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The Novikov-Shifman-Vainshtein-Zakahrov f functions in two-dimensional A" = (0,2) supersym-
metric models are revisited. We construct and discuss a broad class of such models using the gauge
formulation. All of them represent direct analogs of four-dimensional N' = 1 Yang-Mills theories and are
free of anomalies. Following the same line of reasoning as in four dimensions we distinguish between the
holomorphic and canonical coupling constants. This allows us to derive the exact two-dimensional S
functions in all models from the above class. We then compare our results with a few examples that have

been studied previously.
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I. INTRODUCTION AND CONCLUSION

The 2d/4d parallels are known and have been used since
the time of Polyakov who found asymptotic freedom (AF)
in 2d nonlinear sigma models [1], in analogy with AF in 4d
Yang-Mills theories [2,3]. In the past three decades, 2d/4d
correspondence acquired a much deeper meaning by virtue
of supersymmetry. Much of nonperturbative dynamics in
both 2d/4d supersymmetric gauge theories has been
thoroughly understood and found to correspond to each
other. By the “2d/4d correspondence” we mean here the
cases in which either some of the 2d/4d physics contents
are exactly the same, e.g., the Alday-Gaiotto-Tachikawa
correspondence [4], or the dynamical behaviors in 24 and
4d coincide; for instance, the BPS! spectra, certain corre-
lation functions, dualities, etc., are identical [5-10]. Among
these phenomena, an instructive example is provided by
non-Abelian BPS vortex strings [11-13], both in 4d N/ = 2
and N =1 gauge theories, whose low-energy dynamics
are captured by 2d N = (2,2) and heterotic N = (0, 2)
sigma models, respectively [14—18]. The above vortex
strings present a “bridge” between 4d and 2d physics
providing a quantitative explanation why the 2d dynamics

'BPS spectra here are meant to those physical states in the
short supermultiplets of given supersymmetries.
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are in correspondence with the dynamics in its 4d progen-
itor. This correspondence was established in a wide class of
theories from both 2d and 4d directions, perturbatively and
nonperturbatively [6,19-24].

The goal of this paper is to derive Novikov-Shifman-
Vainshtein-Zakahrov (NSVZ)-like f functions [25-29] in
general two-dimensional N = (0, 2) supersymmetric gauge
theories adding new evidence for the 2d/4d correspon-
dence. A number of 2d analogs of the NSVZ S functions
were obtained in the past via both perturbative methods and
instanton calculus in the N = (0, 2)CP! model [24] and in a
large class of heterotically deformed nonlinear sigma
models (NLSMs) that are deformations of their N =
(2,2) cousins [6]. Here we focus on another general class
of N' = (0,2) gauged linear sigma models (GLSMs) and
obtain the general form of the corresponding f functions.
They have the same structure as the NSVZ f function in 4d.
In those cases where comparison with the previous results is
possible our newly derived GLSM f functions are identical
to those of NLSMs. This is not surprising since the NLSMs
studied previously can be embedded in GLSMs.

We want to emphasize not only the ubiquity of 2d/4d
correspondence but also the conspiracy of methodologies
applicable to both 2d and 4d theories. Historically, 2d
sigma models were considered as simplified toy models
useful for understanding real world physics in 4d. Instead,
in this paper, we follow the opposite direction, from 4d to
2d, establishing and using the 2d analog of the Konishi
anomaly [30] and scaling anomalies in 2d N = (0,2)
gauge theories, a la Arkani-Hamed and Murayama in the
4d N =1 case [31]. This observation helps us relate
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holomorphic coupling constants to canonic ones in 2d
GLSMs, thus trivializing derivation of their f functions.
The general master formula obtained in this paper is

_9_421'Qi +%Za6a7a
4z Zﬂi 2
- 87z 9

Blg*) = ; (1.1)

in the case of 2d N' = (0,2) gauge theories with a single
Fayet-Iliopoulos (FI) coupling

2
7’

¢

where g;’s are the U(1) gauge charges of the bosonic matter
fields and g, and y, are the U(1) gauge charges and
anomalous dimensions of the fermionic matter fields.

The paper is organized as follows: We will briefly review
the building blocks of 2d N = (0,2) supersymmetric
GLSMs in Sec. II and a nonrenormalization theorem for
the FI coupling constants in Sec. III. We then explain the
difference between holomorphic and canonical coupling
constants from both the perspectives of the Konishi
anomaly and the scaling anomalies of matter fields, and
we derive the master equation (1.1) in Sec. I'V. Finally, we
apply the formula in several examples.

II. TWO-DIMENSIONAL N =(0,2) GLSMs
The N = (0,2) superspace is parametrized by 2d
bosonic spacetime

xFE =04 x!

and their V' = (0,2) fermionic partners 8% and 6*. The
supercharges are defined in terms of these coordinates as
follows:

0 -
Q+ = &? + 10+8++,
} o .
Q+E—&?—l9 8++, (21)
where
8++ = 26x++, o__= 28x——.
Accordingly, the superderivatives are given by
0 -
D+ = % - l€+8++,
_ 0 -
D+ = —&? + 19 8++, (22)

which satisfy the conditions

{D..D}=2i0,,.

With this notation, it is not difficult to build three types of
supermultiplets to construct N' = (0,2) GLSMs [14,32].

A. Gauge multiplets

The N = (0, 2) gauge multiplet U__ = (A__,A_,4_,D)
is real and adjoint-valued

U__=A__—=2i0TA_—-2i0"1_+2070"D  (2.3)

in superfield formalism. Here

A__=A)—A, AL =A)+ A
are the 2d gauge fields, A_ and A_ are the gaugino fields,
and the real field D is auxiliary. The field A, is an N' =
(0,2) singlet.

Next, we can promote superderivatives to be covariant,
namely

0 -
D,=——-i0"V, =

9+ lé+ (a++ - iA++)’

0
i
D, = _iﬂ'e*v = _iﬂm(a —iA)

+ 00+ ++ 00+ ++ ++/
__ —iU__=V__-20tA_—20T1_-2i0t0"D.
(2.4)

D__ =

The superfield strength of the gauge multiplet is given by

Y_=[D,,D__]=-2(_-i0"(D-iB)—i0*0*D, 1),
(2.5)

where

B - 30A1 - 81A0 - i[AO’Al] (26)

is the field strength of the A, field. The conjugated
superfield Y_ is defined accordingly. The action of the
gauge multiplet is as follows:

1 o
S = —zTr/szd9+d9+T_T_
8e

gauge

1 1 - 1
= ?Tr/ d2X <§B2 + iﬁ_v++/’{_ + §D2> . (27)

Here e is the gauge coupling. The corresponding NLSM
can be obtained in the limit e* — co.

B Chiral multiplets

The N = (0,2) chiral multiplet ® = (¢, y, ) satisfies
the usual chiral constraint

D, @ =0, (2.8)
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In the superfield formalism it is written as

O = ¢+ V20 Yl — 010V, 4, (2.9)

where

V. = (0, —iq:A)¢".

Moreover, g is the charge of the field ®' with respect to the
U(1) gauge field. The action of the chiral multiplets can be
written as

Schiral = _%/ ded9+dé+Zq3iD__q)i

— [ TP iV

—V2igiidw', +V2q37 A ¢’ + qip D).
(2.10)

C Fermi multiplets

Another important matter superfield consists of a
fermion y¢ and an auxiliary field G¢,

(%.G*) eTe. (2.11)

It is not necessarily chiral, but, instead, satisfies the

constraint

DI = V2E*(®), (2.12)

where E(®) is an arbitrary holomorphic function with
respect to chiral boson fields ®’s. In the superfield
formalism, it can be expanded as

T = 4% V207G — 00"V, y_ — V20V E*(®).
(2.13)

The action for the Fermi multiplet reduces to
1 - -
— + 19+ a
5 / d?xdo*do za:r_ar_
- / Y (122902 + 6P - B

g

Note that the gauge field strength Y_ is a particular case of
the Fermi multiplets in the adjoint representation of the
gauge group, satisfying

S Fermi —

1//++Hc> (2.14)

D, Y_=0. (2.15)

D Superpotentials

Last but not least, we need to introduce superpotentials
J,(®) as holomorphic functions of chiral superfields,
whose action reduces to half of the superspace (accom-
panied by Fermi multiplets I'%),

1
_ﬁza: / dxdotTJ, + H.c.
S [+ Y o e
a i - 84)1 "

(2.16)

Of the utmost interest is the FI term as a superpotential
given by the gauge field strength, if it admits U(1) factors,

1
S, = ZTr/ d’xd0* 7Y _|5 _o + Hec.

0
= Tr/dzx(—.fD—l——B),
2w

where for simplicity we only consider theories with a single
FI term, and

(2.17)

‘L'Zi—i-lf

> (2.18)

is the complex FI coupling constant.

E GLSM action

Overall we assemble all the above ingredients and arrive

at the action of /' = (0,2) supersymmetric GLSM,
S = Sgauge + Schiral + SFermi + S; + H.c. (219)
Here and below, without loss of generality, we will consider
theories in which the superpotentials are limited to FI
terms. Importantly, for such theories to be consistent at the
quantum level (i.e., free of internal anomalies), we need to
impose constraints on the representations of the chiral and

Fermi multiplets to get rid of the gauge anomalies (see also
in [33]),

U(1) gauge: » g7 =) .
non — Abelian gauge : th(i) =1(A)+ th(a)
(2.20)
where ¢; and g, are U(1) gauge charges of chiral and Fermi
multiplets, f, is the dual Coxeter number, and i, a, and A

denote the representations of chiral, Fermi, and gauge
multiplets.
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III. A NONRENORMALIZATION THEOREM
FOR THE HOLOMORPHIC COUPLING

In 2d gauge theories, the gauge coupling e has a dimension
of mass and is thus superrenormalizable. For energy scale
1 < e, the gauge multiplets will be nondynamical, and we
arrive at NLSMs. Therefore the only sensible parameter in
the theory is its FI coupling constant z, which is marginal and
runs at the quantum level. In much the same way as with the
gauge couplings in 4d N =1 gauge theories, the 2d FI
parameter 7, as the coupling of the A" = (0, 2) superpoten-
tial, is subject to a nonrenormalization theorem and receives
atmost a one-loop correction (see, e.g., [28]). We will follow
[28,31] in reviewing the relevant argument.

From Eq. (2.19), we see that the action S depends on 7
holomorphically. It is convenient to use the notation

. . r .
2rit = —2716—1—195—?—%19. (3.1)
Let us ask ourselves: When we change the cutoff from M,
to u, how does the coupling 2ziz(u) (in the Wilsonian
sense) change to keep the low-energy physics intact? To
answer this question, let us examine an ansatz

2rit(u) = 2xit(My) —I—f(Zm'T(MO),log %) (3.2)

It is worth noting that a 2z shift of the 8 angle leads to no
change of physics, and therefore at most,

f <2m’1(M0), log %) - f <2m'r(Mo), log %)

M
+ 2riF (log —0) ,
u

for 0 — 6 + 2, (3.3)

where function F (log%) can only take integer values.
Furthermore, because F(0) = 0, by continuity we conclude
that function f is periodic with respect to the € angle.

Therefore, the # function for 2ziz,

of

planin) =y (Caic) =g, (34

is periodic with respect to 6 and admits a Fourier

expansion,
E b eZmn‘r

n>0

p(2nit) =

(3.5)

It is clear that in perturbation theory we can only have non-
negative integer values of n appearing in the expansion
(3.5). Also, in the perturbative regime we have at most b
nonzero, 1.e.,

p(2rit) = by. (3.6)

In perturbation theory it is obvious that all b,’s with
n=1,2,3, ..., vanish. Hence the nonrenormalization theo-
rem of the absence of higher loops is proven for the
holomorphic coupling.

Nonperturbatively, one needs to apply the anomalous R
symmetry of N = (0, 2), which guarantees that the € angle
receives no quantum corrections at all. Consequently
B(2rxit) is independent of Im(2zit), and, simultaneously
is holomorphic in 2ziz. It implies that #(2zi7) can only be a
constant; i.e., Eq. (3.6) holds both perturbatively and
nonperturbatively.

Before proceeding to the discussion of the canonical
coupling 7. in next sections, let us first calculate b, that
would be used later. It can easily be obtained by inspecting
the D term of the action (2.19),

Sy = /d2 (2121)2 ED + Zq ¢,D¢> (3.7)

From (3.7) we see that the real part of 7z receives a tadpole
one-loop correction.” The tadpole graph emerges through
contracting ¢ and ¢. As a result,

a. M
Eu) = £(My) - %m (—°> (3:8)
™ 2
which implies, in turn, that
P& =2 or. say. () =~ =0 (39)

and
by = —Z%'

IV. FROM THE HOLOMORPHIC
TO CANONIC COUPLING

As is known from [28], all higher order loops in the
gauge coupling renormalization appear in passing from
the holomorphic to canonic coupling from the Z factors of
the matter fields (which are converted into the anomalous
dimensions in the f functions). To see how this happens we
must convert the kinetic terms of the matter fields into
(2.17) by virtue of anomalies. In other words, we must take
into account a subtle difference between the Wilsonian
Lagrangian and the one partical irreducible functional
(see [25-28])).

Below we will discuss two alternative (but related)
derivations, through the Konishi anomaly [30] and through
the scale anomaly [31].

*As in the 4d case, the tadpole correction appears if and only if

>4 # 0.
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A. The Konishi anomaly in A =(0,2) GLSM

It is not difficult to establish the 2d analog of the Konishi
anomaly. To this end, as an example, we will consider the
operator > ,I"_,T“ appearing in (2.14) (assuming that
E* =0). Classically, the equation of motion for this
operator is

(4.1)

D, (za:f_arz> =0.

This follows, e.g., from inspection of the #© component.
However, at the quantum level this particular component
contains a well-known anomaly in the derivative of the
- current (see more details in Appendix B and also [34]),
analo%ous to the triangle anomaly in the axial current
in 4d,

o (Z)?—a)(‘i> = Zg—;B

where B is defined in (2.5). Note that the relative coefficient
between D and B in (2.5) is rigidly fixed by N' = (0,2)
supersymmetries. Needless to say, the full derivative in the
U(1) part does not appear in the action classically (it can be
dropped). However, at the quantum level we can establish
the following relations (after evolving the action from M,
down to p):

: (4.2)
)

1 _ _
AL (k) = 5 Zrems / 40+ do*(F_, 1)

Zermi - _
= —% / do+D, (F_,I'%)

-ZFermi - al _ = ~a
=i [ (Za:)(—a)(—> = lZFermiza:EB
= iszizg—; ( / dorY_ + / dé+'f_>

where in the last step, we uplifted the equation to the level
of superspace; cf. (2.17). The Y_ part gives the evolution
of the wave function renormalization of fermion I'? to the
FI-coupling constant 7; see also Eq. (4.7). Adding the one-
loop tadpole graph and differentiating over u/0u we arrive
at the g,y, term in (1.1).

. (43)
u(1)

B. Scaling anomalies

Now we would like to discuss the 2d N = (0,2) p
function along the lines of [31]. It is true that the
holomorphic 7 only receives a one-loop correction;
however, because of the normalization point running down

The triangle anomalous graph in four dimensions is replaced
in two dimensions by a diangle graph. That is why the right-hand
side in (4.2) is linear in g,.

from M, to u, the kinetic terms of the matter fields will
receive a wave function renormalization,

ZCDD d>’—>ZZ
Zr ranz )_ I

see Sec. IVA for I'_,I"®.
To keep all matter fields canonically normalized, we
need to change field variables, i.e., redefine

)®,D__®,

(4.4)

I
!
Q
1

ol = ! oY, @ re.
Zi(ﬂ)

However, such rescaling will result in anomalous Jacobians
from the functional measure. Formally we have

4e] = d( zl,»(ﬂ)q)ﬂﬂ ﬂDet( Zl,-(u)>[d®i/]

— [dq)i/]e—%log Zi(u)sTry,; 1 ;

[dr?] = :d< Zla(u) F‘i’)} - sDet(%(ﬂ)) [T

1 ,~410g Z, (4)sTtra 1
= [dT¥]e3'08 Za)sTrra

(4.5)

(4.6)

where “sDet” and “sTr” denote the superdeterminant and
supertrace, respectively. The supertrace is superficially
vanishing due to supersymmetries. Nevertheless, in a
nontrivial gauge field background, we can show that they
give rise to terms proportional to the U(1) field strength
T_. More specifically,

sTrgi 1 = —zg d’xd0*Y_|5-_y, and
STrrgﬂ = ig—“/dzxd9+T_|9+O. (47)
m

The derivation of this formula is presented in Appendix B.
Therefore, the holomorphic 7 will receive nonholomorphic
corrections from wave function renormalizations,

Zl logZ

The anomalous dimensions of ®' and I'* are given by

T, —r+Zz—logZ (4.8)

Vi :—yaalogZ( ) and y,=- aalogZ( ), (4.9)

and they are nonholomorphic. This statement is in one-to-
one correspondence with the NSVZ f function in four
dimensions.

Differentiating log ¢ on both sides of Eq. (4.8) and using
Eq. (3.9), we have
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ql Clz
In terms of coupling constant
Im(e,) = &, = (4.11)
Tc) =6c=—73 .
g
we have
) == (Sa=5an 55 an). @

Furthermore, from Eq. (3.7), the 8 function of g2, or say, &,
is nothing other than the wave function renormalization of
chiral multiplets, i.e.,

plge
vi= (2) (4.13)
9e
Using it, we arrive at the master formula
9293 Zaqan
Blgz) = (4.14)

4z |- Z @

Remark: The gauge multiplets have no contribution to
the /3 function, because 7.. is associated with the U(1) factor
gauge group, with respect to which the gauge multiplet is
U(1) neutral.

V. EXAMPLES

In this section, we will apply Eq. (1.1) in various
examples.

A. N =(2,2)CP"~! model

For N/ = (2,2) supersymmetries, the N =
and Fermi multiplets are combined to an N =
multiplet. We have

(0,2) chiral
(2,2) chiral

9i=q, and Z;=272, fori=a=1,2,... (5.1)
Therefore the holomorphic 7 and canonical 7. coincide, and

the S-function terminates at one-loop, in terms of g§,4

Zi‘]i
=gl
]

Blgz) = — 2 (5.2)

Especially for a U(1) gauge theory with all ¢; = 1, we have
the standard N = (2,2)CP"~! sigma model, and its
function is

Blge) = =+ (5.3)

*Exactly the same occurs in 4d Yang-Mills [28,29].

B. N'=(0,2)CP"-! model

We can deform the previous N = (2,2)CP~! model by

deleting part of ' = (2,2) U(1) field strength, considered

in [16]. In the language N = (0,2) supersymmetries, the

N = (2,2) U(1) field strength X, ,) can be decomposed as

T2 =Zo2 ® T, (5.4)

where X ,) is a N = (0, 2) chiral superfield and Y_ is the

N = (0, 2) Fermi multiplet as the field strength of the U(1)

gauge multiplet. A" = (2,2) chiral multiplet d)éM) also
admits a decomposition as

Dy, = DI, (5.5)

and the N =
straint

(0,2) Fermi multiplet I'_ satisfies the con-

DT o X, @'. (5.6)

Now, if we delete 2(0,2), the deformed theory will have

only NV = (0,2) supersymmetry, and the Fermi multiplets
satisfy
D.TL =0. (5.7)
Its f function turns out to be
Ng4 1+1 }/
= 5.8
Ploe) == "1-x (5.8)

where y denotes the anomalous dimension of Fermi
multiplet I'". We want to further comment that, in [24],
the authors also considered a type of deformed N =
(0,2)CP' model at the level of NLSM, which is different
from ours. However, we do see that the f functions of the
two models are similar. To compare the difference between
our model and that in [24], we discuss its nonlinear
formalism in Appendix A.

C. Heterotically deformed
N =(0,2)CP"-1 model
We can also consider a further deformation from the
N = (0,2)CPN¥~! model discussed above, by adding an
additional gauge singlet N' = (0,2) Fermi multiplet,
Q_=n_—V20"H—i070"9, . n_, (5.9)
to the N = (0, 2) model, with the corresponding deformed
term in the action,
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_ 1 _ - .
So = / d2xd0+d0+ (—59_9_ n §<1>,.rl_s2_ + Hc>
(5.10)

where « is an additional coupling. It is crucial to note that,
since we start from the A = (0,2) model, all Fermi
multiplets satisfy

DI =D.Q_=0. (5.11)
This constraint turns out to be important because it
guarantees that the interaction term can be recast in half
superspace as

5 / d*xdo+doTd,IQ / d*xd0 D, dTQ_.

(5.12)

It was argued in [23] that this type of interaction is subject
to a “D-term” nonrenormalization theorem in 2d; see also
[6]. Therefore, the holomorphic coupling constant « is not
renormalized. Here we pause and remark that, if one tries to
perform the heterotic deformation from A/ = (2,2)CPN-!
GLSM, there would be no nonrenormalization theorem to
protect the coupling «, because in the N = (2,2) case,
D.I'. « X(,)®'; see Eq. (5.6). This differs from the
situation in [6], where the heterotic deformation is indeed
performed on N = (2, Z)C[P’N -1 NLSM, because the
superderivative acting on the Fermi multiplet in NLSM
automatically vanishes.

Since the coupling x receives no renormalization, we
thereby will focus on the 8 function of &, or say gZ2, in the
presence of the coupling constant k. Let us first write down
the action in components:

Sa= [ &xii.0, -+ AH)

K/ d*x(iV i pixin + Ghpn_ — Hiiyiyh)

+Hec. (5.13)

The key observation (see also [6]) is that the evolution of
the interaction term ikV, ¢,y n_ and its Hermitian
conjugate will give a finite shift to the kinetic term of

¢, ie.,
< /de iViidixin), /d YV 'yl )>

_ [x[* /d2x|v P
4rnZ,Z, e

(5.14)

where we take fermions as quantum fluctuations and
bosons as a background. We write the wave function

renormalizations of y_ and #_ explicitly. It was argued
in [6] that this |x|* iteration is limited to one-loop in the
computation of the quantum correction in the instanton
background. Here we have a similar situation—our 2d
GLSM admits an (anti)vortex background, say,

V.pi=0 or V., =0, (5.15)
where V. is the Euclidean continuation of V. In this
background, the iteration of |x|?> will not enter higher loops.
Nevertheless, the wave function renormalization of the
fields w' and #_ will still enter higher loops evaluation.
Therefore, we define a new coupling,

k[

h? 1
Z z, (5.16)
whose f function is given by
2 9 .5 2
PU) = g 12 =1y, 1), (5.17)
where
1= Hn 082, and g, = s 1087,
(5.18)

are the anomalous dimensions of the fields y’ and 7_.
Now we assemble this additional contribution to the one-

loop correction of the holomorphic coupling &. The

imaginary part of Eq. (4.8) is thus modified as

2 2 R

gg ?_471' 4r

Differentiating with respect to the running scale p, and
using Eqs. (4.13) and (5.17), we arrive at the $ function for
g2 in the heterotically deformed N = (0,2)CPN~! GLSM,

GEN(1+%) - hz(n 1)

R e (520)

Finally, we can compare Eq. (5.23) to the master formula in
[6]. In [6], the kinetic term of the fermion y (in their
notation, it was %) is nonlinearly coupled to the bosonic
field ¢'. It makes the definition of the wave function
renormalizations of the two theories different up to a scale
factor g2, i.e.,

(5.21)

— 2
Z;(here - ch)(there-

Therefore it leads us to define
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B(g2)
-

W2 = }K2 g%

and y, =y,— (5.22)

Under these new definitions, we exactly reproduce the
master formula in [6],

ENG(1+5) =127} +1,)

2) = — . 5.23
plet) = -2 = (523)
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APPENDIX A: NLSM OF N =(0,2)CPV-! MODEL

In this Appendix, we transform the action of the
deformed A = (0,2)CP"~! model of Sec. VB into the
corresponding NLSM version. The NLSM can be obtained
by integrating out the gauge multiplet of its GLSM cousin
at the energy scale 4 << e. Then, one can study the model in
the geometric formalism. First, by integrating the D term,
Eq. (3.7), one finds the potential

Vp = (Zd‘wf - :)2.

On the level of NLSM, it constrains all bosonic fields on
S?M-11 ie., ¢' must satisfy the equation

> b —&=0.

(A1)

(A2)

On the other hand, integrating the gaugino fields 1_ and A_
in Eq. (2.10), we see that the fermion fields y/, are subject
to constraints

(A3)

Zfﬁill/i =0,

implying that w'’s live on the tangent bundle of the
manifold. In fact, we can rewrite Eqs. (A2) and (A3)
together in terms of superfields,

Y o0 -¢=0.

To obtain the CPV~! model, we need to also take account of
the U(1) gauge imposed on @'’s. We can use this gauge to
fix one of the chiral multiplet, say, the Nth field ®", to have
its bosonic field real ,

(A4)

OV =+ V20 K, +---, (A5)
where ¢ now is a real boson and «, is its superpartner that
is still a complex Weyl fermion. Further, we define the
gauge invariant coordinates,

fori=1,2,...., N-1,

. . ) oy
7=+ VIS = g
(A6)
from which we find

. ) 1 )
1’2% and C;:;<w’+—%x+). (A7)

Now, we can solve for @' in terms of Z'. From Eq. (A4), we
express @V as

OV = ——=—, (A8)
1+ 2,7
or, in components,
Q= \/E = —é and Ky = —£32_§1+ (A9)
1+z,7 P 4
We then solve
i VE i i Slai_L iz
gszz and w+:7 (sj_;ZZj -
fori=1,2,....N—1. (A10)

Next, we integrate out the gauge fields A, in Egs. (2.10) and
(2.14), and we find

i

A, =5

(0457 = 20,4.2") + igijéidw

A= % (02— 20 ) +igar. (ALl

where, to distinguish the Fermi multiplet I'* from the
bosonic one ®', we use the Latin letter a to label them with
i=1,2,...,N—1 and a=1,2,...,N.

Moreover,

¢ 1
97 =7 5ij'_;zizj (A12)
is the standard Fubini-Study metric on CP¥~!. The bosonic

part of the gauge field is, in fact, the U(1) piece of the
holonomy group U(N — 1) of CPN~! [34] and couples to
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the left moving fermion y<. It implies that the left mover
lives on the tautological line bundle O(—1) of CPV~!.

Using Egs. (A9)-(All), we can recast Egs. (2.10),
(2.14), and (2.17) to obtain the NLSM action

SNLSM:/dzx(gijaqua”Zi+igi}‘:'j+vU<N1)‘:i+

(A13)

+i7- VY ) 42095880 (7-ax®))

where
VUWN=Dri = dri. —l—l—"kdz/l//Jr, with F’k =4 8kgﬂ,

VUM yt = dy® —iwy®, with wzz—i(dz'izi—zidzi).
P

(A14)

One can clearly see that unlike the N = (2, Z)C[P’N -1 case,
the deformed model has all its left movers living on
O(-1)®N. We remark here that at the level of NLSM,
the study of isometry/holonomy anomalies is easy. The
N — 1 right movers ¢, living on a tangent bundle of CPV~!
contribute to the anomaly proportional to the first Chern
class of TCPN-1,

A = e (repv-1y =N g (AL5)

= C 1( = I .

On the other hand, the N left movers % on O(—1)®V
contribute

N
=-—do.

Ar 4r

(A16)
Therefore, the deformed model is anomaly-free as its
GLSM cousin; for more details see [34].

APPENDIX B: SCALING ANOMALIES:
TECHNICALITIES

In this Appendix we explain the technique to compute
the anomalous Jacobian in Sec. IV B, say, sTrgi1 and
sTrr« 1 in Eq. (4.6). A careless treatment of the chiral

multiplet ® = (¢, ", ) seemingly tells us that

sTrei 1 = Try1 —Tr, 1=0. (B1)
One has to regularize the above supertrace by introducing
regulators. To find a proper regulator, it is sufficient to look
at the equation of motion of the superfield ®' which enters

the action Scpi [see Eq. (2.10)],
D, D_®' =--- (B2)

We need to further act by D, to project the operator
equation into the half chiral superspace, i.e.,

D.D,D_ =D, () (B3)

After some algebra, we find

D, D, D__® (V2 + ¢;D)¢' + V20" (V2 +ig:B)y',

+ e (B4)
Therefore, the supertrace Eq. (B1) is regularized as

STrg 1 _Mhinoo(Tr cenrVitaiD) ~Tr,, e VitiaiB )).

(B5)

For trivial fields D and B, the above trace is surely zero. But
now let us turn on nonzero but constant D and B back-
grounds. We have

TI'¢ e (vg‘HIiD)
92

_ / d< eM—‘%(H L (@D+0(4,)+

o
[ (M2+<q,D+<9 >+<9(%))
(
)

)

)

Tr 1 eMz(v;t+qu )

~ [x{x

/d2 <M2+(lqlB+O

02

1
e <1 —I——(zq,B—l—O (AL)

)

Sy
(i)

Therefore, putting M> — co, we arrive at

$Trei =4 [ py (D —iB), (B7)
47
or, in superspace,
Trpl = —i 8t / Lxd0*T_|y . (BS)
7

Similarly, for Fermi multiplet T'¢,
D.D.D__ upon I'* and find

we also impose

D,D.D_T%=D.D_D.T* + D, (Y_T?)
« (V2 —iq,B)y% — V20 (V2
+ D (T_T%) +

- Z]aD)Ga
(B9)

Thus, we regularize the supertrace of the Fermi multiplet as

sTrra 1T = lim < —Tr . eMZ(v ~Ha )_'_TrG“e#(V,%—an))

M?—>
qa
- D —
/sz(

: - a
lB) = lg/(ﬂxd9+,r_|9+:0;

(B10)
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cf. Sec. IVA. From Egs. (B8) and (B10), we establish the
relation between canonical coupling 7, and holomorphic z
in Eq. (4.9), i.e.,

7. —T—I—Zl—logZ ZiZ—;logZa(,u).

We further remark that, as a consistency check, given a com-
plexified U(1) rotation of the chiral or Fermi matter, e.g.,

(B11)

D — @, (B12)

the anomalous Jacobian takes the form

j(a) — ea (8Trgi a4ﬂfd~ (B13)
For real a, such as the wave function renormalization or a
scale transformation, the anomalous Jacobian only gives a
correction to the D term, because Im.7 («) cancels with the
contribution from ®’. It simply signals that fermions do not
contribute to the one-loop f function. On the other hand, for
imaginary a, it is equivalent to a chiral rotation. We see that
J (@) and its conjugation only contribute to the flux B term,
which gives us the correct chiral anomaly from the chiral
fermions . (Sec. IVA).
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