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We show that the minimally gauged Bogomol’nyi-Prasad-Sommerfield baby Skyrme model remains
a Bogomol’nyi-Prasad-Sommerfield theory after coupling with the gravity. That is, the topologically
nontrivial configurations called the baby Skyrmions and carrying a magnetic flux are solutions to a zero
pressure equation. It follows that the proper mass, the magnetic flux, and the proper geometric volume are
the linear functions of the topological charge, while the total Arnowitt-Deser-Misner mass and geometric
radius receive a contribution due to the gravitational interaction that is quadratic in the topological charge.
All these quantities are found exactly as target space integrals (averages) of the so-called superpotential.
A complete classification of the possible mass-radius curves is provided. As an example, we consider the
model with the pionlike mass potential, for which an approximated but analytical form of the superpotential
is provided.
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I. INTRODUCTION

Magnetized gravitating matter in the (2þ 1) dimensions
could be viewed as a toy model of magnetic compact stars
in the (3þ 1)-dimensional spacetime. If this matter can be
related to a low energy regime of QCD, for example, by
means of an effective action, then we arrive at a model of
magnetized neutron stars.
This goal can be realized within the framework of the

(3þ 1)-dimensional Skyrme model [1], which is one of the
most acceptable effective models of baryons, atomic nuclei,
and nuclear matter. In fact, in its so-called Bogomol’nyi-
Prasad-Sommerfield (BPS) limit [2] (also [3]), the Skyrme
model was shown to be able to support the neutron stars
with the observables (maximal mass, maximal radius,
mass-radius curve, etc.) in a very good agreement with
(still poor) observational data [4]. Such gravitating solitonic
solutions go much further than a usual charge one gravi-
tating Skyrmion [5], as the topological charge of the
maximal mass solution is of the order 1057. This result
was achieved due to the BPS nature of the model and
a large moduli space of static solutions forming the group
of volume preserving diffeomorphisms—both closely
related to the most crucial features of nuclear matter: its
very small binding energies and the liquidlike nature.
Although in such a BPS limit the usual part of the
Skyrme model is neglected, the obtained results should

give good approximations to the bulk quantities, as the BPS
part of the full model provides the leading contribution at
high density and pressure, which is the case inside neutron
stars [6]. Of course, at some point the non-BPS part of the
Skyrme model should also be taken into account. This is a
difficult task, because Skyrmions in the full model possess
very complicated geometric shapes with only the discrete
symmetries [7], rendering the problem of the computation
of self-gravitating multi-Skyrmions too complicated. Then,
only a mean field approach seems to be applicable [8]. This
concerns the vector meson Skyrme model [9] as well as the
weakly bound Skyrme model [10].
In the next step, one should couple the (BPS) Skyrme

model with the Maxwell field, which requires the intro-
duction of the usual covariant derivative and the inclusion
of the Maxwell as well as the Wess-Zumino-Witten term
[11]. Already the Maxwell contribution (no gravity) breaks
all nice properties of the BPS model, rendering the
analytical computation impossible.
However, in the (2þ 1) dimensions the situation is much

better. First of all, there is a lower dimensional counterpart of
the Skyrme model, known as the baby Skyrme model [12],
which also possesses the BPS sectors. Especially, the BPS
baby Skyrme model [13–16] is a lower dimensional version
of theBPSSkyrmemodel. ThisBPS theory can beminimally
gauged without destroying its BPS nature [17,18]. That is to
say, the gauged (strictly speaking magnetic) solitons (baby
Skyrmions) are solutions of certain Bogomol’nyi equations
and, therefore, saturate a pertinent topological bound.
Furthermore, the matter is still of a perfect fluid type.
Second, it has been shown very recently that its coupling
to the gravity also preserves the BPS property of the BPS
baby Skyrme model [19]. This allowed for an analytical
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computation of gravitating baby Skyrmions in the asymp-
totically flat spacetime. Therefore, the natural question
arises, what happens if both interactions (Maxwell and
gravity) are added to the BPS baby Skyrme model simulta-
neously? If the gravitating gauged BPS baby Skyrme model
remains a BPS theory, we get a unique opportunity to study
themagnetic planar solitons (a toymodel ofmagnetars) in an
analytical way.
It is the main aim of the present work to study the BPS

property of the gauged BPS baby Skyrme model after
coupling it to the gravity. In particular, we check how the
maximal Arnowitt-Deser-Misner (ADM) mass as well as the
ADM mass-radius relation for the gravitating BPS planar
Skyrmions are modified if the magnetic field is included.
To accomplish this program in an analytical manner, we

find a way to solve the so-called superpotential equation,
i.e., a nonlinear differential equation defining a target space
function (superpotential) that enters expressions for all
observables. Our method allows us to construct this function
with an arbitrary precision.

II. THE GRAVITATING GAUGED BPS BABY
SKYRME MODEL

A. Static and axially symmetric field equations

The gravitating gauged BPS baby Skyrme model is given
by the following action where the metric tensor is treated as
a dynamical quantity:

S ¼ S04 þ SEH

¼
Z

d3xjgj12
�
−λ2π2jgj−1gαβB̃αB̃β − μ2U −

1

4e2
F2
μν

�
þ SEH; ð2:1Þ

where SEH is the Einstein-Hilbert (EH) action in the
(2þ 1)-dimensional spacetime. Here

B̃μ ¼ 1

8π
ϵμνρϕ⃗ · ðDνϕ⃗ ×Dνϕ⃗Þ ð2:2Þ

is a gauge invariant version of the topological current

Bμ ¼ 1

8π
ϵμνρϕ⃗ · ðϕ⃗ν × ϕ⃗ρÞ: ð2:3Þ

The Uð1Þ gauging is performed in the usual way, i.e., by
promoting the global Uð1Þ symmetry of the BPS baby
Skyrme model to a local one. This means that we change
the usual derivatives to their covariant versions [20] (for the
general baby Skyrmions with magnetic field see [21,22])

Dμϕ⃗ ¼ ϕ⃗μ þ Aμn⃗ × ϕ⃗: ð2:4Þ

Furthermore, ϕ⃗, i.e., the baby Skyrme field, is a unit three
component isovector ϕ⃗ ∈ S2 (S2 denotes a two-sphere) and

the constant vector n⃗ ¼ ð0; 0; 1Þ. The potential U is
assumed to be a one-vacuum potential that depends only
on the third component of the matter field; i.e., it has a
single zero at ϕ⃗ ¼ ϕ⃗0 where ϕ⃗0 ¼ n⃗. Fμν is the usual field
strength tensor of the Uð1Þ Maxwell field Aμ in the (2þ 1)
dimensions.
The corresponding Einstein equations are

Gαβ ¼
κ2

2
Tαβ; ð2:5Þ

where κ2 ¼ 16πG and G is the three-dimensional gravity
constant. In the subsequent analysis, we assume the axial
symmetry for the metric

ds2 ¼ AðrÞdt2 −BðrÞdr2 − r2dφ2; ð2:6Þ

which gives the following Einstein tensor Gμν (Ar ¼ ∂rA,
etc.):

G00 ¼
1

2r
ABr

B2
; G11 ¼

1

2r
Ar

A
;

G22 ¼ −
r2

4

�
Ar

A
Br

B2
þ 1

B

�
A2

r

A2
−
2Arr

A

��
; ð2:7Þ

and the curvature scalar R,

R ¼ −rBA2
r − 2A2Br þ Að−rArBr þ 2BðAr þ rArrÞÞ

2rA2B2
:

ð2:8Þ

This assumption comes from the observation that the
gauged BPS baby Skyrme model has the ground state
solutions (in each topological sector) in such an axially
symmetric form. In fact, these energy minimizers enjoy a
huge degeneracy, which is the group of the area preserving
diffeomorphisms.
Next we observe that the energy-momentum tensor has

two contributions,

Tαβ ¼ Tαβ
m þ Tαβ

em; ð2:9Þ

where we have the matter part

Tαβ
m ¼ 2λ2π2jgj−1B̃αB̃β − ðλ2π4jgj−1gμνB̃μB̃ν − μ2UÞgαβ

ð2:10Þ

and the electromagnetic part

Tαβ
em ¼ 1

e2

�
1

4
gαβFμνFμν − FανFβ

ν

�
: ð2:11Þ

Let us begin with the baby Skyrme contribution. After
coupling to gravity the energy-momentum tensor still
possesses the perfect fluid form
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Tαβ
m ¼ ðpþ ρÞuαuβ − pgαβ; ð2:12Þ

where the proper energy density and pressure are

ρ ¼ λ2π2jgj−1gμνB̃μB̃ν þ μ2U; ð2:13Þ

p ¼ λ2π2jgj−1gμνB̃μB̃ν − μ2U; ð2:14Þ

while the four velocity is

uα ¼ B̃αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνB̃

μB̃ν
q : ð2:15Þ

For the static configurations it simplifies to

T00 ¼ ρg00; Tij ¼ −pgij; ð2:16Þ

where we also assumed that there is no electric field

Aμ ¼ ð0; A1ðx⃗Þ; A2ðx⃗ÞÞ: ð2:17Þ

Now, consistently with the assumptions on the metric we
will restrict ourselves to an axially symmetric matter and
gauge field. This means that

A0 ¼ Ar ¼ 0; Aϕ ¼ naðrÞ; ð2:18Þ

while for the baby Skyrme field expressed by the stereo-
graphic projection

ϕ⃗ ¼ 1

1þ juj2 ðuþ ū;−iðu − ūÞ; 1 − juj2Þ ð2:19Þ

we apply the following ansatz:

u ¼ fðrÞeinφ; h ¼ 1 −
1

1þ f2
: ð2:20Þ

All this leads to the following expressions for the baby
Skyrme energy density and pressure:

ρ ¼ λ2n2

4Br2
ð1þ aÞ2h2r þ μ2U;

p ¼ λ2n2

4Br2
ð1þ aÞ2h2r − μ2U; ð2:21Þ

while

B̃0 ¼ −
n
2π

ð1þ aÞhr: ð2:22Þ

Note that our topological current differs by a factor of
1=r

ffiffiffiffi
B

p
from the usual topological charge density q. This is

a consequence of our convention to extract the metric factor
from the antisymmetric tensor. Hence

n ¼
Z

volR2

1

r
ffiffiffiffi
B

p B0 ¼ −
Z

r
ffiffiffiffi
B

p
drdφ

n

2πr
ffiffiffiffi
B

p hr

ð2:23Þ

while

n ¼
Z

drdφB0: ð2:24Þ

In addition, the electromagnetic part of the energy-stress
tensor reads (diagonal terms)

T00
em ¼ n2

2e2
1

ABr2
a2r ; ð2:25Þ

Trr
em ¼ n2

2e2
1

B2r2
a2r ; ð2:26Þ

Tφφ
em ¼ n2

2e2
1

Br4
a2r : ð2:27Þ

Now, we can write the Einstein equations in a compact
form,

Br

B
¼ κ2rBρ̃; ð2:28Þ

Ar

A
¼ κ2rBp̃; ð2:29Þ

ðp̃BÞr ¼ κ2rμ2B2Up̃; ð2:30Þ

where the matter density and pressure, with the gauge
component included, read

ρ̃ ¼ n2

2e2r2B
a2r þ

λ2n2

4r2B
ð1þ aÞ2h2r þ μ2U; ð2:31Þ

p̃ ¼ n2

2e2r2B
a2r þ

λ2n2

4r2B
ð1þ aÞ2h2r − μ2U: ð2:32Þ

This set of equations has to be supplemented by the
pertinent Maxwell equations

1

e2
∂νð

ffiffiffi
g

p
gμαFαβgβνÞ ¼ Jμ; ð2:33Þ

where Jμ is the current due to the covariant derivative in the
matter part of the model. It reads

Jμ ¼ λ2π2jgj−1=2gαβ
∂

∂Aμ
B̃αB̃β: ð2:34Þ

Hence,

n
e2

∂r

 ffiffiffiffi
A
B

r
ar
r

!
¼ Jϕ; ð2:35Þ
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where

Jϕ ¼ λ2π2jgj−1=2g00
∂

∂Aϕ
B̃0B̃0 ¼ λ2

ffiffiffiffi
A
B

r
n
2
ð1þ aÞ h

2
r

r
:

ð2:36Þ

Together we get

n
e2

∂r

� ffiffiffiffi
A
B

r
ar
r

�
¼ λ2

ffiffiffiffi
A
B

r
n
2
ð1þ aÞ h

2
r

r
: ð2:37Þ

So, finally we are left with a system of the four ordinary
differential equations (2.28), (2.29), (2.30), and (2.37) for
four unknown functions: the two metric functions B, A,
the baby Skyrme profile h, and the gauge function a. We
impose the following boundary conditions which guarantee
a nontrivial topological charge:

hðr ¼ 0Þ ¼ 1; hðRÞ ¼ 0; hrðRÞ ¼ 0; ð2:38Þ

aðr ¼ 0Þ ¼ 0; arðRÞ ¼ 0; ð2:39Þ

Bðr ¼ 0Þ ¼ 1; ð2:40Þ

Aðr ¼ 0Þ ¼ 1; ð2:41Þ

where the conditions for the derivatives of the Skyrme and
gauge field come from the vanishing of the pressure at
the compacton boundary. Here R is a geometric size of
the solitons, i.e., a value of the radial distance at which the
matter field reaches its vacuum value. It can be finite
(for the compactons) or infinite (for the usual infinitely
extended solitons). Our choice of the condition on the
metric function is motivated by an assumption that there is
no conical singularity at the origin.

B. The BPS property

It is easy to notice that there is a formal solution
corresponding to the zero pressure condition. Indeed,

A ¼ 1 and p̃ ¼ 0 ð2:42Þ

solve two field equations (2.29) and (2.30). Now we have
to solve the two remaining equations (2.28), (2.37) and
show that the p̃ ¼ 0 condition really leads to the solitonic
solutions.
Before we go further, it is instructive to observe that in the

zero pressure sector the Einstein-Hilbert action reduces to a
pure boundary term, which obviously does not contribute to
the equations of motion. Indeed, for p̃ ¼ 0 (which enforces
that A ¼ 1) the curvature scalar simplifies to

R ¼ −
Br

rB2
: ð2:43Þ

Then, the Einstein-Hilbert action gives

SEH ¼ 1

κ2

Z
d3xjgj1=2R ¼ −

1

κ2

Z
dtdφdr

Br

B3=2

¼ πT
κ2

ðB−1=2ð∞Þ −B−1=2ð0ÞÞ; ð2:44Þ

whereT is a time range for the temporal integral in the action.
Now, let us perform a change of the radial variable and
introduce

dz
dr

¼ r
ffiffiffiffi
B

p
: ð2:45Þ

The benefit of using the z variable is that we can rewrite the
full action of our model as

S ¼ −2TM þ πT
κ2

ðB−1=2ð∞Þ −B−1=2ð0ÞÞ; ð2:46Þ

whereM is the propermass (energy) functional that is just the
energy for the nongravitating gauged baby BPS Skyrme
model. Gravity only contributes to the full action in the form
of a boundary term. It is worthwhile to note that the above
consideration is independent of a specific form of the matter
field. The fact that, in the p̃ ¼ 0 sector, the gravity can be
reduced to a simple boundary term reflects the well-known
fact that the EH action in (2þ 1) dimensions is equivalent to
a pure Chern-Simon theory. Of course, the full theory (with
the matter field included) is not any longer reducible to a
boundary part only.
After the above remark, we see that the introduction of

the z variable allows us to reduce the initial gravitating
model to a nongravitating one, which is a genuine gauged
BPS model with the following Bogomol’nyi equations:

naz ¼ −e2λ2WðhÞ; ð2:47Þ
n
2
ð1þ aÞhz ¼ −WhðhÞ; ð2:48Þ

where W ¼ WðhÞ must obey a constraint following from
the zero pressure equation, a so-called superpotential
equation [17]

e2λ4

2
W2 þ λ2W2

h ¼ μ2UðhÞ: ð2:49Þ

Since we consider potentials with a vacuum at h ¼ 0 (and
possibly other isolated vacua), the superpotential equation
enforces two boundary conditions at h ¼ 0, namely,

Wðh ¼ 0Þ ¼ 0; Whðh ¼ 0Þ ¼ 0:

The existence of a solution of this equation on the whole
segment h ∈ ½0; 1� obeying these boundary conditions is a
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rather nontrivial problem. Observe that in our construction
the superpotential equation (2.49) does not show up from
“nothing” as a necessary condition for the saturation of the
Bogomol’nyi bound. Here, it is derived as the zero pressure
condition that is at the very center of any BPS solution.
Earlier, we mentioned the proper mass of the matter,

i.e., the energy of the soliton with the gauge field
included [which is the nongravitational part of the total,
i.e., asymptotic (ADM) mass]. One can define it as

M ¼
Z

d2xjgj12ρ̃

¼
Z

drdφr
ffiffiffiffi
B

p �
n2

2e2r2B
a2r þ

λ2n2

4r2B
ð1þ aÞ2h2r þ μ2U

�

¼
Z

dzdφ

�
n2

2e2
a2z þ

λ2n2

4
ð1þ aÞ2h2z þ μ2U

�
¼ 2πjnjλ2hWhiS2 ¼ 2πjnjλ2jWðh ¼ 1Þj; ð2:50Þ

where hWhiS2 is the S2 average of the superpotential. Here
it is simply hWhiS2 ¼ R 10 Whdh. The second line shows that
the proper mass is just the static energy functional of the
gauged BPS baby Skyrme model in a flat space. The last
equality comes from [17] and the fact that our solutions do
obey the Bogomol’nyi equations and, therefore, the perti-
nent topological inequality is saturated. As a consequence,
the proper mass is a linear function of the modulus of
the topological charge as expected for a BPS system.
Furthermore, the coefficient is uniquely given by the value
of the superpotential at the antivacuum, i.e., at h ¼ 1,
whose knowledge does not require one to find a particular
solution but can be obtained from the superpotential (that is
a target space) equation. In other words, the proper mass of
the gravitating BPS baby Skyrmion is given by a geometric
quantity.
One can also observe that the superpotential equation

depends only on a one dimensionless combination of the
coupling constants. Indeed, if we define a new superpotential

ω ¼ λ

μ
W; ð2:51Þ

then (2.49) can be rewritten as

ω2
h þ β2ω2 ¼ U; ð2:52Þ

where the new dimensionless parameter is

β2 ¼ e2λ2

2
: ð2:53Þ

Thus,

M ¼ 2πjnjλμhωhiS2 ¼ 2πjnjλμjωðh ¼ 1Þj: ð2:54Þ

In the limit of vanishing gauge coupling constant β ¼ 0 we
get ωh ¼

ffiffiffiffi
U

p
, which leads to the expression for the BPS

baby Skyrme model [13]. For arbitrary β the superpotential
equation is a rather complicated nonlinear differential
equation. However, as we show in the next section, it can
be solved approximately with an arbitrary accuracy.
Next, we can use [17] and find the total magnetic flux

carried by the baby Skyrmion. Namely,

Φ ¼
Z

d2xjgj12H ¼
Z

drdφr
ffiffiffiffi
B

p nar
r
ffiffiffiffi
B

p

¼ 2πn
Z

dzaz ¼ 2πnaðz0Þ≡ 2πna∞; ð2:55Þ

where z0 is the geometric size of the soliton (in the z
variable), which is finite for the compactons and infinite for
the usual infinitely extended solitons. H ¼ ϵ12F12 ¼ naz
denotes the magnetic field. Hence, from the Bogomol’nyi
equations one can find [17]

a∞ ¼ −1þ exp

�
−
Fð1Þ
4

β2
�
; ð2:56Þ

where

FðhÞ ¼ 4

Z
h

0

Wðh0Þ
Wh0 ðh0Þ

dh0 ¼ 4

Z
h

0

ωðh0Þ
ωh0 ðh0Þ

dh0 ð2:57Þ

is a function of the target space variable, again uniquely
defined for a given model (potential). Hence, again, the
total flux can be found without solving the Bogomol’nyi
equations but only by finding the superpotential.
Analogously, the geometric volume of the solitons reads

V ¼
Z

d2xjgj12 ¼ 2πz0 ¼ π
λ

μ
jnj exp

�
−
Fð1Þ
4

β2
�

×
Z

1

0

exp ðFðhÞ
4

β2Þ
ωh

dh: ð2:58Þ

Of course, z0 ¼ V=2π, which we will use later on.
The remaining piece is the equation for the metric

functionB. It can be formally solved (in the z radial variable)

B−1=2ðzÞ ¼ 1 −
κ2

2

Z
z

0

ρ̃ðz0Þdz0: ð2:59Þ

Obviously, as the metric function has to be a regular function
we get a constraint

1 −
κ2

4π

Z
z

0

2πρ̃ðz0Þdz0 > 0 ⇒
κ2M
4π

< 1: ð2:60Þ

This condition is equivalent to the fact that the resulting
metric has a deficit angle smaller than 2π [23].
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As a result, themagnetic gravitating BPS baby Skyrmions
exist until a maximal topological charge nmax,

nmax ¼
�

2

λμκ2jωð1Þj
�
: ð2:61Þ

This leads to a maximal proper mass, maximal magnetic
flux, and maximal proper volume of our gravitating solitons.
Specifically,

Mmax ¼ 4π

κ2
: ð2:62Þ

The proper mass (nongravitating mass), the magnetic
flux, as well as the proper geometric volume are quantities
that are linear in the topological charge. In fact, after the
coordinate change they were obtained simply from the
nongravitating gauged BPS baby Skyrme model. However,
there are two “observables” that take into account the
gravity interaction in a more nontrivial way. They are the
total (asymptotic) mass and the radius. As we will see, both
can also be obtained without the knowledge of the local
form of the solutions, i.e., by proper target space integrals.
The ADM mass (total or asymptotic) in the (2þ 1)

dimensions is defined by the expression

MADM ¼ 4π

κ2
lim
r→∞

mðrÞ; ð2:63Þ

where the radial function mðrÞ in our ansatz for the
metric is

1

BðrÞ ¼ 1 − 2mðrÞ: ð2:64Þ

It can be shown that the above definition leads to the
integral formula

MADM ¼ 2π

Z
R

0

rdrρ̃ðrÞ ¼ 2π

Z
z0

0

dzffiffiffiffiffiffiffiffiffiffi
BðzÞp ρ̃ðzÞ

¼ 2π

Z
z0

0

dzρ̃ðzÞ
�
1 −

κ2

2

Z
z

0

ρ̃ðz0Þdz0
�
: ð2:65Þ

Hence,

MADM¼ 2π

Z
z0

0

dzρ̃ðzÞ−2π
κ2

2

Z
z0

0

dzρ̃ðzÞ
�Z

z

0

ρ̃ðz0Þdz0
�
:

ð2:66Þ

However, the double integral can be written as

Z
z0

0

dzρ̃ðzÞ
�Z

z

0

ρ̃ðz0Þdz0
�

¼ 1

2

�Z
z0

0

dzρ̃ðzÞ
�

2

; ð2:67Þ

which gives

MADM ¼ M −
κ2

8π
M2 ¼ M

�
1 −

κ2

8π
M

�
; ð2:68Þ

where M is the proper mass. Inserting (2.54) we find an
exact formula

Mtot ¼ 2πjnjλμjωðh ¼ 1Þj
�
1 −

κ2λμ

4
jnjjωðh ¼ 1Þj

�
:

ð2:69Þ

The total mass gets a correction due to the gravita-
tional interaction that is quadratical with the topological
charge. We remark thatMADM grows with n until n ¼ nmax

where dMADM=dn vanishes. In other words, the total mass
instability occurs exactly at the maximal mass point.
Hence, the maximal total mass is

Mmax
ADM ¼ MADMðnmaxÞ ¼ M

2
¼ 2π

κ2
; ð2:70Þ

which is one-half of the nongravitating mass.
It is interesting to notice that the relations between the

ADM and proper mass (2.68), (2.70) are identical to the
nongauged case. The unique place where the gauge
interaction modifies our formulas is the value of the
superpotential at the antivacuum h ¼ 1, which obviously
changes if the gauge coupling constant changes.
Finally, the radius can be computed from

R2

2
¼
Z

R

0

rdr ¼
Z

z0

0

dzffiffiffiffiffiffiffiffiffiffi
BðzÞp

¼
Z

z0

0

dz

�
1 −

κ2

2

Z
z

0

ρ̃ðz0Þdz0
�
: ð2:71Þ

Thus,

R2

2
¼ V

2π
−
κ2

2

Z
z0

0

dz

�Z
z

0

ρ̃ðz0Þdz0
�
: ð2:72Þ

In order to compute the double integral part, we have to
turn to the topological bound. First of all, let us emphasize
again that the static proper mass (energy) in the new radial
coordinate z is identical to the static energy functional of
the gauged BPS baby Skyrme model in a flat space. Then,
following the standard derivation of the Bogomol’nyi
bound for the gauged BPS baby Skyrme model and using
our axial static ansatz we find that (for simplicity we
consider a positive topological charge and choose the sign
of W such that the integral is positive)Z

z

0

ρ̃ðz0Þdz0 ¼ nλ2ðWð1Þ −WðhÞ − aðzÞWðhÞÞ; ð2:73Þ
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where h is understood as a function of z. If we integrate
over the full domain of the solution, then z ¼ z0, which
corresponds to h ¼ 0. But thenWð0Þ ¼ 0, and we arrive at
the usual total energy expression (divided by 2π). In the
next step we use

aðzÞ ¼ −1þ exp

�
FðhðzÞÞ − Fð1Þ

4
β2
�
: ð2:74Þ

Moreover, any integral over the variable z can be changed
into a target space expression by

dz ¼ −
n
2

1þ a
Wh

dh ¼ −
n
2

exp ðFðhÞ−Fð1Þ
4

β2Þ
Wh

dh: ð2:75Þ

Finally, putting everything together we find

Z
z0

0

dz

�Z
z

0

ρ̃ðz0Þdz0
�

¼ n2λ2

2
AðβÞ; ð2:76Þ

where

AðβÞ ¼
Z

1

0

exp ðFðhÞ−Fð1Þ
4

β2Þ
ωh

×

�
ωð1Þ − exp

�
FðhÞ − Fð1Þ

4
β2
�
ωðhÞ

�
dh

ð2:77Þ

depends only on the superpotential, i.e., on a particular
form of the potential. Note that the double integral, and
therefore the gravity modification (shrinking) of the radius,
is a quadratic function of the topological charge—exactly
as in the nongauge case [19].
Now we can study the mass-radius relation. This can be

performed by introducing the new variable x ¼ jnj=nmax ∈
½0; 1�. Then we find such a relation in a parametric way

8<
:

κ2MADM
2π ¼ xð2 − xÞ

κ2μ2R2

2
¼ AðβÞ

jωð1Þj2 x
	
CðβÞjωð1Þj

AðβÞ − x

 ; ð2:78Þ

where

CðβÞ ¼ exp

�
−
Fð1Þ
4

β2
�Z

1

0

exp ðFðhÞ
4

β2Þ
ωh

dh: ð2:79Þ

Similar to [19] we define a new parameter ΩðβÞ,

ΩðβÞ ¼ CðβÞjωð1Þj
AðβÞ : ð2:80Þ

Qualitatively, we obtain the same family of mass-radius
curves as in the nongauge case (β ¼ 0) [19] governed by

the value of Ω. For Ω ¼ 2,MADM is a linear function of R2.
For Ω < 2 the MADM − R curve turns left at some value of
the topological charge (or x) which means that the maximal
radius does not coincide with the maximal mass. This is the
case for Ω > 2, where the curve bends right.
Of course, one obvious question is whether the value ofΩ

can cross 2 while β is changed. This would lead to a drastic
change of the qualitative behavior of the mass-radius curve.
We will investigate this issue taking the old baby potential.
It is a matter of fact that in the case of gravitating Skyrme

models in (3þ 1) dimensions there is a rather nontrivial
bifurcation structure of solutions. Typically, there are two
branches of solutions describing a self-gravitating Skyrmion:
stable and unstable corresponding to smaller and bigger
ADM mass, respectively. These two branches meet at a
critical point (for example, a critical value of the gravitational
coupling constant) beyond which no regular soliton exists
[24]. Equivalently, one can find the two branches of solutions
in the ADMmass-radius plot (with a fixed gravity coupling),
where both ADM mass and radius are parametrized by the
topological charge. This structure gets more complicated if
more higher derivative terms are included—see [25] and
especially [26].However,wedid not find such a pattern in the
lower dimensional BPS baby Skyrme model. First of all, as
we have shown before, in the zero pressure sector (relevant
for all solutions presented here) the role of gravity can be
reduced to a boundary term of the action, which does not
contribute to the equations of motion. Then, we are left with
the usual (nongravitating) gauged baby BPS model (in the
redefined radial coordinate), for which no unstable solutions
are known [17]. In principle, it could still be possible to have
the gravitating solutions with a nonzero pressure (and the
same topological charge as the p̃ ¼ 0 solution) but they are
ruled out by the same sequence of arguments as presented in
[19]. Hence, only the zero pressure static solutions are
allowed in the gravitating version of the gauged BPS baby
Skyrme model. This guarantees that there are no unstable
solutions.

III. EXAMPLE—THE PIONIC MASS POTENTIAL

A. Superpotential

As an example, we will consider the most popular old
baby potential, which is a lower dimensional counterpart of
the pionic mass potential for the Skyrme model

Uπ ¼
h
4
: ð3:1Þ

We have to begin our analysis with the superpotential
equation (2.52) whose knowledge is essential for the
computation of all quantities

ω2
h þ β2ω2 ¼ h

4
; ωð0Þ ¼ 0: ð3:2Þ
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Some numerical solutions to this equation in the unit
segment [0, 1] are presented in Fig. 1. There are two
limiting cases for which we can solve the equation exactly.
First, for β ¼ 0 we arrive at the nongauge case and

ωβ¼0 ¼
1

3
h3=2: ð3:3Þ

For a finite but small β we may apply the perturbative
expansion and find

ωsmall ¼ h3=2
�
1

3
−

2

63
ðβhÞ2 þ 10

6237
ðβhÞ4

−
92

5893965
ðβhÞ6 þ oðβ6h6Þ

�
; ð3:4Þ

which agrees extremelywell with the numerics for β2 < 8 on
the whole unit segment. For higher values of the parameter
the approximated solution begins to disagree in the vicinity
of h ¼ 1. Once we increase β, such a disagreement is more
andmore pronounced andoccurs for smallerh. This forces us
to analyze an expansion at the h ¼ 1 end.
Observe first that for very large values of the parameter,

β → ∞, the superpotential equation gives ω ¼ 1
2β h

1=2. This
provides an approximation close to h ¼ 1. For a finite but
large β we find the following approximated solution:

ωlarge ¼ h3=2
�
1

2
ðβhÞ−1 − 1

16
ðβhÞ−3 − 13

256
ðβhÞ−5

−
213

2048
ðβhÞ−7 þ oðβ−7h−7Þ

�
: ð3:5Þ

Of course, it cannot serve as an approximated solution on
the full segment, as its derivative is divergent at the origin.
However, in the vicinity of h ¼ 0 the solution can always
be approximate by the small β solution. Because of that, the
large β approximated solution is

ωapprox ¼
�
ωsmall h ∈ ½0; h0�
ωlarge h ∈ ½h0; 1�

; ð3:6Þ

where the gluing point h0 is defined as

ωsmallðh0Þ ¼ ωlargeðh0Þ; ð3:7Þ

which, for the order of the expansion assumed above, is

h0 ¼ 2.7821
1

β
: ð3:8Þ

For too small β the gluing point h0 is not in the unit segment
and, as a consequence, the approximated solution is given
simply by the small β expansion. This solution reproduces
the true numerical solution with a great accuracy for all β.
In Fig. 2 we show the numerical superpotential ω for
β2 ¼ 10 (red curve) together with ωsmall (dotted curve) and
ωlarge (blue curve). The correct approximation ωlarge is
provided by a composition of the dotted and blue curves
glued at the second crossing point h0ðβ2 ¼ 10Þ ¼ 0.8798.

B. Masses, magnetic flux, proper geometric volume,
and radius

Using the value of the approximated superpotential at
h ¼ 1 we can find the following approximate but analytical
formula for the proper mass:

0 0.5 1
h

0.05

0.1

0.15

FIG. 2. The superpotential ω for the pionic potential (3.1) and
β2 ¼ 10 (red line) with ωsmall (dotted line) and ωlarge (blue line)
approximate functions.

0.5 1
h

0.1

0.2

0.3

0.5 1
h

0.002

0.004

0.006

FIG. 1. Superpotential ω for the old baby potential (3.1). Left panel: β2 ¼ 0, 1, 2, 5, 7, 10, 102, 103. Right panel: β2 ¼ 5 × 103, 104,
2 × 104, 2.5 × 104. Increasing β corresponds to a more suppressed curve.
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M ¼ 2πjnjλμ ·
(

1
3
− 2

63
β2 þ 10

6237
β4 − 92

5893965
β6 þ oðβ6Þ β ≤ 2.7821

1
2
β−1 − 1

16
β−3 − 13

256
β−5 − 213

2048
β−7 þ oðβ−7Þ β ≥ 2.7821

: ð3:9Þ

In Fig. 3 we plot an approximated ωapproxð1Þ as a function
of the dimensionless parameter β. The gluing point is
h0 ¼ 1, which corresponds to β ¼ 2.7821. The true
numerical value is undistinguishable from the approxi-
mated (dashed) curve. Therefore, the approximated
formula for the proper mass agrees with the true numerical
curve with a very good accuracy. This formula is also
sufficient to get an approximated but analytical expression
for the ADM total mass. We just need (2.69).
In the next step we find an analytical, approximated

expression for the magnetic flux. This requires knowledge
of the function FðhÞ (2.57)

1

4
FðhÞ ¼

�
1

3
h2 þ 4

189
β2h4 þ 32

18711
β4h6 þ 32

280665
β6h8

�

×Θ½h0 − h� þ
�
−1.76336β−2 þ 61

64
β−6h−4

þ 5

8
β−4h−2 þ h2 − β−2 lnh− 1.0232β−2 lnβ

�
×Θ½h − h0�: ð3:10Þ

Hence, the flux is

Φ
2πn

¼ −1þ exp
�
−β2

Fð1Þ
4

�
; ð3:11Þ

where

1

4
Fð1Þ ¼

�
1

3
þ 4

189
β2 þ 32

18711
β4 þ 32

280665
β6
�

× Θ½2.7821 − β� þ
�
1 − 1.7634β−2

þ 5

8
β−4 þ 61

64
β−6 − 1.0232β−2 ln β

�
× Θ½β − 2.7821�: ð3:12Þ

It is worth noticing that for β ¼ 2.7821 (i.e., when ωlarge

must be taken into account) the flux is Φ=ð2πnÞ ¼
−0.9936, which is very close to its asymptotic value −1.
The approximated expression for the magnetic flux is
plotted in Fig. 4.
Although the magnetic flux is practically quantized for

β > 2.7821, the proper geometric volume of compactons is
still not too small. Specifically, it drops approximately 5
times from the nongauge case. An approximated formula
for β < 2.7821 is

V ¼ 4
λ

μ
jnjπ

�
1 −

2

9
β2 þ 10

567
β4 −

92

392931
β6
�
: ð3:13Þ

We plot it in Fig. 5.
We conclude that our approximation agrees very well

with the numerical results. Of course, taking more terms in
the small and large β expansion of the superpotential we
can approach an arbitrary accuracy, solving the model
completely.

0 2 4 6 8

0.05

0.10

0.15

0.20

0.25

0.30

0.35
1

FIG. 3. The value of the superpotential at h ¼ 1, i.e., ωð1Þ ¼
M=ð2πjnjλμÞ for the pionic potential (3.1) as a function of β.
Dashed line: approximated expression; red line: ωsmallð1Þ; and
blue line: ωlargeð1Þ.

FIG. 4. The magnetic flux (left, blue line: approximated flux;
violet points: numerical flux) for the old baby potential (3.1) as a
function of β.
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C. Mass-radius curve

As we know, the shape of the mass-radius curve strongly
depends on the value of Ω. For the nongauged model it
reads Ωðβ ¼ 0Þ ¼ 4=3. This means that the mass-radius
curve bends at some point (the maximal radius point)
toward the left. In fact, it has recently been observed that in
the BPS baby Skyrme model Ω < 2 is a rather preferred

value for many one-vacuum potentials [19]. It is a matter of
fact that for the old baby potential (3.1) ΩðβÞ is a growing
function of the coupling β—see Fig. 6. It goes from 4=3
and asymptotically reaches Ω ¼ 2. This can be proven
using the approximated superpotential. In fact, if β → ∞, it
is enough to take ω ¼ ωlarge ¼

ffiffiffi
h

p
=ð2βÞ. Then, all possible

corrections (from ωsmall) contribute to the h → 0 end,
which, because of the regularity of the integral, does not
have any importance for the value of Ωðβ ¼ ∞Þ.
A physical explanation of this asymptotical behavior of

Ω is quite obvious. As the coupling constant grows,
solitons become more and more squeezed, which physi-
cally means that the matter is more and more stiff with the
energy density given by almost a step function. However,
it is known that for the maximally stiff matter, i.e., the
BPS baby Skyrme model with the Heaviside step potential,
Ω ¼ 2 and we arrive at the linear dependence between
mass and radius squared. In Fig. 7 we plot the mass-radius
curve for β ¼ 0 (nongauge case with Ω ¼ 4=3), β ¼ 1
(Ω ¼ 1.36), and β ¼ 4 (Ω ¼ 1.96).
Let us notice that the magnetic interaction lowers the

proper mass. A related observation is that increasing e
increases the value of the maximal topological charge
carried by the gravitating soliton. It is because ωð1Þ gets
smaller in (2.61).

D. Skyrme profile h and magnetic field H

The value of the superpotential ωðh ¼ 1Þ in the z
variable is equivalent to ωðhðz ¼ 0ÞÞ. This, together with
(2.38) and (2.39), gives us the complete set of the initial
conditions that allow us to solve the Bogomol’nyi equa-
tions (2.47), (2.48), and (2.49) by implementing a RK4
method.
As a result, we obtain the numerically constructed

functions hðzÞ and aðzÞ, but the gauge field aðzÞ is not
a physical object, so it is more suitable to consider a
magnetic field HðzÞ ¼ naz. Furthermore, a knowledge of
the solutions hðzÞ and aðzÞ leads to energy density ρ̃ðzÞ
(2.31), which lets us compute the metric function BðzÞ
(2.59). At this point we can also return to an original radial

FIG. 5. The volume for the old baby potential (3.1) as a
function of β (violet points: numerical volume; green line:
approximated formula).

FIG. 6. Ω as a function of the coupling constant β for the old
baby potential (3.1).

FIG. 7. The mass-radius square curve. Left: β ¼ 0 (violet line) and β ¼ 1 (green line). Right: β ¼ 4.
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variable r by performing a numerical integration. In
Figs. 8–10 we present the examples of the functions
hðrÞ and HðrÞ [by functions hðrÞ and HðrÞ we mean
the functions hðzÞ and HðzÞ after making an appropriate
substitution] for a given set of the coupling constants.
As we see, the functions HðrÞ and hðrÞ are getting

sharper as the parameter β2 increases. This fact results in a
bigger and bigger absolute value of both first derivativesHr
and hr near the boundary R of a soliton. If one wants to
compute a superpotential ωðhÞ for a large β2, then solving

numerically the superpotential equation (3.2) brings no
difficulty. However, the large values of a parameter β2

force us to deal with fast changing functions near the
boundary R and thus making the numerical calculations of
a profile hðrÞ and a magnetic field HðrÞ highly unstable. In
conclusion, the fact that we can solely solve the super-
potential equations (in the h variable) and then based on
that compute the observables grants us an opportunity to
investigate much further the behavior of the observables as
the functions of parameter β.

FIG. 8. Skyrme profile hðrÞ and magnetic field HðrÞ for the parameters λ ¼ 1, μ ¼ 0.1, e ¼ ffiffiffi
2

p
, and κ2 ¼ 3. Parameter β2 ¼ 1.

FIG. 9. Skyrme profile hðrÞ and magnetic field HðrÞ for the parameters λ ¼ ffiffiffi
5

p
, μ ¼ 0.1, e ¼ ffiffiffi

2
p

, and κ2 ¼ 3. Parameter β2 ¼ 5.

FIG. 10. Skyrme profile hðrÞ and magnetic field HðrÞ for the parameters λ ¼ 1, μ ¼ 0.1, e ¼ ffiffiffiffiffi
20

p
, and κ2 ¼ 3. Parameter β2 ¼ 10.
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IV. SUMMARY

In this paper we investigated the BPS baby Skyrme
model in (2þ 1) dimensions coupled simultaneously to the
Maxwell field and gravity. Such a theory, as we argued
in the Introduction, might be used as a toy model of
magnetized neutron stars.
The first main result is that such a self-gravitating theory

of magnetized nonlinear matter with a nontrivial topology
remains a BPS theory; that is, it supports solitonic
solutions, being magnetized gravitating baby Skyrmions,
as solutions of a zero pressure equation, and it admits a
reduction to Bogomol’nyi equations where the proper
(nongravitational) mass is a linear function of the topo-
logical charge. The corresponding topological lower bound
on the proper mass integral is saturated. As a consequence,
we derive a theory of magnetized and gravitating perfect
fluid solitons in the (2þ 1) dimension that is completely
solvable, in the sense that all observables are given as some
functions of the topological charge, with coefficients that
are target space integrals depending on the coupling
constant β ¼ eλ=

ffiffiffi
2

p
and a particular model (particular

potential). Hence, all observables are computable without
any knowledge of the local form of solutions. This seems to
be an expected result, as the underlying matter theory is a
BPS theory in the nongravitating case. However, all
observables obtained here that are nonlinear in the topo-
logical charge provide a new, analytical insight into the
properties of gravitating magnetized solitons.
Specifically, the proper mass and proper geometric

volume are the linear functions of the topological charge
(assuming that the potentials lead to compact solitons).
Next, the ADM mass as well as the radius squared get the
negative gravitational corrections that are quadratic in the
topological charge. This allowed us to completely classify
the ADM mass-radius curves in the presence of magnetic
flux. Interestingly, a nonzero value of the coupling constant
β (and therefore a nonzero value of the magnetic flux)
modifies entirely the constants in the parametric mass-
radius formula leaving the functional form unchanged.
Again, as in the nongauge case (β ¼ 0) the family of the
curves can be divided into three rather distinguished
groups, depending on whether the constant ΩðβÞ is smaller
than, equal to, or bigger than 2. Another feature that is not

influenced by the inclusion of the magnetic field is the fact
that the maximal ADM mass is one-half of the maximal
proper mass.
Since the existence of the gravitating magnetized sol-

itons is intimately related with the nongravitational case,
we can conclude that there are no such solitons for the
double vacuum potentials [for example, the so-called new
baby potential U ¼ 1

4
hð1 − hÞ]. Indeed, the gravitational

interaction does not have any impact on the superpotential
equation.
As all quantities rely on the knowledge of the super-

potential, we developed a method of a derivation of it in an
approximated but analytical way. We tested this expansion
in the old baby potential case (3.1) and found perfect
agreement. We believe that this approach can find some
application for the study of the issue of the existence of the
superpotential for an arbitrary field theoretical potential U.
In addition, we constructed a numerical Skyrme profile

hðrÞ and a magnetic field HðrÞ for the old baby potential
(3.1) and the given set of the coupling parameters. The
analysis of given solutions confirmed that solving the
superpotential equation is not only an elegant way to
investigate general properties of the observables but also
it provides us with the high numerical stability.
From the physical point of view, our findings tell us that

the modification of the mass-radius curve can be under-
stood as flowing the baby Skyrmions toward more and
more stiff matter.
There are many directions in which the current work can

be continued. One can, for example, ask what happens if
the Dirichlet (quadratic, i.e., σ-model) term is included.
Especially it would be nice to understand how this
influences the mass-radius curve. Of course, because of
the lack of the axial symmetry (at least for the old baby
potential [27]) this can be performed only within the mean-
field approximation.
Obviously, the most important aim would be to inves-

tigate the self-gravitating magnetized BPS Skyrmions in
the 3þ 1 dimensions.
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