14].
By combining the internal global symmetry (flavor and

1-form center symmetries) and the spacetime global sym-
metry above, the overall global symmetry can be written as

Spin ×ZF
2

�
SUð2Þ × Z8;A

ZF
2

�
× Ze

2;½1� ð8Þ

Pin− ×ZF
2

�
SUð2Þ × Z8;A

ZF
2

�
× Ze

2;½1�: ð9Þ

Belowwe follow Ref. [9], which generalizes a theorem in
a remarkable work of Freed-Hopkins [14]. Freed-Hopkins
[14] formulates a cobordism theorywhose cobordismgroup,
of the ordinary 0-form global symmetries, classifies a class
of symmetric invertible TQFTs, which is relevant to the SPT
classification. Reference [9] generalizes [14] to a cobordism
theory of the higher global symmetries (e.g., including
0-form global symmetries and 1-form global symmetries)
and computes some examples of such cobordism groups.
In terms of bordism group notation, which later will be

helpful for identifying all the (higher) ’t Hooft anomalies

3For a clarification of the different meanings of anomalies
[such as the three different types of physics of anomalies:
(1) classical global symmetry is violated at the quantum theory:
the Adler-Bell-Jackiw anomaly; (2) quantum global symmetry is
well defined and preserved but with the ’t Hooft anomaly;
(3) dynamical gauge anomaly] the readers can consult, e.g.,
the Sec. I Introduction of [12] and references therein.
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and the SPT classes via the computations of [9], we write
their corresponding bordism groups Ωd as4

(i) Bordism group for Eq. (8):

Ω
Spin×ZF

2

�
SUð2Þ×Z8;A

ZF
2

�
×BZe

2;½1�
d ðptÞ

≡Ω
Spin×ZF

2

�
SUð2Þ×Z8;A

ZF
2

�
d ðB2Ze

2;½1�Þ: ð10Þ

(ii) Bordism group for Eq. (9):

Ω
Pin−×ZF

2

�
SUð2Þ×Z8;A

ZF
2

�
×BZe

2;½1�
d ðptÞ

≡Ω
Pin−×ZF

2

�
SUð2Þ×Z8;A

ZF
2

�
d ðB2Ze

2;½1�Þ: ð11Þ

For adjoint QCD4 in 4D, the higher ’t Hooft anomalies are
classified by the dimension d ¼ 5 for the above bordism
groups.5 See more details in Ref. [12].

B. Anomalies

Now consider the d ¼ 5 bordism groups above in
Eqs. (10) and (11); we like to match their selective 5D
cobordism invariants to the anomalies captured by the 4D
adjoint QCD4.
Cordova and Dumitrescu [2] have captured several

anomalies, which we now overview:
(1) The SU(2)Witten anomaly [15] for the flavor SUð2ÞR

sector, because there is an odd number of the SUð2ÞR
flavor doublet. The appearance of the SU(2) Witten
anomaly also indicates that the IR fate of this adjoint
QCD4 is gapless instead of fully gapped.

(2) The ðZ8;AÞ3 anomaly captured by a perturbative
anomaly (i.e., a triangle 1-loop Feynman diagram
in 4D).

(3) The ðZ8;AÞ-ðgravityÞ2 anomaly captured by a per-
turbative anomaly (i.e., a triangle 1-loop Feynman
diagram in 4D). The gravity part is due to the
diffeomorphism of the background geometry.

(4) The ðZ8;AÞ-ðSUð2ÞRÞ2 anomaly captured by a per-
turbative anomaly (i.e., a triangle 1-loop Feynman
diagram in 4D).
Reference [2] explains the two interesting mixed

’t Hooft higher anomalies involving 1-form sym-
metry, the type I equation (2) and type II equation (3)
anomalies earlier.

(5) Type I higher anomaly: mixing between the 1-form
electric center symmetry (Ze

2;½1�) and the 0-form
discrete axial symmetry (Z2NcNf

¼ Z8). We can
write Eq. (2) as

ei
kπ
2

R
A∪P2ðB2Þ ¼ ei

kπ
2

R
A∪ðB2∪B2þB2∪1δB2Þ

¼ ei
kπ
2

R
A∪ðB2∪B2þB2ð2Sq1B2ÞÞ; ð12Þ

see [9] for introducing the cup products, higher cup
products, and the Steenrod square, Sq.

(6) Type II higher anomaly: mixing between the 1-form
center symmetry (denoted as Z2;½1�) and the back-
ground gravity (or the curved spacetime geometry)
in Eq. (3).

The UV theory as an adjoint QCD4 has all of the above
’t Hooft anomalies, captured also by a particular 5D
cobordism invariant, in Eqs. (10) and (11).
Following our Introduction, in Sec. III, we formulate the

higher symmetry extension generalizing [7], and success-
fully construct a 4D symmetric anomalous TQFT for the
type II anomaly equation (3). But we will soon show an
obstruction to construct symmetric TQFT for the type I
anomaly equation (2).

III. HIGHER SYMMETRY EXTENSION

A. Summary of ordinary symmetry extension

Reference [7] sets up the symmetry-extension problem as
follows. Consider the dd SPTs protected by an internal
symmetry groupG, whose boundary theory has the ðd − 1Þd
’t Hooft anomaly in G. There are three different ways to
phrase the question asked by [7], but their underlying
meanings are the same:

Q1. Condensed matter statement: Can we find a total
group H such that G is its quotient group, and such
that the G-SPTs becomes a trivial gapped vacua in H?
More precisely, there is a local unitary transformation
preserving the symmetry H (but breaking the sym-
metry G), such that when the G-SPTs is viewed as an
H-SPTs, it can be deformed to a trivial gapped
insulator in H via a local unitary transformation,
without breakingH and without any phase transition.6

Q2. QFT or high energy particle physics statement:
Given a ðd − 1Þd ’t Hooft anomaly in G, can we find
an enlarged groupH, with a total groupH havingG as
its quotient group, such that the ’t Hooft anomaly in G
becomes anomaly free in H? (i.e., the G-anomaly
becomes trivial in H.)

Q3. Mathematical and algebraic topology statement:
Given a dd topological term of a group G, here the
topological term can be the following:

4Here BG means the classifying space of G and pt means
the point.

5On the other hand, if we aim to know the 4D SPTs compatible
with the symmetry of adjoint QCD4, then we need to consider the
dimension d ¼ 4 for the above bordism groups. This research
direction is pursued by Ref. [11] for the related SUðNcÞ Yang-
Mills gauge theories.

6This procedure has been demonstrated explicitly in a many
body quantum system recently in Ref. [16], which constructs an
explicit path in the enlargedH-symmetric quantum Hilbert space.
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(i) the dd cocycle for a dth cohomology group
HdðBG;Uð1ÞÞ in a group cohomology theory;

(ii) the dd co/bordism invariant for a dth
cobordism group Ωd

−ðBG;Uð1ÞÞ or bordism
group Ω−

d ðBGÞ or the bordism group, in a
cobordism theory7;

can we find an extended group H with G its quotient
group, via a short exact sequence

1 → K → H → G → 1; ð13Þ
such that the topological term of a groupG can be pulled
back to a trivial topological term of a group H?
Suppose the above answer is positive, and suppose that

G,H, and K are finite groups, then Ref. [7] shows, valid for
both the lattice Hamiltonian and the path integral con-
struction, that the G-SPTs in dd can allow the following:

(i) H-symmetry-extended gapped boundary in any
spacetime dimension d ≥ 2,

(ii) G-symmetry-preserving and topological K-gauge
theory gapped boundary: topological emergent
K-gauge theory with preserving global symmetry
G on a bulk d ≥ 3.

Reference [7] addresses the above questions Q1, Q2, and
Q3, by proving that, at least for a finite group G (with G a
unitary symmetry group or anti-unitary symmetry group
involving time-reversal symmetry), by the following posi-
tive answers, with the always-existences on the validity of
the symmetric gapped boundary construction:

A1. For any bosonic SPT state with a finite on site
symmetry group G, including both unitary and anti-
unitary symmetry, there always exists an H-symmetry-
extended (orG-symmetry-preserving) gapped boundary
via a nontrivial group extension by a finite K, given the
bulk spacetime dimension d ≥ 2.

A2. For any G-anomaly in ðd − 1Þd given by a cocycle
νGd ∈ HdðBG;Uð1ÞÞ of group cohomology of a finite
groupG, there always exists a pull back to a finite group

H via a certain group extension 1 → K → H→
r
G → 1,

extended by a finite K, such that the G-anomaly
becomes H-anomaly free, given the dimension d ≥ 2

A3. For any G-cocycle νGd ∈ HdðBG;Uð1ÞÞ of a finite
group G, there always exists a pull back to a finite
group H via a certain short exact sequence of a group

extension 1→K→H→
r
G→1 by a finite K, such that

r�νGd ¼ νHd ¼ δμHd−1 ∈ HdðH;Uð1ÞÞ:
Here r is the pullback operation, and δ is the
coboundary operation. Namely, a G-cocycle becomes
an H-coboundary, which splits to one-lower dimen-
sional H-cochains μHd−1, given the dimension d ≥ 2.

The proof of [7] has also been verified later by [17]. The
related constructions similar to [7] are explored also in
specific cases or from different perspectives in [18,19].

B. Higher symmetry generalization

Now we generalizes the approach in [7]. The short
exact sequence of a group extension 1 → K → H→

r
G → 1

extended by a finite K given in [7] also implies an induced
fiber sequence from the fibration

BK → BH → BG; ð14Þ
where allG,K, andH are finite groups of 0-form symmetry
such that theG-SPTs protected by a finite groupG becomes
trivial H-SPTs by pulling back G to H, under the above
criteria A1, A2, and A3.
We consider the higher symmetry-extension problem.

A simpler example is

BK½0� × B2K½1� → BH → BG;

where K½0� is an extension from a normal 0-form symmetry
K½0�, while K½1� is an extension from a less familiar and
more exotic 1-form symmetry K½1�. However, our goal is
more ambitious to check a more general fibration

BK½0� ⋉ B2K½1� → BH → BG ð15Þ
where G and H are 2-groups, K½0� and K½1� are finite abelian
groups of 0-form symmetry and 1-form symmetry respec-
tively such that the higherG-SPTs protected by a 2-groupG
becomes the trivial higher H-SPTs by pulling back G to H8.
Here BK½0� ⋉ B2K½1� is the total space BK of the fibration

ð16Þ

Similar to questions in Q1, Q2, and Q3 of Sec. III A, we
ask a set of generalized questions:

Q4. Condensed matter statement: Can we find a total
2-group H as a total space such that BG is BH’s orbit
(or base space), and such that the G-SPTs becomes a
trivial gapped vacua in H? More precisely, there is a
local unitary transformation preserving the symmetry
H (but breaking the symmetry G), such that when
the G-SPTs are viewed as an H-SPTs, they can be
deformed to a trivial gapped insulator in H via a local
unitary transformation (note that the locality also
needs to be generalized to a higher dimensional

7Here the − can be chosen as co/bordism with different
structures such as special/orthogonal SO=O, spin/pin, or
Spin=Pin� structures.

8For the related physics topics on higher group symmetries and
higher SPTs, the readers can find from the recent developments in
Refs. [20–25] and references therein.
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extended object such as a line instead of just a point,
due to the 2-group structure), without breaking H
and without any phase transition in the enlarged
H-symmetric quantum Hilbert space.

Q5. QFT or high energy particle physics statement:
Given a ðd − 1Þd ’t Hooft anomaly in a higher group
G, can we find an enlarged group H, with a total group
H obeying Eq. (15), such that the ’t Hooft anomaly in
G becomes anomaly free in H (i.e., the G-anomaly
becomes trivial in H)?

Q6. Mathematical and algebraic topology statement:
Given a dd topological term of a higher group G, here
the topological term can be the following:
(i) the dd cocycle for a dth cohomology group

HdðBG;Uð1ÞÞ in a higher group cohomology
theory,

(ii) the dd co/bordism invariant for a dth cobordism
groupΩd

−ðBG;Uð1ÞÞ or bordism groupΩ−
d ðBGÞ

or bordism group, in a cobordism theory9;
can we find an extended group H obeying Eq. (15) such
that the topological term of a group G can be pulled back
to a trivial topological term of a group H?
In the next two subsections, we implement the strategy

equation (15) by asking the questions in Q4, Q5, and Q6,
for the two examples: the type I anomaly/topo. invariant in
Eq. (2) and the type II anomaly/topo. invariant in Eq. (3).
We relegate more formal and mathematical details

of the calculation of the above two subsections into
Appendixes A, B, and C.

C. Saturate type II anomaly: Symmetric TQFTs

We first try to do a higher symmetry extension to
trivialize the 4D type II higher anomaly (given by a 5D
topological invariant) equation (3)

eiπ
R

w2ðTMÞSq1B2 ¼ eiπ
R

w3ðTMÞB2 :

We have found that Eq. (3) is a topological invariant in
d ¼ 5, for the following:

(i) HdðB2Z2;Uð1ÞÞ group cohomology of a higher
classifying space finite group, as well as

(ii) ΩSO
d ðB2Z2Þ cobordism group of a higher classifying

space finite group. Below we can either use the
group cohomology or the cobordism group view-
point to understand the trivialization of the 4D
type II higher anomaly.

(1) The first way to trivialize this 4D type II higher
anomaly is by extending the spacetime symmetry
from the special orthogonal group SOðdÞ ¼
SpinðdÞ=ZF

2 to SpinðdÞ:

BZ2→BSpinðdÞ×B2Z2→BSOðdÞ×B2Z2: ð17Þ

This extension works since w2ðTMÞ ¼ 0 vanishes
on the spin manifold. Thus, Eq. (3) is trivialized
once we pull back Eq. (3) into BSpinðdÞ × B2Z2.
According to the interpretation in Sec. III A and
Ref. [7], the fibration BZ2 contains an emergent
0-form global symmetry which is anomaly free and
can be dynamically gauged. Indeed, the natural way
to interpret Eq. (17) as the generalized construction
of [7] is that there is an emergent 1-form Z2 gauge
theory (dynamically gauged from emergent 0-form
global symmetry BZ2), such that the Z2 gauge
theory has additional emergent fermionic particle
excitations due to the emergent spin structure [the
Spin(d) in the total space in Eq. (17)]. In terms of the
full 4D symmetric TQFT saturating the higher
’t Hooft anomaly (coupling to the 5D higher SPTs),
we can write the involved QFT sectors into a partition
function, which looks like the following locally:

eiπ
R
M5 w2ðTMÞSq1B2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

5D higher SPTs ð4D higher anomalyÞ

·
X

a∈C1ðð∂MÞ4 ;Z2Þ;
b∈C2ðð∂MÞ4 ;Z2Þ

expði2π
Z
ð∂MÞ4

1

2
ðbδaÞ þ…Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
locally a 4DZ2-TQFT with emergent fermions and spin-structure

:

ð18Þ
Here a is the Z2-valued 1-form gauge field (the
standard notation as the 1-cochain in C1), b is theZ2-
valued 2-form gauge field (the standard notation as
the 2-cochain in C2), the δ is the coboundary operator
here δ ¼ 2Sq1, and we use the cup product∪. See also
our previous explanations aroundEq. (3) for notations.
The… are additional coupling terms between dynami-
cal gauge fields and background fields. The … also
include additional sectors from the UVadjoint QCD4

from Eq. (4), in order to saturate the other anomalies.
Note that the similar emergent dynamical spin struc-
ture with the Z2 gauge field has been studied in
Ref. [26]. The important thing is that the 1-form gauge
field a can be regarded as the difference between two
spin structures, while the gauge field a becomes
dynamical.
Moreover, we can write the extension of Eq. (17) in

terms of the full symmetry equation (8):

BZ2 → B

�
Spin ×

�
SUð2Þ × Z8;A

ZF
2

��
× B2Ze

2;½1�

→ B

�
Spin ×ZF

2

�
SUð2Þ × Z8;A

ZF
2

��
× B2Ze

2;½1�;

ð19Þ
while the physical interpretation remains the same as
Eqs. (17) and (18).9Here the “−” follows the earlier footnote 7.
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(2) The second way to trivialize this 4D type II higher
anomaly is by extending the 1-form symmetry:

B2Z2 → BSOðdÞ × B2Z4 → BSOðdÞ × B2Z2:

ð20Þ

This way works since B is pulled back to B̃ ∈
H2ðB2Z4;Z2Þ and Sq1B̃ ¼ 0 (see Appendix A 2 d).
According to the interpretation in Sec. III A and

Ref. [7], the fibration B2Z2 is associated to an
emergent 1-form global symmetry Z2;½1� which is
anomaly free and can be dynamically gauged. Indeed,

the naturalway to interpret Eq. (17) as the generalized
construction of [7] is that there is an emergent
2-form Z2 gauge theory (dynamically gauged from
the emergent 1-form global symmetry BZ2)
with a 2-form gauge field b0. The original 1-form
Ze

2;½1�-symmetry acts projectively on the emergent
2-form Z2 gauge theory, but the extended 1-form
Ze

4;½1� symmetry acts on it faithfully.
We can write the involved QFT sectors into a

following partition function, which looks like the
following locally:

eiπ
R
M5 w2ðTMÞSq1B2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

5D higher SPTs ð4D higher anomalyÞ
·

X
a0∈C1ðð∂MÞ4 ;Z2Þ;
b0∈C2ðð∂MÞ4 ;Z2Þ

expði2π
Z
ð∂MÞ4

1

2
ða0δb0Þ þ…Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
locally a 4DZ2-TQFT; on which the 1-formZe

2;½1�-symmetry acts projectively

: ð21Þ

Here b0 is the Z2-valued 2-form gauge field (the
standard notation as the 2-cochain in C2), a0 is the
Z2-valued 1-form gauge field (the standard notation
as the 1-cochain in C1), while other notations are
explained around Eqs. (3) and (21). The … are
additional coupling terms between dynamical gauge
fields and background fields. The … also include
additional sectors from the UV adjoint QCD4 from
Eq. (4), in order to saturate the other anomalies. We
can also write the extension of Eq. (20) in terms of
the full symmetry equation (8):

B2Z2;½1�→B

�
Spin×ZF

2

�
SUð2Þ×Z8;A

ZF
2

��
×B2Ze

4;½1�

→B

�
Spin×ZF

2

�
SUð2Þ×Z8;A

ZF
2

��
×B2Ze

2;½1�;

ð22Þ

while the physical interpretation remains the same as
Eq. (20).

D. Saturate type I anomaly: Obstruction

We now try to do higher symmetry extension to trivialize
the 4D type I higher anomaly (given by a 5D topological
invariant of higher SPTs) equation (2)

ei
kπ
2

R
A∪P2ðB2Þ ¼ ei

kπ
2

R
A∪ðB2∪B2þB2∪1δB2Þ:

Below we show that
(1) When k ¼ 2 ∈ Z4, the type I anomaly equation (2)

can be trivialized, thanks to the fact that we can
rewrite Eq. (2) as

eiπ
R

A∪P2ðB2Þ ¼ eiπ
R

A∪ðB2∪B2þB2∪1δB2Þ

¼ eiπ
R

A∪ðB2∪B2þ2B2∪1Sq1B2Þ

¼ eiπ
R

A∪ðB2∪B2Þ

¼ eiπ
R

Sq2ðA∪B2Þ

¼ eiπ
R
ðw2ðTMÞþw1ðTMÞ2ÞðA∪B2Þ; ð23Þ

where we have used the fact that Sq1Ã ¼ 0 where
Ã ¼ A mod 2 as well as the Wu formula. See also
useful information in [9].
So when k ¼ 2 ∈ Z4, if we extend the global

symmetry by

BZ2 → BðSpin × ðSUð2Þ×Z2
Z8ÞÞ×B2Z2

→ BðSpin ×Z2
ðSUð2Þ×Z2

Z8ÞÞ×B2Z2; ð24Þ

then the type I anomaly equation (2) vanishes.
This extension works since w1ðTMÞ¼w2ðTMÞ¼0
vanishes on spin manifolds. Thus, Eq. (2) is trivi-
alized once we pull back Eq. (2) into BðSpin×
ðSUð2Þ ×Z2

Z8ÞÞ × B2Z2.
(2) When k ¼ 1, 3 ∈ Z4, or k odd, the type I anomaly

equation (2) cannot be trivialized by extensions.
We have tried three approaches, which we rel-

egate the details of in Appendix A 2 while we
summarize the physics story and implication here.
(i) The first approach (Appendix A 2 b) is a break-

ing case since we set B to be zero. Physically
this means that in order to saturate the ’t Hooft
anomaly, we can break 1-form Z2 symmetry
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to nothing. In comparison, this 1-form Z2-
symmetry breaking is a different scenario
from [2,3].

(ii) In the second approach (details and notations
explained in Appendix A 2 c), we defineG to be
a group which sits in a homotopy pullback
square

ð25Þ

Hence we have a fiber sequence

BZ2 → BG → BðSpin × SUð2Þ × Z8Þ × B2Z2

→ B2Z2: ð26Þ

In this case, B2 ¼ B is identified with βð2;8ÞA
where A ∈ H1ðBZ8;Z8Þ and Sq1B ¼ 0, but Ã ∪
B2

2
is still not trivialized. This case is also a

breaking case, since B is locked with A. In
physics, the locking between two probed back-
ground fields means that the global symmetry
between two sectors are locked together, which
then results in global symmetry breaking.
Physically this means that in order to saturate

the ’t Hooft anomaly, we still need to break
symmetry in some way.

(iii) In the third approach, we extend both the 0-
form symmetry and the 1-form symmetry:

BZ2×B2Z2→BðSpin×ðSUð2Þ×Z2
Z8ÞÞ×B2Z4

→B

�
Spin×ðSUð2Þ×Z2

Z8Þ
ZF

2

�

×B2Z2: ð27Þ

But in this case, Ã ∪ B2

2
is still not, and cannot

be, trivialized.
In summary, we finally conclude that when k is odd,

k ¼ 1; 3 ∈ Z4, the type I anomaly equation (2) cannot be
trivialized by extensions and give a proof in Appendix B. In
comparison, Ref. [3] proposes a full symmetry-preserving
TQFT different from all of our scenarios above, which
contradicts to our proof in Appendix B.

E. Saturate both type I (for even class in Z4)
and II anomalies

When k ¼ 2, such that the type I anomaly survives as
only a Z2 subclass (even k) in the original k ∈ Z4 class

(of kA ∪ P2ðB2Þ), however, we can actually trivialize the
Z2 subclass of the type I anomaly and the full type II
anomaly together via the fibration:

BZ2 → B

�
Spin ×

�
SUð2Þ × Z8;A

ZF
2

��
× B2Ze

2;½1�

→ B
�
Spin ×ZF

2

�
SUð2Þ × Z8;A

ZF
2

��
× B2Ze

2;½1�: ð28Þ

The above is achieved by combining both Eqs. (17) and
(24) into Eq. (19). Since we only care about k ¼ 2, this also
means that the Z8;A symmetry only needs to be survived
as a Z4;A symmetry. Physically this means that the Z8;A

symmetry can be spontaneously broken down to a Z4;A

symmetry. Thus, Eq. (28) really implies a fibration of a
smaller symmetry (e.g., a smaller classifying space) as

BZ2→B

�
Spin×

�
SUð2Þ×Z4;A

ZF
2

��
×B2Ze

2;½1�

→B

�
Spin×ZF

2

�
SUð2Þ×Z4;A

ZF
2

��
×B2Ze

2;½1�: ð29Þ

For such a 4D TQFT preserving a ðSUð2Þ×Z4;A

ZF
2

Þ-chiral
symmetry and 1-form Ze

2;½1� symmetry (from UV adjoint

QCD4), saturating the higher ’t Hooft anomaly (coupling to
the 5D higher SPTs), we can write the involved QFT
sectors into a partition function, which looks like the
following locally:

eiπ
R

A∪ðB2∪B2Þ · eiπ
R
M5 w2ðTMÞSq1B2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

5D higher SPTs ð4D higher anomalyÞ

·
X

a∈C1ðð∂MÞ4 ;Z2Þ;
b∈C2ðð∂MÞ4 ;Z2Þ

expði2π
Z
ð∂MÞ4

1

2
ðbδaÞ þ…Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
locally a 4DZ2-TQFT with emergent fermions and spin-structure

: ð30Þ

Again the 1-form gauge field a can be regarded as the
difference between two spin structures; the 1-form emer-
gent dynamical Z2 gauge field a is associated to a
dynamical spin structure (similar to a situation in Ref. [26]).
We note that the… terms can involve additional ’t Hooft

anomaly cancellation for the UV’s adjoint QCD4, such as the
gapless sector proposed in [1–4]. Besides, the… terms also
involve the coupling terms between dynamical gauge fields
and background fields, so that the full partition function can
bemade gauge invariant. Although Eq. (29) already suggests
a formation definition of TQFTs (based on the extension
construction of bulk-boundary coupled TQFTs, see [7] and
related constructions in [27,28]), it may be worthwhile to
formulate a cochain or continuum TQFT description follow-
ing [27,28]—which we leave for future work. It may also be
worthwhile to give a continuum 4D TQFT formulation for
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the higher-form gauge theory analogous to the Dijkgraaf-
Witten-like [29] gauge theory, which is similar to the
continuum TQFT formulation given in [22,30].

F. Other examples

In our companion work [12], we consider a similar
trivialization problem for 5D topological invariants of the
4DYang-Mills SU(N) gauge theory (in particular at θ ¼ π)
anomaly.
We find that many other examples of 5D topological

invariants of the 4D Yang-Mills anomaly can be trivialized
by extending the 0-form symmetry and 1-form symmetry.
Hence, the higher symmetry-extension generalization,
Ref. [7], is powerful enough to trivialize a lot of other
higher bosonic types of anomalies, thus constructing exotic
fully symmetric anomalous TQFTs, although it gives an
obstruction to saturate the type I anomaly at an odd k while
preserving the full symmetry.

IV. CONCLUSION

We conclude by summarizing the implications of the
higher symmetry-extension construction of TQFTs on the
low energy dynamics of QCD4. Then we comment about
the constraints on the deconfined quantum critical phe-
nomena, or the so-called deconfined quantum critical point
(dQCP) [31], in 3þ 1 spacetime dimensions [3].

A. The fate of the dynamics of QCD4

1. Possible fates of the dynamics of fundamental
QCD4 with Nf Dirac fermions

First, we recall the possible fates of the dynamics of QCD4

with Nf Dirac fermions in fundamental representations of

SUðNcÞ. The conventional wisdom teaches us that the phase
structure of the dynamics of QCD4 via tuning Nf (with a
fix Nc), shown in Fig. 1, is that

(i) At lower Nf, there should be a confinement (IR
confinement) and IR ChSB.

(ii) At larger Nf, there is a range of Nf, such that at IR,
the QFT flows to an interacting CFT; this is known
as the range of conformal window phenomena
studied by Bank-Zaks [32] and others.

(iii) Let Nasym:free
f ¼ 11

2
Nc, when Nf < Nasym:free

f , the
UV theory is weak coupling known as the
asymptotic freedom (or UV free) [33,34]. When
Nf > Nasym:free

f , the UV theory becomes strongly
coupled while the coupling g flows weak at IR, at
least perturbatively.

2. Possible fates of the dynamics of adjoint
QCD4 with Nf Weyl fermions

Now we organize the possible fates of the dynamics
of QCD4 with Nf Weyl fermions in adjoint representations
of SUðNcÞ. The possible phase structure of dynamics of
QCD4 via tuning Nf (with a fix Nc) is shown in Fig. 2. We
remark that the candidate adjoint phases are summarized
very elegantly in [2]. We recap concisely in Fig. 2, while we
also list the related scenarios, 1, 2, 3, and 4, fromRefs. [2,3],
and from the list summarized in Sec. IVA 2.
The conventional wisdom teaches us that the phase

structure of dynamics of adjoint QCD4 via tuning Nf
(with a fix Nc), shown in Fig. 2, is that

(i) At Nf ¼ 0, it is a pure SUðNcÞ Yang-Mills gauge
theory [say SU(2)], potentially with a θ-term equa-
tion (6). At θ ¼ 0, the phase is a trivially gapped
confined phase (IR confinement) with no SPT state.

FIG. 1. Candidate phases of fundamentalQCD4 and their possible dynamical fates. “ChSB”means the “chiral symmetry-breaking phase.”
“PureYM”means the pureYang-Mills gauge theorywith a SUðNcÞ gauge group. “CFT”means conformal field theory. “UV free” or “asym.
free” means the asymptotic free. The question mark “?” means the detailed structure of the phase boundaries requires further studies.

FIG. 2. Candidate phases of adjoint QCD4 with an SU(2) gauge group (Nc ¼ 2) and their possible dynamical fates. Scenarios 1, 2, 3,
and 4 are from the list summarized in Sec. IVA 2. The question marks “?, ??, and ???” mean the detailed structure of the phase
boundaries requires further studies.
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However, at θ ¼ π, the phase has mixed higher
anomalies [35] and potentially newly found higher
’t Hooft anomalies [12].

(ii) At Nf ¼ 1, it is a pure N ¼ 1 supersymmetric
Yang-Mills gauge theory (SYM) [36]. Moreover,
there are Nc supersymmetric breaking vacua due to
gaugino condensation [37], which breaksZ2Nc

down
to Z2 (simply ZF

2 ). This N ¼ 1 SYM phase is also
known to be confined through monopole condensa-
tion, by embedding into a N ¼ 2 SYM theory with
Nc ¼ 2 [13].

(iii) At lower Nf, there should be a confinement
(IR confinement) and chiral symmetry breaking
(IR ChSB).

(iv) At larger Nf, one expects again a range of Nf
with a range of conformal window phenomena of
Bank-Zaks [32].

To proceed further, we recall that the UV internal global

symmetry is
�
SUð2Þ×Z8;A

ZF
2

�
× Ze

2;½1�. Now we organize a list of

possible fates of the dynamics of adjoint QCD4 with Nf

Weyl fermions proposed from [2,3]. There are four scenar-
ios summarized in Table I and below:
(1) The Nc copies of (or more specifically here Nc ¼ 2)

of the 4D CP1 sigma model at low energy with
spontaneous symmetry-breaking (SSB) Goldstone
modes, proposed by [2]. Its global symmetry is as
follows:

Oð2Þ × Ze
2;½1�: ð31Þ

In summary, scenario 1 has

“chiral symmetry breaking; and confinement:”

ð32Þ

To understand better the target space of the CP1

sigma model, here we can consider the breaking of
the 0-form symmetry group G as the total space E
breaking to a smaller fiber F (a subgroup or a normal
subgroup, as the fiber or the stabilizer), where the
order parameter parametrizes the base manifold B
(the base space or the orbit). In short, we formally
and mathematically write

F ↪ E

↓

B

;

stabilizer ↪ total space

↓

orbit

: ð33Þ

Then we obtain a relation for scenario 1:

S1 ¼ Uð1ÞR ↪ S3 ¼ SUð2ÞR
↓

S2 ¼ CP1

; ð34Þ

or more precisely a relation:

Oð2ÞR ¼ Uð1Þ⋊Z2 ↪

�
SUð2ÞR×Z8;A

ZF
2

�

↓

CP1⋊ Z8;A

Z2×ZF
2

:

ð35Þ

The CP1⋊ Z8;A

Z2×ZF
2

has two copies of CP1 as the target

space, parametrizing the order parameter of the base
manifold B (the base space or the orbit).

(2) A free massless Dirac fermion (equivalently, two
massless Weyl fermions, or two massless Majorana
fermions) and a Z2 discrete gauge theory have a 4D
TQFT with a Z4 symmetry (spontaneously broken
from the Z8 symmetry) proposed by [2]. The IR
symmetry is

�
SUð2Þ × Z4;A

ZF
2

�
× Ze

2;½1�: ð36Þ

In summary, scenario 2 has

“chiral symmetry breaking

Z8 → Z4; and confinement:” ð37Þ

FIG. 3. For the N ¼ 2 SYM or Seiberg-Witten theory [13],
there is a moduli space of the supersymmetric vacua, labeled by
the expectation value of the complex u ¼ Reuþ iImu≡
hTrðϕ2Þi ∈ C for the N ¼ 2 chiral operator. The τ≡ τUð1Þ ≡
θ
2π þ 2πi

e2 ¼ i is the special point at the self-dual value of the
coupling τ. The coupling τ is for the Coulomb phase of the U(1)
gauge theory (the Coulomb branch for the moduli space of
vacua). Even though the SYM is supersymmetric, Ref. [2]
enumerates the possible vacua by supersymmetry-breaking de-
formations. Let us relate the supersymmetric vacua to the adjoint
QCD4 vacua listed in the scenarios [2]: ⋄ The vacua of the
magnetic monopole point (u ¼ Λ2) and dyon point (u ¼ −Λ2)
are related by the broken symmetry Z8;A generator, which gives
rise to scenario 1. ⋄ Generic vacua of u ≠ 0, and u ≠ �Λ2 on the
plane are related to scenario 2. ⋄ The vacua of the u ¼ 0 with a
self-dual coupling τ are related to scenario 4.
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However, as explained in [2], there is an additional
emergent new deconfined Z2 TQFT with emergent
new Z2;½1� symmetries spontaneously broken.

(3) A free massless Dirac fermion (equivalently, two
massless Weyl fermions, or two massless Majorana
fermions) and a 4D TQFT preserving the full Z8

symmetry, proposed by [3]. The two massless Weyl
fermions actually have a U(2) continuous global
symmetry. The IR symmetry we focus is�

SUð2Þ × Z8;A

ZF
2

�
× Ze

2;½1�: ð38Þ

In summary, scenario 3 proposed that

“chiral symmetry fully preserved; and confinement:”

ð39Þ

(4) A 4D U(1) gauge theory in Coloumb phase with a
Z2NcNf

¼ Z8 symmetry, proposed by [2]. The IR
symmetry we focus is

�
SUð2Þ × Z8;A

ZF
2

�
× Uð1Þe½1� × Uð1Þm½1� ð40Þ

The ð…Þ means a spontaneous symmetry breaking
of …; thus, for 1-form symmetry breaking here, it
leads to a deconfinement of U(1) gauge theory. In
summary, scenario 4 proposed that

“chiral symmetry preserved; and deconfinement:”

ð41Þ

(5) Note that there is another scenario from Ref. [1]
proposing only a free massless Dirac fermion at IR
(equivalently, two massless Weyl fermions, or two
massless Majorana fermions), and two vacua (two
degenerate ground states) due to Z8;A → Z4;A, with-
out any 1-form symmetry. This scenario is certainly
incomplete due to the lack of matching the higher ’t
Hooft anomalies of 1-form symmetry. As Ref. [1]
also notices later, the more complete scenario is
adding a TQFT sector, following scenario 2.

B. Deconfined quantum criticality in 3 + 1 dimensions
and more comments

In this work, we obtain a higher symmetry-extension
generalization of Ref. [7]’s method to construct symmetric
anomalous TQFT saturating higher ’t Hooft anomalies. We
have obtained a symmetric anomalous TQFT, valid for
scenario 2 from Cordova-Dumitrescu (Ref. [2]), see
Eqs. (29) and (30). However, we are unable to obtain a
symmetric anomalous TQFT proposed by scenario 3
motivated by Bi-Senthil (Ref. [3]) based on a symmetry-
extension construction.
It is worthwhile to understand the exotic and interesting

physics of scenario 3 better. Scenario 3 is motivated by the
deconfined quantum criticality in 3þ 1 dimensions. It is
proposed that a critical theory can be realized as a phase
transition between two conventional Landau-Ginzburg
symmetry-breaking orders [31], or a phase transition
between two different SPT orders (see [3] and references
therein). The adjoint QCD4 is a UV description [UV side of
Eq. (1)] of the phase transition, while the IR description is
currently unclear [IR side of Eq. (1)].

TABLE I. Scenarios 1, 2, 3, and 4 are from the list summarized in Sec. IVA 2. The ð…Þ means that symmetry ð…Þ leads to SSB. We
find an obstruction for scenario 3 based on the higher symmetry-extension construction of Ref. [7]. We should note that, educated by
Ref. [2] and summarized in Fig. 3, scenario 1 is consistent with the supersymmetry (SUSY) breaking ofN ¼ 2 SYM from the magnetic
monopole point and dyon point (as 2 copies of CP1 model). Scenario 2 is consistent with the SUSY breaking of N ¼ 2 SYM from the
generic point from u ≠ 0, and u ≠ �Λ2. Scenario 4 is consistent with the SUSY breaking of N ¼ 2 SYM from the u ¼ 0 with a self-
dual coupling τ.

Scenario
Internal Global
Symmetry G

Chiral
Symmetry

1-form Ze
2;½1� Symmetry,

De-/Confinement

Anomaly
Matched
with UV

Plausible
Candidates

1. Ref. [2] Oð2Þ × Uð1Þ½1� SSB Enhanced and preserved;
confined.

Yes Yes
(favored by eneretic?)

2. Ref. [2]
�
SUð2Þ×Z4;A

ZF
2

�
× Ze

2;½1� ×… SSB
Z8;A → Z4;A

Preserved; confined.
But + new deconfined

Z2-TQFT with
emergent new Z2;½1� SSB.

yes Yes

3. Ref. [3]
�
SUð2Þ×Z8;A

ZF
2

�
× Ze

2;½1�
Preserved Preserved; confined. Obstruction

of symmetric
TQFT

Obstruction.
Not compatible
w/symmetry
extension [7]

4. Ref. [2]
�
SUð2Þ×Z8;A

ZF
2

�
×Uð1Þe½1�×Uð1Þm½1� Preserved Enhanced but SSB;

deconfined.
Yes Yes
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The novelty of scenario 3 is that the gapless sector is a
free CFT as two free Weyl fermions (a single free Dirac
fermion). So, the hope is that the possible UV-IR duality
equation (1) in 3þ 1D is between a strongly coupled and
interacting UV gauge theory and a free non-interacting
massless IR theory, up to a gapped fully symmetric TQFT
sector to saturate the higher ’t Hooft anomalies.
Our present work shows an obstruction for scenario 3

from a symmetry-extension construction alone. The impli-
cations of our finding are as follows:

(I) We should remind the readers that the symmetry-
extension construction is fairly general enough to
saturate a large class of higher ’t Hooft anomalies of
bosonic systems. Although the adjoint QCD4 is a
fermionic system (the UV completion requires
fermionic degrees of freedom, where there are
gauge-invariant fermionic operators), the type I
and II anomalies, Eqs. (2) and (3), are bosonic
anomalies in nature.

(II) Despite the fact that fully symmetric TQFT under
scenario 3 cannot be obtained via our symmetry-
extension construction, we may still be able to use
the symmetry-extension construction to derive other
symmetric anomalous TQFTs, suitable to propose
new candidate phases of other deconfined quantum
criticality (dQCP), in 3þ 1 and other dimensions.

We should also notice that the recent numerical attempts
[38,39] suggest that the adjoint QCD4 with the SU(2) gauge
group and Nf number of adjoint Weyl fermions may have
IR dynamics as follows:

(i) At Nf ¼ 2, (as 1 adjoint Dirac fermion), according
to [39], the IR theory may be very close to the onset
of the conformal window, instead of the conven-
tional confining behavior. In addition, the anoma-
lous dimension of the fermionic condensate is
reported to be close to 1. The numerical data seems
to suggest the IR theory can be an interacting CFT
(more exotic), instead of a free CFT (all the
proposed scenarios so far, discussed in Table I).

(ii) At Nf ¼ 4, (as 2 adjoint Dirac fermion), Ref. [38]
discusses the candidate IR theory. Reference [38]
points out the theory is gapless (or massless), while a
future endeavor is required to distinguish whether it
shows the confinement or the conformal behavior.

To unambiguously determine the IR dynamics, apart from
the given numerical inputs [38,39], we note that further
lattice studies are still necessary.
Finally, we remark that many anomalies discussed in

Sec. II B, following [2], are nonperturbative global anoma-
lies instead of perturbative anomalies. The nonperturbative
anomalies have classifications from finite groups (e.g., Zn
classes), instead of a Z classification. Examples include the
old and the new SU(2) anomalies [15,26], and also the
recent higher ’t Hooft anomalies of SU(N) YM gauge
theory; see [12,35], and references therein. For these

nonperturbative global anomalies, we can saturate certain
’t Hooft anomalies of ordinary or higher global symmetries
by symmetry-preserving TQFTs or the so-called long-
ranged entangled topological order sectors, via our higher
symmetry-extension approach; see a companion work
along this direction [12].
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APPENDIX A: COBORDISM THEORY AND
HIGHER SYMMETRY EXTENSION:

CONSTRUCTION OF SYMMETRIC TQFTS

By the result from Ref. [40] (p. 251), the cohomology
ring of the infinite lens space BZ2n ¼ S∞=Z2n with
coefficients Z2n is the polynomial ring generated by a
and b over the Z2n quotient by the relation a2 ¼ 2n−1b:

H�ðBZ2n ;Z2nÞ¼Z2n ½a;b�=ða2¼2n−1bÞ for n≥2; ðA1Þ

where a ∈ H1ðBZ2n ;Z2nÞ, b ∈ H2ðBZ2n ;Z2nÞ.

H�ðBZ2n ;Z2Þ ¼ ΛZ2
ðãÞ ⊗ Z2½b̃� for n ≥ 2; ðA2Þ

where ã ¼ a mod 2, b̃ ¼ b mod 2, and there is a ð2; 2nÞ-
Bockstein βð2;2nÞ with βð2;2nÞðaÞ ¼ b̃. Here H� is the
cohomology ring, ΛZ2

denotes the exterior algebra over
Z2, and ⊗ is the tensor product. The ð2; 2nÞ-Bockstein
homomorphism βð2;2nÞ∶ H�ð−;Z2nÞ → H�þ1ð−;Z2Þ is
associated to the extension Z2 → Z2nþ1 → Z2n .
Notice that the notations a ∈ H1ðBZ2n ;Z2nÞ and b ∈

H2ðBZ2n ;Z2nÞ will be used later, since we will encounter
cases n ¼ 2 and n ¼ 3. We will use the uniform notation
and explain wherever they appear.

1. Pullback trivialization of AP2ðB2Þ
in ΩSpin×Z2 ðSUð2Þ×Z2Z8Þ

d ðB2Z2Þ
Following the mathematical conventional notation, we

will also denote the 5D topological term
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A ∪ P2ðB2Þ as a ∪ P2ðx2Þ ðA3Þ

in Appendix A and after. The a here is a background probed
field, which should not be confused with the SU(2)
dynamical gauge field.

a. Computation

Spin×Z2
ðSUð2Þ×Z2

Z8Þ≡ðSpin×ðSUð2Þ×Z8Þ=Z2Þ=Z2

where the quotient is with respect to the diagonal center Z2

subgroup.
Since the computation involves no odd torsion, we can

use the Adams spectral sequence

Es;t
2 ¼Exts;tA2

ðH�ðMTðSpin×Z2
ðSUð2Þ×Z2

Z8ÞÞ;Z2Þ
⊗H�ðB2Z2;Z2Þ;Z2Þ⇒Ω

Spin×Z2
ðSUð2Þ×Z2

Z8Þ
t−s ðB2Z2Þ:

ðA4Þ

Here Ext is the Ext functor, A2 is the mod 2 Steenrod
algebra; more precisely, Exts;tA2

is the internal degree t
part of the sth derived functor of Hom�

A2
. MTðSpin ×Z2

ðSUð2Þ ×Z2
Z8ÞÞ is the Madsen-Tillmann spectrum of the

group Spin ×Z2
ðSUð2Þ ×Z2

Z8Þ and the bordism group

ΩSpin×Z2
ðSUð2Þ×Z2

Z8Þ
d ðB2Z2Þ ¼ πdðMTðSpin ×Z2

ðSUð2Þ×Z2

Z8ÞÞ ∧ ðB2Z2ÞþÞ is the stable homotopy group of the
spectrum MTðSpin×Z2

ðSUð2Þ×Z2
Z8ÞÞ∧ ðB2Z2Þþ. Here∧ is the smash product, Xþ is the disjoint union of the

space X and a point. “⇒”means “convergent to”. For more
detail, see [9].
Similarly, as the discussion in [11,41], we know

MTðSpin ×Z2
ðSUð2Þ ×Z2

Z8ÞÞ
¼ MSpin ∧ Σ−3MSOð3Þ ∧ ðBZ4Þ2ξ ðA5Þ

where 2ξ is twice the sign representation, ðBZ4Þ2ξ is the
Thom space ThomðBZ4; 2ξÞ,MSpin is the Thom spectrum
of the group Spin, MSOð3Þ is the Thom spectrum of the
group SOð3Þ, and Σ is the suspension.
Note that ðBZ4Þ2ξ ¼ Σ−2MZ4.
We have a homotopy pullback square

ðA6Þ

where b̃ is the generator of H2ðBZ4;Z2Þ, w2 ¼ w2ðTMÞ is
the Stiefel-Whitney class of the tangent bundle TM, and
w0
2 ¼ w0

2ðSOð3ÞÞ is the Stiefel-Whitney class of the uni-
versal SOð3Þ bundle.

Hence we have the constraint

w2ðTMÞ ¼ w0
2ðSOð3ÞÞ þ b̃: ðA7Þ

Since H�ðMSpin;Z2Þ ¼ A2 ⊗A2ð1Þ fZ2 ⊕ Mg where
A2ð1Þ is the subalgebra of A2 generated by Sq1 and Sq2

and M is a M is a graded A2ð1Þ module with the degree i
homogeneous part, Mi ¼ 0 for i < 8.
For t − s < 8, we can identify the E2 page with

Exts;tA2ð1ÞðH�þ3ðMSOð3Þ;Z2Þ ⊗ H�þ2ðMZ4;Z2Þ
⊗ H�ðB2Z2;Z2Þ;Z2Þ: ðA8Þ

H�þ3ðMSOð3Þ;Z2Þ ¼ Z2½w0
2; w

0
3�U where U is the

Thom class and w0
i is the Stiefel-Whitney class of the

universal SOð3Þ bundle.
The A2ð1Þ-module structure of H�þ3ðMSOð3Þ;Z2Þ is

shown in Fig. 4.
H�þ2ðMZ4;Z2Þ ¼ ðZ2½b̃� ⊗ ΛZ2

ðãÞÞU where U is the
Thom class, ã is the generator of H1ðBZ4;Z2Þ, and b̃ is the
generator of H2ðBZ4;Z2Þ.
TheA2ð1Þ-module structure of H�þ2ðMZ4;Z2Þ is shown

in Fig. 5.
H�ðB2Z2;Z2Þ ¼ Z2½x2; x3; x5;…� where x2 is the gen-

erator of H2ðB2Z2;Z2Þ, x3 ¼ Sq1x2, x5 ¼ Sq2x3, etc.

FIG. 4. The A2ð1Þ-module structure of H�þ3ðMSOð3Þ;Z2Þ.
Each dot indicates a Z2, the short straight line indicates a Sq1 and
the curved line indicates a Sq2.

FIG. 5. The A2ð1Þ-module structure of H�þ2ðMZ4;Z2Þ. The
dashed lines indicate a (2, 4)-Bockstein. Each dot indicates Z2,
the short straight line indicates a Sq1, and the curved line
indicates a Sq2.
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The A2ð1Þ-module structure of H�ðB2Z2;Z2Þ is shown
in Fig. 6.
The A2ð1Þ-module structure of H�þ3ðMSOð3Þ;Z2Þ ⊗

H�þ2ðMZ4;Z2Þ ⊗ H�ðB2Z2;Z2Þ is shown in Fig. 7.

There is a differential d2 corresponding to the (2, 4)-
Bockstein [42] as indicated in Fig. 5. There is also a
differential d2 maps x2x3þx5 to x22h

2
0 since βð2;4ÞðP2ðx2ÞÞ¼

x2x3þx5 [9]. Since βð2;4ÞðaP2ðx2ÞÞ ¼ b̃x22 þ ãðx2x3 þ x5Þ,
there is a differential d2 maps b̃x22 þ ãðx2x3 þ x5Þ to ãx22h20.

FIG. 6. TheA2ð1Þ-module structure of H�ðB2Z2;Z2Þ. Each dot
indicatesZ2, the short straight line indicates a Sq1, and the curved
line indicates a Sq2.

FIG. 7. The A2ð1Þ-module structure of H�þ3ðMSOð3Þ;Z2Þ ⊗
H�þ2ðMZ4;Z2Þ ⊗ H�ðB2Z2;Z2Þ. Each dot indicates Z2, the
short straight line indicates a Sq1, and the curved line indicates
a Sq2. Each label indicates its degree.

FIG. 8. ΩSpin×Z2
ðSUð2Þ×Z2

Z8Þ
� . The arrows indicate differentials.

FIG. 9. ðΩSpin×Z2
ðSUð2Þ×Z2

Z8Þ
� ðB2Z2ÞÞ=ðΩSpin×Z2

ðSUð2Þ×Z2
Z8Þ

� Þ.
The arrows indicate differentials.

TABLE II. Bordism group ΩSpin×Z2
ðSUð2Þ×Z2

Z8Þ
i in dimensions i.

Here a is the generator of H1ðBZ4;Z4Þ and b is the generator of
H2ðBZ4;Z4Þ. w0

i is the Stiefel-Whitney class of the universal
SOð3Þ bundle.
i ΩSpin×Z2

ðSUð2Þ×Z2
Z8Þ

i
Cobordism Invariants

0 Z
1 Z4 a
2 0
3 Z4 ab
4 Z2

5 Z × Z2 × Z4 w0
2w

0
3, ab

2
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Note that the A2ð1Þ-module structure of
H�þ3ðMSOð3Þ;Z2Þ ⊗ H�þ2ðMZ4;Z2Þ is contained in that
of H�þ3ðMSOð3Þ;Z2Þ⊗H�þ2ðMZ4;Z2Þ⊗H�ðB2Z2;Z2Þ,
and we draw the E2 page for it individually in Fig. 8. The
remaining part is shown in Fig. 9.
See Table II for the bordism group data.
See Table III for the bordism group data.

b. Manifold generator

Now we determine the manifold generator of the
Z4-valued invariant a ∪ P2ðx2Þ.

ΩSpin×Z2
ðSUð2Þ×Z2

Z8Þ
5 ðB2Z2Þ¼ f5-manifoldsM with maps

f∶M→BðSpin×Z2
ðSUð2Þ×Z2

Z8ÞÞ
and g∶M→B2Z2g=bordism: ðA9Þ

Here bordism is an equivalence relation. ðM; f; gÞ and
ðM0; f0; g0Þ are bordant if there exists a 6-manifold M and
maps F∶ M → BðSpin ×Z2

ðSUð2Þ ×Z2
Z8ÞÞ, G∶ M →

B2Z2 such that the boundary of M is the disjoint union
of M and M0 and the induced Spin ×Z2

ðSUð2Þ ×Z2
Z8Þ

structures on M and M0 from that determined by F on M
coincide with those determined by f and f0, respectively,
and GjM ¼ g, GjM0 ¼ g0.
We have the homotopy pullback square (A6).
In order to give a map f∶M→BðSpin×Z2ðSUð2Þ×Z2

Z8ÞÞ, we need only give maps f1∶M→BSO,
f2∶ M → BSOð3Þ and f3∶M→BZ4 with f�1ðw2Þ¼
f�2ðw0

2Þþf�3ðb̃Þ.
The bordism invariant a ∪ P2ðx2Þ is actually f�3ðaÞ ∪

P2ðg�ðx2ÞÞ ¼ f3 ∪ P2ðgÞ.
Now let M be the lens space S5=Z4; M is orientable but

not spin.
Take f1 ¼ TM (sinceM is orientable, the tangent bundle

TM determines a map M → BSO), f2 ¼ 0, and f3 is the
generator of H1ðM;Z4Þ.

By the cell structure of the lens space, f3 induces a chain
map between the cellular chain complexes of M and BZ4,
and we draw the chain map below degree 2:

ðA10Þ

So f�3ðb̃Þ is nonzero, since f�1ðw2Þ is also nonzero, the
cohomology group H2ðM;Z2Þ is Z2, and we have a
commutative diagram

ðA11Þ

So we get a map f∶ M → BðSpin ×Z2
ðSUð2Þ ×Z2

Z8ÞÞ.
Take g ¼ w2ðTMÞ.

Z
M
f3 ∪ P2ðgÞ ¼ 1 mod 4: ðA12Þ

The partition function

ZðMÞ ¼ i
R
M
f3∪P2ðgÞ ¼ i: ðA13Þ

So ðM; f; gÞ is the manifold generator of the Z4-valued
invariant f3 ∪ P2ðgÞ.

2. Pullback trivialization

Consider the pullback of BðSpin ×Z2
ðSUð2Þ ×Z2

Z8ÞÞ
to BSpin × BðSUð2Þ ×Z2

Z8Þ:

BZ2 → BSpin × BðSUð2Þ ×Z2
Z8Þ

→ BðSpin ×Z2
ðSUð2Þ ×Z2

Z8ÞÞ: ðA14Þ

Since w2 ¼ 0 in Spin, so w2x3 ¼ w3x2 is trivialized.
Furthermore, consider the pullback of BSpin ×

BðSUð2Þ ×Z2
Z8Þ to BSpin × BSUð2Þ × BZ8:

BZ2 → BSpin × BSUð2Þ × BZ8

→ BSpin × BðSUð2Þ ×Z2
Z8Þ: ðA15Þ

To simplify the computation, we only compute
ΩSpin

5 ðBZ8×B2Z2Þ which is a subgroup of ΩSpin
5 ðBSUð2Þ×

BZ8×B2Z2Þ.
Note that P2ðx2Þ ¼ x22 ¼ Sq2ðx2Þ ¼ ðw2ðTMÞ þ

w1ðTMÞ2Þx2 ¼ 0 mod 2 on spin manifolds where we
have used the Wu formula, so P2ðx2Þ can be divided by 2.

TABLE III. Bordism group ΩSpin×Z2
ðSUð2Þ×Z2

Z8Þ
i ðB2Z2Þ in di-

mensions i. Here a is the generator of H1ðBZ4;Z4Þ and b is the
generator of H2ðBZ4;Z4Þ. ã ¼ a mod 2 and b̃ ¼ b mod 2. w2 ¼
w2ðTMÞ is the Stiefel-Whitney class of the tangent bundle. Note
that w2x3 ¼ w3x2 (see [9]). w0

i is the Stiefel-Whitney class of the
universal SOð3Þ bundle.
i Ω

Spin×Z2
ðSUð2Þ×Z2

Z8Þ
i ðB2Z2Þ Cobordism Invariants

0 Z
1 Z4 a
2 Z2 x2
3 Z2 × Z4 ãx2, ab
4 Z2 × Z2 × Z4 b̃x2, P2ðx2Þ
5 Z × Z3

2 × Z2
4 w0

2w
0
3, ã b̃ x2, w2x3, ab2, aP2ðx2Þ
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a. Computation

We have the Adams spectral sequence

Es;t
2 ¼Exts;tA2

ðH�ðMSpin;Z2Þ⊗H�ðBZ8;Z2Þ
⊗H�ðB2Z2;Z2Þ;Z2Þ⇒ΩSpin

t−s ðBZ8×B2Z2Þ: ðA16Þ

For t − s < 8,

Exts;tA2ð1ÞðH�ðBZ8;Z2Þ ⊗ H�ðB2Z2;Z2Þ;Z2Þ
⇒ ΩSpin

t−s ðBZ8 × B2Z2Þ: ðA17Þ

The A2ð1Þ-module structure of H�ðBZ8;Z2Þ ⊗
H�ðB2Z2;Z2Þ is shown in Fig. 10.
Note that the A2ð1Þ-module structure of H�ðBZ8;Z2Þ is

contained in that of H�ðBZ8;Z2Þ ⊗ H�ðB2Z2;Z2Þ, and
we draw the E2 page for it individually in Fig. 11. The
remaining part is shown in Fig. 12.
There is a differential d3 corresponding to the (2, 8)-

Bockstein [42] as indicated in Fig. 10 and a differential d2
corresponding to the (2, 4)-Bockstein βð2;4ÞðP2ðx2ÞÞ ¼
x2x3 þ x5.
See Table IV for the bordism group data.
See Table V for the bordism group data.
One Z2-valued bordism invariant of ΩSpin

5 ðBZ8 × B2Z2Þ
is ã ∪ P2ðx2Þ

2
. Here ã is the generator of H1ðBZ8;Z2Þ and x2

is the generator of H2ðB2Z2;Z2Þ.

FIG. 11. ΩSpin
� ðBZ8Þ. The arrows indicate differentials.

FIG. 12. ðΩSpin
� ðBZ8 × B2Z2ÞÞ=ðΩSpin

� ðBZ8ÞÞ. The arrows in-
dicate differentials.

FIG. 10. The A2ð1Þ-module structure of H�ðBZ8;Z2Þ ⊗
H�ðB2Z2;Z2Þ. The dashed lines indicate a (2, 8)-Bockstein.
Each dot indicates Z2, the short straight line indicates a Sq1, and
the curved line indicates a Sq2.

TABLE IV. Bordism group ΩSpin
i ðBZ8Þ in dimensions i. Here η̃

is the 1D eta invariant, Arf is the Arf invariant, and P is the
Postnikov square. a is the generator of H1ðBZ8;Z8Þ, and b is the
generator of H2ðBZ8;Z8Þ. ã ¼ a mod 2 and b̃ ¼ b mod 2.

i ΩSpin
i ðBZ8Þ Cobordism Invariants

0 Z
1 Z2 × Z8 η̃, a
2 Z2

2
ã η̃, Arf

3 Z2 × Z16 ãArf, PðaÞ
4 Z
5 Z16 PðbÞa

aHere we proposed that the 5D cobordism invariant of Z16 is
the Postnikov square. A caveat is that we have not yet been able to
fully verify that the Postnikov square is the only possibility,
although partial evidences suggest this to be true. The readers
need to be cautious using this particular result. The verification is
left for future work.
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b. Further trivialization: First approach

Define G to be a group which sits in a homotopy
pullback square

ðA18Þ

where j�1ðw2Þ ¼ j�2ðw0
2 þ b̃Þ, b̃ is the generator of

H2ðBZ4;Z2Þ, w2 ¼ w2ðTMÞ is the Stiefel-Whitney class
of the tangent bundle TM, and w0

2 ¼ w0
2ðSOð3ÞÞ is the

Stiefel-Whitney class of the universal SOð3Þ bundle.
In general, if we have a homotopy pullback square

ðA19Þ

then there is a fiber sequence

ΩZ → P → X × Y → Z ðA20Þ

where ΩZ is the loop space of Z.

So there is a fiber sequence

BZ2 → BG → BðSpin ×Z2
ðSUð2Þ ×Z2

Z8ÞÞ × B2Z2

→ B2Z2 ðA21Þ

where the last map is ðu; vÞ ↦ j�1ðw2ÞðuÞ − x2ðvÞ ¼
j�2ðw0

2 þ b̃ÞðuÞ − x2ðvÞ.
Then we define G0 to be a group which sits in a

homotopy pullback square

ðA22Þ

Since w2 is identified with x2 in BG, it is trivialized in
BG0 because x2 ¼ w2 ¼ 0 due to the spin structure, so a ∪
P2ðx2Þ is clearly trivialized by being pulled back to ΩG0

5 .
Although our starting point was the symmetry extension,

this is a symmetry-breaking case in disguise.

c. Further trivialization: Second approach

Define G to be a group which sits in a homotopy
pullback square

ðA23Þ

In general, if we have a homotopy pullback square

ðA24Þ

then there is a fiber sequence

ΩZ → P → X × Y → Z ðA25Þ

where ΩZ is the loop space of Z.
So there is a fiber sequence

BZ2 → BG → BðSpin × SUð2Þ × Z8Þ × B2Z2 → B2Z2

ðA26Þ

where the last map is ðu; vÞ ↦ j�3ðb̃ÞðuÞ − x2ðvÞ.
Since P2ðx2Þ¼ x2∪

0
x2þx2∪

1
δx2, δx2 ¼ 2Sq1x2, x2∪

0
x2 ¼

x22, so
P2ðx2Þ

2
¼ x2

2

2
þ x2∪

1
Sq1x2.

TABLE V. Bordism groupΩSpin
i ðBZ8 × B2Z2Þ in dimensions i.

Here η̃ is the 1D eta invariant, Arf is the Arf invariant, andP is the
Postnikov square. a is the generator of H1ðBZ8;Z8Þ and b is the
generator of H2ðBZ8;Z8Þ. ã ¼ a mod 2 and b̃ ¼ b mod 2.

i ΩSpin
i ðBZ8 × B2Z2Þ Cobordism Invariants

0 Z
1 Z2 × Z8 η̃, a
2 Z3

2
ã η̃, Arf, x2

3 Z2
2 × Z16 ãArf, x3, PðaÞ

4 Z × Z2
2 b̃x2,

P2ðx2Þ
2

5 Z2
2 × Z16 ã b̃ x2, ã

P2ðx2Þ
2

, PðbÞa
aHere we proposed that this 5D cobordism invariant of Z16 is

the Postnikov square. A caveat is that we have not yet been able to
fully verify that the Postnikov square is the only possibility,
although partial evidences suggest this to be true. The readers
need to be cautious using this particular result. The verification is
left for future work.
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Since x2 is identified with b̃ ¼ βð2;8Þa in BG where a ∈
H1ðBZ8;Z8Þ and Sq1βð2;8Þ ¼ 0 [9], so ã ∪ ðx2∪

1
Sq1x2Þ is

trivialized in ΩG
5 .

Note that ã ∪ x2
2

2
is still not trivialized.

This is also a symmetry-breaking case, since x2 is
locked with a. In physics, the locking between two probed
background fields means that the global symmetry between
two sectors are locked together, which results in global
symmetry breaking.

d. Further trivialization: Third approach

Consider the pullback of B2Z2 to B2Z4:

B2Z2 → B2Z4 → B2Z2: ðA27Þ
Since P2ðx2Þ

2
¼ x2

2

2
þ x2∪

1
Sq1x2, x2 ∈ H2ðB2Z2;Z2Þ is

pulled back to x̃2 ∈ H2ðB2Z4;Z2Þ and the following
diagram

ðA28Þ

is commutative by the naturality of the Bockstein homo-
morphism, we have that Sq1x̃2 ¼ 0, so ã ∪ ðx2∪

1
Sq1x2Þ is

trivialized in ΩSpin
5 ðBZ8 × B2Z4Þ.

Note that ã ∪ x2
2

2
is still not trivialized.

e. Summary

The term ã ∪ x2
2

2
cannot be trivialized.

Consider M ¼ S1 × S2 × S2, the partition function

ZðMÞ ¼ ð−1Þk
R
M
ã∪

x2
2
2 ¼ ð−1Þk

R
S2×S2

x2
2
2 : ðA29Þ

Since

HnðS2 × S2;ZÞ ¼

8><
>:

Z2 n ¼ 2

Z n ¼ 0; 4

0 n ¼ 1; 3; n ≥ 4

ðA30Þ

where the two generators of H2ðS2 × S2;ZÞ are a, b, the
generator of H4ðS2 × S2;ZÞ is ab.
No matter how to pullback, when x2 ¼ aþ b mod 2,

ð−1Þk
R
S2×S2

x2
2
2 ¼ ð−1Þk can be nontrivial.

This conclusion will be stated more formally and proved
in the next Appendix.
In this Appendix, we compute the bordism group

ΩSpin×Z2
ðSUð2Þ×Z2

Z8Þ
5 ðB2Z2Þ and find a bordism invariant

a ∪ P2ðx2Þ of it. Then we find the manifold generator
of a ∪ P2ðx2Þ and consider the pullback trivialization
problem of a ∪ P2ðx2Þ. We first compute the bordism

group ΩSpin
5 ðBZ8 × B2Z2Þ and find that a ∪ P2ðx2Þ

becomes
ã ∪ P2ðx2Þ

2
in ΩSpin

5 ðBZ8 × B2Z2Þ. Moreover, we find that

the summand ã ∪ ðx2∪
1
Sq1x2Þ of ã ∪ P2ðx2Þ

2
can be trivial-

ized [P2ðx2Þ ¼ x22 þ 2x2∪
1
Sq1x2], but ã ∪ x2

2

2
cannot be

trivialized. We conclude that a ∪ P2ðx2Þ cannot be trivi-
alized via extending the global symmetry by 0-form
symmetry and 1-form symmetry.

APPENDIX B: PROOF: A COUNTEREXAMPLE

By direct computation, we find that a ∪ P2ðx2Þ is a

bordism invariant of ΩSpin×Z2
ðSUð2Þ×Z2

Z8Þ
5 ðB2Z2Þ.

We consider the trivialization problem: Can we trivialize
the topological term a ∪ P2ðx2Þ via extending the global
symmetry by 0-form K½0� symmetry and 1-form K½1�
symmetry?
We can reformulate it mathematically: Can we find finite

Abelian groups K½0� and K½1� such that

BK½0� ⋉ B2K½1�

→ BG!f BðSpin ×Z2
ðSUð2Þ ×Z2

Z8ÞÞ × B2Z2 ðB1Þ
is a fibration and ðfgÞ�ða ∪ P2ðx2ÞÞ ¼ 0 for any 5-
manifold M and any map g∶ M → BG?
There is a group homomorphism:

ΩG
5 !ϕ Ω

Spin×Z2
ðSUð2Þ×Z2

Z8Þ
5 ðB2Z2Þ

ðM; gÞ ↦ ðM; fgÞ: ðB2Þ
So the trivialization problem is asking whether we

can find G and f such that ϕ�ða ∪ P2ðx2ÞÞ ¼ 0 for any
ðM; gÞ ∈ ΩG

5 . By direct computation, we find that a ∪
P2ðx2Þ becomes ã ∪ P2ðx2Þ

2
in ΩSpin

5 ðBZ8 × B2Z2Þ.
Our main result is
Claim 1: We cannot find finite Abelian groups K½0� and
K½1� such that

BK½0� ⋉B2K½1� →BG!f BðSpin×Z2
ðSUð2Þ×Z2

Z8ÞÞ
×B2Z2 ðB3Þ

is a fibration and ðfgÞ�ða ∪ P2ðx2ÞÞ ¼ 0 for any
5-manifold M and any map g∶ M → BG.

Claim 2: We cannot find finite Abelian groups K½0� and
K½1� such that

BK½0� ⋉ B2K½1� → BG!f BSpin × BSUð2Þ
× BZ8 × B2Z2 ðB4Þ

is a fibration and ðfgÞ�ðã ∪ P2ðx2Þ
2

Þ ¼ 0 for any 5-
manifold M and any map g∶ M → BG.
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Clearly claim 2 implies claim 1 since if we can find Abelian groups K½0� and K½1� such that

BK½0� ⋉ B2K½1� → BG!f BðSpin ×Z2
ðSUð2Þ ×Z2

Z8ÞÞ × B2Z2 ðB5Þ

is a fibration and ðfgÞ�ða ∪ P2ðx2ÞÞ ¼ 0 for any 5-manifoldM and any map g∶ M → BG, then we can define G0 which sits
in a homotopy pullback square

ðB6Þ

Then

BK½0� ⋉ B2K½1�

→ BG0 !f
0
BSpin × BSUð2Þ × BZ8 × B2Z2 ðB7Þ

is a fibration and ðf0g0Þ�ðã ∪ P2ðx2Þ
2

Þ ¼ 0 for any 5-manifold
M and any map g0∶ M → BG0.
Since HiðBSpin;ZÞ¼0 for i ¼ 1, 2, 3, H2ðBSpin; K½0�Þ ¼

H3ðBSpin; K½1�Þ ¼ 0 by the universal coefficient theorem,
similarly we have H2ðBSUð2Þ; K½0�Þ ¼ H3ðBSUð2Þ;
K½1�Þ ¼ 0. So in order to prove claim 2, we need only prove
the following:

Claim 3: We cannot find finite Abelian groups K½0� and
K½1� such that

BK½0� ⋉ B2K½1� → BG!f BZ8 × B2Z2 ðB8Þ

is a fibration and ðfgÞ�ðã ∪ P2ðx2Þ
2

Þ ¼ 0 for any spin
5-manifold M and any map g∶ M → BG.

We prove claim 3 by finding a counterexample.
For M ¼ S1 × S2 × S2, let a, b be the generators of

H2ðS2 × S2;Z2Þ, c be the generator of H1ðS1;Z8Þ, and let
h∶ M → BZ8 × B2Z2 be given by ðc; aþ bÞ. The lifting
problem

ðB9Þ

has a solution, but ðc mod 2Þ ∪ P2ðaþbÞ
2

≠ 0.
In general, if F → E→

p
B→

q
ΣF is a fiber sequence, then

½M;F� → ½M;E�→p� ½M;B�→q� ½M;ΣF� is an exact sequence of
Abelian groups, so the lifting problem has a solution if and
only if q�ðhÞ ¼ 0 where q∶ BZ8 × B2Z2 → B2K½0� ⋉
B3K½1�. So we need to prove that q∘h ¼ 0.

Again apply the exact sequence ½M;ΣF� → ½M;ΣE� →
½M;ΣB� to M ¼ S1 × S2 × S2 and the fibration

ðB10Þ

we get that if the image of q∘h in ½M;ΣB� is zero, then q∘h
is the image of some map in ½M;ΣF�.
We can write the composition q0 of the map

B2K½0� ⋉ B3K½1� → B2K½0� and q as

q0 ¼
�
q1
q2

�
ðB11Þ

where q1 ∈ H2ðBZ8; K½0�Þ, q2 ∈ H2ðB2Z2; K½0�Þ. We
assume that q2 ¼ 0 to ensure that the 1-form symmetry
(here the 1-form Ze

2-symmetry) is not broken.
q0∘h ¼ q1∘cþ q2∘ðaþ bÞ, since q1∘c ¼ 0 and q2∘ðaþ

bÞ ¼ 0 for M ¼ S1 × S2 × S2, so q∘h is the image of some
map in ½M;B3K½1��. So q∘h ¼ q3∘cþ q4∘ðaþ bÞ where
q3 ∈ H3ðBZ8; K½1�Þ, q4 ∈ H3ðB2Z2; K½1�Þ. Since q3∘c ¼ 0

and q4∘ðaþ bÞ ¼ 0 forM ¼ S1 × S2 × S2, we have proven
that q∘h ¼ 0.
In this Appendix, we give a proof of the conclusion in the

previous Appendix. This answers the first question
(Question 1) in Sec. I.

APPENDIX C: PULLBACK TRIVIALIZATION OF
P2ðB2Þ IN ΩSO

4 ðB2Z2Þ
There is a group homomorphism:

ΩSO
4 ðXÞ→ρ ΩSO

4 ðB2Z2Þ
ðM; gÞ ↦ ðM; fgÞ: ðC1Þ

We want to extend the 1-form Z2 symmetry by the
0-form K½0� symmetry and 1-form K½1� symmetry such
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that ρ�P2ðg̃Þ ¼ P2ðfgÞ ¼ 0 for any ðM; gÞ ∈ ΩSO
4 ðXÞ

where ðM; g̃Þ ∈ ΩSO
4 ðB2Z2Þ.

We consider the trivialization problem: Does there exist a
fibration f∶ X → B2Z2 with fiber BK½0� ⋉ B2K½1� where
K½0� and K½1� are finite Abelian groups such that P2ðfgÞ ¼
0 for any oriented 4-manifold M and any map g∶ M → X?
The answer to this problem is negative. ForM¼S2×S2, let

a, b be the generators of H2ðS2×S2;Z2Þ. The lifting problem

ðC2Þ

always has a solution, but P2ðfgÞ ¼ P2ðaþ bÞ is
nontrivial. Similarly as before, we need only prove that

the composition map S2 × S2 →
aþb

B2Z2→
q
B2K½0� ⋉ B3K½1�

is zero.
This can be proven similarly as before.
So P2ðx2Þ cannot be trivialized.
In this Appendix, we consider the pullback trivializa-

tion problem of P2ðx2Þ, and we give a similar proof
that P2ðx2Þ also cannot be trivialized via extending the
global symmetry by the 0-form symmetry and 1-form
symmetry. This answers the second question (question 2)
in Sec. I.
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Correction: The end of the heading for Appendix A was
inadvertently deleted during the production cycle and has been
restored.
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