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It is shown that the inflationary paradigm admits quantum complete extensions of spacetime. The
extended inflationary spacetimes still have geodesic borders, but quantum fields are prohibited from
migrating across these borders by their evolution semigroups. The geodesic singularities lurking across the
borders lack a physical description because the evolution semigroups give vanishing probabilistic support
to quantum fields for populating regions bordering on these singularities. As an example, anisotropic
Bianchi type-I cosmologies are shown to be quantum complete preludes to inflation. They admit Kasner-
like geometries close to their geodesic borders. Quantum fields enjoy a contractive evolution in these
asymptotic regions and ultimately become free. As a consequence, quantum probes cannot migrate across
the geodesic border of Bianchi type-I cosmologies.
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I. INTRODUCTION

A proper inflationary epoch in the primordial expansion
history allows us to relate the variety of cosmic structures to
quantum fluctuations of the dominant source during this
stage [1–3]. These fluctuations represent adiabatic devia-
tions from local isotropy and constitute the primordial
seeds of gravitationally driven structure formation. As the
microscopic origin of large-scale cosmic structures, infla-
tion has passed all observational stress tests.
Inflation extends the cosmic history prior to a decel-

erated Friedmann cosmology with an accelerated expan-
sion stage, which is past-directed timelike and null
geodesic incomplete and which initially borders on a
spacelike singularity. However, inflation can emerge from
spatially anisotropic but homogeneous cosmologies as
described by Bianchi type-I spacetimes. These cosmologies
develop forward instabilities towards approximate isotropic
spaces in inflating spacetime regions [4]. In addition,
Kasner spacetimes develop backward instabilities trigger-
ing Bianchi type-II like transitions [5]. between different
anisotropic cosmologies, leading to successions of Kasner
geometries [6]. Kasner spacetimes are past-directed time-
like and null geodesic incomplete as well. They have been

shown to be singularity free in canonical quantum
cosmology [7].
If geodesic boundaries can be probed in measurement

processes, they are manifest in observables and imply a
physical pathology, since then observers can be located at the
geodesic borders. For instance, the singular coincidence limit
of Newton’s gravitational potential field is not sufficient to
imply a physical pathology. A sufficient condition is the
existence of initial conditions allowing us to realize this
coincidence limit dynamically in a finite time. Moreover, a
repulsive Coulomb potential field is also singular in the
coincidence limit, but since it is unbounded from above near
zero, this limit cannot be realized dynamically. The Coulomb
potential is complete near zero for repulsive charge con-
figurations but incomplete for attractive charge configura-
tions. However, even for attractive charge configurations, the
Coulomb potential can still give rise to a complete quantum
evolution, as it does for electrons in hydrogen bound states.
Whether a potential allows for a complete evolution is a

context-sensitive question. A similar statement does not
hold for spacetimes: It is meaningless to conclude that a
spacetime supports an incomplete classical evolution but a
complete quantum evolution. If both conclusions are valid,
then the spacetime is simply incomplete. The distinction
between classical and quantum evolution is still important
because geodesic completeness might fail as a sound
physical concept, while it remains a valid geometrical
characterization of the mathematical spacetime model. As a
physical concept, geodesic completion refers to observa-
tions and operational instructions for measurements based
on classical mechanics.
In its simplest realization, a measurement process

involves three dynamical subsystems: A system on which
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observers wish to perform measurements using specific
apparatus in a given spacetime. Usually, it is assumed that
the inertia of the apparatus is large compared with that of
the system. This implies that during the measurement there
is no significant backreaction of the system on the
apparatus. In addition, it is assumed that the spacetime
and its evolution is not affected by the experiment. To
guarantee the converse, the spacetime region supporting the
measurements is required to be sufficiently homogeneous.
Close to the geodesic border of Kasner spacetimes, the
latter requirement fails to hold for mechanical devices.
Tidal forces become too strong during finite time mea-
surements for these devices to operate as external appara-
tus. The same is true for recording devices of finite extent
with mechanically interconnected circuit elements.
This leads us to incorporate measurement processes as

internal phenomena with no external aspects. The system to
be examined consists of field configurations and the only
sensible bookkeeping devices are spectator fields which are
locally coupled to these field configurations. During a
measurement all field configurations might be significantly
altered by spacetime variations. The backreaction of all
field configurations on spacetime is still required to be
negligible. In this respect, the singularity theorems [8] and
our results concerning quantum regularity share the same
postulate. For the sake of keeping the Introduction non-
technical, this common postulate can be stated informally
as follows: The inertia of spacetime is large compared to
that of all field configurations. In other words, the space-
time is effectively decoupled from all field configurations
that compose the system and the observers. This decou-
pling postulate can be (in)validated a posteriori.
The ground state of the examined field configurations is

time-dependent in dynamical spacetimes. In general, this
time dependence is not given by a phase factor, i.e., the
evolution of quantum states is not given by a unitary group.
One can show that even in trivial cases unitarity fails to
hold [9]. Here quantum states refer to wave functionals over
the configuration space in the Schrödinger representation of
quantum field theory. Instead, the evolution is naturally
given by a semigroup, because the background is assumed
to be absolutely inert against quantum fluctuations. A
probabilistic interpretation is still possible, provided the
semigroup enjoys a contraction property that replaces the
ordinary isometry requirement. Physically the contraction
property accommodates damping phenomena in the
Schrödinger Hamiltonian which reduce the normalization
of the wave functional. This implies that the Schrödinger
Hamiltonian is not selfadjoint in the physical state space.
Effectively dynamical spacetimes can act as damp-
ing media.
In contrast to a preinflationary Kasner phase, a pure de

Sitter phase is subjected to a divergent time-evolution
towards the initial singularity. The coincidence limit
renders this space-time quantum incomplete. Without

imposing an initial boundary condition at the time of
Big Bang, finite amplitude tensor fluctuations at finite
times will be amplified to trans-Planckian values when
evolved backwards [10]. The failure of the no boundary
proposal imposes a general obstruction to de Sitter
cosmology close to the geodesic border and serves as a
plea for a preinflationary phase.
In this article, we show that generic quantum inflaton

fields cannot migrate across the geodesic boundary of
Bianchi type-I cosmologies. This is guaranteed by a
contractive evolution semigroup that assigns a vanishing
probability for inflaton fields to populate the geodesic
border. As a consequence, the spacelike singularity lurking
beyond this border is decoupled from physical spacetime.
The result is universal in the sense that it holds for any
inflaton potential. This universality can be interpreted as a
consequence of the Belinskii-Khalatnikhov-Lifshitz
conjecture [11,12] which is operative at the geodesic
border and guarantees that the dynamics at any spatial
point is pefectly captured by an ordinary differential
equation [13].

II. QUANTUM COMPLETENESS

Consider a globally hyperbolic spacetime (M, g) and
choose a time function t and a vector field v onM such that
the surfaces ðΣtÞt∈I⊂R of constant time are Cauchy hyper-
surfaces and such that∇vt ¼ −1. Note that the time interval
I might be the entire real line, but we are mostly concerned
with the time interval I ≔�0; tin�. We denote by CðΣtÞ the
configuration space of instantaneous field configurations ϕ
on Σt, which is infinite-dimensional. For simplicity,
ϕ∶ M → K, where K ¼ fR;Cg. Let (CðΣtÞ, Dϕ) denote
a formal measure space, and let L2ðCðΣtÞÞ denote the
C-vector space of wave functionals Ψt∶ CðΣtÞ → C which
are measureable and whose modulus is square integrable
with respect to the functional measure Dϕ. We introduce
the usual seminorm on L2ðCðΣtÞÞ:

kΨtk2 ≔
�Z

CðΣtÞ
DϕjΨt½ϕ�j2

�
1=2

ð1Þ

In general, this is not a norm on L2ðCðΣtÞÞ since kΨtk2 ¼ 0
only implies Ψt½ϕ� ¼ 0 almost everywhere in CðΣtÞ but not
Ψt ≡ 0. For this reason, we introduce

N ðCðΣtÞ;DϕÞ ≔ fΨt ∈ L2ðCðΣtÞ;DϕÞ∶Ψt½ϕ� ¼ 0

Dϕ − almost everywhereg: ð2Þ

N ðCðΣtÞ;DϕÞ is a subspace of LðCðΣtÞ;DϕÞ, and k·k2 is a
norm on the quotient space

L2ðCðΣtÞ;DϕÞ ≔ L2ðCðΣtÞ;DϕÞnN ðCðΣtÞ;DϕÞ: ð3Þ
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Note that L2ðCðΣtÞ;DϕÞ is not a space of wave functionals,
but a space of equivalence classes of wave functionals. All
operations are defined with respect to representatives.
Concerning interpretation, jΨt½ϕ�j2 is a probability den-

sity in the following sense: If U is a (measurable) subset of
CðΣtÞ and XU its indicator functional, then kXUΨtk22 is the
probability for the field configuration on Σt to be given by
some ϕ ∈ U. This interpretation requires kΨt½ϕ�k2 ¼ 1 or
at least Ψt to be a normalizable functional for t ∈ I. The
smeared configuration field operator Φ½f� is just the
operator for multiplication with ϕ½f�, where f is a smooth
smearing function of compact support in Σt such that the
expectation value hΨtjΦ½f�jΨti ¼ k ffiffiffiffiffiffiffiffiffiffiffijϕ½f�jp

Ψtk22 is well
defined. As usual, a measure for the scatter of field
configurations around the expectation value is given by
kðΦ½f� − ϕ½f�idL2ÞΨtk2. The momentum field operator
Π½f� is the functional derivative −iðdetðgΣt

ÞÞ−1=2δ=δϕ
in the direction of a smooth function f of compact
support. Here gΣt

denotes the pullback of the metric field
g to the hypersurface Σtðt ∈ IÞ. Heisenberg’s fundamental
uncertainty relation follows from ½Φ½f1�;Π½f2��Ψt½ϕ� ¼
ihf1; f2iΨt½ϕ�, where h·; ·i denotes the canonical scalar
product for smearing functions on Σt. It should be stressed
that the above construction is only meant at a formal level.
We now consider a family of formal evolution operators

fEgðt; t0Þ∶ 0 ≤ jt − t0j < ∞g on L2ðCðΣtÞ;DϕÞ. Such a
family is a strongly continuous semigroup if Egðt0;t0Þ¼
idL2 , Egðs; tÞEgðt; t0Þ ¼ Egðs; t0Þ for all s; t; t0 ∈�0;∞½ with
s; t ≤ t0 (which reflects our convention that the flow of time
runs from t0 towards 0), and if for each Ψt ∈
L2ðCðΣtÞ;DϕÞ the map I ⊂ R → L2ðCðΣtÞ;DϕÞ, defined
by t ↦ Egðt; t0ÞΨ is continuous. Such evolution semi-
groups arise naturally in the Schrödinger-picture quantum
theory of fields in curved spacetimes. A probabilistic
interpretation is only possible for a special class of
evolution semigroups: A contractive evolution semigroup
satisfies the additional requirement kEgðt; t0Þk ≤ 1 for all
t ≤ t0 in the time interval I . Here the operator norm is
defined as usual, kEgðt;t0Þk≔ inffC≥0∶ kEgðt;t0ÞΨk2≤
CkΨk2 for allΨt∈L2ðCðΣtÞ;DϕÞg.
As in the case of unitary evolution groups, we obtain the

generator of Egðt; t0Þ by differentiation with respect to t. Set
hgðtÞ ≔ ðidL2 − Egðt; t0ÞÞ=jt − t0j and consider only Ψt ∈
L2ðCðΣtÞ;DϕÞ for which hgðtÞΨt exists in the limit
jt − t0j → 0. We denote this limit by hgðt0ÞΨt0 and call
hgðt0Þ the infinitesimal generator of Egðt; t0Þ. Of course,
hg ¼ H½Φ;Π; g�, where H denotes the Hamiltonian
composed of configuration field operators Φ and con-
jugated momentum field operators Π in L2ðCðΣtÞ;DϕÞ.
For simplicity, we focus on a simple local quantum
theory with a Hamiltonian density H¼T ðΠ;gÞþ
VðΦ;gÞ. On the hypersurface Σt the functional Laplacian
is T ≔ ffiffiffiffiffi

gtt
p Π ∘Π=2, where V denotes the effective poten-

tial with
ffiffiffiffiffi
gtt

p
g−1Σt

ðdΦ; dΦÞ included. The infinitesimal

generator hg and the evolution operator Egðt; t0Þ are related
as follows:

Egðt; t0Þ ¼ T← exp

�
−i

Z
t

t0

dt0H½Φ;Π; g�ðt0Þ
�

ð4Þ

H½Φ;Π; g�ðt0Þ ¼
Z
Σt0

dμHðΦ;Π; gΣt0 Þ: ð5Þ

Here dμ is the covariant measure on Σ and T← denotes the
time-ordering starting at t0 > t.
We now turn to the crucial condition for the generator

of an evolution semigroup. Consider a dual element S ∈
½L2ðCðΣtÞ;DϕÞ�� which satisfies kSk ¼ kΨk2 and SðΨtÞ ¼
kΨtk22. We can think of S as a normalized tangent
functional to Ψt. The Hahn-Banach theorem guarantees
that each wave functional Ψt ∈ L2ðCðΣtÞ;DϕÞ has a
normalized tangent functional. The generator hg of
Eðt; t0Þ is called accretive if for each Ψt∈L2ðCðΣtÞ;DϕÞ
we have ImðSðhgΨtÞÞ ≤ 0. The relation between contrac-
tive and accretive is almost straightforward: hg is the
generator of a contractive evolution semigroup if and only
if hg is accretive.
Suppose Σ0 is a spacelike geodesic boundary of (M, g)

located at t → 0. We call (M, g) quantum complete if
the evolution semigroup of wave functionals on test-field
configurations is contractive in (M, g) and kEðt; t0Þk → 0
for t → 0 [14]. This definition of quantum completeness
tacitly assumes that the test-field configurations enjoy a
healthy evolution in Minkowski spacetime.

III. ANISOTROPIC PRELUDE

The prelude to inflation considered in the work is given
by an anisotropic Bianchi type-I cosmology with a
sequence of Kasner spacetimes characterizing the neigh-
borhood of its geodesic boundary. A Kasner-like preinfla-
tionary phase is consistent with observational bounds on
the e-folds because of the fast developing forward insta-
bility [15]. Any spacetime (M, g) considered in this
prelude is a multiple warped product manifold of the form
M ¼ I ×w1

R ×w2
R ×w3

R furnished with a tensor field,

g ¼ −π�ðdt ⊗ dtÞ þ
X3
a¼1

ðwa ∘ τÞ2σa�ðqaÞ; ð6Þ

with positive warping functions wa ∈ C∞ðIÞ
(a ∈ f1; 2; 3g). By τ and σa we denote the projections
onto the base (time interval) I and the fibers (in our case,
one-dimensional subspaces), respectively, and π� and σa

�
are the correponding pullbacks. The pairs (R, qa) denote
the flat Riemannian Fiber manifolds with respect to the
base manifold (I , −dt ⊗ dt). Kasner spacetimes are
multiple warped products of this type with warping
functions wa ¼ idIpa , where pa ∈ R denote the so-called
Kasner exponents. The Kasner exponents are required to lie
in the intersection of the Kasner plane p1 þ p2 þ p3 ¼ 1
and the Kasner sphere p2

1 þ p2
2 þ p2

3 ¼ 1. Kasner
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spacetimes can be characterized as Ricci-flat Einstein
manifolds which are globally hyperbolic, future-directed
timelike and null geodesic complete, but past-directed
timelike and null geodesic incomplete. Since they are
vacuum solutions, Kasner geometries can only be an
approximate description close to the geodesic border of
an anisotropic spacetime such as the more general Bianchi
type-I models relevant for this work. Bianchi type-I
geometries are multiple warped product manifolds MB
of the type (6).
Consider a classical scalar field ϕ∶ MB → R in a

Bianchi type-I spacetime with Hamilton density
H ¼ T ðπ; gÞ þ Vðϕ; gÞ. The effective potential V includes
the inflaton potential [16]

V ¼ VdSð1 − exp ð−ϕ=ϕ0ÞÞ2: ð7Þ

This potential is harmonic in ϕ around its minimum and
dominated by a spacetime homogeneous energy density
VdS away from it. The potential parameters are fixed asffiffiffiffiffiffiffi
GN

p
ϕ0 ¼ 10−3 and VdS ¼ 1013 GeV in order to obtain

the correct amplitude of metric perturbations in the
SOð3Þ−scalar sector.
In the slow-roll regime, T ≪ VdS at early times

t ≪ 1=HdS the anisotropic expansion history is given by
a Kasner solution with warping functions waðtÞ=waðtinÞ ≈
ðt=tinÞpa for a ∈ f1; 2; 3g. At these early times the approxi-
mate de Sitter source H2

dS ¼ ð8π=3ÞGNðVdS þOðK=VdSÞÞ
is effectively decoupled from spacetime and Kasner
geometries can emerge. At intermediate times t ∼ 1=HdS
the expansion history is given by a more general
Bianchi type-I solution of Einstein’s equation [17],
waðtÞ=wa¼½sinhð3tHdSÞ�1=3½tanhð3tHdS=2Þ�pa−1=3, where
wa denote normalization constants. While the exponents pa
are in the intersection of the Kasner plane and Kasner
sphere, the warping functions explicitly depend on the
transition time 1=HdS. For late times, t ≫ 1=HdS an
approximate de Sitter stage emerges with waðtÞ=waðt0Þ≈
exp ððt − t0ÞHdSÞ.
Clearly, 1=HdS is the characteristic time scale for

isotropization driven by VdS: Consider the Weyl tensor
as a tensor of type (0,4) given by C ¼ R − 1

2
ðRic − 1

4
SgÞ�

g − 1
24
Sg � g, where R denotes the type-(0,4) Riemann

tensor, Ric is the Ricci tensor and S the curvature scalar.
For any symmetric tensors T1, T2 of type (0,2), T1 � T2

denotes the Kulkarni-Nomizu product. Throughout the
evolution up to the end of inflation, Ric ≈ 1

4
Sg, so

C ≈ R − 1
24
Sg � g. The Ricci decomposition is, therefore,

jRj2 ≈ jCj2 þ j 1
24
Sg � gj2. At early times t ≪ 1=HdS this

decomposition into irreducible components with respect to
the orthogonal group is dominated by the anisotropic
contribution, jRj2 ≈ jCj2 ¼ jp1p2p3jð2=tÞ4. The asymp-
totic behavior of the conformal tensor renders any de
Sitter–like source initially irrelevant, which is why the

Kasner solution is a good description of the geometry in
the vicinity of the cosmic singularity. In contrast, at late
times t ≫ 1=HdS the Ricci decomposition is dominated by
the approximate de Sitter source jRj2 ≈ j 1

24
Sg � gj2 because

jCj2 ≈ exp ð−6tHdSÞ. In this stage, the approximate de
Sitter source damps all anisotropic contributions to the
curvature.

IV. KASNER SPACETIMES ARE
QUANTUM COMPLETE

The last section was devoted to geometric preliminaries
of anisotropic preludes to inflation. These are given by
approximate Kasner spacetimes which exhibit a forward
instability towards more general Bianchi type-I cosmolo-
gies that allow for isotropization at a later stage. Kasner
spacetimes border on singular hypersurfaces Σ0 as well.
This raises the question of how their geodesic boundary
compares to the geodesic incompleteness of isotropic
cosmologies. At the intersection of the Kasner plane and
sphere pa ∈ ½−1=3; 1½, excluding the case pa ¼ 0 for some
a ∈ f1; 2; 3g which is isometric to an accelerated frame
in Minkowski spacetime. The most interesting case is
given by pa ¼ −1=3 for some Kasner index, then the
remaining two exponents are equal to 2=3. For definite-
ness and without loss of generality, consider p1 ¼ −1=3,
p2 ¼ p3 ¼ 2=3. This is the unique solution with p2 ¼ p3.
In general, the above half-closed interval for the Kasner
exponents forces us to restrict the base (time interval) to
I ¼�0; tin�, where for the upper limit tin ≪ 1=HdS. Of
course, for the exact Bianchi type-I solution I ¼�0;∞½,
but our focus is on the vicinity of the geodesic border
Σ0. Consider two spacetime events P ¼ ðdin; 0; 0Þ and
Q ¼ ð0; 0; 0Þ relative to some coordinate neighborhood
in the hypersurface Σin. Towards the geodesic border Σ0 the
proper spatial distance dphys between these events scales as
dphysðtÞ=din ¼ ðtin=tÞ2=3. Coincidence limits of events
towards the singularity are prohibited by the Kasner
conditions, while Friedmann cosmologies enforce coinci-
dence limits, no matter how they are regularized in
interacting field theories. This observation gives rise to
the hypothesis that Kasner spacetimes are quantum com-
plete in the sense of Sec. II.
Consider the space CðΣtÞðt ∈ IÞ of instantaneous infla-

ton field configurations on the hypersurface Σt. We
introduce a bilinear functional Kt∶ CðΣtÞ × CðΣtÞ → C,
ðϕ1;ϕ2Þ → ½ϕ1�Kt½ϕ2� with coordinate representation

½ϕ1�Kt½ϕ2� ¼
Z
Σt

dμðxÞdμðyÞϕ1ðxÞKtðx; yÞϕ2ðyÞ; ð8Þ

where dμðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

d3x and qðtÞ denotes the spatial
metric field induced on Σt. The bilocal kernel function K is
spatially homogeneous and the bilinear functional K is
symmetric. In addition to spatial homogeneity, the scaling
of dphysðtÞ=din ¼ ðtin=tÞ2=3 implies that initially separated
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events remain uncorrelated close to the geodesic border,
as is shown below. Events can only be correlated if the
spacetime regions supporting them intersect. Before
calculating the kernel, we may therefore guess that
Kðx; y; tÞ ¼ kðtÞδðx − yÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞðtÞp
in the vicinity of

the geodesic singularity. It follows that

½ϕ1�Kt½ϕ2� → kðtÞ
Z
Σt

dμðxÞϕ1ðxÞϕ2ðxÞ ð9Þ

for t → 0. If we specialize to ½ϕ�Kt½ϕ� then the bilinear
functional becomes a quadratic functional Kt½ϕ� in this
limit. Since the inflaton field experiences exclusively
ultralocal self-correlations, a regularization prescription
is required. Note that towards the geodesic border Kt½ϕ�
is similar to a time-dependent mass term in the Lagrange
function for the inflaton field.
In the following, we consider smooth functions on

Σt and linear functionals on the algebra of these
smooth functions, but our notation will not distinguish
between them. The bilinear functional Kt can be described
by on-shell configuration fields in S ¼ fφ∶I × Σt∈I →
C∶ ð□ −m2Þφ ¼ 0g. Huygens’s principle relates the ker-
nel functional with on-shell configuration fields as follows

J½−i∂tφ� ¼ ½J�Kt½φ� ð10Þ

for any smooth detector source J. A more direct relation
holds in Fourier space. Our convention for the Fourier
transform is

F tfðkÞ ≔
Z
Σt

d3x exp ð−ik · xÞfðt; xÞ ð11Þ

for any f in L1ðΣtÞ or Schwartz space. The argument of the
plane wave is k · x ≔ kaxa. For all f in Schwartz space, the
function f can be recovered from its Fourier transform by
the inversion formula

F−1f̂ðxÞ ¼ ð2πÞ−3
Z
R3

d3k exp ðik · xÞfðt; kÞ; ð12Þ

where d3k ≔ dk1 ∧ dk2 ∧ dk3. For smooth fields, (10)
implies −i∂tφ ¼ Kt⋆φ, with Kt⋆φ denoting the covariant
convolution of the bilocal kernel function and the configu-
ration field on Σt. Using F−1cKt⋆F−1φ̂ ¼ F−1cKt φ̂, where
the Fourier transforms are with respect to the convolution
variable, and ∂tF−1φ̂ ¼ F−1∂tφ̂, Huygens’s principle (10)
can be written as

−iffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ∂t ln

φ̂ðt; kÞ
φ̂ðτ; kÞ ¼ K̂ðt; kÞ; ð13Þ

where τ is an arbitrary reference time in I ¼�0; tin�.

On-shell field configurations are easily calculated in the
vicinity of the geodesic border to Kasner spacetimes.
The d’Alembert operator is□ ¼ ∂2

t þ t−1∂t − t−2pa∂2
a with

the spatial index running in a ∈ f1; 2; 3g. The ansatz
φðt; xÞ ¼ TðtÞRðxÞ gives an ordninary second-order
differential equation for T with singular coefficients:
ð∂2

t þ t−1∂t − κ0t−2αidÞT ≈ 0. Here α is the largest
Kasner exponent, κ0 is determined from the solution of
R and ≈ denotes equality up to irrelevant contributions, i.e.,
contributions which are less singular than those given.
We introduce a pivotal time scale t� and ετ ≔ t=t�, where
ε > 0 is a smallness parameter. Then ð∂2

τ − τ−1∂τÞT≈
þκε2ð1−αÞτ−2αT. Since pa ∈ ½−1=3; 1½ the largest Kasner
exponent is smaller than one. In the limit ε → 0, the
asymptotic solution is T ≈ c1 þ c2 lnðετÞ with c1,
c2 ∈ R. If the Kasner spacetime is axisymmetric then
explicit solutions are known in terms of Bessel and
biconfluent Heun functions. Close to the geodesic border
these agree with our asymptotic solution φðt; xÞ ¼ C1ðxÞþ
C2ðxÞ lnðt=t�Þ, where Ciði ∈ f1; 2gÞ are smooth complex
valued functions on Σt and t; t� ∈ I . For simplicity,
we choose t� ¼ tin for the pivotal time scale such
that φðtin; xÞ ¼ C1ðxÞ; _φðtin; xÞ ¼ C2ðxÞ=tin and φðt; xÞ ¼
φðtin; xÞ − tin _φðtin; xÞj lnðt=tinÞj for t ∈�0; tin�. As a result,
the kernel function is given by

Ktðx; yÞ ≈ −
i

t2 ln ðt=tinÞ
�
δðx − yÞ − Rðx; yÞ

ln ðt=tinÞ
�
: ð14Þ

Here R ≔ F−1cC1=cC2. To leading order in ln−1ðt=tinÞ
(t ∈�0, tin½) the kernel function is given by a purely
imaginary contact term. This contribution alone is a
particular solution to Huygens’s principle (10). It is
universal in the following sense: Let us introduce a
functional generalization of the Dirac measure
δ∶ C∞0 ðΣtÞ × C∞0 ðΣtÞ → C, defined by ½f1�δ½f2� ≔ f1½f2�.
Note that our notation does not distinguish between
elements of C∞0 ðΣtÞ and linear functionals on C∞0 ðΣtÞ. A
particular kernel functional solving (10) is given by
½f1�Kt½f2� ¼ −i½f1�δ½f2∂t ln ðf2=f2inÞ� can be extended
to a bilinear functional associated with propagating waves.
On its own it accounts only for the wave front at the
location of the detector described by the current density J,
but does not contain information about spatial correlations
between wave fronts on Σt, which is partially contained in
the bilinear functional R associated with R. This contri-
bution, however, is already subleading in the vicinity of the
geodesic border. Hence events at different spatial locations
on Σt are approximately uncorrelated close to the geodesic
border. In other words, towards the geodesic singularity the
spacetime probes consisting of quantum fields are reduced
to decoupled pointlike degrees of freedom. The latter
statement will be substantiated in the remainder of the
article.
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Close to the classical equilibrium configuration of the
inflaton potential (7) we make the following ansatz for the
Schrödinger wave functional:

Ψt½ϕ� ¼ Ψð0Þ
t ½ϕ� × exp ðDt½ϕ�Þ: ð15Þ

Here, Ψð0Þ
t denotes the ground state functional

Ψð0Þ
t ½ϕ� ¼ N ð0Þ

t Gð0Þ
t ½ϕ�;

N ð0Þ
t ¼ N ð0Þ

tin exp

�
þ i
2

Z
t

tin

dτ
Z
Στ

dμ
1

2
Π2½ϕ�Kτ½ϕ�

�
;

Gð0Þ
t ½ϕ� ¼ exp

�
−
1

2
½ϕ�Kt½ϕ�

�
; ð16Þ

and Dt½ϕ� generates non-Gaussian deformations of the
ground state due to inflaton self-interactions caused by the
potential (7). Note that Dt½ϕ� ¼

P
n≥2D

½n�
t ½ϕ� is a sum of

nonlinear functionals starting at quadratic order.
Consider the wave functional of the ground state in the

vicinity of the geodesic border Σ0. To leading and sub-
leading order its normalization is given by

N ð0Þ
t

N ð0Þ
tin

≈ exp

�
−
1

2
volps

Z
t

tin

dτ
τ lnðτ=tinÞ

�

× exp

�
þ 1

2
Rð0ÞvolðΣtÞ

Z
t

tin

dτ
τln2ðτ=tinÞ

�
; ð17Þ

where volps ¼ volðΣtÞvolðT�ΣtÞ denotes the time-indepen-
dent coordinate phase space volume, and Rð0Þ is the
regularized value of the complex-valued bilocal function
R in the coincidence limit. As anticipated, the kernel
function requires regularization in the spatial coincidence
limit on any hypersurface Σtðt ∈�0; tin�Þ. In particular, since
volps is time-independent this requirement is logically
independent from the existence of a geodesic border.
Therefore it is sufficient to introduce crude cut-off regu-
lators for the purposes of this article. We find

½lnðN ð0Þ
τ Þ�ttin ≈ −

volps
2

½ln ðln ðτ=tinÞÞ�ttin

−
volðΣtÞ

2
Rð0Þ½ln−1ðτ=tinÞ�ttin : ð18Þ

For t=tin → 0, the ground state normalization N ð0Þ
t ∝

expðΓtÞ is exponentially suppressed with a damping factor
Γt ≈ ð−volps=2Þ lnðj lnðt=tinÞjÞ up to an irrelevant phase in
leading order. The real part of the damping factor mono-
tonically approaches minus infinity when t goes to zero.
In order to study Gð0Þ, we decompose the bilocal kernel

function R ¼ ReðRÞ þ iImðRÞ and its associated bilinear
functional R ¼ Rre þ iRim accordingly. Then,

Gð0Þ
t ≈ exp

�
i
2

1

t2 lnðt=tinÞ
½ϕ�

�
δ −

Rre

lnðt=tinÞ
�
½ϕ�

�

× exp

�
1

2

1

t2ln2ðt=tinÞ
½ϕ�Rim½ϕ�

�
ð19Þ

towards the geodesic border Σ0. Note that for any bilinear
functional A ∈ fδ;Rre;Rimg appearing in (19) the combi-
nation t−2A is time independent. Therefore Gð0Þ½ϕ� → 1 in
the limit t=tin → 0 for any field configuration.
As a result, Ψð0Þ

t ½ϕ� → 0 towards Σ0, which implies

lim
t→0

kΨð0Þ
t k2 ¼ 0: ð20Þ

The ground state wave functional does not yield probabi-
listic support to any field configuration at the geodesic
border. While Kasner spacetimes border at a geodesic
singularity, they do not leak information across the geo-
desic border. There is no physical characterization of Σ0 in
terms of measurement processes and observables. By direct
Kernel methods we have shown that fEgðt; tinÞ∶ t ∈�0; tin�g
is a contraction semigroup describing the ground state
evolution in asymptotic Kasner spacetimes. Since Egðt; tinÞ
has an explicit kernel, we can qualify asymptotic Kasner
geometries as quantum complete preludes to inflation (via
intermediary Bianchi type-I cosmologies) by direct kernel
methods. The succession from asymptotic Kasner geom-
etries via Bianchi type-I to inflationary spacetimes is,
therefore, a quantum complete sequence of physical space-
times which is consistent with the results in [18]. The
singular potential in anisotropic cosmologies has no effect
on the consistency of scattering processes. In turn, extend-
ing inflation by an anisotropic prelude with asymptotic
Kasner geometry results in a quantum complete infla-
tionary paradigm.
Non-Gaussian deformations of the ground state are

generated by self-interactions. We refrain from presenting
the calculation of Dt here. The basic result is that self-
interactions do not alter the leading asymptotic behavior
towards the geodesic border. Intuitively, this can be under-
stood by direct kernel methods [19] as follows. The
Hamilton density operator of the inflaton isH ¼ T ðΠ; gÞþ
VðΦ; gÞ, where T ¼ ðΠÞ2=2 ¼ −1=ð2 detðqÞÞδ2=δϕ2 de-
notes the functional Laplacian and V ¼ q−1ðdΦ; dΦÞ þ
VðΦÞ the effective potential density operator including
the inflaton potential V ¼ VdSðΦ=ϕ0Þ2 þ VdSO½ðΦ=ϕ0Þ3�
close to its minimum and V ¼ VdS away from it. Because
the self-interactions are polynomial, expectation values of
observables are moments of the probability density jΨð0Þ

t j2.
It is convenient to add an auxiliary source term to the
generating functional

Zt½J� ¼
Z
CðΣtÞ

DϕjΨð0Þ
t ½ϕ�j2 exp ðJ t½ϕ�Þ; ð21Þ
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with J ≔ ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞðtÞp ÞδJ t½ϕ�=δϕ. In closed form,

Zt½J� ¼ jN ð0Þ
t j2 exp

�
1

2
½J�K−1

t ½J�
�
; ð22Þ

where K−1
t is the covariant functional inverse of Kt. It is

easy to solve ½f1�ðKt⋆K−1
t Þ½f2� ¼ ½f1�δ½f2� asymptotically.

Close to the geodesic border

K−1
t ≈ it ln ðt=tinÞ

�
δþ R

ln ðt=tinÞ
�

ð23Þ

up to order ln−2ðt=tinÞ. Note that if the square bracket in
(23) is replaced with an expression that is regular in the
coincidence limit then K−1

t → 0 for t=tin → 0. Close to the
potential minimum and for t ∈ �0; tin�

hΨð0Þ
t jVðΦÞjΨð0Þ

t i ≈

¼ VdS

�
1

ϕ0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp δ

δJ

�
2

Zt½0�

≈ ðVdS=ϕ2
0ÞjN ð0Þ

tin j2 exp ð2ΓtÞK−1
t ðx; xÞ;

ð24Þ

where K−1
t ðx; xÞ denotes the regularized bilocal kernel

function corresponding to K−1
t in the coincidence limit.

This can be used as an anchor for an inductive procedure
proving that self-interactions have vanishing probabilistic
support towards the geodesic border of asymptotic Kasner
geometries. Self-interactions respect the ground state. In
this sense, Kasner geometries in the immediate vicinity of
Σ0 protect the ground state against non-Gaussian deforma-
tions, and in turn, the ground state renders these geometries
quantum complete. This is a consequence of the Belinskii-
Khalatnikov-Lifshitz conjecture which is at work here. At
the operator level, effectively H ≈ T ðΠ; gÞ close to the
geodesic border.

V. DISCUSSION AND CONCLUSION

The main result of this article is the following: Kasner
universes are quantum complete preludes to inflationary
spacetimes that smoothly transit to ordinary Bianchi-type I
cosmologies. They still have geodesic borders beyond
which spacelike singularities are lurking. Nonetheless,
these singularities do not constitute a physical pathology
as such. For these singularities to present a physical
pathology, they must admit a description based on observ-
ables and measurement processes. It is not sufficient to
evaluate observables at the geodesic border, because it is
a priori not clear whether the fields composing observables
and measurement devices are supported at or close to the
border. For an imperfect analogy: Newton’s potential is
singular in the coincidence limit. However, this is not
sufficient to conclude that Newtonian gravity is plagued by
physical pathologies. In order to promote the mathematical

singularity to a physical pathology, initial conditions are
required to exist such that the coincidence limit can
dynamically be realized in a finite time. The same holds
for spacetime singularities.
Certainly, curvature invariants are singular when evalu-

ated at the geodesic borders of Bianchi type-I cosmologies.
Again, the question iswhether this evaluation corresponds to
a physical measurement process. As an imperfect analog,
consider the motion of a classical electric charge in a
repulsive Coulomb potential on the half line ½0;∞Þ.
Clearly the Coulomb potential has a mathematical singu-
larity at the origin. However, any electrical chargewith finite
initial energymoving towards the originwill never be able to
reach the origin, because it gets always reflected by the
potential barrier. Therefore it can only probe the potential at
an energy scale compatible with its initial energy. Perhaps a
better analogy is given by a bound state electron within
hydrogen. An electron in a hydrogen bound state cannot
probe the origin of the attractive Coulomb potential.
Normalizability gives a vanishing probability for such an
electron to be located at the origin. This has nothing to do
with Heisenberg uncertainty, because uncertainty relations
hold only for normalizable wave functions, and so normal-
izability has to be imposed first, which proves to be sufficient
to guarantee a vanishing probability measure at the origin.
Describing geodesic borders or their neighborhood in

terms of observables requires to evolve fields from an initial
surface towards the border. The evolution is not governed
by a one-parameter group of isometric operators, but
instead by a semigroup. As a consequence, norms of
quantum states are not conserved, whereby quantum states
refer to wave functionals over the space of field configu-
rations in the Schrödinger representaton of quantum field
theory. Semigroups appear here naturally since the space-
time is assumed to be absolutely inert against quantum
fluctuations. Any frictionlike phenomena caused by this
background reduces the state norm. Albeit the dynamics are
not given by a unitary evolution, a probabilistic interpre-
tation of the wave functional is still possible. The situation
is analogous to the treatment of open quantum systems.
This implies, however, that the spectrum of the Schrödinger
Hamiltonian is not essentially self-adjoint. Of course, there
is nothing wrong with this: Damping phenomena give rise
to complex dispersion relations with a finite imaginary
contribution. It is still possible to think of Hamiltonians as
evolution generators in the usual infinitesimal sense. The
pair (unitary, selfadjoint) is superseded by (contractive,
accretive) in the spirit of Stone’s theorem. This is the reason
why it is convenient to consider evolution semigroups. In
fact, there is no alternative: The geodesic borders consid-
ered here enforce a contractive evolution although the
quantum fields become free in their vicinity. Even in this
situation, the Hamiltonian is not a symmetry generator
simply because the evolution is considered in an approxi-
mate asymptotic Kasner spacetime.

QUANTUM COMPLETE PRELUDE TO INFLATION PHYS. REV. D 99, 065012 (2019)

065012-7



So Bianchi type-I cosmologies are quantum complete
and geodesic incomplete. This apparent clash of
completeness concepts requires a resolution. The resolution
is straightforward: Singularity diagnostics is a well-
established method directly related to the mathematical
spacetime model. It is based on the geodesic motion of
point particles. Its physical realization implies an event set
described by classical point particle phenomenology. This
phenomenology is invalid close to spacelike geodesic
borders where absorption and emission processes are
operative. Classical particle phenomenology gives the
wrong description of the observable events close to the
geodesic border, and therefore it gives the wrong descrip-
tion of the physical spacetime bordering on spacelike
singularities. An adequate characterization of the physical
situation at the border requires quantum field theory. Once
this is established, statements referring to Bianchi type-I
cosmologies or their asymptotic Kasner approximations as
geodesic incomplete are mathematically correct but physi-
cally irrelevant. Therefore it would be appropriate to call
Bianchi type-I cosmologies just complete.
We have shown that Bianchi type-I cosmologies with

approximate Kasner geometries close to their geodesic
border and inflationary spacetimes away from the borders
are quantum complete realizations of inflation. The argu-
ment is completely universal and holds for any inflaton
potential. This is a reflection of the famous conjecture by
Belinskii, Khalatnikhov and Lifshitz: In approximate
Kasner regions, temporal changes dominate over any
spatial correlations, and hence the inflaton evolution
becomes effectively free, which is why these types of
geodesic borders allow universal statements.
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APPENDIX: TEMPORAL GRADIENTS AND
KASNER GEOMETRIES

The conjecture of Belinskii, Khalatnikov and Lifshitz
(BKL) stipulates that temporal gradients dominate over
spatial gradients in the vicinity of a spacelike singularity.
We present a quick argument that this guarantees Kasner
geometries close to the geodesic border.
In a Gaussian normal neighborhood, g ¼ −dt ⊗ dtþ h

and the BKL conjecture amounts to requiring
j∂thj ≫ j∂xhj. The Levi-Civita connection is given by

Γt
ab¼

1

2
∂thabþOðεÞ; Γa

bt¼
1

2
gac∂thcbþOðεÞ: ðA1Þ

Here a, b, c are spatial indices and all other Christoffel
symbols are OðεÞ, where ε ≔ j∂xhj=j∂thj serves as the
smallness parameter. Note that Γt

ab are the extrinsic
curvature components Kab in this coordinate neighbor-
hood. Therefore, up to OðεÞ,

ðRicÞtt ¼ −∂tTrhðKÞ − TrhðKKÞ; ðA2Þ

ðRicÞab ¼ ∂tKab − ðKKÞab; ðA3Þ

with ðKKÞab ≔ KachcdKdb. Note that ðRicÞta ¼ OðεÞ.
This poses no problem provided h is diagonal since then
ðRicÞta ¼ 0. Assuming h is diagonal, hac ¼ δaĉwĉ, the
extrinsic curvature becomes Kac ¼ δaĉ _wĉ=2, where hats
over spatial indices suspend the usual summation conven-
tion, and overdots denote time derivatives. For a vacuum
solution,

ðRicÞtt ¼
1

2

X3
a¼1

�
ẅa

wa
−
1

2

�
_wa

wa

�
2
�
¼ 0: ðA4Þ

This is solved by wa ¼ t2pa, provided p1 þ p2 þ p3 ¼
p2
1 þ p2

2 þ p2
3, which is precisely the Kasner condition.
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