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The Novikov-Shifman-Vainshtein-Zakahrov β functions in two-dimensional N ¼ ð0; 2Þ supersym-
metric models are revisited. We construct and discuss a broad class of such models using the gauge
formulation. All of them represent direct analogs of four-dimensional N ¼ 1 Yang-Mills theories and are
free of anomalies. Following the same line of reasoning as in four dimensions we distinguish between the
holomorphic and canonical coupling constants. This allows us to derive the exact two-dimensional β
functions in all models from the above class. We then compare our results with a few examples that have
been studied previously.
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I. INTRODUCTION AND CONCLUSION

The 2d=4d parallels are known and have been used since
the time of Polyakov who found asymptotic freedom (AF)
in 2d nonlinear sigma models [1], in analogy with AF in 4d
Yang-Mills theories [2,3]. In the past three decades, 2d=4d
correspondence acquired a much deeper meaning by virtue
of supersymmetry. Much of nonperturbative dynamics in
both 2d=4d supersymmetric gauge theories has been
thoroughly understood and found to correspond to each
other. By the “2d=4d correspondence” we mean here the
cases in which either some of the 2d=4d physics contents
are exactly the same, e.g., the Alday-Gaiotto-Tachikawa
correspondence [4], or the dynamical behaviors in 2d and
4d coincide; for instance, the BPS1 spectra, certain corre-
lation functions, dualities, etc., are identical [5–10]. Among
these phenomena, an instructive example is provided by
non-Abelian BPS vortex strings [11–13], both in 4dN ¼ 2

and N ¼ 1 gauge theories, whose low-energy dynamics
are captured by 2d N ¼ ð2; 2Þ and heterotic N ¼ ð0; 2Þ
sigma models, respectively [14–18]. The above vortex
strings present a “bridge” between 4d and 2d physics
providing a quantitative explanation why the 2d dynamics

are in correspondence with the dynamics in its 4d progen-
itor. This correspondence was established in a wide class of
theories from both 2d and 4d directions, perturbatively and
nonperturbatively [6,19–24].
The goal of this paper is to derive Novikov-Shifman-

Vainshtein-Zakahrov (NSVZ)–like β functions [25–29] in
general two-dimensionalN ¼ ð0; 2Þ supersymmetric gauge
theories adding new evidence for the 2d=4d correspon-
dence. A number of 2d analogs of the NSVZ β functions
were obtained in the past via both perturbative methods and
instanton calculus in theN ¼ ð0; 2ÞCP1model [24] and in a
large class of heterotically deformed nonlinear sigma
models (NLSMs) that are deformations of their N ¼
ð2; 2Þ cousins [6]. Here we focus on another general class
of N ¼ ð0; 2Þ gauged linear sigma models (GLSMs) and
obtain the general form of the corresponding β functions.
They have the same structure as the NSVZ β function in 4d.
In those cases where comparison with the previous results is
possible our newly derived GLSM β functions are identical
to those of NLSMs. This is not surprising since the NLSMs
studied previously can be embedded in GLSMs.
We want to emphasize not only the ubiquity of 2d=4d

correspondence but also the conspiracy of methodologies
applicable to both 2d and 4d theories. Historically, 2d
sigma models were considered as simplified toy models
useful for understanding real world physics in 4d. Instead,
in this paper, we follow the opposite direction, from 4d to
2d, establishing and using the 2d analog of the Konishi
anomaly [30] and scaling anomalies in 2d N ¼ ð0; 2Þ
gauge theories, à la Arkani-Hamed and Murayama in the
4d N ¼ 1 case [31]. This observation helps us relate
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1BPS spectra here are meant to those physical states in the
short supermultiplets of given supersymmetries.

PHYSICAL REVIEW D 99, 065007 (2019)

2470-0010=2019=99(6)=065007(11) 065007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.065007&domain=pdf&date_stamp=2019-03-18
https://doi.org/10.1103/PhysRevD.99.065007
https://doi.org/10.1103/PhysRevD.99.065007
https://doi.org/10.1103/PhysRevD.99.065007
https://doi.org/10.1103/PhysRevD.99.065007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


holomorphic coupling constants to canonic ones in 2d
GLSMs, thus trivializing derivation of their β functions.
The general master formula obtained in this paper is

βðg2Þ ¼ −
g4

4π

P
iqi þ 1

2

P
aq̃aγa

1 −
P

i
qi

8π g2
; ð1:1Þ

in the case of 2d N ¼ ð0; 2Þ gauge theories with a single
Fayet-Iliopoulos (FI) coupling

ξ≡ 2

g2
;

where qi’s are theUð1Þ gauge charges of the bosonic matter
fields and q̃a and γa are the Uð1Þ gauge charges and
anomalous dimensions of the fermionic matter fields.
The paper is organized as follows: We will briefly review

the building blocks of 2d N ¼ ð0; 2Þ supersymmetric
GLSMs in Sec. II and a nonrenormalization theorem for
the FI coupling constants in Sec. III. We then explain the
difference between holomorphic and canonical coupling
constants from both the perspectives of the Konishi
anomaly and the scaling anomalies of matter fields, and
we derive the master equation (1.1) in Sec. IV. Finally, we
apply the formula in several examples.

II. TWO-DIMENSIONAL N = ð0;2Þ GLSMs

The N ¼ ð0; 2Þ superspace is parametrized by 2d
bosonic spacetime

x�� ≡ x0 � x1

and their N ¼ ð0; 2Þ fermionic partners θþ and θ̄þ. The
supercharges are defined in terms of these coordinates as
follows:

Qþ ≡ ∂
∂θþ þ iθ̄þ∂þþ;

Q̄þ ≡ −
∂

∂θ̄þ − iθþ∂þþ; ð2:1Þ

where

∂þþ ≡ 2∂xþþ ; ∂−− ≡ 2∂x−− :

Accordingly, the superderivatives are given by

Dþ ≡ ∂
∂θþ − iθ̄þ∂þþ;

D̄þ ≡ −
∂

∂θ̄þ þ iθþ∂þþ; ð2:2Þ

which satisfy the conditions

D2þ ¼ D̄2þ ¼ 0; fDþ; D̄þg ¼ 2i∂þþ:

With this notation, it is not difficult to build three types of
supermultiplets to construct N ¼ ð0; 2Þ GLSMs [14,32].

A. Gauge multiplets

TheN ¼ ð0; 2Þ gauge multipletU−− ¼ ðA−−; λ−; λ̄−; DÞ
is real and adjoint-valued

U−− ¼ A−− − 2iθþλ̄− − 2iθ̄þλ− þ 2θþθ̄þD ð2:3Þ

in superfield formalism. Here

A−− ≡ A0 − A1; Aþþ ≡ A0 þ A1

are the 2d gauge fields, λ− and λ̄− are the gaugino fields,
and the real field D is auxiliary. The field Aþþ is an N ¼
ð0; 2Þ singlet.
Next, we can promote superderivatives to be covariant,

namely

Dþ ≡ ∂
∂θþ − iθ̄þ∇þþ ≡ ∂

∂θþ − iθ̄þð∂þþ − iAþþÞ;

D̄þ ≡ −
∂

∂θ̄þ þ iθþ∇þþ ≡ −
∂

∂θ̄þ þ iθþð∂þþ − iAþþÞ;
D−− ≡ ∂−− − iU−− ¼ ∇−− − 2θþλ̄− − 2θ̄þλ− − 2iθþθ̄þD:

ð2:4Þ

The superfield strength of the gauge multiplet is given by

ϒ− ¼ ½D̄þ;D−−� ¼ −2ðλ− − iθþðD− iBÞ− iθþθ̄þDþþλ−Þ;
ð2:5Þ

where

B ¼ ∂0A1 − ∂1A0 − i½A0; A1� ð2:6Þ

is the field strength of the Aμ field. The conjugated
superfield ϒ̄− is defined accordingly. The action of the
gauge multiplet is as follows:

Sgauge ¼
1

8e2
Tr

Z
d2xdθþdθ̄þϒ̄−ϒ−

¼ 1

e2
Tr

Z
d2x

�
1

2
B2 þ iλ̄−∇þþλ− þ 1

2
D2

�
: ð2:7Þ

Here e2 is the gauge coupling. The corresponding NLSM
can be obtained in the limit e2 → ∞.

B Chiral multiplets

The N ¼ ð0; 2Þ chiral multiplet Φi ¼ ðϕi;ψ iþÞ satisfies
the usual chiral constraint

D̄þΦi ¼ 0: ð2:8Þ
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In the superfield formalism it is written as

Φi ¼ ϕi þ
ffiffiffi
2

p
θþψ iþ − iθþθ̄þ∇þþϕi; ð2:9Þ

where

∇μϕ
i ¼ ð∂μ − iqiAμÞϕi:

Moreover, qi is the charge of the fieldΦi with respect to the
Uð1Þ gauge field. The action of the chiral multiplets can be
written as

Schiral ¼ −
i
2

Z
d2xdθþdθ̄þ

X
i

Φ̄iD−−Φi

¼
Z

d2x
X
i

ð−j∇μϕ
ij2 þ iψ̄þi∇−−ψ

iþ

−
ffiffiffi
2

p
iqiϕ̄iλ−ψ

iþ þ
ffiffiffi
2

p
qiψ̄þiλ̄−ϕ

i þ qiϕ̄iDϕiÞ:
ð2:10Þ

C Fermi multiplets

Another important matter superfield consists of a
fermion χa− and an auxiliary field Ga,

ðχa−; GaÞ ∈ Γa
−: ð2:11Þ

It is not necessarily chiral, but, instead, satisfies the
constraint

D̄þΓa
− ¼

ffiffiffi
2

p
EaðΦÞ; ð2:12Þ

where EðΦÞ is an arbitrary holomorphic function with
respect to chiral boson fields Φ’s. In the superfield
formalism, it can be expanded as

Γa
− ¼ χa− −

ffiffiffi
2

p
θþGa − iθþθ̄þ∇þþ χ− −

ffiffiffi
2

p
θ̄þEaðΦÞ:

ð2:13Þ

The action for the Fermi multiplet reduces to

SFermi ¼ −
1

2

Z
d2xdθþdθ̄þ

X
a

Γ̄−aΓa
−

¼
Z

d2x
X
a;i

�
i χ̄−a∇þþ χa− þ jGaj2 − jEaðϕÞj2

− χ̄−a
∂Ea

∂ϕi ψ
iþ þ H:c:

�
: ð2:14Þ

Note that the gauge field strength ϒ− is a particular case of
the Fermi multiplets in the adjoint representation of the
gauge group, satisfying

D̄þϒ− ¼ 0: ð2:15Þ

D Superpotentials

Last but not least, we need to introduce superpotentials
JaðΦÞ as holomorphic functions of chiral superfields,
whose action reduces to half of the superspace (accom-
panied by Fermi multiplets Γa

−),

SJ ¼ −
1ffiffiffi
2

p
X
a

Z
d2xdθþΓa

−Ja þ H:c:

¼
X
a

Z
d2xGaJaðϕÞ þ

X
i

χ−a
∂Ja
∂ϕi ψ

iþ þ H:c:

ð2:16Þ

Of the utmost interest is the FI term as a superpotential
given by the gauge field strength, if it admits Uð1Þ factors,

Sτ ¼
1

4
Tr

Z
d2xdθþτϒ−jθ̄þ¼0 þ H:c:

¼ Tr
Z

d2x

�
−ξDþ θ

2π
B

�
; ð2:17Þ

where for simplicity we only consider theories with a single
FI term, and

τ ¼ θ

2π
þ iξ ð2:18Þ

is the complex FI coupling constant.

E GLSM action

Overall we assemble all the above ingredients and arrive
at the action of N ¼ ð0; 2Þ supersymmetric GLSM,

S ¼ Sgauge þ Schiral þ SFermi þ Sτ þ H:c: ð2:19Þ

Here and below, without loss of generality, we will consider
theories in which the superpotentials are limited to FI
terms. Importantly, for such theories to be consistent at the
quantum level (i.e., free of internal anomalies), we need to
impose constraints on the representations of the chiral and
Fermi multiplets to get rid of the gauge anomalies (see also
in [33]),

Uð1Þ gauge∶
X
i

q2i ¼
X
a

q̃2a;

non − Abelian gauge∶
X
i

t2ðiÞ ¼ t2ðAÞ þ
X
a

t2ðaÞ;

ð2:20Þ

where qi and q̃a areUð1Þ gauge charges of chiral and Fermi
multiplets, t2 is the dual Coxeter number, and i, a, and A
denote the representations of chiral, Fermi, and gauge
multiplets.
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III. A NONRENORMALIZATION THEOREM
FOR THE HOLOMORPHIC COUPLING τ

In2d gauge theories, thegauge couplingehas a dimension
of mass and is thus superrenormalizable. For energy scale
μ ≪ e, the gauge multiplets will be nondynamical, and we
arrive at NLSMs. Therefore the only sensible parameter in
the theory is its FI coupling constant τ, which ismarginal and
runs at the quantum level. In much the same way as with the
gauge couplings in 4d N ¼ 1 gauge theories, the 2d FI
parameter τ, as the coupling of the N ¼ ð0; 2Þ superpoten-
tial, is subject to a nonrenormalization theorem and receives
atmost a one-loop correction (see, e.g., [28]).Wewill follow
[28,31] in reviewing the relevant argument.
From Eq. (2.19), we see that the action S depends on τ

holomorphically. It is convenient to use the notation

2πiτ ¼ −2πξþ iθ≡ −
4π

g2
þ iθ: ð3:1Þ

Let us ask ourselves: When we change the cutoff from M0

to μ, how does the coupling 2πiτðμÞ (in the Wilsonian
sense) change to keep the low-energy physics intact? To
answer this question, let us examine an ansatz

2πiτðμÞ ¼ 2πiτðM0Þ þ f

�
2πiτðM0Þ; log

M0

μ

�
: ð3:2Þ

It is worth noting that a 2π shift of the θ angle leads to no
change of physics, and therefore at most,

f

�
2πiτðM0Þ; log

M0

μ

�
→ f

�
2πiτðM0Þ; log

M0

μ

�

þ 2πiF

�
log

M0

μ

�
;

for θ → θ þ 2π; ð3:3Þ
where function FðlogM0

μ Þ can only take integer values.
Furthermore, because Fð0Þ ¼ 0, by continuity we conclude
that function f is periodic with respect to the θ angle.
Therefore, the β function for 2πiτ,

βð2πiτÞ ¼ μ
∂
∂μ ð2πiτðμÞÞ ¼ μ

∂f
∂μ ; ð3:4Þ

is periodic with respect to θ and admits a Fourier
expansion,

βð2πiτÞ ¼
X
n≥0

bne2πinτ: ð3:5Þ

It is clear that in perturbation theory we can only have non-
negative integer values of n appearing in the expansion
(3.5). Also, in the perturbative regime we have at most b0
nonzero, i.e.,

βð2πiτÞ ¼ b0: ð3:6Þ

In perturbation theory it is obvious that all bn’s with
n ¼ 1; 2; 3;…, vanish. Hence the nonrenormalization theo-
rem of the absence of higher loops is proven for the
holomorphic coupling.
Nonperturbatively, one needs to apply the anomalous R

symmetry ofN ¼ ð0; 2Þ, which guarantees that the θ angle
receives no quantum corrections at all. Consequently
βð2πiτÞ is independent of Imð2πiτÞ, and, simultaneously
is holomorphic in 2πiτ. It implies that βð2πiτÞ can only be a
constant; i.e., Eq. (3.6) holds both perturbatively and
nonperturbatively.
Before proceeding to the discussion of the canonical

coupling τc in next sections, let us first calculate b0 that
would be used later. It can easily be obtained by inspecting
the D term of the action (2.19),

SD ¼
Z

d2x

�
1

2e2
D2 − ξDþ

X
i

qiϕ̄iDϕi

�
: ð3:7Þ

From (3.7) we see that the real part of τ receives a tadpole
one-loop correction.2 The tadpole graph emerges through
contracting ϕ and ϕ̄. As a result,

ξðμÞ ¼ ξðM0Þ −
P

iqi
2π

log

�
M0

μ

�
; ð3:8Þ

which implies, in turn, that

βðξÞ ¼
P

iqi
2π

; or; say; βðg2Þ ¼ −
P

iqi
4π

; ð3:9Þ

and

b0 ¼ −
X
i

qi:

IV. FROM THE HOLOMORPHIC
TO CANONIC COUPLING

As is known from [28], all higher order loops in the
gauge coupling renormalization appear in passing from
the holomorphic to canonic coupling from the Z factors of
the matter fields (which are converted into the anomalous
dimensions in the β functions). To see how this happens we
must convert the kinetic terms of the matter fields into
(2.17) by virtue of anomalies. In other words, we must take
into account a subtle difference between the Wilsonian
Lagrangian and the one partical irreducible functional
(see [25–28]).
Below we will discuss two alternative (but related)

derivations, through the Konishi anomaly [30] and through
the scale anomaly [31].

2As in the 4d case, the tadpole correction appears if and only ifP
iqi ≠ 0.
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A. The Konishi anomaly in N = ð0;2Þ GLSM

It is not difficult to establish the 2d analog of the Konishi
anomaly. To this end, as an example, we will consider the
operator

P
aΓ̄−aΓa

− appearing in (2.14) (assuming that
Ea ¼ 0). Classically, the equation of motion for this
operator is

Dþ

�X
a

Γ̄−aΓa
−

�
¼ 0: ð4:1Þ

This follows, e.g., from inspection of the θ̄þ component.
However, at the quantum level this particular component
contains a well-known anomaly in the derivative of the
χ− current (see more details in Appendix B and also [34]),
analogous to the triangle anomaly in the axial current
in 4d,3

∂þþ

�X
a

χ̄−a χ
a
−

�
¼

X
a

q̃a
2π

B

����
Uð1Þ

; ð4:2Þ

where B is defined in (2.5). Note that the relative coefficient
between D and B in (2.5) is rigidly fixed by N ¼ ð0; 2Þ
supersymmetries. Needless to say, the full derivative in the
Uð1Þ part does not appear in the action classically (it can be
dropped). However, at the quantum level we can establish
the following relations (after evolving the action from M0

down to μ):

ΔLΓðμÞ −
1

2
ZFermi

Z
dθ̄þdθþðΓ̄−aΓa

−Þ

¼ −
ZFermi

2

Z
dθ̄þDþðΓ̄−aΓa

−Þ

¼ i
ZFermi

2
∂þþ

�X
a

χ̄−a χ
a
−

�
¼ iZFermi

X
a

q̃a
4π

B

����
Uð1Þ

¼ iZFermi

X
a

q̃a
8π

�Z
dθþϒ− þ

Z
dθ̄þϒ̄−

�����
Uð1Þ

; ð4:3Þ

where in the last step, we uplifted the equation to the level
of superspace; cf. (2.17). The ϒ− part gives the evolution
of the wave function renormalization of fermion Γa

− to the
FI-coupling constant τ; see also Eq. (4.7). Adding the one-
loop tadpole graph and differentiating over μ=∂μ we arrive
at the q̃aγa term in (1.1).

B. Scaling anomalies

Now we would like to discuss the 2d N ¼ ð0; 2Þ β
function along the lines of [31]. It is true that the
holomorphic τ only receives a one-loop correction;
however, because of the normalization point running down

from M0 to μ, the kinetic terms of the matter fields will
receive a wave function renormalization,

X
i

Φ̄iD−−Φi →
X
i

ZiðμÞΦ̄iD−−Φi;

X
a

Γ̄−aΓa
− →

X
a

ZaðμÞΓ̄−aΓa
−; ð4:4Þ

see Sec. IVA for Γ̄−aΓa
−.

To keep all matter fields canonically normalized, we
need to change field variables, i.e., redefine

Φi ≡ 1ffiffiffiffiffiffiffiffiffiffiffi
ZiðμÞ

p Φi0; Γa
− ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffi

ZaðμÞ
p Γa0

− : ð4:5Þ

However, such rescaling will result in anomalous Jacobians
from the functional measure. Formally we have

½dΦi� ¼
�
d
�

1ffiffiffiffiffiffiffiffiffiffiffi
ZiðμÞ

p Φi0
��

¼ sDet
�

1ffiffiffiffiffiffiffiffiffiffiffi
ZiðμÞ

p
�
½dΦi0�

¼ ½dΦi0�e−1
2
logZiðμÞsTrΦi1;

½dΓa
−� ¼

�
d

�
1ffiffiffiffiffiffiffiffiffiffiffiffi
ZaðμÞ

p Γa0
−

��
¼ sDet

�
1ffiffiffiffiffiffiffiffiffiffiffiffi
ZaðμÞ

p
�
½dΓa0

− �

¼ ½dΓa0
− �e−1

2
logZaðμÞsTrΓa−1; ð4:6Þ

where “sDet” and “sTr” denote the superdeterminant and
supertrace, respectively. The supertrace is superficially
vanishing due to supersymmetries. Nevertheless, in a
nontrivial gauge field background, we can show that they
give rise to terms proportional to the Uð1Þ field strength
ϒ−. More specifically,

sTrΦi1 ¼ −i
qi
8π

Z
d2xdθþϒ−jθ̄þ¼0; and

sTrΓa
−
1 ¼ i

q̃a
8π

Z
d2xdθþϒ−jθ̄þ¼0: ð4:7Þ

The derivation of this formula is presented in Appendix B.
Therefore, the holomorphic τ will receive nonholomorphic
corrections from wave function renormalizations,

τ→ τc ¼ τþ
X
i

i
qi
4π

logZiðμÞ−
X
a

i
q̃a
4π

logZaðμÞ: ð4:8Þ

The anomalous dimensions of Φi and Γa
− are given by

γi ¼−μ
∂
∂μ logZiðμÞ and γa ¼−μ

∂
∂μ logZaðμÞ; ð4:9Þ

and they are nonholomorphic. This statement is in one-to-
one correspondence with the NSVZ β function in four
dimensions.
Differentiating log μ on both sides of Eq. (4.8) and using

Eq. (3.9), we have

3The triangle anomalous graph in four dimensions is replaced
in two dimensions by a diangle graph. That is why the right-hand
side in (4.2) is linear in q̃a.
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βðτcÞ ¼ i

�P
iqi

2π
−
X
i

qi
4π

γi þ
X
a

qa
4π

γa

�
: ð4:10Þ

In terms of coupling constant

ImðτcÞ ¼ ξc ≡ 2

g2c
ð4:11Þ

we have

βðg2cÞ ¼ −
g4c
4π

�X
i

qi −
1

2

X
i

qiγi þ
1

2

X
a

q̃aγa

�
: ð4:12Þ

Furthermore, from Eq. (3.7), the β function of g2c, or say, ξ,
is nothing other than the wave function renormalization of
chiral multiplets, i.e.,

γi ¼
βðg2cÞ
g2c

: ð4:13Þ

Using it, we arrive at the master formula

βðg2cÞ ¼ −
g4c
4π

P
iqi þ 1

2

P
aq̃aγa

1 −
P

i
qi

8π g2c
: ð4:14Þ

Remark: The gauge multiplets have no contribution to
the β function, because τc is associated with theUð1Þ factor
gauge group, with respect to which the gauge multiplet is
Uð1Þ neutral.

V. EXAMPLES

In this section, we will apply Eq. (1.1) in various
examples.

A. N = (2;2)CPN − 1 model

For N ¼ ð2; 2Þ supersymmetries, the N ¼ ð0; 2Þ chiral
and Fermi multiplets are combined to an N ¼ ð2; 2Þ chiral
multiplet. We have

qi ¼ q̃a and Zi ¼ Za; for i ¼ a ¼ 1; 2;…: ð5:1Þ
Therefore the holomorphic τ and canonical τc coincide, and
the β-function terminates at one-loop, in terms of g2c,

4

βðg2cÞ ¼ −
P

iqi
4π

g4c: ð5:2Þ

Especially for aUð1Þ gauge theory with all qi ¼ 1, we have
the standard N ¼ ð2; 2ÞCPN−1 sigma model, and its β
function is

βðg2cÞ ¼ −
N
4π

g4c: ð5:3Þ

B. N = (0;2)CPN − 1 model

We can deform the previousN ¼ ð2; 2ÞCPN−1 model by
deleting part of N ¼ ð2; 2Þ Uð1Þ field strength, considered
in [16]. In the language N ¼ ð0; 2Þ supersymmetries, the
N ¼ ð2; 2ÞUð1Þ field strength Σð2;2Þ can be decomposed as

Σð2;2Þ ¼ Σð0;2Þ ⊕ ϒ−; ð5:4Þ

where Σð0;2Þ is a N ¼ ð0; 2Þ chiral superfield and ϒ− is the
N ¼ ð0; 2Þ Fermi multiplet as the field strength of theUð1Þ
gauge multiplet. N ¼ ð2; 2Þ chiral multiplet Φi

ð2;2Þ also

admits a decomposition as

Φi
ð2;2Þ ¼ Φi ⊕ Γi

−; ð5:5Þ

and the N ¼ ð0; 2Þ Fermi multiplet Γi
− satisfies the con-

straint

D̄þΓi
− ∝ Σð0;2ÞΦi: ð5:6Þ

Now, if we delete Σð0;2Þ, the deformed theory will have
only N ¼ ð0; 2Þ supersymmetry, and the Fermi multiplets
satisfy

D̄þΓi
− ¼ 0: ð5:7Þ

Its β function turns out to be

βðg2cÞ ¼ −
Ng4c
4π

1þ 1
2
γ

1 − N
8π g

2
c
; ð5:8Þ

where γ denotes the anomalous dimension of Fermi
multiplet Γi

−. We want to further comment that, in [24],
the authors also considered a type of deformed N ¼
ð0; 2ÞCP1 model at the level of NLSM, which is different
from ours. However, we do see that the β functions of the
two models are similar. To compare the difference between
our model and that in [24], we discuss its nonlinear
formalism in Appendix A.

C. Heterotically deformed
N = (0;2)CPN − 1 model

We can also consider a further deformation from the
N ¼ ð0; 2ÞCPN−1 model discussed above, by adding an
additional gauge singlet N ¼ ð0; 2Þ Fermi multiplet,

Ω− ¼ η− −
ffiffiffi
2

p
θþH − iθþθ̄þ∂þþη−; ð5:9Þ

to theN ¼ ð0; 2Þ model, with the corresponding deformed
term in the action,4Exactly the same occurs in 4d Yang-Mills [28,29].
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SΩ ¼
Z

d2xdθþdθ̄þ
�
−
1

2
Ω̄−Ω− þ κ

2
Φ̄iΓi

−Ω− þ H:c:

�
;

ð5:10Þ

where κ is an additional coupling. It is crucial to note that,
since we start from the N ¼ ð0; 2Þ model, all Fermi
multiplets satisfy

D̄þΓi
− ¼ D̄þΩ− ¼ 0: ð5:11Þ

This constraint turns out to be important because it
guarantees that the interaction term can be recast in half
superspace as

κ

2

Z
d2xdθþdθ̄þΦ̄iΓi

−Ω− ¼ κ

2

Z
d2xdθþD̄þΦ̄iΓi

−Ω−:

ð5:12Þ

It was argued in [23] that this type of interaction is subject
to a “D-term” nonrenormalization theorem in 2d; see also
[6]. Therefore, the holomorphic coupling constant κ is not
renormalized. Here we pause and remark that, if one tries to
perform the heterotic deformation from N ¼ ð2; 2ÞCPN−1

GLSM, there would be no nonrenormalization theorem to
protect the coupling κ, because in the N ¼ ð2; 2Þ case,
D̄þΓi

− ∝ Σð0;2ÞΦi; see Eq. (5.6). This differs from the
situation in [6], where the heterotic deformation is indeed
performed on N ¼ ð2; 2ÞCPN−1 NLSM, because the
superderivative acting on the Fermi multiplet in NLSM
automatically vanishes.
Since the coupling κ receives no renormalization, we

thereby will focus on the β function of ξ, or say g−2c , in the
presence of the coupling constant κ. Let us first write down
the action in components:

SΩ ¼
Z

d2xðiη̄−∂þþη− þ H̄HÞ

þ κ

Z
d2xði∇þþϕ̄i χ

i
−η− þGiψ̄þiη− −Hψ̄þi χ

i
−Þ

þ H:c: ð5:13Þ

The key observation (see also [6]) is that the evolution of
the interaction term iκ∇þþϕ̄i χ

i
−η− and its Hermitian

conjugate will give a finite shift to the kinetic term of
ϕi, i.e.,

�
κ

Z
d2xði∇þþϕ̄i χ

i
−η−Þ; κ̄

Z
d2yði∇þþϕi χ̄−iη̄−Þ

	

¼ −
jκj2

4πZ χZη

Z
d2xj∇μϕ

ij2; ð5:14Þ

where we take fermions as quantum fluctuations and
bosons as a background. We write the wave function

renormalizations of χ− and η− explicitly. It was argued
in [6] that this jκj2 iteration is limited to one-loop in the
computation of the quantum correction in the instanton
background. Here we have a similar situation—our 2d
GLSM admits an (anti)vortex background, say,

∇zϕ̄i ¼ 0 or ∇zϕ
i ¼ 0; ð5:15Þ

where ∇z is the Euclidean continuation of ∇þþ. In this
background, the iteration of jκj2 will not enter higher loops.
Nevertheless, the wave function renormalization of the
fields ψ i

− and η− will still enter higher loops evaluation.
Therefore, we define a new coupling,

h2 ≡ jκj2
Z χZη

; ð5:16Þ

whose β function is given by

βðh2Þ ¼ μ
∂
∂μ h

2 ¼ h2ðγ χ þ γηÞ; ð5:17Þ

where

γ χ ¼ −μ
∂
∂μ logZ χðμÞ and γη ¼ −μ

∂
∂μ logZηðμÞ

ð5:18Þ

are the anomalous dimensions of the fields χi− and η−.
Now we assemble this additional contribution to the one-

loop correction of the holomorphic coupling ξ. The
imaginary part of Eq. (4.8) is thus modified as

2

g2c
¼ 2

g2
−
h2

4π
þ N
4π

logZϕðμÞ −
N
4π

logZ χðμÞ: ð5:19Þ

Differentiating with respect to the running scale μ, and
using Eqs. (4.13) and (5.17), we arrive at the β function for
g2c in the heterotically deformed N ¼ ð0; 2ÞCPN−1 GLSM,

βðg2cÞ ¼ −
g4c
4π

Nð1þ γ χ

2
Þ − h2ðγ χ þ γηÞ
1 − N

8π g
2
c

: ð5:20Þ

Finally, we can compare Eq. (5.23) to the master formula in
[6]. In [6], the kinetic term of the fermion χi− (in their
notation, it was ψ i

R) is nonlinearly coupled to the bosonic
field ϕi. It makes the definition of the wave function
renormalizations of the two theories different up to a scale
factor g2c, i.e.,

Z χhere ¼ g2cZ χthere: ð5:21Þ

Therefore it leads us to define
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h02 ¼ h2g2c and γ0χ ¼ γ χ −
βðg2cÞ
g2c

: ð5:22Þ

Under these new definitions, we exactly reproduce the
master formula in [6],

βðg2cÞ ¼ −
g2c
4π

Ng2cð1þ γ0χ
2
Þ − h02ðγ0χ þ γηÞ
1 − h02

4π

: ð5:23Þ
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APPENDIX A: NLSM OF N = ð0;2ÞCPN − 1 MODEL

In this Appendix, we transform the action of the
deformed N ¼ ð0; 2ÞCPN−1 model of Sec. V B into the
corresponding NLSM version. The NLSM can be obtained
by integrating out the gauge multiplet of its GLSM cousin
at the energy scale μ ≪ e. Then, one can study the model in
the geometric formalism. First, by integrating the D term,
Eq. (3.7), one finds the potential

VD ¼
�X

i

ϕ̄iϕ
i − ξ

�
2

: ðA1Þ

On the level of NLSM, it constrains all bosonic fields on
S2N−1; i.e., ϕi must satisfy the equation

X
i

ϕ̄iϕ
i − ξ ¼ 0: ðA2Þ

On the other hand, integrating the gaugino fields λ− and λ̄−
in Eq. (2.10), we see that the fermion fields ψ iþ are subject
to constraints

X
i

ϕ̄iψ
iþ ¼ 0; ðA3Þ

implying that ψ iþ’s live on the tangent bundle of the
manifold. In fact, we can rewrite Eqs. (A2) and (A3)
together in terms of superfields,

X
i

Φ̄iΦi − ξ ¼ 0: ðA4Þ

To obtain theCPN−1 model, we need to also take account of
the Uð1Þ gauge imposed on Φi’s. We can use this gauge to
fix one of the chiral multiplet, say, theNth fieldΦN , to have
its bosonic field real ,

ΦN ¼ φþ
ffiffiffi
2

p
θþκþ þ � � � ; ðA5Þ

where φ now is a real boson and κþ is its superpartner that
is still a complex Weyl fermion. Further, we define the
gauge invariant coordinates,

Zi ¼ zi þ
ffiffiffi
2

p
θþζiþ ≡ Φi

ΦN ; for i ¼ 1; 2;…; N − 1;

ðA6Þ

from which we find

zi ¼ ϕi

φ
and ζiþ ¼ 1

φ

�
ψ iþ −

ϕi

φ
κþ

�
: ðA7Þ

Now, we can solve forΦi in terms of Zi. From Eq. (A4), we
express ΦN as

jΦN j2 ¼ ξ

1þ Z̄iZi ; ðA8Þ

or, in components,

φ ¼
ffiffiffi
ξ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z̄izi

p ≡
ffiffiffi
ξ

p
ρ

and κþ ¼ −
ffiffiffi
ξ

p
ρ3

z̄iζiþ: ðA9Þ

We then solve

ϕi ¼
ffiffiffi
ξ

p
ρ

zi and ψ iþ ¼
ffiffiffi
ξ

p
ρ

�
δij −

1

ρ2
ziz̄j

�
ζjþ;

for i ¼ 1; 2;…; N − 1: ðA10Þ

Next, we integrate out the gauge fields Aμ in Eqs. (2.10) and
(2.14), and we find

Aþþ ¼ iξ
2ρ2

ð∂þþz̄izi − z̄i∂þþziÞ þ igij̄ζ̄
j̄
þζiþ;

A−− ¼ iξ
2ρ2

ð∂−−z̄izi − z̄i∂−−ziÞ þ i χ̄−a χa−; ðA11Þ

where, to distinguish the Fermi multiplet Γa from the
bosonic one Φi, we use the Latin letter a to label them with

i ¼ 1; 2;…; N − 1 and a ¼ 1; 2;…; N:

Moreover,

gij̄ ¼
ξ

ρ2

�
δij̄ −

1

ρ2
z̄izj̄

�
ðA12Þ

is the standard Fubini-Study metric on CPN−1. The bosonic
part of the gauge field is, in fact, the Uð1Þ piece of the
holonomy group UðN − 1Þ of CPN−1 [34] and couples to
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the left moving fermion χa−. It implies that the left mover
lives on the tautological line bundle Oð−1Þ of CPN−1.
Using Eqs. (A9)–(A11), we can recast Eqs. (2.10),

(2.14), and (2.17) to obtain the NLSM action

SNLSM¼
Z

d2xðgij̄∂μz̄j̄∂μziþ igij̄ζ̄
j̄
þ∇UðN−1Þ−− ζiþ

þ i χ̄−a∇Uð1Þ
þþ χa−Þþ2ðgij̄ζ̄j̄þζiþÞð χ̄−a χa−ÞÞ; ðA13Þ

where

∇UðN−1Þζiþ ≡ dζiþ þ Γi
jkdz

jψkþ; with Γi
jk ¼ gl̄i∂kgjl̄;

∇Uð1Þ χa− ≡ dχa− − iωχa−; with ω¼ iξ
2ρ2

ðdz̄izi − z̄idziÞ:

ðA14Þ
One can clearly see that unlike the N ¼ ð2; 2ÞCPN−1 case,
the deformed model has all its left movers living on
Oð−1Þ⊕N . We remark here that at the level of NLSM,
the study of isometry/holonomy anomalies is easy. The
N − 1 right movers ζiþ living on a tangent bundle of CPN−1

contribute to the anomaly proportional to the first Chern
class of TCPN−1,

Aζþ ¼ c1ðTCPN−1Þ ¼ N
4π

dω: ðA15Þ

On the other hand, the N left movers χa− on Oð−1Þ⊕N

contribute

A χ− ¼ −
N
4π

dω: ðA16Þ

Therefore, the deformed model is anomaly-free as its
GLSM cousin; for more details see [34].

APPENDIX B: SCALING ANOMALIES:
TECHNICALITIES

In this Appendix we explain the technique to compute
the anomalous Jacobian in Sec. IV B, say, sTrΦi1 and
sTrΓa

−
1 in Eq. (4.6). A careless treatment of the chiral

multiplet Φi ¼ ðϕi;ψ iþÞ seemingly tells us that

sTrΦi1 ¼ Trϕi1 − Trψ i
þ1 ¼ 0: ðB1Þ

One has to regularize the above supertrace by introducing
regulators. To find a proper regulator, it is sufficient to look
at the equation of motion of the superfield Φi which enters
the action Schiral [see Eq. (2.10)],

DþD−−Φi ¼ � � � : ðB2Þ
We need to further act by D̄þ to project the operator
equation into the half chiral superspace, i.e.,

D̄þDþD−−Φi ¼ D̄þð� � �Þ: ðB3Þ

After some algebra, we find

D̄þDþD−−Φi ∝ ð∇2
μ þ qiDÞϕi þ

ffiffiffi
2

p
θþð∇2

μ þ iqiBÞψ iþ
þ � � � : ðB4Þ

Therefore, the supertrace Eq. (B1) is regularized as

sTrΦi1¼ lim
M2→∞

ðTrϕie
1

M2ð∇2
μþqiDÞ−Trψ i

þe
1

M2ð∇2
μþiqiBÞÞ: ðB5Þ

For trivial fieldsD and B, the above trace is surely zero. But
now let us turn on nonzero but constant D and B back-
grounds. We have

Trϕie
1

M2ð∇2
μþqiDÞ

¼
Z

d2x

�
x

����e
∂2μ
M2

�
1þ 1

M2
ðqiDþOðAμÞÞþO

�
1

M4

������x
	

¼ 1

4π

Z
d2x

�
M2þðqiDþOðAμÞÞþO

�
1

M2

��
;

Trψ i
þe

1

M2ð∇2
μþiqiBÞ

¼
Z

d2x

�
x

����e
∂2μ
M2

�
1þ 1

M2
ðiqiBþOðAμÞÞþO

�
1

M4

������x
	

¼ 1

4π

Z
d2x

�
M2þðiqiBþOðAμÞÞþO

�
1

M2

��
: ðB6Þ

Therefore, putting M2 → ∞, we arrive at

sTrΦi1 ¼ qi
4π

Z
d2xðD − iBÞ; ðB7Þ

or, in superspace,

sTrΦi1 ¼ −i
qi
8π

Z
d2xdθþϒ−jθ̄þ¼0: ðB8Þ

Similarly, for Fermi multiplet Γa
−, we also impose

D̄þDþD−− upon Γa
− and find

D̄þDþD−−Γa
− ¼ D̄þD−−DþΓa

− þ D̄þðϒ̄−Γa
−Þ

∝ ð∇2
μ − iq̃aBÞχa− −

ffiffiffi
2

p
θþð∇2

μ − q̃aDÞGa

þ D̄þðϒ̄−Γa
−Þ þ � � � ðB9Þ

Thus, we regularize the supertrace of the Fermi multiplet as

sTrΓa
−
1 ¼ lim

M2→∞

�
−Tr χa−e

1

M2ð∇2
μ−iq̃aBÞ þ TrGae

1

M2ð∇2
μ−q̃aDÞ

�

¼ −
q̃a
4π

Z
d2xðD − iBÞ ¼ i

q̃a
8π

Z
d2xdθþϒ−jθ̄þ¼0;

ðB10Þ
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cf. Sec. IVA. From Eqs. (B8) and (B10), we establish the
relation between canonical coupling τc and holomorphic τ
in Eq. (4.8), i.e.,

τc ¼ τ þ
X
i

i
qi
4π

logZiðμÞ −
X
a

i
q̃a
4π

logZaðμÞ: ðB11Þ

We further remark that, as a consistency check, given a com-
plexified Uð1Þ rotation of the chiral or Fermi matter, e.g.,

Φi → eαΦi; ðB12Þ
the anomalous Jacobian takes the form

J ðαÞ ¼ eαðsTrΦi1Þ ¼ eα
qi
4π

R
d2xðD−iBÞ: ðB13Þ

For real α, such as the wave function renormalization or a
scale transformation, the anomalous Jacobian only gives a
correction to the D term, because ImJ ðαÞ cancels with the
contribution from Φ̄i. It simply signals that fermions do not
contribute to the one-loop β function. On the other hand, for
imaginary α, it is equivalent to a chiral rotation. We see that
J ðαÞ and its conjugation only contribute to the flux B term,
which gives us the correct chiral anomaly from the chiral
fermions ψ iþ (Sec. IVA).
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