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When probed with conformally invariant matter fields, light cones in Minkowski spacetime satisfy
thermodynamical relations which are the analog of those satisfied by stationary black holes coupled to
standard matter fields. These properties stem from the fact that light cones are conformal Killing horizons
stationary with respect to observers following the radial conformal Killing fields in flat spacetime. The four
laws of light cone thermodynamics relate notions such as (conformal) temperature, (conformal) surface
gravity, (conformal) energy, and a conformally invariant notion related to area change. These quantities do
not admit a direct physical interpretation in flat spacetime. However, they become the usual thermody-
namical quantities when Minkowski is mapped, via a Weyl transformation, to a target spacetime where the
conformal Killing field becomes a proper Killing field. In this paper we study the properties of such
spacetimes. The simplest realization turns out to be the Bertotti-Robinson solution, which is known to
encode the near horizon geometry of near extremal and extremal charged black holes. The analogy between
light cones in flat space and black hole horizons is therefore strengthened. The construction works in
arbitrary dimensions; in two dimensions one recovers the Jackiv-Teitelboim black hole of dilaton gravity.
Other interesting realizations are also presented.
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I. INTRODUCTION

The ingoing and outgoing light surfaces emanating from
a sphere of radius rH at time t in Minkowski spacetime is a
bifurcate conformal Killing horizon [1]. The associated
conformal Killing vector field becomes null on the light
cones of the two events where the previous null surfaces
converge. These null surfaces separate the whole of
Minkowski spacetime in regions where the conformal
Killing field ξa is either timelike or spacelike. These
regions are in formal correspondence with the different
regions defined by the outer and inner horizons of non-
extremal Reissner-Nordstrom black holes. When rH → 0
some regions collapse and the causal features of the
conformal Killing field now correspond to those of
extremal Reissner-Nordstrom black holes (see Fig. 1).
This resemblance is actually more profound than what it

might seem at first sight. It was shown in [2], that the
previous light cone surfaces satisfy thermodynamical
properties that are analogous to those of black holes when
tested or perturbed with conformally invariant matter. Here
we will show that Minkowski spacetime can be mapped via
a Weyl transformation to target spacetimes where the
conformal Killing field becomes a proper Killing field,

and the associated light cones turn into Killing horizons.
There is a certain freedom in the choice of the conformal
map which leads to different geometric features of the
Killing horizon in the target spacetime. In the most natural
case we will show that the target spacetime represents the
near horizon near extremal approximation of Reissner-
Nordstrom black holes, shedding light on the profound
resemblance between Minkowski light cones and black
holes. Other natural realizations of such target spacetimes
are studied. Because the thermodynamical notions entering
the analysis of [2] are all conformally invariant quantities,
the mapping of the light cones to Killing horizons via a
Weyl transformation clarifies, in this way, their intrinsic
physical meaning.
In order to introduce the present work let us first briefly

and partially review the analysis of [2]. Minkowski
Conformal Killing Fields (MCKFs) define conformal
bifurcating Killing horizons. They carry a conformally
invariant [3] notion of surface gravity κSG defined by the
following equation

∇aðξ · ξÞ ¼̂ − 2κSGξa; ð1Þ

where ¼̂ denotes an equality that holds at the conformal
Killing horizon. All four laws of black hole thermo-
dynamics have a suitable version for conformal Killing
horizons defined by MCKFs: The surface gravity κSG is
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constant on the horizon and it is associated to a math-
ematical notion of temperature (conformal temperature)

T ¼ κSG
2π

¼ constant: ð2Þ

The relation between κSG and conformal temperature can
be established in different ways. In [2] this was done via the
standard Bogoliubov transformation relating inertial and
suitable asymptotic conformal observers in flat spacetime,
and also recovered via a Wick rotation to Euclidean time
(all standard in quantum field theory). We will revisit the
second procedure in a very general fashion in Sec. II C.
Under linear perturbations induced by conformally

invariant matter fields the current Ja ¼ δTabξ
b is con-

served, namely

∇aJa ¼ ∇aðδTabξ
bÞ ¼ 0: ð3Þ

The previous equation can be used to establish a suitable
version of the first law for MCKF

δM ¼ κSG
8π

δAþ δM∞; ð4Þ

where

δM ¼
Z
Σ
JadΣa ð5Þ

is the conformally invariant mass of the perturbation
evaluated at an initial Cauchy surface Σ, δM∞ is the
conformal mass flow at Iþ, and δA is a conformally
invariant notion defined as

δA≡
Z
Hþ

κ

κSG
δθdS2dv: ð6Þ

Here δθ is the first order perturbation of the expansion of
the generator of the horizon, v is the advanced Minkowski
time (a natural affine parameter for the generators), dS2 the
flat background area measure of the spherical cross
section v ¼ constant of the unperturbed light cone, and
κ is defined by

ξa∇aξ
b ¼̂ κξb: ð7Þ

Unlike κSG, the function κ is not constant and is not
conformally invariant. For a proof of the conformal
invariance of the quantities involved in the first law (4)
see [2].
Provided that δTab satisfies the weak energy condition

(equivalent to the strong energy condition for conformally
invariant matter), the second law holds, namely

δA ≥ 0: ð8Þ

Finally, in the “extremal” limit rH → 0 the temperature
(2) goes to zero as well as the area of the bifurcate sphere
A ¼ 4πr2H. We can interpret this as a form of third law of
thermodynamics. This, plus equations (2), (4), and (8), are
the analog of the laws of black hole mechanics for the light
cones in flat spacetimes that define the conformal Killing
horizons associated to MCKFs [2].
The previous formal analogy between the properties of

MCKFs and thermodynamics of black holes is interesting
because it captures some basic mathematical features on a
background with trivial gravitational field. However, the
reserve side of it is that the various conformal invariant
notions entering the laws have no clear physical meaning:
δM is not an energy measured by any real physical
observer, the conformal temperature is not the one detected
by any physical thermometer (for more discussion see [2]),
and δA is related to area change [due to the presence of the
perturbation of the expansion δθ in Eq. (6)] but, as it stands,
does not correspond to any direct geometric notion of area
change of the bifurcating sphere. This is so due to the fact

FIG. 1. The Penrose diagram of the Reissner-Nordstrom black
hole on the left compared with the causal structure of the radial
CKF in Minkowski spacetime on the right, in both the non-
extremal Δ > 0 and extremal Δ ¼ 0 case. The letters S and T
designate the regions where the Killing or conformal Killing
fields are spacelike or timelike respectively. The light cone
emanating from the points O� (and O in the extremal case)
are the hypersurface where the MCKF is null. This figure is taken
from [2].
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that κSG=κ ≠ 1 for conformal Killing fields in general and
the MCKFs in particular.
Nevertheless, the previous thermodynamical analogy can

be more clearly understood if one performs a conformal
transformation sending ðR4; ηabÞ to a target spacetime
ðM; gabÞ with gab ¼ ω2ηab so that ξa becomes a genuine
Killing field. The conformal bifurcate horizons turn con-
sequently into bifurcate Killing horizons in the target
spacetime. If δTab comes from a conformally invariant
matter model then δT̃ab ¼ ω−2δTab and the conservation of
the associated current J̃a, equation (3) with tilded quantities,
holds in the new spacetime [4]. Equations (2), (4), and (8)
remain true in the target spacetime with identical numerical
values for a given perturbation. However, all the quantities
involved acquire now the standard physical and geometric
meaning that they have in the context of black holes.
The question we want to explore here is what are the

generic global features of the spacetimes obtained by the
previous procedure. Are there cases where these spacetimes
represent black holes? What are they in the other cases?
There is clearly an infinite number of possibilities. Indeed,

ifω1 defines aWeyl transformationwith the previous desired
properties, then ω2 defines a new suitable Weyl transforma-
tion as long as ξðω2=ω1Þ ¼ 0. We will see that the generic
global features can be made apparent in a small number of
representative cases. The simplest case corresponds to ω ∝
1=r2 (for r a Minkowski radial coordinate) and it reproduces
the Bertotti-Robinson solution [5,6] of Einstein-Maxwell
theory—see Sec. III B. Such solution has been known to
encode the near horizon geometry of close-to-extremal and
extremal Reissner-Nordstrom black holes. Another repre-
sentative example is the de Sitter realization where the
bifurcating horizons correspond to intersecting cosmological
horizons (there is no black hole in this case)—see Sec. III C.
Weakly asymptotically (Anti)-de Sitter black hole realiza-
tions are also presented—Sec. III D—together with a more
exotic asymptotically flat spacetime with Killing horizons
but no black holes—Sec. III E.
RadialMCKFwith conformal Killing horizons associated

to light cones bifurcating at a sphere generalize to arbitrary
dimensions. As long as thematter perturbing the geometry is
conformally invariant, the generalization of Eqs. (2), (4), and
(8) is alsovalid. TheBertotti-Robinson representation,which
in arbitrary dimensions is given byAdS2 × Sd−2, remains the
simplest one. Ford ¼ 2 the light cone blackhole corresponds
to the Jackiw-Teitelboim solution [7] of dilaton gravity.

II. RADIAL CONFORMAL KILLING FIELDS
IN MINKOWSKI SPACETIME

Consider Minkwoski spacetime in spherical coordinates

ds2M ¼ ημνdxμdxν ¼ −dt2þ dr2þ r2dΩ2

¼ −dvduþ ðv − uÞ2
4

dΩ2 ð9Þ

where dΩ2 is the unit-sphere metric, while v ¼ tþ r and
u ¼ t − r the standard Minkowskian null coordinates. The
conformal group in four dimensional Minkowski spacetime
M4 is isomorphic to the group SOð5; 1Þ. Any generator
defines a conformal Killing field in Minkowski spacetime
(MCKF), namely a vector field ξ along which the metric
ηab changes only by a conformal factor:

Lξηab ¼ ∇aξb þ∇bξa ¼
ψ

2
ηab ð10Þ

with

ψ ¼ ∇aξ
a: ð11Þ

The 15 generators of SOð5; 1Þ are given in Euclidean
coordinates ðt; x; y; zÞ by [8]

Pμ ¼ ∂μ Translations

Lμν ¼ ðxν∂μ − xμ∂νÞ Lorentz transformations

D ¼ xμ∂μ Dilations

Kμ ¼ ð2xμxν∂ν − x · x∂μÞ
Special conformal transformations; ð12Þ

where f · g≡ fμgμ. Dilations can be written as

D ¼ r∂r þ t∂t ð13Þ
and K0 as

K0 ¼ −2tD − ðr2− t2ÞP0: ð14Þ
Together with P0 ¼ ∂t, those are the only generators that
do not contain angular components. Hence the most
general purely radial MCKF has the form

ξ ¼ −aK0 þ bDþ cP0

¼ ð2atþ bÞDþ ½aðr2− t2Þ þ c�P0; ð15Þ
with a, b, c arbitrary constants. In terms of null Minkowski
coordinates one has [2]

ξμ∂μ ¼ ðav2þ bvþ cÞ∂v þ ðau2þ buþ cÞ∂u; ð16Þ
where v ¼ tþ r, u ¼ t − r. Therefore, radial conformal
Killing fields in flat spacetime are completely characterized
by a single quadratic polynomial.
Radial MCKFs containing a bifurcating conformal

Killing horizon are those conformal Killing fields for
which a ≠ 0. Up to Poincarè transformations, they can
be written as

ξμ
∂
∂xμ ¼

ðv2− r2HÞ
r2O − r2H

∂
∂vþ

ðu2− r2HÞ
r2O − r2H

∂
∂u ð17Þ

where rH and rO are two constants defined as follows.
The first is the radius rH of the sphere at t ¼ 0 where the
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Killing field is zero ξjr¼rH ¼ 0. i.e., the bifurcation sur-
face. The second quantity is the radius rO > rH of a sphere
on the surface t ¼ 0 where the Killing field is normalized,
ξ · ξjr¼rO ¼ −1. For these choices, the norm of ξa is given by

ξ · ξ ¼ −
ðv2− r2HÞðu2− r2HÞ

ðr2O − r2HÞ2
; ð18Þ

which reproduces the causal pattern illustrated in Fig. 2. The
regions where ξ is timelike or spacelike is denoted byT and S
respectivelywith ξ null-like at cones u ¼ �rH and v ¼ �rH.
The scalar ψ defined in (11) is in this case given by

ψ ¼ 4ðuþ vÞ
r2O − r2H

: ð19Þ

There is a subgroup SLð2;RÞ ⊂ SOð5; 1Þ corresponding
to the conformal group restricted to the (r–t)-“plane.” This
subgroup plays a role in the analysis of the relationship with
near extremal black holes and their near horizon geometry
that we will describe in more detail in Sec. III B 2. The
generators are

T0 ¼
1

2

�
rHP0 −

K0

rH

�

T1 ¼
1

2

�
rHP0 þ

K0

rH

�

T2 ¼ D; ð20Þ
satisfying the algebra

½Ta; Tb� ¼ ϵabcη
cdTd: ð21Þ

In terms of these generators the vector field ξa in (17) is
simply

ξ ¼ −
2rH

r2O − r2H
T1: ð22Þ

One can arrange for linear combinations of Ta to vanish
either at (v ¼ rH, u ¼ rH) (which includes the past outer
horizon) or at (v ¼ −rH, u ¼ −rH) (which includes the
future outer horizon).

A. The action of the conformal group and
the Rindler wedge from MCKFs

Rindler horizons are related to our radial MCKF by the
action of an element of the conformal group generated via the
exponentiation of (12). The conformal group maps a radial
MCKF into aMCKF that is not necessarily radial. To see this
in a more precise way let us discuss the action of the various
kinds of generators. The action of the Poincaré subgroup is
very clear: it simply maps the events O� to new events in
Minkowski spacetime in term of which the new spacetime
diagram analogous to the one in Fig. 2 can be constructed
from the light cones emanating from the new O�. It is clear
that the new eventsO� need not remain of the r ¼ 0 axis and
can be transformed to arbitrary events on the flat spacetime.
Pure dilations with parameter λ send a radial MCKF to a
new radial MCKF with rescaled parameters ðrH; rOÞ →
ðλrH; λrOÞ. As expected, the radius of the bifurcate sphere
and the observer sphere get rescaled. Finally, finite special
conformal transformations are characterized by a four vector
bμ. They are diffeomorphisms xμ → x0μ, sending the
Minkowski metric ηab → ωðxÞ2ηab with

ωðxÞ ¼ ð1 − 2b · xþ ðb · bÞðx · xÞÞ: ð23Þ
Their action can be expressed as

xμ

x · x
¼ x0μ

x0 · x0
− bμ: ð24Þ

Therefore, special conformal transformations can be
viewed as the composition of an inversion, followed by
a translation, and a second inversion [8]. Generically, they
deform the radial MCKF into a nonradial one. An espe-
cially interesting situation arises when b0 ¼ 0: The first
inversion sends the bifurcate sphere into a new sphere.
One can choose the translation bμ so that a point on the
sphere is shifted (in the intermediate translation) to the
origin (r ¼ 0). In this case, the second inversion sends that
special point to spacial infinity and the rest of the sphere
to a plane. The domain of dependence of the bifurcate
sphere is mapped to the Rindler wedge1 and the radial

FIG. 2. The most general radial conformal Killing field ξ in
Minkowski spacetime divides the latter in six regions. The field ξ
is spacelike in the shaded regions, timelike elsewhere. It becomes
null on the light cones separating the regions. It vanishes at the
tips of the ligthcones and at their intersection.

1The causal complement (the outside of the diamond) is
mapped to the complementary Rindler wedge but it does not
cover it entirely, as simple topological considerations show (the
outside is not simply connected in Minkowski spacetime). In
order to get the entire complementary Rindler wedge one needs to
add points that are beyond infinities I� in, for instance, the
conformal compactification on the Einstein universe. There, the
causal complement of the central diamond is itself a (now simply
connected) diamond.
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MCKFbecome the boost Killing vector field ofMinkowski
spacetime [9,10]. All this implies that the thermodynamical
laws of Rindler horizons for conformal matter [11] are a
special case of the laws derived in [2].

B. From a radial MCKF to a Killing field on
a target spacetime

We just discussed how the radial MCKF that is timelike
inside the “diamond” (domain of dependence of the sphere
of radius rH) can be mapped to the boost Killing field in
Minkowski spacetime that defines the orbits of Rindler
observers with their associated Rindler Killing horizon (the
boundary of the Rindler wedge). These are the only Killing
horizons in flat spacetime. In order to obtain more general
Killing horizons with the causal features emphasized in
Fig. 2, one has to leave the realm of flat spacetimes by
introducing more general Weyl transformations preserving
the causal structure but not necessarily the flatness con-
dition present in the conformal group. Here we investigate
the possibility of turning the radial MCKF into a Killing
field by mapping Minkowski spacetime to a target curved
geometry via general Weyl transformations.
More precisely, consider any spacetime conformally

related to Minkowski

gab ¼ ω2ηab: ð25Þ

In such a spacetime, the conformal Killing field ξ remains
so. Indeed

Lξgab ¼ Lξðω2ηabÞ ¼
�
ψ

2
þ ξa∂aðlogω2Þ

�
gab: ð26Þ

In particular, there exist conformal transformations such
that ξ becomes a proper Killing field. From the above
equation, it follows that those are given by conformal
factors satisfying

ψ

2
þ ξa∂aðlogω2Þ ¼ 0: ð27Þ

Before solving this equation it is convenient to introduce
new coordinates given by

τ ¼ ðr2O − r2HÞ
4rH

log
ðu − rHÞðv − rHÞ
ðuþ rHÞðvþ rHÞ

x ¼ 2ðr2H − uvÞ
v − u

: ð28Þ

The Minkowski line element ds2M becomes

ds2M ¼ r2

x20

�
−
x2− x2BH

x20
dτ2þ x20

x2− x2BH
dx2þ x20dΩ2

�
;

ð29Þ

where

xBH ≡ 2rH; x20 ≡ r2O − r2H; ð30Þ

and where r is now a function of τ and x given by

r ¼ x2BH
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2− x2BH

p
cosh ðxBHx2

0

τÞ þ x

x2BH cosh2ðxBHx2
0

τÞ − x2sinh2ðxBHx2
0

τÞ : ð31Þ

In these coordinates, our radial MCKF reduces to

ξμ
∂
∂xμ ¼

∂
∂τ ; ð32Þ

and Eq. (27) becomes simply

∂
∂τ ðlogω

2Þ ¼ −
ψ

2
: ð33Þ

Using the explicit value of ψ given on (19), the solution is

logðω2Þ ¼ log

�
x20
r2

�
þ Fðx; θ;φÞ; ð34Þ

where Fðx; θ;ϕÞ is a general dimensionless function of
ðx; θ;ϕÞ and the Minkowski radial coordinate r is the
function of τ and x given in (31). Redefining for conven-
ience F≡ − logP2, we find

ω2 ¼ x20
r2

1

P2ðx; θ;φÞ : ð35Þ

We could have directly guessed the answer from the form
of the metric (29) as ξa is clearly a Killing field of the factor
between brackets. Notice that inspection of (29) leads to the
conclusion that the outer and inner light cone horizons are
located respectively at x� ¼ �xBH. Asymptotic null infin-
ities J� are located at finite x, while spacelike infinity i0 is
at x → þ∞. Finally, the origin u ¼ v corresponds to x →
signðr2H − t2Þ∞.
The functionP2ðx; θ;φÞ labels the members of an infinite

family of Weyl transformations of Minkowski spacetime
such that the target spacetime admits a genuine Killing field
corresponding to radial MCKF (17). The metric of such
spacetimes is given by

ds2¼ω2ds2M

¼ 1

P2ðx;θ;φÞ
�
−
x2− x2BH

x20
dτ2þ x20

x2− x2BH
dx2þ x20dΩ2

�
:

ð36Þ

Clearly, any additional coordinates transformation that
does not depend on τ sends the metric in an equivalent
τ-independent form. In Appendix some interesting
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examples are presented. In particular, there we show the
precise relation between the above coordinates and those
used in [2].

C. The Hartle-Hawking temperature

As we mentioned in the Introduction, there is a con-
formally invariant notion of surface gravity (1) and con-
formally invariant temperature (2) associated to the light
cone conformal Killing horizons that we are studying here.
The simplest way to make such structure apparent is by
introducing a Wick rotation in terms of the conformal
Killing parameter τ defined in the previous section.
Explicitly, the standard Wick rotation τ → −iτ̄ turns the
Minkowski metric into the Euclidean flat metric

ds2E¼
r2ð−iτ̄;xÞ

x20

�
x2−x2BH

x20
dτ̄2þ x20

x2−x2BH
dx2þx20dΩ2

�
:

ð37Þ
Notice that under such transformation theMinkowski radial
coordinate rð−iτ̄; xÞ remains real—see (31)—and therefore
(37) is a real Euclidean metric [2]. The same conclusion
holds for any of the conformally related metrics (36) which
under the Wick rotation become

ds2¼ 1

P2ðx;θ;φÞ
�
x2−x2BH

x20
dτ̄2þ x20

x2−x2BH
dx2þx20dΩ2

�
:

ð38Þ
The apparent singularity at x ¼ xBH for the previous
metrics can be removed in the usual way by introducing
a new set of coordinates

ρ2 ¼ x2BH
x20

ðx2− x2BHÞ

φ ¼ xBH
x20

τ; ð39Þ

in terms of which the family of metrics (38) becomes

ds2 ¼ 1

P2

�
ρ2dφ2þ x20

x20 þ ρ2
dρ2þ x20dΩ2

�
: ð40Þ

Assuming that P is nonvanishing at ρ ¼ 0, the previous
metrics would have a conical singularity at x ¼ þxBH
unless 0 ≤ φ ≤ 2π. Therefore, the quantum state of fields
compatible with the topology of the Euclidean continuation
must be a thermal state with temperature

THH ¼ 1

2π

xBH
x20

¼ rH
πðr2O − r2HÞ

ð41Þ

which is the Hartle-Hawking temperature found in [2].
In Fig. 3 the Euclidean continuation of the radial MCKF is
represented and shows its clear thermal features encoded in

the closed nature of its orbits. This temperature—which we
termed conformal temperature—is conformally invariant
and it is related to the conformally invariant notion of
surface gravity defined in the Introduction via the standard
relation THH ¼ κSG=ð2πÞ. In the following sections we will
study the spacetime realizations corresponding to different
choices of the function Pðx; θ;φÞ.

III. LIGHT CONE BLACK HOLES

Now we are ready to study the different realizations of
the general transformation of Minkowski spacetime and its
radial MCKF to a target space time where the conformal
Killing horizons become proper Killing horizons. This
transformation is expressed concisely in Eq. (36).

A. Conformal compactification

The causal structure of a generic spacetime gab is easily
readable once theCarter-Penrose diagram for gab is found. In
our case the procedure to find it is straightforward. Indeed,
we already know [4] that the coordinate transformation

T þ R ¼ 2 arctan

�
v
rH

�

T − R ¼ 2 arctan

�
u
rH

�
ð42Þ

conformally maps the Minkowski metric ηab to the static
Einstein Universe metric gEUab . Explicitly one has

FIG. 3. Three dimensional representation of the flow of the
conformal Killing field in the Euclidean spacetime R4. The orbits
in this one-dimension-less representation are nonconcentric tori
around the bifurcate sphere r ¼ rH—here represented as a circle.
They degenerate into the tE axis for R ¼ 2rH. This figure is taken
from [2].
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gEUab ¼Ω2
Mηab

−dT2þdR2þsin2RdΩ2¼Ω2
Mð−dt2þdr2þr2dΩ2Þ ð43Þ

with

Ω2
M ¼ 4r2H

ðv2þ r2HÞðu2þ r2HÞ
: ð44Þ

From the transformation (42) one can see that theMinkwoski
spacetime covers only a portion of the Einstein’s Universe
spacetime; the boundary of which represents conformal
infinity. Such portion gives the Carter-Penrose diagram of
ðR4; ηabÞ.
Any conformally flat spacetime gab ¼ ω2ηab will be

conformally mapped to the Einstein Universe by the same
coordinate transformation:

gEUab ¼ Ω2
Mηab ¼

Ω2
M

ω2
gab ≡Ω2gab: ð45Þ

Using (35), the conformal factor Ω mapping the generic
metric (36) to the Einstein’s universe is found to be

Ω2 ¼ r2H
x20

4r2

ðv2þ r2HÞðu2þ r2HÞ
P2ðx; θ;φÞ

¼ r2H
r2O − r2H

ðv − uÞ2
ðv2þ r2HÞðu2þ r2HÞ

P2ðx; θ;φÞ: ð46Þ

As for Minkowski, the vanishing of Ω defines conformal
infinity. Let us now analyze different interesting choices of
the function Pðx; θ;φÞ.

B. The Bertotti-Robinson realization

Acompelling realization is the simplest one:Pðx;θ;φÞ¼1.
From Eq. (35), one can see that this spacetime is simply
found dividing the Minkowski metric by r2. This operation
works in arbitrary dimensions, see Sec. IV. The newmetric is

ds2 ¼ −
x2− x2BH

x20
dτ2þ x20

x2− x2BH
dx2þ x20dΩ2: ð47Þ

The Ricci and the Kretschmann scalars come out to be

R ¼ 0

RabcdRabcd ¼ 8

x40
: ð48Þ

Since the metric is diagonal, we can easily define a tetrad
eaI as

e0μdxμ ¼
ffiffiffiffiffiffiffiffiffi
−gττ

p
dt

e1μdxμ ¼
ffiffiffiffiffiffi
gxx

p
dr

e2μdxμ ¼
ffiffiffiffiffiffi
gθθ

p
dθ

e3μdxμ ¼ ffiffiffiffiffiffiffi
gφφ

p
dφ: ð49Þ

In this tetrad, the Einstein tensor is diagonal and given by

GIJ ¼ GabeaIe
b
J ¼

1

x20
diagð1;−1; 1; 1Þ: ð50Þ

The metric (47) is a solution of Einstein-Maxwell equations
for a vector potential given by

A ¼ x
x0

dt; ð51Þ

from which the electromagnetic tensor

F ¼ dA ¼ 1

x0
dx ∧ dt ð52Þ

follows. The solution is static and spherically symmetricwith
a constant radial electric field whose flux defines the charge
of the spacetime

Q ¼ 1

8π

Z
S
ϵabcdFcd ¼ x0: ð53Þ

The energy-momentum tensor satisfies the weak, strong and
dominant energy conditions. The spacetime is topologically
AdS2 × S2. Such solution is known in the literature as the
Bertotti-Robinson spacetime [5,6]. Its Carter-Penrose dia-
gram is depicted in Fig. 4. The geometry is everywhere
regular. There are no singularities, despite the presence of
trapped surfaces and the fact that the usual energy conditions
are satisfied. Singularity theorems are avoided due to the fact
that the spacetime is not globally hyperbolic, and the
generic null geodesic congruence condition2 is not satisfied
(see [4] for details).

1. Close to extremal Reissner-Nordstrom
near-horizon geometry

The Bertotti-Robinson solution corresponds to the near
horizon geometry of a Reissner-Nordstrom (RN) black hole
close to extremality—see for instance [12]. This fact in turn
provides a simple interpretation to the laws of light cone
mechanics [2] in terms of the standard laws of black hole
thermodynamics. The RN metric for a black hole of mass
M and electric charge Q is given by

2Null geodesics violating the null generic geodesic condition
are those generating I� in Minkowski spacetime, which now
pass through the bulk of the Bertotti-Robinson solution.
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ds2 ¼ −
�
1 −

2M
r

þQ2

r2

�
dt2þ

�
1 −

2M
r

þQ2

r2

�−1
dr2

þ r2dΩ2

¼ −
ðr − rþÞðr − r−Þ

r2
dt2þ r2

ðr − rþÞðr − r−Þ
dr2

þ r2dΩ2; ð54Þ

and the associated electromagnetic field by

A ¼ −
Q
r
dt; ð55Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
. The near extremal case

corresponds to M ¼ Qþ δM with δM2 ≪ Q2, for which
the near horizon metric and electromagnetic field is
obtained by expanding in the new coordinate x defined
by r ¼ x0 þ x. The leading order gives the metric (47)
and electromagnetic field (51) with x0 ¼ Q and xBH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Qδm

p
. Therefore, we can relate the physical parameter of

the RN solution to the parameters of the MCKF in flat
spacetime via

Q2 ¼ r2O − r2H and δm ¼ 2r4H
ðr2O − r2HÞ

3
2

: ð56Þ

The RN Hawking temperature TRN is given by the standard
formula

TRN ¼ κRN
2π

¼ rH
πðr2O − r2HÞ

ð57Þ

in agreement with (41). This shows that the limit rH → 0
corresponds exactly to the extremal limit of the RN
solution. On the RN side the temperature goes to zero
and the bifurcating sphere goes away to infinity. On the
Minkowski side, the radius of the bifurcating sphere rH
shrinks to zero and the conformal Killing horizon becomes
the light cone of a single event [2].

2. Near horizon symmetry is radial conformal
symmetry in M4

Consider the 2-dimensional metric

ds2 ¼ −
x2− x2BH

x20
dτ2þ x20

x2− x2BH
dx2: ð58Þ

This metric is locally AdS2 and therefore its isometry
group is SLð2;RÞ. There are therefore three independent
Killing fields which are also generators of isometries of (47).
Via the conformal transformation that relates this spacetime
to Minkowski spacetime we infer that the SLð2;RÞ gen-
erators should correspond to conformal Killing vectors in
Minkowski spacetime.
We observe that the vector field

v1 ¼ τ∂τ − x∂x ð59Þ
is the generator of an infinitesimal diffeomorphism sending
the metric (58) to a new one where the xBH → xBHð1 − αÞ,
with α the infinitesimal parameter of the transformation.
Indeed the previous is a Killing field for the metric (58)
with xBH ¼ 0.
The following coordinate transformation

z ¼ x0
xBH

exp

�
−
xBH
x20

τ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2− x2BH

q

t ¼
xx0 exp ðxBHx2

0

τÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2− x2BH

p ¼ x20
xBH

x
z

ð60Þ

transforms the metric (58) into

ds2 ¼ −
z2

x20
dt2þ x20

z2
dz2: ð61Þ

Three independent Killing fields are known in the previous
coordinates, namely

v1 ¼ t∂t − z∂z ¼
ðv2− r2HÞ

2rH
∂v þ

ðu2− r2HÞ
2rH

∂u

v2 ¼ x0∂t ¼
ðvþ rHÞ2

2rH
∂v þ

ðuþ rHÞ2
2rH

∂u

v3 ¼
�
x20
2z2

þ t2

2x20

�
x0∂t −

tz
x0

∂z

¼ ðv − rHÞ2
4rH

∂v þ
ðu − rHÞ2

4rH
∂u; ð62Þ

FIG. 4. The causal structure of the Bertotti-Robinson space-
time. The Killing field is spacelike in the shaded regions and
timelike elsewhere. The boundary is timelike and no singularities
are present. Grey lines and roman numbers show how the 6
regions of Minkowski spacetime, see Fig. 2, are conformally
mapped into the bulk of the target spacetime.
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where on the right we have used the coordinate trans-
formations back to uv-Minkowski null coordinates using
(28) combined with (60). We recognize the Killing field of
departure

ξ ¼ 2rH
r2O − r2H

v1: ð63Þ

The commutator algebra is

½v2; v1� ¼ v2

½v2; v3� ¼ v1

½v1; v3� ¼ v3 ð64Þ
which corresponds to the SLð2;RÞ Lie algebra (21) for the
generators T0 ¼ ðv3 þ v2Þ=

ffiffiffi
2

p
, T2 ¼ ðv3 − v2Þ=

ffiffiffi
2

p
, and

T1 ¼ −v1. Notice also that in uv-coordinates the radial
conformal symmetry group SLð2;RÞ ¼ SLð2;RÞin ×
SLð2;RÞout as in the AdS2 symmetry of near horizon
geometry.

C. De Sitter realization

Another interesting case arises by sending a constant
x ¼ x� Minkowski conformal Killing observer to infinity
via the choice of Pðx; θ;ϕÞ in (36). From the discussion
under Eq. (46), this is achieved by choosing a function
Pðx; θ;ϕÞ which vanishes at x ¼ x�. The simplest choice
admitting a regular differential structure at infinity is

PðxÞ ¼ x� − x
x0

: ð65Þ

The corresponding metric is therefore

ds2¼ x20
ðx�−xÞ2

�
−
x2−x2BH

x20
dτ2þ x20

x2−x2BH
dx2þx20dΩ2

�
:

ð66Þ

In the new coordinate

X2 ¼ x40
ðx� − xÞ2 ð67Þ

the metric takes the simple form

ds2 ¼ −FðXÞdτ2þ 1

FðXÞ dX
2þ X2dΩ2 ð68Þ

with

FðXÞ ¼ 1 −
2x�
x20

X þ ðx2� − x2BHÞ
x40

X2: ð69Þ

The surface x� sent to infinity corresponds now toX → þ∞.
The Ricci scalar for this new solution turns out to be

R ¼ −12
�
x2� − x2BH

x40
þ x�
x20X

�
ð70Þ

which tends to a constant as X → þ∞

4Λ ¼ lim
X→þ∞

R ¼ −12
x2� − x2BH

x40
: ð71Þ

Such constant is positive if x� is chosen in between the inner
and outer horizons and negative elsewhere. Moreover, for
x� ≠ 0, R diverges as X approaches zero

RjX→0 ¼ −12
x�
x20X

þOð1Þ: ð72Þ

As in the previous case, we can define a diagonal tetrad as
in (49), which gives the diagonal Einstein’s tensor

G00 ¼ −3
x2� − x2BH

x40
þ 4

x�
x20X

G11 ¼ 3
x2� − x2BH

x40
− 4

x�
x20X

G22 ¼ 3
x2� − x2BH

x40
− 2

x�
x20X

G33 ¼ 3
x2� − x2BH

x40
− 2

x�
x20X

: ð73Þ

The metric can therefore be interpreted as a solution to the
Einstein’s equationwith a cosmological constantΛ as in (71)
and a energy-momentum tensor given by

TIJ ¼
2x�
x20X

diagð2;−2;−1;−1Þ: ð74Þ

The global as well as the local nature of these spacetimes
depends on the explicit value of x�.
For x� ¼ 0, Tab ¼ 0, the Ricci scalar is nondiverging,

and the Einstein tensor (73) corresponds to that of a positive
cosmological constant term Λgab with

Λ ¼ 3
x2BH
x40

: ð75Þ

For this choice of x�, the metric (68) is manifestly that of
de Sitter spacetime in terms of static coordinates. The
bifurcating Killing horizon corresponds to the union of a
past and future cosmological horizons intersecting at the
bifurcating sphere, as shown in the Carter-Penrose diagram
in Fig. 5.

D. Asymptotically (Anti)-de Sitter realizations

If x� < 0 one has a positive cosmological constant for
jx�j > jxBHj and a negative one for jx�j < jxBHj with a Tab
violating all the standard energy conditions. In these cases
the metric is asymptotically dS and AdS, respectively. In the
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AdS case the decay rate to the asymptotic geometry is slower
than the one imposed by the standard reflecting boundary
conditions [13]. This implies that a well-defined notion of
conserved charges at infinity is not possible. The spacetime
is therefore in this sense weakly asymptotically AdS.
If x� > 0 instead, one has a positive asymptotic cosmo-

logical constant for x� < xBH and a negative one for
x� > xBH. Now Tab satisfies the weak (ρ ≥ 0, ρþ pi ≥ 0)
and the dominant (ρ ≥ jpij) energy condition but not the
strong one (ρþ pi ≥ 0, ρþP

ipi ≥ 0). For negative
asymptotic cosmological constant, there are black hole
regions, plus inner and outer Killing horizons. The boundary
is again weakly AdS. The new feature with respect to the
Bertotti-Robinson realization is the appearance of a time like
curvature singularity at X ¼ 0. There is no black hole region
in the dS realization, while the timelike curvature singular-
ities at X ¼ 0 remain. The Carter-Penrose diagrams corre-
sponding to these cases are shown in Fig. 6.

E. An asymptotically flat realization

The inner horizons of the Bertotti-Robinson realization
of Sec. III B can become the boundary of the spacetime via
a particular choice of Pðx; θ;φÞ in (36). Such realization
was already evoked in [2] to illustrate some aspects of the
light cone thermodynamical laws, but its global structure
was not properly studied. In this case the metric is

gab ¼
16r4H

ðu − rHÞ2ðvþ rHÞ2
ηab: ð76Þ

In Appendix, see Eqs. (A13) and (A14), a coordinate
transformation is found such that the metric is

ds2 ¼ 1

Δ

�
−ð1 − 2zÞdτ̄2þ 1

1 − 2z
dz2þ z2dΩ2

�
; ð77Þ

where the new coordinates are dimensionless and Δ ¼ 4r2H
x4
0

.

In these coordinates the horizon is located at z ¼ 1=2.
Moreover, z is positive and greater than 1=2 outside, and
decreases to zero at the Minkowskian i0 and origin. Inside
the horizon, on the other hand, z increases from z ¼ 1=2 to
z → ∞. The latter corresponds to the inner horizon which,
now we show, is at infinity in the target spacetime. From the
discussion of Sec. III A we can draw its Carter-Penrose
diagram and study the properties of the corresponding
conformal boundary. The conformal factor Ω2 mapping
(77) to the Einstein’s Universe gab ¼ Ω2gEUab is given by

Ω2 ¼ 1

r2O − r2H

ðu − rHÞ2ðvþ rHÞ2
4ðu2þ r2HÞðv2þ r2HÞ

¼ 1

r2O − r2H

ð1 − sinUÞð1þ sinVÞ
4

¼ 1

r2O − r2H

�
cosT þ sinR

2

�
2

ð78Þ

FIG. 5. The causal structure of the de Sitter spacetime obtained
from Minkowski by choosing x� ¼ 0 in (65) including the
MCKF. The Killing field is spacelike in the shaded regions
and timelike elsewhere. Grey lines and numbers show how the 6
regions of Minkowski spacetime depicted in Fig. 2 are con-
formally mapped into the bulk of the target spacetime. The light
cones in flat spacetime are mapped to intersecting cosmological
horizons.

FIG. 6. The causal structure of the different spacetime realiza-
tions when an observer is sent to infinity. The two spherical
dimensions are suppressed, so that each point represent a sphere.
The Killing field is spacelike in the shaded regions and timelike
elsewhere. Grey lines and numbers show how the 6 regions of
Minkowski spacetime depicted in Figure 2 are conformally
mapped into the bulk of the target spacetime.
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where U ¼ T − R and V ¼ T þ R are the Einstein’s
Universe null coordinates. Conformal infinity J is given
by the condition Ω ¼ 0, and therefore

J∶ T − R ¼ U ¼ π

2
and T þ R ¼ V ¼ −

π

2
; ð79Þ

which is equivalent to u ¼ rH and v ¼ −rH, or simply
z → ∞. The boundary is made of two constant U or V
surfaces, being therefore null.
The gradient of the conformal factor is found to be

ð∇̃μωÞdxμ ¼ −
sinT
2rH

dT þ cosR
2rH

dR; ð80Þ

which is nonzero at J. The Ricci tensor in the diagonal
tetrad is

RIJ ¼ RabeaIe
b
J ¼

2Δ
z
diagð−1; 1; 2; 2Þ ð81Þ

which vanishes in a neighborhood of J, i.e., for z → ∞.
Our spacetime fulfills all the conditions of the definition of
conformally flatness [14]. Finally, the Ricci scalar is

R ¼ 12Δ
z

ð82Þ

showing a curvature singularity at z ¼ 0. The resulting
causal structure is shown in Fig. 7. For this last case we
made explicit the analysis for the construction of the Carter-
Penrose diagram. The very same strategy is used for the

previous cases as well, but, for brevity, we preferred not to
present it explicitly.

IV. ARBITRARY DIMENSIONS

The construction of Sec. III B works in arbitrary dimen-
sions. Namely, the simple rescaling of the n-dimensional
Minkowski metric by the factor ω2 ¼ x20=r

2, i.e., defining
gab ¼ ω2ηab, turns the conformal Killing field (17) into a
Killing field of the target spacetime. This is clear from the
fact that

∇aξ
a ¼ 1ffiffiffiffiffijgjp ∂μð

ffiffiffiffiffi
jgj

p
ξμÞ

¼ rnffiffiffiffiffijηjp ∂μ

� ffiffiffiffiffijηjp
rn

ξμ
�

¼ r2∂r

�
ξr

r2

�
þ ∂tξ

t ¼ 0; ð83Þ

where η is the determinant of the n-dimensional Minkowski
metric, and where we have used that, in spherical coor-
dinates,

ffiffiffiffiffijηjp ¼ rn−2sinðθ1Þ… sinðθn−3Þ for n > 2 andffiffiffiffiffijηjp ¼ 1 for n ¼ 2. The vanishing of the last line follows
from the direct substitution of the components of ξagiven in
(17). Moreover, this is also evident from the direct
application of the coordinate transformation (28) to
ðx20=r2Þds2M which yields the Bertotti-Robinson spacetime
in arbitrary dimensions, namely

ds2 ¼ −
x2− x2BH

x20
dτ2þ x20

x2− x2BH
dx2þ x20dS

2
n−2; ð84Þ

where dS2n−2 denotes the metric of the (n − 2)-dimensional
unit sphere. The other realizations can also be constructed
along the same lines.

A. The Jackiw-Teitelboim realization

An especially interesting case is the case d ¼ 2where the
natural conformal mapping corresponding to the two-
dimensional version of (36) with PðxÞ ¼ 1 produces a
well studied black hole solution of dilaton gravity know as
the Jackiw-Teitelboim model [7].

V. CONCLUSIONS

A mathematical analogy of the laws of black hole
thermodynamics for light cones in Minkowski spacetime
was found in [2]. This was possible by observing that
intersecting light cones are bifurcating conformal Killing
horizons for the most general radial conformal Killing field
ξ. The causal behavior of ξ closely resembles the one of the
stationarity Killing field of a Reissner-Nordstrom black
hole—see Fig. 1. Such conformal stationarity is the heart of
the validity of the four laws of light cone thermodynamics
introduced in [2]. However, the quantities appearing in

FIG. 7. The causal structure of the conformally flat realization.
The two spherical dimensions are suppressed, so that each point
represents a sphere. The grey lines and numbers show how the 6
regions of Minkowski spacetime depicted in Fig. 2 are con-
formally mapped into the bulk of the target spacetime.
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these laws have no direct physical meaning in flat space.
Nevertheless, as they are all conformally invariant, they
acquire their standard geometric, as well as physical,
meaning in conformally flat spacetimes where the con-
formal Killing field becomes a genuine Killing field.
In this work we have studied the properties of represen-

tative spacetimes satisfying this condition. The most inter-
esting case is the simplest one. It turns out that the conformal
Killing horizon structure of light cones in Minkowski
spacetime is the conformal partner of the Killing horizon
structure of the Bertotti-Robinson spacetime. The latter is
known to encode the near horizon geometry of close-to-
extremal and extremal charged black holes. The reason
behind this fact is the vanishing of the Weyl tensor at the
horizon of an extremal Reissner-Nordstrom black hole [15]
which makes the near horizon geometry conformally flat.
This result completely clarifies the nature of light cone

thermodynamics as introduced in [2]: it can now be seen as
arising from a conformal transformation of the standard
laws of black hole thermodynamics on a suitable black
hole spacetime. This strengthens our initial claim that light
cones in Minkowski spacetime encode, in a suitable sense,
the main properties of black hole horizons, thus providing a
simple analogue of black holes in a spacetime with trivial
curvature. The analogy is more strict and direct than the one
usually considered between near horizon black hole geom-
etry and Rindler spacetime. The black hole and Rindler
horizons, indeed, have different topologies, being respec-
tively S2×R and R2×R. Additionally, the Rindler wedge
cannot be seen as the region outside the horizon, since it
lies itself in the domain of dependence of the latter. This in
turn implies that no finite energy flux can escape the
Rindler horizon, and no notion of asymptotic observer can
be defined. These difficulties are not present in the light
cone case studied here and in [2]. As for black holes, the
light cone topology is S2× R, and energy can be sent to
infinity without crossing the horizon from the complement
of the diamond, Region II in Fig. 2, which therefore plays
the role of the outside region. The analogy is indeed so
strict that for conformally invariant matter the light cone
structure is indistinguishable from the near horizon geom-
etry of a close-to-extremal Reissner-Nordstrom black hole.
Other interesting conformally flat spacetimes where the
conformal Killing horizon structure becomes a proper
Killing one have been presented.
One would be tempted to say that an analog to a spinning

near extremal black hole in dimension four can also be
obtained in the present way. However, this is not so since the
extremal Kerr near horizon geometry is not conformally flat
[15]. Analogue of spinning black holes require a different
approach. Nevertheless, the argument fails in three dimen-
sions where spinning black holes are represented by the
Banados-Teitelboim-Zanelli (BTZ) solutions [16]. The BTZ
black holes are indeed conformally flat and should have a
representation in terms of light surfaces in Minkowski

spacetime. It can be seen however that the Killing generator
of the BTZ horizon cannot correspond to our radial MCKF.
The correct mapping to flat spacetimes will have to involve
the topological identifications [17], suitably translated to
Minkowski, that are necessary in AdS3 to obtain the BTZ
geometry.
Our analysis emphasizes the conformally flat nature of

the near extremal near horizon approximation of RN
spacetimes, as well as the obvious case of De Sitter
spacetimes. This allows for a simple analysis of the
renormalization of the energy momentum tensor for
conformal fields and the immediate computation of
hTabi in these cases [18]. Along these lines, our analysis
could be used to provide a simple interpretation to the
computation of (logarithmic corrections to) entanglement
entropy for bifurcate Killing horizons from the perspec-
tive of quantum field theory on Minkowski spacetimes.
The near horizon geometry symmetry structure of near

extremal and extremal Reissner-Nordstrom black holes is
present in flat spacetimes and is associated to the algebra
of radial conformal Killing fields of Minkowski. The basic
ingredients of the extremal black holes CFT correspon-
dence conjecture [19,20] might be available here. Notice
however that in the Kerr-CFT correspondence the con-
formal symmetry concerns the φ–t “plane” (for RN it
works by adding a Kaluza-Klein dimension y for the
electromagnetic unification and the conformal symmetry
occurs one dimension up in the y–t plane) [21]. Another
approach to entropy based on the appearance of a con-
formal symmetry in the r–t plane is the one studied by
Carlip [22]. It would be nice to investigate the possibility of
a formulation of such ideas entirely in the context of a flat
background. We leave these investigations for the future.
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APPENDIX: COORDINATE
TRANSFORMATIONS

In [2], six different coordinate transformations ðt;r;θ;φÞ→
ðτ;ρ;θ;φÞ for each and every of the six regions Minkowski
spacetime is divided into by the radial MCKFwas presented.
The transformation was built so that the radial MCKF
simplified to

ξμ
∂
∂xμ ¼

∂
∂τ : ðA1Þ
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Here we observe that the six transformations can actually be
grouped in one single transformation given by

τ ¼ r2O − r2H
4rH

log
ðu − rHÞðv − rHÞ
ðuþ rHÞðvþ rHÞ

ρ ¼ r2O − r2H
4rH

log
ðuþ rHÞðv − rHÞ
ðu − rHÞðvþ rHÞ

: ðA2Þ

The coordinate τ is the same used in the main text, Eq. (28).
Defining as in [2]

Δ ¼ 4r2H
ðr2O − r2HÞ2

a ¼ 1

r2O − r2H
: ðA3Þ

Minkowski metric becomes

ds2M ¼
�

Δ=2a
coshð ffiffiffiffi

Δ
p

τÞ þ coshð ffiffiffiffi
Δ

p
ρÞ

�
2

× ð−dτ2þ dρ2þ Δ−1sinh2ð
ffiffiffiffi
Δ

p
ρÞdΩ2Þ: ðA4Þ

The transformation is valid everywhere using the standard
definition of the logarithm of a negative number, namely

logð−xÞ ¼ iπ þ logðxÞ x > 0: ðA5Þ
We can solve Eq. (27) in these coordinates finding

ω2 ¼
�
coshð ffiffiffiffi

Δ
p

τÞ þ coshð ffiffiffiffi
Δ

p
ρÞ

Δ=2a
1

GρðρÞ
�2

; ðA6Þ

which in terms of the Minkowskian double-null coordinates
ðu; vÞ is

ω2ðu; vÞ ¼ 4r4H
ðu2− r2HÞðv2− r2HÞ

1

G2ðρ; θ;ϕÞ : ðA7Þ

A conformally flat metric gab such that the radial MCKF
becomes a Killing field can therefore also be written as

ds2 ¼ 1

G2
ρðρ; θ;ϕÞ

ð−dτ2þ dρ2þ Δ−1sinh2ð
ffiffiffiffi
Δ

p
ρÞdΩ2Þ;

ðA8Þ
Choosing the function Gρ to be a normalization constant
given by

Gρ ¼
r2O − r2H
2r2H

ðA9Þ

one finds

ωFRW ¼ r2O − r2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2− r2HÞðv2− r2HÞ

p ðA10Þ

The choice

GρðρÞ ¼ 1=4e−2
ffiffiffi
Δ

p
ρ; ðA11Þ

instead, gives

ωBH ¼ 4r2H
ðu − rHÞðvþ rHÞ

: ðA12Þ

The above two conformal factors were found in [2] by
separation of variables.
Another interesting coordinates transformation is given by

τ̄ ¼
ffiffiffiffi
Δ

p
τ

ρ ¼ 1

2
ffiffiffiffi
Δ

p logð1 − 2zÞ: ðA13Þ

which implies

z ¼ 1

2

�
1 −

ðuþ rHÞðv − rHÞ
ðu − rHÞðvþ rHÞ

�
: ðA14Þ

The metric (A8) takes the following Schwarzschild-like
form

ds2 ¼ Δ−1

G2
zðz; θ;ϕÞ

�
−ð1 − 2zÞdτ̄2þ 1

1 − 2z
dz2þ z2dΩ2

�
;

ðA15Þ

where G2
z is a new function encoding the ambiguity in the

conformal transformations, and the new coordinates are
dimensionless. In these coordinates the horizon is located
at z ¼ 1=2. z is positive and greater then 1=2 outside, and
decreases to zero at the Minkowskian i0 and origin. Inside
the horizon, on the other hand, increases from z ¼ 1=2 to
z → ∞, the latter corresponding to the inner horizon. In
Sec. III E, these coordinates are used in the simplest case
Gz ¼ 1.
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