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It is believed that extremal black holes do not emit Hawking radiation as understood by taking extremal
limits of nonextremal black holes. However, it is debated whether one can make such a conclusion reliably
starting from an extremal black hole, as the associated Bogoliubov coefficients which relate ingoing and
outgoing field modes do not satisfy the required consistency condition. We address this issue in a canonical
approach first by presenting an exact canonical derivation of the Hawking effect for nonextremal Kerr black
holes. Subsequently, for extremal Kerr black holes, we show that the required consistency condition is
satisfied in the canonical derivation and it produces zero number density for Hawking particles. We also
point out the reason behind the reported failure of Bogoliubov coefficients to satisfy the required condition.
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I. INTRODUCTION

In a landmark article [1], Hawking pioneered the idea of
black hole radiation. In particular, by considering quantum
fields in static, charged, or rotating black hole spacetimes,
he showed that the asymptotic observers would perceive
thermal particle creation which is referred to as the
Hawking effect. In order to derive the Hawking effect,
he used ingoing and outgoing null coordinates for describ-
ing the scalar field modes. Since that article’s publication,
the Hawking effect has been an extensively studied topic of
modern physics. However, there are some related issues
which are still debated, particularly involving the case of
extremal black holes.
It is usually believed that extremal black holes do not

exhibit Hawking radiation as one would conclude by taking
the extremal limits of nonextremal black holes. However,
whether one can make such a conclusion starting from an
extremal black hole is still debated in the literature [2–5].
These debates stem from the fact that the associated
Bogoliubov transformation coefficients that relate the
ingoing and the outgoing field modes do not satisfy the
required consistency relation arising from the commutator
brackets between the creation and annihilation operators of
the field modes. Therefore, these Bogoliubov coefficients
which are used for computing number density of Hawking
quanta, are not reliable. Consequently, for extremal black
holes it is an important question to ask whether one could
find a fully consistent derivation to conclude about the
vanishing Hawking radiation.

In this article, our aims are twofold. First, we show that
using the so-called near-null coordinates which were intro-
duced for computing the Hawking effect in Schwarzschild
spacetime [6], one can perform an exact canonical derivation
for nonextremal rotating Kerr black holes. The use of these
near-null coordinates was necessitated due to the fact that
null coordinates cannot be used to construct a nontrivial
matter field Hamiltonian. Consequently, a Hamiltonian
based canonical derivation of the Hawking effect for a
Kerr black hole is still missing.
Second, we show that the analogous consistency con-

dition which arises from the requirement of the Poisson
bracket of field modes and their conjugate momenta be
simultaneously satisfied for different observers, is also
fulfilled. Further, we show that in the canonical derivation
the associated number density operator for the Hawking
quanta vanishes for the extremal Kerr black holes. This
feature reaffirms that the extremal Kerr black holes do not
emit Hawking radiation. The study of Hawking effect in an
extremal Kerr black hole spacetime within canonical
approach is interesting on its own right. Nevertheless,
the canonical derivation of the Hawking effect for Kerr
black holes as presented here provide the initial stage
for the study of Hawking effect in the context of the so
called polymer quantization [7,8], a canonical quantization
method used in loop quantum gravity [9–11]. It appears
that the existence of a new length scale could substantially
affect the Unruh effect [12–14] as well as Hawking effect in
Schwarzschild spacetime [15]. However, the question
remains whether such claims can be subjected to exper-
imental verification even if in principle. Given Kerr black
holes are the only physically viable black holes, the study
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of Hawking effect for the Kerr black holes in canonical
formulation assumes additional importance.
In Sec. II, we begin with a brief discussion about the Kerr

spacetime. In particular, we emphasize that unlike
Schwarzschild spacetime a Kerr black hole spacetime
has two horizons, of which the outer one is the event
horizon. Then we discuss the properties of the correspond-
ing null geodesics and null coordinates. In Sec. III, we
review the key aspects of the canonical formulation. We
consider a minimally coupled massless scalar field in a Kerr
black hole spacetime. Then we consider two asymptotic
observers; one near past null infinity I− and another near
future null infinity Iþ. Following [6], we then define the
pair of near-null coordinates to be used for canonical
derivation. We then construct the Hamiltonian densities
associated with the Fourier modes of the field as seen by
these two observers. In Sec. IV, we consider nonextremal
Kerr black holes and then present the canonical derivation
of the Hawking effect as represented by the thermal
distribution of the Hawking quanta. Subsequently, in
Sec. V, we study the case for extremal Kerr black holes.

II. THE KERR SPACETIME

The spacetime geometry outside of a rotating black hole
is described by the Kerr metric which is an exact vacuum
solution of the Einstein equation in general relativity. It is
further generalized by the advent of Kerr-Newman metric
where one includes a net charge to a rotating black hole.
However, it is rather a theoretical construct given a charged
astrophysical body is unlikely to be found in nature. On the
other hand, the abundance of rotating Kerr black holes in
our Universe and the recent discovery of gravitational
waves from their merger [16–19] makes them interesting
astrophysical objects to investigate further.

A. Metric and horizons in Kerr spacetime

The Kerr spacetime is described by two parameters,
namely the mass of the black hole M and its angular
momentum per unit mass a. Using the natural units where
speed of light c and Planck constant ℏ are set to unity, one
can express the corresponding invariant distance element
using Boyer-Lindquist coordinates [20] as

ds2 ¼ −
1

ρ2
ðΔ − a2 sin2 θÞdt2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ Σ
ρ2

sin2 θdϕ2 −
2a
ρ2

ðr2 þ a2 − ΔÞ sin2 θdtdϕ; ð1Þ

where ρ2 ¼ r2 þ a2 cos2 θ, Σ ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ
and Δ ¼ r2 þ a2 − rsr with rs ¼ 2GM being the
Schwarzschild radius corresponding to mass M [21–33].
The metric components diverge at both ρ2 ¼ 0 and Δ ¼ 0.
In particular, the Kretschmann scalar is singular at ρ2 ¼ 0,
which signifies a curvature singularity and cannot be

removed by any coordinate transformation. On the other
hand, Δ ¼ 0 corresponds to a coordinate singularity and
it gives the position of two horizons at r ¼ rh and
r ¼ rc, where

rh¼
1

2

�
rsþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s−4a2

q �
; rc¼

1

2

�
rs−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s−4a2

q �
: ð2Þ

The outer horizon, located at rh, is the event horizon with
the surface gravity ϰh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4a2

p
=ð2rsrhÞ. The inner

horizon is located at rc, and it is a Cauchy horizon with
surface gravity ϰc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4a2

p
=ð2rsrcÞ. Due to the frame-

dragging effect [22,24], an inertial observer experiences an
angular velocity in Kerr spacetime, given by

Ω≡Ωðr; θÞ ¼ gtϕ

gtt
¼ arrs

Σ
: ð3Þ

We may mention that the study as presented here can be
generalized for the Kerr-Newman black holes [34–36] by
using Δ ¼ r2 þ a2 þ r2Q − rsr, where r2Q ¼ Q2G=4πϵ0
with charge Q and Coulomb’s force constant 1=4πϵ0.

B. Null trajectories in Kerr spacetime

In Kerr spacetime, the governing equations for null
geodesics [22] can be expressed as

_t ¼ r2 þ a2

Δ
; _r ¼ �1; _θ ¼ 0; _ϕ ¼ a

Δ
; ð4Þ

where the overhead dot denotes derivative with respect to an
affine parameter. Due to the frame-dragging effect, the
azimuthal angleϕ cannot be kept constant along any ingoing
or outgoing null trajectory, unlike in Schwarzschild space-
time. However, using Eq. (4), one can show that along
the ingoing null trajectories, the coordinates v ¼ tþ r⋆ and
ψ ¼ ϕþ r♯ are constants where

dr⋆ ¼ r2 þ a2

Δ
dr; dr♯ ¼

a
Δ
dr: ð5Þ

Similarly, along the outgoing null trajectories the coordinates
u ¼ t − r⋆ and χ ¼ ϕ − r♯ are constants.Here r⋆ denotes the
tortoise coordinate in analogy to the one in Schwarzschild
spacetime. Depending on whether the Kerr black hole is
extremal or nonextremal, the expression of the coordinates r⋆
and r♯ in terms of radial coordinate r differ.

C. Number density of Hawking quanta

In order to study the Hawking effect, we consider the
scenario where Kerr spacetime is formed after the collapse
of matters starting from a Minkowski spacetime in the past.
The detailed evolution of the collapsing matters are not
relevant for our study. To capture this aspect of change in
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metric over time, yet to avoid the technical difficulties that
are associated with the field quantization in a single time-
dependent metric, Hawking considered two different
asymptotic observers, one at past null infinity I−, and
other at future null infinity Iþ, each having time-inde-
pendent but different metric. The vacuum states corre-
sponding to these two observers differ from each other as
their metric are different.
To represent the Hawking quanta, in the given spacetime

with metric gμν, we consider a minimally coupled massless
free scalar field ΦðxÞ which is described by the action

SΦ ¼
Z

d4x
�
−
1

2

ffiffiffiffiffiffi
−g

p
gμν∇μΦðxÞ∇νΦðxÞ

�
: ð6Þ

The Hawking effect is realized by computing the
Bogoliubov transformation coefficients between these
two observers at the past and the future null infinities
respectively. The expectation value of the number density
operator corresponding to the Hawking quanta of frequency
ω is given by [1]

Nω ¼ 1

e2πðω−mΩhÞ=ϰh − 1
; ð7Þ

where ϰh and Ωh are the surface gravity and the angular
velocity Ω at the event horizon respectively. Here m
denotes the azimuthal quantum number of the modes.
By comparing Eq. (7) with the blackbody distribution
we may read off the corresponding Hawking temperature as
TH ¼ ϰh=ð2πkBÞ with kB being the Boltzmann constant.

III. CANONICAL FORMULATION

The particle creation in a curved spacetime is directly
connected to the dynamical nature of the spacetime metric.
In the case of black hole radiation, it arises as the spacetime
evolves from being Minkowskian in the past to a specific
black hole spacetime in future due to the collapse of
matters. In order to perform a Hamiltonian-based canonical
derivation of the Hawking effect in Kerr spacetime, we
follow a similar approach by considering two asymptotic
observers near past and future null infinities, each having
time-independent but different metric. Subsequently, we
compute expectation value of the Hamiltonian density
operator for the field modes of the future observer in the
vacuum state of the past observer and then read off the
number density of the Hawking quanta.

A. Reduced scalar field action

In the Kerr spacetime with axial symmetry, one can
decompose the scalar field in terms of spheroidal harmon-
ics eimϕSlmðθÞ as ΦðxÞ ¼ P

l;me
imϕSlmðθÞφlmðr; tÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

. However, in order to emphasize a key aspect
of Kerr spacetime, we perform the reduction in two steps.

First, we express the scalar field as Φðt; r; θ;ϕÞ ¼P
lme

imϕΦlmðt; r; θÞ. After carrying out the integration
over azimuthal angle ϕ, the action (6) reduces to SΦ ¼P

ll0mSll0m where

Sll0m ¼
Z

dtdrdθ
ffiffiffiffiffiffi
−g

p �
−
1

2
gtt∂tΦ�

l0m∂tΦlm

−
i
2
mgtϕð∂tΦ�

l0mΦlm −Φ�
l0m∂tΦlmÞ

−
1

2
grr∂rΦ�

l0m∂rΦlm −
1

2
gθθ∂θΦ�

l0m∂θΦlm

−
1

2
m2gϕϕΦ�

l0mΦlm

�
: ð8Þ

We note that if one redefines the field further as

Φlmðt; r; θÞ≡ e−imΩtΦ̃lmðt; r; θÞ; ð9Þ

then the terms in (8) involving a temporal derivative of
fields simplify to

Sll0m ¼
Z

dtdrdθ
ffiffiffiffiffiffi
−g

p �
−
1

2
gtt∂tΦ̃�

l0m∂tΦ̃lm

−
1

2
grr∂rðe−imΩtΦ̃l0mÞ�∂rðe−imΩtΦ̃lmÞ

−
1

2
gθθ∂θðe−imΩtΦ̃l0mÞ�∂θðe−imΩtΦ̃lmÞ

−
1

2
m2ðgϕϕ −ΩgtϕÞΦ̃�

l0mΦ̃lm

�
: ð10Þ

In the regions near the past and the future null infinities,
where the relevant observers for realizing Hawking
effect are located, the redefined field can be expressed
as Φ̃lmðt; r; θÞ ≃ SlmðθÞφlmðr⋆; tÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
. The same

approximation for the field is also possible in the
region near the event horizon Δ → 0 where the term Ω
becomes Ωh which is the angular velocity of the
event horizon. By using the orthogonality conditionR
dðcos θÞSlmðθÞS�

l0mðθÞ ¼ δl;l0 , we achieve the final form
of the reduced action as SΦ ¼ P

lmSlm in the regions near
horizon as well as near null infinities, where

Slm ≃
Z

dtdr⋆
�
1

2
∂tφ

�
lm∂tφlm −

1

2
∂r⋆φ

�
lm∂r⋆φlm

�
: ð11Þ

The action (11) represents a scalar field in 1þ 1-
dimensional flat spacetime.

B. Frequency shift due to frame dragging

The solutions to the field equation corresponding to the
action (11) can be expressed as
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φlmðr; tÞ ∼
1ffiffiffiffiffiffiffiffiffi
2πω̃

p e−iω̃ðt�r⋆Þ: ð12Þ

However, in order to understand the full dynamics of the
physical field Φ, one needs to consider the solutions (12)
together with the relation (9) which provides additional
time dependence. In particular, if one reads off the
frequency, as defined as the eigenvalue of the operator
i∂t, then it would be ω̃ for the redefined field mode φlm
(12). On the other hand, the frequency, say ω, of the
physical field mode Φlm (9) would be ω ¼ ω̃þmΩ. The
Hawking effect is realized through the modes which travel
out from the region very close to the event horizon.
Therefore, for these modes, the frequency ω̃ can be related
to the physical frequency ω as [37–43]

ω̃ ¼ ω −mΩh: ð13Þ

This key feature of the frequency shift in the Kerr spacetime
is reflected through the expression of the expectation value
of the number density operator (7).

C. The observers O− and O+

1. Near-null coordinates

The field modes (12) are usually expressed in terms of
the null coordinates v and u as φ̃lm ∼ e−iω̃v or φ̃lm ∼ e−iω̃u.
Therefore, the Hawking effect is conveniently understood
using Bogoliubov transformation coefficients between field
modes of the two observers, each are described by null
coordinates (see Fig. 1). However, the use of the null
coordinates does not lead to a true matter Hamiltonian that

can describe the dynamics of these modes. Therefore, in the
pursuit of a canonical derivation of the Hawking effect we
need to look for coordinates which are not null. By
following the approach as prescribed in [6], we define a
set of near-null coordinates by slightly deforming the
outgoing and the ingoing null coordinates. In particular,
for the observer located near the past null infinity I−, say
observer O−, the near-null coordinates are defined as

τ− ¼ t − ð1 − ϵÞr⋆; ξ− ¼ −t − ð1þ ϵÞr⋆; ð14Þ

where the parameter ϵ is considered to be small such that
ϵ ≫ ϵ2. In a similar manner, we define the near-null
coordinates for the observer located near the future null
infinity Iþ, say observer Oþ, as

τþ ¼ tþ ð1 − ϵÞr⋆; ξþ ¼ −tþ ð1þ ϵÞr⋆: ð15Þ

We are considering the scenario where the black hole is
formed after the collapse of matters staring from a
Minkowskian spacetime. Therefore, for the past observer
O−, the definition of the tortoise coordinate in (14) is trivial,
i.e., dr⋆ ¼ dr. We may note that the timelike characteristics
of the coordinates τ� is maintained for the range 0 < ϵ < 2.
However, for simplicity here we consider the parameter ϵ to
be small.

2. Field Hamiltonian

For the past observer O−, the 1þ 1-dimensional reduced
spacetime is described by the Minkowski metric
ds2¼−dt2þdr2⋆ ¼−dt2þdr2. Therefore, the invariant line
element can be written using near-null coordinates (14) as

ds2−¼
ϵ

2

�
−dτ2−þdξ2−þ

2

ϵ
dτ−dξ−

�
≡ ϵ

2
g0μνdxμ−dxν−; ð16Þ

where flat metric g0μν is conformally transformed. With
respect to the future observer Oþ, the Kerr black hole is
already formed. Nevertheless, as far as the dynamics of the
1þ 1-dimensional reduced scalar field action (11) is con-
cerned, even for the observer Oþ, the underlying metric can
be expressed as ds2 ¼ −dt2 þ dr2⋆. Using the near-null
coordinates (15), this invariant line-element becomes

ds2þ¼ ϵ

2

�
−dτ2þþdξ2þþ

2

ϵ
dτþdξþ

�
≡ ϵ

2
g0μνdx

μ
þdxνþ: ð17Þ

Therefore, we may express the reduced scalar field action
(11) for both observers as

Sφ ¼
Z

dτ�dξ�

�
−
1

2

ffiffiffiffiffiffiffiffi
−g0

q
g0μν∂μφ∂νφ

�
: ð18Þ

For brevity of notation we have omitted the subscripts from
the redefined field φlm.

(a) (b)

FIG. 1. Simplified Penrose diagrams for (a) nonextremal and
(b) extremal Kerr black holes. The black hole is formed through
matter collapse which is depicted by the shaded region and its
behavior near the endpoint is rather presumptive in nature. A null
ray leaving from I− before v0 would end up on Iþ whereas a
null ray leaving after v0 would end up being inside the black hole.

SUBHAJIT BARMAN and GOLAM MORTUZA HOSSAIN PHYS. REV. D 99, 065010 (2019)

065010-4



In order to derive the scalar field Hamiltonian, we
consider spatial slicing of the reduced spacetime labelled
by the coordinate τ�. From Eqs. (16) and (17), one can
show that corresponding lapse function N ¼ 1=ϵ, shift
vector N1 ¼ 1=ϵ, and determinant of the spatial metric
q ¼ 1. The scalar field Hamiltonian then can be written as

H�
φ ¼

Z
dξ�

1

ϵ

��
1

2
Π2 þ 1

2
ð∂ξ�φÞ2

�
þ Π∂ξ�φ

�
; ð19Þ

where the superscript (�) refers to the Hamiltonian for the
observer Oþ and O− respectively. The field φ and its
conjugate momentum Π satisfy the Poisson bracket

fφðτ�; ξ�Þ;Πðτ�; ξ0�Þg ¼ δðξ� − ξ0�Þ: ð20Þ

Using Hamilton’s equation, the field momentum Π can be
expressed as

Πðτ�; ξ�Þ ¼ ϵ∂τ�φ − ∂ξ�φ: ð21Þ
We note from the Eq. (19) that at the value of the parameter
ϵ ¼ 0, the Hamiltonian becomes ill defined. This signifies
the necessity of near-null coordinates in order to study the
Hawking effect using a Hamiltonian approach.

3. Fourier modes

For both the observers, the spatial volume V� ¼R
dξ�

ffiffiffi
q

p
formally diverges as

ffiffiffi
q

p ¼ 1. Therefore to avoid
dealing with explicitly diverging quantities, we consider a
finite fiducial box during the intermediate steps of compu-
tations, such that

V� ¼
Z

ξR�

ξL�

dξ�
ffiffiffi
q

p ¼ ξR� − ξL�: ð22Þ

Subsequently, we define the respective Fourier modes of
the scalar field for the observers Oþ and O− as

φðτ�; ξ�Þ ¼
1ffiffiffiffiffiffiffi
V�

p
X
k

ϕ̃�
k e

ikξ� ;

Πðτ�; ξ�Þ ¼
1ffiffiffiffiffiffiffi
V�

p
X
k

ffiffiffi
q

p
π̃�k e

ikξ� ; ð23Þ

where ϕ̃�
k ¼ ϕ̃�

k ðτ�Þ, π̃�k ¼ π̃�k ðτ�Þ are the complex-valued
mode functions. The finite volume of the fiducial box
leads to the definition of Kronecker delta and Dirac
delta as

R
dξ�

ffiffiffi
q

p
eiðk−k0Þξ� ¼ V�δk;k0 and

P
ke

ikðξ�−ξ0�Þ ¼
V�δðξ� − ξ0�Þ=

ffiffiffi
q

p
. The definition of these two deltas

together imply k ∈ fksg where ks ¼ 2πs=V� with s being
a nonzero integer. These definitions help us to express
the scalar field Hamiltonians (19) in terms of the Fourier
modes as H�

φ ¼ P
k
1
ϵ ðH�

k þD�
k Þ where the Hamiltonian

densities and diffeomorphism generators are

H�
k ¼ 1

2
π̃�k π̃

�
−k þ

1

2
k2ϕ̃�

k ϕ̃
�
−k; ð24Þ

and

D�
k ¼ −

ik
2
ðπ̃�k ϕ̃�

−k − π̃�−kϕ̃
�
k Þ; ð25Þ

respectively. The corresponding Poisson brackets are

fϕ̃�
k ; π̃

�
−k0 g ¼ δk;k0 : ð26Þ

D. Relation between Fourier modes

In order to find relations between the field modes and
their conjugate momenta for the two observers, we note
that φðτ−; ξ−Þ ¼ φðτþ; ξþÞ, given the field is scalar.
The field momentum follows a relation Πðτþ; ξþÞ ¼
ð∂ξ−=∂ξþÞΠðτ−; ξ−Þ [6]. A simple way to understand this
relation is as follows. In order to realize the Hawking effect,
the past observer considers ingoing modes with null
coordinate v constant whereas the future observer considers
the outgoing modes with null coordinate u constant. Using
these restrictions together with expressions of the momenta
(21), one can arrive at the given relation between the two
momenta. Having these relations between the field and the
field momentum, one can obtain the relations between their
Fourier modes and respective conjugate momenta as

ϕ̃þ
κ ¼

X
k

ϕ̃−
k F0ðk;−κÞ; π̃þκ ¼

X
k

π̃−k F1ðk;−κÞ; ð27Þ

where we have considered Fourier modes on fixed spatial
hypersurfaces. The coefficient functions Fnðk; κÞ are
given by

Fnðk; κÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

Z
dξþ

�∂ξ−
∂ξþ

�
n
eikξ−þiκξþ ; ð28Þ

where n ¼ 0, 1. These coefficient functions are analogous
to the Bogoliubov coefficients in the covariant formulation.
In particular, we note that for k; κ > 0 the coefficient
functions Fnð−k;−κÞ are analogous to the Bogoliubov
mixing coefficients βωω0 whereas Fnðk;−κÞ are analogous
to the Bogoliubov coefficients αωω0 of [1]. Using repre-
sentation of Dirac delta distribution δðμÞ ¼ 1

2π

R
dxeiμx and

by setting μ ¼ 1, x ¼ ð�kξ− þ κξþÞ there one can obtain a
relation

F1ð�k; κÞ ¼∓
�
κ

k

�
F0ð�k; κÞ: ð29Þ

In other words, the evaluation of only one coefficient
function, say F0ð�k; κÞ, is sufficient for the subsequent
analysis.
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E. Poisson bracket consistency condition

The requirement that two different Poisson brackets
fϕ̃−

k ; π̃
−
−k0 g ¼ δk;k0 and fϕ̃þ

κ ; π̃
þ
−κ0 g ¼ δκ;κ0 be simultaneously

satisfied, demands a relation between the coefficient
functions F0ð�k; κÞ. In particular, by using Eq. (29), we
may express this consistency requirement as

S−ðκÞ − SþðκÞ ¼ 1; ð30Þ

where S�ðκÞ ¼
P

k>0ðκ=kÞjF0ð�k; κÞj2. This condition is
analogous to the consistency condition between
Bogoliubov coefficients [5] which arises from the impo-
sition of the commutator bracket between the creation and
annihilation operators of the field modes for two asymp-
totic observers.

F. Relation between Hamiltonian densities
and diffeomorphism generators

Using relations (27) and (29) one can express the
Hamiltonian density Hþ

κ for the observer Oþ in terms of
the Hamiltonian density H−

k of the observer O− as

Hþ
κ ¼ h1κ þ

X
k>0

�
κ

k

�
2

½jF0ð−k;κÞj2þjF0ðk;κÞj2�H−
k ; ð31Þ

where h1κ ¼
P

k≠k0 ðκ2=2kk0ÞF0ðk;−κÞF0ð−k0; κÞfπ̃−k π̃−−k0 þ
kk0ϕ̃−

k ϕ̃
−
−k0g. h1κ is being linear in ϕ−

k and its conjugate
momentum, the vacuum expectation value of its quantum
counterpart vanishes. Similarly, the diffeomorphism gen-
erators of the two observers can be related as

Dþ
κ ¼d1κþ

X
k>0

�
κ

k

�
2

½jF0ð−k;κÞj2þjF0ðk;κÞj2�D−
k ; ð32Þ

where d1κ ¼
P

k≠k0 ðiκ2=2kÞfF0ð−k; κÞF0ðk0;−κÞπ̃−−kϕ̃−
k0 −

F0ðk;−κÞF0ð−k0; κÞπ̃−k ϕ̃−
−k0g which is also linear in field

mode and its conjugate momentum.

G. Fock quantization and the vacuum state

The scalar field under consideration is real-valued which
imposes condition on the Fourier modes as ϕ̃�

k ¼ ϕ̃−k. This
implies that the real and imaginary parts of field modes are
not independent. A suggested way to implement this reality
condition is to suitably redefine real and imaginary parts for
different domains in terms of a real-valued mode function
[6,44] which leads the Hamiltonian density to represent a
simple harmonic oscillator as

H�
k ¼ 1

2
π2k þ

1

2
k2ϕ2

k; fϕ2
k; π

2
k0 g ¼ δk;k0 ; ð33Þ

where ϕk and πk are the redefined real-valued field modes.
Further, this redefinition makes the diffeomorphism gen-
erator vanish, i.e., D−

k ¼ 0.
The Fock quantization of the massless free scalar field

can be viewed as the Schrödinger quantization of only
positive frequency oscillator modes. We may now restrict
ourselves with the modes where k; κ > 0 so that the mode
frequency can be identified as ω̃ ¼ κ and so on. The energy
spectrum for each of these oscillator modes is given by
Ĥ−

k jnki ¼ ðN̂−
k þ 1

2
Þkjnki ¼ ðnþ 1

2
Þkjnki where N̂−

k is the
corresponding number operator, jnki are its eigen-states
with integer eigenvalues n ≥ 0. The Hawking effect is
realized by computing the expectation value of the
Hamiltonian density operator Ĥþ

κ ≡ ðN̂þ
κ þ 1

2
Þ correspond-

ing to the observer Oþ in the vacuum state j0−i ¼ Πkj0ki
corresponding to the observer O−. Therefore, the expect-
ation value of the number density operator corresponding to
the Hawking quanta of frequency ω̃ ¼ κ, after using
Eq. (30) along with Eq. (31), can be expressed as

Nω̃ ¼ Nκ ≡ h0−jN̂þ
κ j0−i ¼ SþðκÞ; ð34Þ

where we have used the properties h0kjϕ̂kj0ki ¼ 0 and
h0kjπ̂kj0ki ¼ 0. For Fock quantization, the number density
operator employed in [6] is equivalent to the number
density operator (34).

IV. NONEXTREMAL KERR BLACK HOLES

In order to explicitly evaluate the coefficient function
F0ðk; κÞ, we require the expression of tortoise coordinate r⋆
which depends crucially on the fact whether the given Kerr
black hole is extremal or nonextremal. Therefore, we deal
with these two cases separately. Using Eq. (5), one can
compute the expression of r⋆ for nonextremal black hole,
with suitable choice of integration constants, as

r⋆ ¼ rþ 1

2ϰh
ln ½ðr − rhÞϰh� −

1

2ϰc
ln ½ðr − rcÞϰc�; ð35Þ

where ϰh and ϰc denote the surface gravity at the outer and
the inner horizon of the Kerr spacetime respectively.

A. Relation between spatial coordinates ξ − and ξ +
In order to establish the relation between the coordinates

ξ− and ξþ, following [6], we consider a pivotal point ξ0− on
a τ− ¼ constant hypersurface. A spacelike interval on this
hypersurface can be written as

ðξ− − ξ0−Þjτ− ¼ 2ðr0⋆ − r⋆Þjτ− ¼ 2ðr0 − rÞjτ− ≡ Δ; ð36Þ

where r0 is a pivotal value corresponding to ξ0−. In deriving
Eq. (36), we have used fact that for the observer O− the
spacetime was Minkowskian. In a similar manner, we can
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express a spacelike interval on a τþ ¼ constant hyper-
surface as

ðξþ − ξ0þÞjτþ ¼ Δþ 1

ϰh
ln

�
1þ Δ

Δh

�
−

1

ϰc
ln

�
1þ Δ

Δc

�
;

ð37Þ

where Δh ≡ 2ðr0 − rhÞjτþ , Δc ≡ 2ðr0 − rcÞjτþ . Further, we
have identified the interval 2ðr − r0Þjτþ asΔ using geometric
optics approximation.We choose the pivotal values ξ0− ¼ Δh

and ξ0þ ¼ ξ0− þ 1
ϰh
lnðϰhξ0−Þ − 1

ϰc
lnð1þ ϰhξ

0
−=σÞ. These

choices lead to the relation

ξþ ¼ ξ− þ 1

ϰh
lnðϰhξ−Þ −

1

ϰc
ln

�
1þ ϰhξ−

σ

�
; ð38Þ

where σ ¼ ϰhðΔc − ΔhÞ. The modes that give rise to the
Hawking radiation, travel out from the region very close to
the horizon and for them ϰhξ− ≪ 1. Consequently for these
modes, the relation (38) can be approximated as

ξþ ≈
1

ϰh
lnðϰhξ−Þ: ð39Þ

We note from Eq. (39) that the full domain of the coordinate
ξþ is ð−∞;∞Þ whereas it is ð0;∞Þ for ξ−; i.e., the domains
are the same as implied by Eq. (38). However, as mentioned
earlier, we shall restrict ourselves within a finite fiducial box
during the intermediate steps in our analysis.

B. Evaluation of coefficient functions F0ð�k;κÞ
From the Eqs. (30) and (31), we observe that the

consistency condition and the Hamiltonian density both
require the expression of F0ðk; κÞ and for nonextremal Kerr
black hole it can be written as

F0ð�k; κÞ ¼
Z

dξ−ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p ðϰhξ−Þ−1e�ikξ−þiðκ=ϰhÞ lnðϰhξ−Þ:

ð40Þ

The integrand being oscillatory in nature, the coefficient
function F0ðk; κÞ (40) is formally divergent. In order to
regulate this integral, we introduce the standard ‘iδ’
regulator, with small δ > 0, as follows

Fδ
0ð�k;κÞ ¼

Z
dξ−ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p ðϰhξ−Þ−1e−ðδ∓iÞkξ−eðδþiκ=ϰhÞ lnðϰhξ−Þ:

ð41Þ

In the limit δ → 0, the regulated expression Fδ
0ð�k; κÞ

reduces to F0ð�k; κÞ. We may mention that the regulari-
zation scheme employed in [6] differs slightly from the one
used here. By introducing variables b� ¼ ðδ ∓ iÞk=ϰh,

b0 ¼ ðδþ iκ=ϰhÞ and ξ ¼ ðb�ϰhξ−Þ, we can express
regulated coefficient function as

Fδ
0ð�k;κÞ¼ b−b0�

ϰh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p
Z

dξe−ξξb0−1¼ b−b0� Γðb0Þ
ϰh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p ; ð42Þ

where Γðb0Þ is the gamma function. Given the fiducial box
has a finite volume, we have added two boundary terms

ΔIL ¼ R ξL

0 dξe−ξξb0−1 and ΔIR ¼ R∞
ξR
dξe−ξξb0−1 to make

the gamma function complete. Both of these terms vanish
when one removes the volume regulators by taking the limit
ξL ≡ ðb�ϰhξL−Þ → 0 and ξR ≡ ðb�ϰhξR−Þ → ∞. We note a
useful property

Fδ
0ð−k; κÞ ¼ eðπ−2δÞκ=ϰh−iδπFδ

0ðk; κÞ; ð43Þ

where we have used ðδ� iÞ ¼ e�iðπ=2−δÞ þOðδ2Þ.
Equation (43) shows that these coefficient functions satisfy
a relation analogous to the Bogoliubov coefficients [1] for
nonextremal Kerr black hole.

C. Consistency condition

Equation (42) together with the relation k ≔ ks ¼
ð2πs=V−Þ leads

SδþðκÞ ¼
κjΓðb0Þj2e−ðπ−2δÞκ=ϰh

ϰ2−2δh ð2πÞ1þ2δ

�
ζð1þ 2δÞ
V−2δ
− Vþ

�
; ð44Þ

where ζð1þ 2δÞ ¼ P∞
s¼1 s

−ð1þ2δÞ is the Riemann zeta
function. Furthermore, Eq. (43) implies that Sδ

−ðκÞ ¼
eð2π−4δÞκ=ϰhSδþðκÞ. Given ζð1Þ is divergent, it is clear that
in order to keep the term Sδ

� finite one needs to remove
volume regulators ξL− and ξR− along with the integral
regulator δ. To find the required dependency among the
regulators, we use the regulated expression (42) such that
the consistency condition (30) becomes

sinhððπ − 2δÞκ=ϰhÞ
πðκ=ϰhÞ−1jΓðb0Þj−2

¼ ðϰhVþÞð2π=ϰhV−Þ2δ
ζð1þ 2δÞ : ð45Þ

Using gamma function identity ΓðzÞΓð1 − zÞ ¼ π= sin πz,
zeta function identity limδ→0½δζð1þ δÞ� ¼ 1, and Eq. (39),
one can show that the consistency condition demands
ϰhξ

L
− ∼ e−1=2δ; i.e., the volume regulator ξL− and integral

regulator δ should be varied together. Once this limit is
taken, the other volume regulator ξR− drops off from the
expression of SδþðκÞ.

D. Number density of Hawking quanta

Therefore, the expectation value of the number density
operator (34) for a nonextremal Kerr black hole becomes
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Nκ ¼ lim
δ→0

SδþðκÞ ¼
1

e2πκ=ϰh − 1
: ð46Þ

Thewave number κ in Eq. (46) corresponds to the redefined
field φlm. Therefore, following the relation (13) together
with ω̃ ¼ κ > 0, the number density of Hawking quanta of
frequency ω corresponding to the physical field mode Φlm
becomes

Nω ¼ 1

e2πðω−mΩhÞ=ϰh − 1
; ð47Þ

which represents a blackbody distribution at the Hawking
temperature TH ≡ ϰh=ð2πkBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − 4a2

p
=ð4πkBrsrhÞ.

Clearly, the Hawking temperature for nonextremal Kerr
black hole [45–48] depends both on its mass M and the
angular momentum parameter a. We may note that due to
the approximations that we have made for analytical
computations, the grey-body factor is trivial in Eq. (47).

V. EXTREMAL KERR BLACK HOLES

We note that in the extremal limit a → 1
2
rs, the Hawking

temperature vanishes for a nonextremal Kerr black hole.
However, in this limit the expression of the tortoise
coordinate (35) becomes singular. Given the tortoise
coordinate is crucial in deriving the Hawking effect in
Kerr spacetime [3,5,49,50], one is naturally led to ask
whether this limit can be taken reliably. This provides a
strong motivation to study extremal Kerr black hole
independently in its own right. Using the definition (5)
and a suitable choice of integration constant, the expression
of the tortoise coordinate for the extremal Kerr black hole,
i.e., with a ¼ rs=2, becomes

r⋆ ¼ rþ rs ln

�
2r − rs

rs

�
−

r2s
2r − rs

; ð48Þ

which differs qualitatively compared to the expression (35)
for nonextremal black hole.

A. Relation between spatial coordinates ξ − and ξ +
In order to establish the relation between spatial coor-

dinates ξ− and ξþ for extremal Kerr black hole, as earlier
we consider a pivotal point ξ0− on a τ− ¼ constant hyper-
surface. A spacelike interval on this hypersurface can be
expressed as

ðξ− − ξ0−Þjτ− ¼ 2ðr0⋆ − r⋆Þjτ− ¼ 2ðr0 − rÞjτ− ≡ Δ; ð49Þ

where r0 corresponds to ξ0−. On the other hand, using
Eq. (48), a spacelike interval on a τþ ¼ constant hyper-
surface, as seen by the observer Oþ, can be expressed as

ðξþ − ξ0þÞjτþ ¼ Δþ 2rs ln

�
1þ Δ

Δ0

�
−

2r2s
Δþ Δ0

þ 2r2s
Δ0

;

ð50Þ

where Δ0 ≡ 2ðr0 − rs=2Þjτþ and again we have identified
the interval 2ðr − r0Þjτþ as Δ using geometric optics
approximation. By choosing ξ0− ¼ Δ0 and ξ0þ ¼ ξ0−þ
2rs lnðξ0−=

ffiffiffi
2

p
rsÞ − 2r2s=ξ0−, we can express the relation as

ξþ ¼ ξ− þ 2rs ln

�
ξ−ffiffiffi
2

p
rs

�
−
2r2s
ξ−

: ð51Þ

Herewenote that ξþ ≈ ξ− in the regionwhere ðξ−=
ffiffiffi
2

p
rsÞ≫1

whereas ξþ≈−2r2s=ξ− for the regionwhere ðξ−=
ffiffiffi
2

p
rsÞ ≪ 1.

Additionally, at ðξ−=
ffiffiffi
2

p
rsÞ ¼ 1, the logarithmic term

ln ðξ−=
ffiffiffi
2

p
rsÞ vanishes. Therefore, we may approximate

the relation (51) as

ξþ ≈ ξ− −
2r2s
ξ−

: ð52Þ

This approximation allows one to perform simpler analytical
computations of the coefficient functions (28). We may also
note fromEq. (51) that the full domain of the coordinate ξþ is
ð−∞;∞Þ, whereas it is ð0;∞Þ for ξ− as also implied by
Eq. (52). However, as mentioned earlier, we shall restrict
ourselves within a finite fiducial box during the intermedi-
ate steps.

B. Evaluation of coefficient functions F0ð�k;κÞ
By using the relation (52), the coefficient functions

F0ð�k; κÞ (28) for an extremal Kerr black hole can be
expressed as

F0ð�k;κÞ¼
Z

dξ−ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p
�
1þ2r2s

ξ2−

�
eiðκ�kÞξ−−i2r2sκ=ξ− : ð53Þ

Similar to the case of nonextremal Kerr black hole, the
integral (53) is also formally divergent. Therefore, we
introduce the standard ‘iδ’ regulation scheme with small
δ > 0, as follows

Fδ
0ð�k; κÞ ¼

Z
dξ−ffiffiffiffiffiffiffiffiffiffiffiffiffi
V−Vþ

p
�
1þ 2r2s

ξ2−

�
e−ðδþiÞ2r2sκ=ξ−

× e−½δjκ�kj−iðκ�kÞ�ξ− : ð54Þ

It is easy to check that in the limit δ → 0, the regu-
lated expression Fδ

0ð�k; κÞ reduces to F0ð�k; κÞ. By
introducing the variables b� ¼ ffiffiffi

2
p

rs½δjκ � kj − iðκ � kÞ�,
b0 ¼

ffiffiffi
2

p
rsκðδþ iÞ and ξ ¼ ðξ−=

ffiffiffi
2

p
rsÞ, we can express the

regulated coefficient function as
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Fδ
0ð�k; κÞ ¼

ffiffiffi
2

p
rsffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

Z
ξR

ξL
dξð1þ ξ−2Þe−b�ξ−b0=ξ; ð55Þ

where ξL ¼ ðξL−=
ffiffiffi
2

p
rsÞ and ξR ¼ ðξR−=

ffiffiffi
2

p
rsÞ are the lower

and upper limits of the integration associated with the
fiducial box. We note that there is a possibility of
ðκ − kÞ ¼ 0, i.e., b− ¼ 0, which changes the characteristic
nature of the integral. Therefore, we evaluate this case
separately.

1. Evaluation of Fδ
0ð− κ;κÞ

For the case when b− ¼ 0, one can evaluate the integral
by defining an auxiliary variable t ¼ b0=ξ as

Fδ
0ð−κ; κÞ ¼

ffiffiffi
2

p
rsffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

�
ξR þ b−10
eb0=ξ

R −
ξL þ b−10
eb0=ξ

L

− b0Γ
�
0;
b0
ξR

�
þ b0Γ

�
0;
b0
ξL

��
; ð56Þ

where Γð0; xÞ ¼ R∞
x dtt−1e−t is the incomplete gamma

function. For convenience, we define the parameters
γ ≡ ðV−=VþÞ and m⋆ ≡ ðκV−=2πÞ ¼ ðjb0jV−=2π

ffiffiffi
2

p
rsÞ.

Using these parameters for sufficiently small ξL and
sufficiently large ξR, one can express Eq. (56) as

jFδ
0ð−κ; κÞj2 ¼ γ

�
1þO

�
lnðm⋆Þ
m⋆

��
: ð57Þ

Clearly, when one removes the volume regulator by taking
the limit m⋆ → ∞, the coefficient function jFδ

0ð−κ; κÞj2
reduces to γ.

2. Evaluation of Fδ
0ð�k;κÞ with ðκ� kÞ ≠ 0

For the case when b� ≠ 0, we may define an auxiliary
variable t ¼ b�ξ together with z2� ¼ 4b0b� to evaluate
the coefficient functions Fδ

0ð�k; κÞ (55) in terms of the
modified Bessel functions of second kind whose integral
representations are given by KνðzÞ ¼ 2−1ðz=2Þν ×R∞
0 dtt−ðνþ1Þe−ðtþz2=4tÞ [51,52]. By using the identity
KνðzÞ ¼ K−νðzÞ for ν ¼ 1, we can express regulated
coefficient functions as

Fδ
0ð�k; κÞ ¼

ffiffiffi
2

p
rsffiffiffiffiffiffiffiffiffiffiffiffiffi

V−Vþ
p

�
b0 þ b�
b0b�

�
½z�K1ðz�Þ�; ð58Þ

where two boundary terms ΔILð∼e−b0=ξLÞ and
ΔIRð∼e−b�ξRÞ are added to complete the limits of integra-
tion. In the limits ξL → 0 and ξR → ∞, both these terms
vanish. We may note here that the asymptotic expressions
of the modified Bessel function are given as K1ðzÞ ≈ 1

z for
z ≪ 1 and K1ðzÞ ∼

ffiffiffiffi
π
2z

p
e−z for z ≫ 1 [53].

C. Consistency condition

In order to satisfy the consistency condition, we demand
that the regulated coefficient functions Fδ

0ð�k; κÞ satisfy
Eq. (30). For the case when b� ≠ 0, the regulated expres-
sions of the summations can be written as

Sδ
�ðκÞ ¼

1

κV−Vþ

X
k>0

k
ðκ � kÞ2 jz�K1ðz�Þj2: ð59Þ

In order to carry out the summations, as in Eq. (30), we may
recall that k ≔ ks ¼ 2πs=V− and κ ≔ κs0 ¼ 2πs0=Vþ
where s and s0 are positive definite integers. Therefore,
we can express the lhs of Eq. (30) for extremal Kerr black
hole as

Sδ
−ðκÞ−SδþðκÞ¼ jFδ

0ð−κ;κÞj2þ
γζð2Þ
2π2

þ γSð1;∞Þ
4π2m⋆

: ð60Þ

Here the auxiliary summation function Sðs0; s1Þ is intro-
duced as

Sðs0; s1Þ ¼
Xs1
s¼s0

�
2m⋆
s2

fjz̃K1ðz̃Þj2 − 1g

þ ðs −m⋆Þ
s2

fjz̃K1ðz̃Þj2 − jz̃K1ðjz̃jÞj2g
�
; ð61Þ

where z̃≡ z̃ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jb0j2s=m⋆

p
ðδþ iÞ. In order to arrive

at Eq. (60), we have included the possibility of ðκ − kÞ ¼ 0
which in turn demands that γ must be a ratio of two positive
definite integers; i.e., γ must be a rational number.
Given the function K1ðzÞ satisfies limz→0jzK1ðzÞj ¼ 1,

limz→∞jzK1ðzÞj ¼ 0 and it has no other pole, there exist
upper bounds d1 and d2 such that jz̃K1ðz̃Þj2 ≤ d1 and
jz̃K1ðjz̃jÞj2 ≤ d2 for all allowed values of z̃. For a given
value of jb0j the removal of volume regulator V− → ∞ is
achieved by taking the limit m⋆ → ∞. In such a limit, we
may choose two numbers λ1 and λ2 such that jz̃ðλ1m⋆Þj ¼
2jb0j

ffiffiffiffiffi
λ1

p
≪ 1 and jz̃ðλ2m⋆Þj ≫ 1. We note that for a

given jb0j and sufficiently large m⋆, both λ1m⋆ ≫ 1
and λ2m⋆ ≫ 1. Consequently, we may express the sum-
mation as

Sð1;∞Þ ¼ Sðλ1m⋆; λ2m⋆Þ þ Sðλ2m⋆ þ 1;∞Þ: ð62Þ

where we have used Sð1; λ1m⋆ − 1Þ ¼ 0 as the correspond-
ing jz̃j ≪ 1. Given the form of Sðs0; s1Þ, we can approxi-
mate the summation by an integration for large s.
Thereafter, we can establish an inequality

Sðλ1m⋆; λ2m⋆Þ ≤ ðd1 þ d2Þ
�
ln

�
λ2
λ1

�
þ λ2 − λ1

λ2λ1

�
: ð63Þ

Similarly, the asymptotic form of K1ðz̃Þ leads to
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Sðλ2m⋆ þ 1;∞Þ ¼ π

2δ
e−4jb0jδ

ffiffiffi
λ2

p
½1þOðδÞ�: ð64Þ

We note the critical role that is played by the integral
regulator δ in Eq. (64). In particular, in the absence of the
integral regulator δ the summation would have diverged. In
the limit m⋆ → ∞., i.e., when the volume regulators are
removed for a fixed δ, we can express Eq. (60) as

S−ðκÞ − SþðκÞ ¼ γ

�
1þ 1

2π2
ζð2Þ

�
: ð65Þ

Using the value of the Riemann zeta function ζð2Þ ¼ 1
6
π2,

we conclude that in order to satisfy the required consistency
condition one must demand γ ¼ ð12=13Þ which is indeed a
rational number as required. Together with Eq. (52) we
may express the consistency condition also as

�
ξL−ffiffiffi
2

p
rs

�
¼ 12

� ffiffiffi
2

p
rs

ξR−

�
: ð66Þ

Clearly, the requirement that Poisson brackets of both
observers be simultaneously satisfied also for extremal Kerr
black holes, demands that the volume regulators ξL− and ξR−
are not to be treated independently but should be varied
together as given in Eq. (66). We may also point out that
when volume regulators are removed then the integral
regulator δ fully drops off from the expression.

D. On the inconsistency of Bogoliubov coefficients

We would like to note that, as reported in [3–5],
the Bogoliubov coefficients for extremal black holes
fail to satisfy the analogous consistency conditionR
dω0dω00ðαωω0α�ω00ω0 − βωω0β�ω00ω0 Þ ¼ 1. The key reason

behind this failure of the Bogoliubov coefficients lies in
the improper approximation made in the relation between
the null coordinates, given by u ¼ C=ðv0 − vÞ [5]. This
relation is used in evaluation of the Bogoliubov coefficients
and is analogous to Eq. (52) between the near-null
coordinates here. It may be emphasized that one would
encounter the same failure in satisfying the consistency
condition even here, had one used the approximation ξþ ≈
−ð2r2s=ξ−Þ instead of Eq. (52). First, this approximation
would fail to fully cover the domain of ξþ, given the
domain of ξ− is ð0;∞Þ. This is unlike the analogous
approximation for nonextremal Kerr black hole ξþ ≈
lnðϰhξ−Þ=ϰh (39) which covers the full domain of ξþ.
Second, this approximation would have lead the expression
b� to be∼ð�kÞ rather than∼ðκ � kÞ. Due to this one would
have missed the possibility of ðκ − kÞ ¼ 0 which directly
gives rise to the leading term jFδ

0ð−κ; κÞj2 in the consis-
tency condition (60). Furthermore, even the term ζð2Þ in
the same consistency condition originates because
jb−j2 ≠ jbþj2. Without these terms being present even here
one would have failed to satisfy the required consistency

condition. We may add that for nonextremal Kerr black
hole even if one considers the relation to be ξþ ≈ ξ− þ
lnðϰhξ−Þ=ϰh, the conclusion there remains unaffected.

E. Number density of Hawking quanta

We have shown that the expectation value of the number
density operator corresponding to the Hawking quanta in
Fock quantization can be expressed in terms of SþðκÞ (34).
For convenience, we define the following auxiliary
summation

Sþðs0; s1Þ ¼
Xs1
s¼s0

ðs −m⋆Þ
s2

jz̃K1ðjz̃jÞj2: ð67Þ

The regulated expression of the summation SþðκÞ can then
be written as

SδþðκÞ ¼
γ

4π2m⋆
½Sþðm⋆; λ2m⋆Þ þ Sþðλ2m⋆ þ 1;∞Þ�:

ð68Þ

As earlier, for large m⋆ we can approximate the summation
by an integration to establish an inequality as

Sþðm⋆; λ2m⋆Þ ≤ d2

�
lnðλ2Þ − 1þ 1

λ2

�
: ð69Þ

Similarly, by using the asymptotic form of K1ðz̃Þ, we can
evaluate

Sþðλ2m⋆ þ 1;∞Þ ¼ π

2
e−4jb0j

ffiffiffi
λ2

p �
1þO

�
1

λ2

��
: ð70Þ

We note from Eq. (69) and (70) that their leading terms are
independent of m⋆. Therefore, in the limit m⋆ → ∞,
Eq. (68) implies that SδþðκÞ ≤ 0. On the other hand, by
definition SδþðκÞ ≥ 0 and, hence,

lim
m⋆→∞

SδþðκÞ ¼ 0: ð71Þ

We note that when volume regulators are removed then the
integral regulator δ also drops off fully. Therefore, the
expectation value of the number density operator (34)
associated with the Hawking quanta of physical frequency
ω for extremal Kerr black hole is given by

Nω̃ ¼ Nω−mΩh
¼ hN̂þ

κ i ¼ 0; ð72Þ

where ω̃ ¼ κ > 0. In other words, the extremal Kerr black
hole does not emit Hawking radiation for the physical
frequencies ω > mΩh which excludes super-radiant fre-
quency interval. We may mention here that the vanishing of
Hawking temperature for extremal black holes can also be
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understood [49,54–59] using tunneling formalism [60] and
Euclidean path integral formalism [61].

VI. DISCUSSION

In summary, we have shown here that one can perform
an exact derivation of the Hawking effect using the
Hamiltonian-based canonical formulation for both nonex-
tremal and extremal Kerr black holes. In order to do so, we
have extended the scope of the so-called near-null coor-
dinates which were recently introduced for canonical
derivation of the Hawking effect in Schwarzschild space-
time [6]. In the context of extremal Kerr black holes, it is
usually believed that extremal black holes do not emit
Hawking radiation as one would conclude by taking the
extremal limits of nonextremal black holes. However,
whether one can make such a conclusion starting from
an extremal black hole is debated in the literature [2–5].
These debates stem from the fact that the associated
Bogoliubov coefficients that relate the ingoing and the
outgoing field modes do not satisfy the required consis-
tency condition. Therefore, these Bogoliubov coefficients
are not considered to be reliable for extremal black holes.
In the canonical formulation, the analogous consistency
condition arises from the requirement of the Poisson
bracket of field modes and their conjugate momenta be

simultaneously satisfied for different observers. Here, we
have shown that in the canonical derivation the required
consistency condition is satisfied also for extremal Kerr
black holes. We have also pointed out the reason behind the
reported failure of Bogoliubov coefficients to satisfy the
required condition. Further, we have shown that the
expectation value of the associated number density operator
vanishes for the extremal Kerr black holes. This aspect
reaffirms that the extremal Kerr black holes do not emit
Hawking radiation.
The canonical derivation of the Hawking effect for Kerr

black holes as presented here provides an initial stage for
the study of the Hawking effect in the context of the so-
called polymer quantization [7,8], especially as applied in
[12–15]. Additionally, the method as developed for Kerr
spacetime can be generalized for other similar spacetimes
such as Reissner-Nordström and Kerr-Newman [41,43,
62–71] in a straightforward manner.
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