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We show how two Unruh-DeWitt detectors that do not couple to the zero mode of a quantum field can
exchange information faster than the speed of light. We analyze the specific cases of periodic and Neumann
boundary conditions in flat spacetime with arbitrary spatial dimensions, and we show that the superluminal
signal strength is only polynomially suppressed with the distance to the light cone. Therefore, in any
relativistic scenario modeling the light-matter interaction in which a zero mode is present, particle detectors
should explicitly couple to the zero mode.
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I. INTRODUCTION

The study of quantum fields via particle detectors has
been a fruitful avenue of research in quantum field theory in
curved spaces, quantum optics, and relativistic quantum
information [1–5]. Particle detectors are nonrelativistic
localized quantum systems that couple locally to quantum
fields obtaining information about the field state. This
allows us to probe the field without invoking projective
measurements [6–9]. The paramount example of a particle
detector is an atom coupled to the electromagnetic field.
Among the most successful models of particle detectors is
the Unruh-DeWitt (UDW) model, consisting of a two-level
quantum system coupled locally to a scalar field [10].
Despite its simplicity, this model has been shown to capture
the main features of the light-matter interaction [11,12] and
has been extensively used to study fundamental properties
of quantum fields [13,14].
In solid state physics and in quantum optics, the spatial

topology of the setup is something that can be given by the
particular experimental setup. For example, one can have
an optical fiber coiled around itself to have periodic
boundary conditions in one dimension. Hence, it is natural
to ask what role boundary conditions have in modeling the
light-matter interaction and whether assuming simpler
models could lead to faster-than-light signaling between
spacelike separated operators of particle detectors. For
instance, researchers have recently studied how factors
such as the detector smearing, rotating-wave approxima-
tions, and the introduction of UV regularization have
implications on causality in particle detector models [15].

It is known that in (1þ 1)-dimensional flat spacetime, a
scalar field subjected to periodic boundary condition has a
zero mode which contributes to a particle detector’s
response, the field’s stress-energy tensor, and the ability
for particle detectors to get entangled through the field
[16,17]. Zero modes also appear in other contexts such as
two-dimensional conformal field theories (CFTs) and in the
minimal coupling of a massless scalar field in certain
spacetimes with nontrivial compact topology [18–22], in
which regularization schemes for the Wightman function
have impacts on the zero modes. However, the zero mode is
peculiar as compared to the regular oscillator modes since it
does not admit a Fock space representation. For this reason,
it is perhaps desirable to be able to ignore or remove the
zero mode from any calculation by hand. In some contexts,
such as the UDWmodel coupled via derivative coupling, its
effect can indeed be made negligible at the level of detector
responses in appropriate limits [16], but in some other
contexts, it has a significant impact on detector dynamics
and entanglement [16,17,23,24]. There are also cases in
which the zero mode has been excluded by assumption
from a setup with periodic boundary conditions (e.g., in
Refs. [25–29]); thus, it is of interest to further study the
impact that the removal of the zero mode may have on the
relativistic nature of the interaction, and in particular in
the causality of the whole particle detector model.
Here, we will investigate how neglecting the zero

mode of a massless scalar field can lead to faster-than-
light signaling between particle detectors via violations
of microcausality.1 We will show how two particle
detectors coupled locally to the field can non-negligibly
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1Note that in the context of algebraic quantum field theory
(AQFT) sometimes this is known as a version of locality [22,30].
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communicate faster than light when the zero mode is
neglected. As a consequence, we show that whenever a
zero mode arises one cannot remove it by hand and only
consider the oscillator part if relativistic phenomenology is
important in the setup under study. We will also show how
this zero mode–induced causality violation is alleviated in
higher dimensions. In this paper, we first study the causality
with respect to the zero mode in (1þ 1) and (2þ 1)
dimensions and then make an argument for arbitrary
dimensions.
The paper is organized as follows. In Sec. II, we briefly

review the UDW model and the notion of the signaling
estimator and its relation to microcausality. In Sec. III, we
study microcausality in (1þ 1) dimensions. In Sec. IV, we
study several cases in (2þ 1) dimensions for different
choices of spatial section topology. In Sec. V, we briefly
discuss the general case in arbitrary dimensions. In this
paper, we use the natural units c ¼ ℏ ¼ 1 throughout, and
we use the notation for spacetime event x≡ ðt; xÞwhenever
convenient.

II. HOW DO WE EVALUATE CAUSALITY?

When microcausality is violated, the commutator
between two observables at two spacelike separated events
may no longer be zero. This in turn can be used to perform
faster-than-light signaling with particle detectors. To make
this idea precise in an operational manner, we follow
Ref. [15], and we consider two observers, Alice and
Bob, who are spacelike separated, each carrying a particle
detector which can interact with the field locally. We model
these detectors using a pair of Unruh-DeWitt detectors
consisting of two-level quantum systems (qubits). The
monopole moment of each detector in the interaction
picture is given by

μ̂νðτÞ ¼ σ̂þν eiΩντ þ σ̂−ν e−iΩντ; ð1Þ

where ν ¼ fA; Bg denotes Alice or Bob, respectively. Here,
we have that σ̂þν ¼ jeνihgνj, σ̂−ν ¼ jgνiheνj are the usual
suð2Þ ladder operators, jgνi; jeνi are the ground and
excited states of the qubit, Ων is the gap of the qubit,
and τ is the proper time of the qubits. Since we are in flat
space, the proper time for both detectors will be the same.
The linear UDW model prescribes the interaction

between the field and a stationary detector [11]

Ĥν ¼ λνχνðtÞμ̂νðtÞ
Z

dnxFνðx − xνÞϕ̂ðt; xÞ; ð2Þ

where Fðx − xνÞ is the spatial smearing of the detector ν,
centered at xν; χνðtÞ is the switching function of the
detector; and λν is the coupling strength. We can assume
that the Hamiltonians generate translations with respect to
the same time parameter for both detectors, assuming they

are at rest relative to each other and also relative to the lab
frame in which the field quantization is performed.
The full interaction Hamiltonian for the field and the two

detectors is given by

ĤIðtÞ ¼ ĤAðtÞ ⊗ 1B þ 1A ⊗ ĤBðtÞ: ð3Þ

We assume that the system is initialized in the completely
uncorrelated state

ρ̂0 ¼ ρ̂A ⊗ ρ̂B ⊗ ρ̂ϕ̂; ð4Þ

where ρ̂ϕ is an arbitrary field state, which in the presence of
a zero mode we can split as ρ̂ϕ̂ ¼ ρ̂osc ⊗ ρ̂zm, where ρ̂osc is
the state of all the modes that admit a Fock quantization and
ρ̂zm is the state of the zero mode. The state ρA ⊗ ρB is the
most general product state of both detectors, which in a
matrix representation in the basis

jei ¼
�
1

0

�
; jgi ¼

�
0

1

�
ð5Þ

reads

ρ̂A ⊗ ρ̂B ¼
�
αA βA

β�A 1 − αA

�
⊗

�
αB βB

β�B 1 − αB

�
; ð6Þ

where αν ∈ R.
Notice that, while there is an ambiguity to choose the

physically meaningful state for a zero mode, all the results
in this paper are independent of the state of the field;
therefore, we do not need to concern ourselves with
discussing what would be a reasonable state for the field
in general and in particular for the zero mode as long as the
expectation values of the field commutators are well
defined.
The state evolves as

ρ̂ ¼ Ûρ̂0Û
†; ð7Þ

where the time evolution operator is

Û ¼ T exp

�
−i

Z
∞

−∞
dtĤIðtÞ

�
ð8Þ

and T denotes time ordering. The time evolution can be
found perturbatively order by order in the coupling
strengths λν. The final state of the two-detector subsystem
is then given by the reduced joint density matrix

ρ̂AB ¼ trϕ̂ðρ̂Þ ¼ ρ̂AB;0 þ ρ̂ð1ÞAB þ ρ̂ð2ÞAB þOðλ3Þ; ð9Þ

where the superscript ðjÞ denotes the contribution to the
time-evolved density matrix of order λj.
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To see how signaling using particle detectors is con-
nected to microcausality, we first note that any contribu-
tions linear in λA or λB are local and thus ρ̂ð1Þ cannot
contribute to signaling. The signaling part of the detectors’
density matrix ρ̂AB must be of second order in the product of
coupling strengths λAλB [15]. Therefore, we can split the
second-order term into three parts, namely,

ρ̂ð2ÞAB ¼ ρ̂ð2ÞAB;signal þ ρ̂ð2ÞA;noise þ ρ̂ð2ÞB;noise: ð10Þ
The last two terms are of the order λ2A and λ2B, respectively,
and hence they are local noise terms which do not
contribute to signaling between the two detectors. The
first term is the signaling term which is of the order λAλB.
This can also be seen by finding the reduced state of
detector B alone, and only the signaling term will survive:

ρ̂B;signal ¼ trAðρ̂ð2ÞAB;signalÞ: ð11Þ
In order to cleanly separate the effects of zero mode on
microcausality from the smearing and switching effects, we
consider both compactly supported smearing and switching
function. That is,

supp½χνðtÞ� ¼ ½Ton
ν ; Toff

ν �;

supp½Fðx − xνÞ� ¼
�
xν −

σ

2
; xν þ

σ

2

�
; ð12Þ

where σ is the width of the spatial smearing (i.e., an
effective detector diameter). We require that these supports
do not overlap, i.e.,

Toff
A < Ton

B ;

xA þ
σ

2
< xB −

σ

2
: ð13Þ

Under these conditions, it can be shown that

ρ̂ð2ÞB;signal ¼ 2

Z
R
dt
Z
R
dt0χAðtÞχBðt0ÞReðβAeiΩAtÞCðxA; x0BÞ

×

�
−2ImðβBeiΩBt0 Þ −ie−iΩBt0 ð1 − 2αBÞ
ie−iΩBt0 ð1 − 2αBÞ 2ImðβBeiΩBt0 Þ

�
:

ð14Þ

The function CðxA; xBÞ≡ Cðt; xA; t0; xBÞ in the integrand is
the spatially smeared pullback of the field commutator, as
shown in detail in Ref. [15],

Cðt; xA; t0; xBÞ ≔
Z
Rn

dx
Z
Rn

dx0FAðx − xAÞFBðx0 − xBÞ

× h½ϕðt; xÞ;ϕðt0; x0Þ�i; ð15Þ

where xj are the centers of mass of the smearings of the
detectors used to probe causality. To estimate the ability of
A and B to perform faster-than-light signaling, we analyze

the causality estimator E proposed in Ref. [15], which is
proportional to the signal strength of the contributions to
the density matrix of detector B coming from the presence
of detector A:

EðxA; xBÞ ≔
����
Z
R
dt
Z
R
dt0χAðtÞχBðt0ÞCðt; xA; t0; xBÞ

����:
ð16Þ

Furthermore, it has been shown that channel capacity,
measured by a lower bound to the number of bits per unit
time that can be sent from Alice to Bob, is directly related
to E [31,32].
Notice that one can also particularize to a delta switching

(that can be understood as the limit of very short time
Gaussian switching when the total strength of the inter-
action over time is fixed; see, e.g., Ref. [33]). In the case of
this instantaneous switching, the reduced density matrix of
detector B will simply be proportional to C; thus, this
function is a legitimate measure of signaling between
detectors. For this reason, we will make use of both E
and C as causality estimators in the subsequent sections.

III. CAUSALITY AND ZERO MODE
IN (1 + 1) DIMENSIONS

We consider the massless scalar field on the Einstein
cylinder with the metric [34]

ds2 ¼ −dt2 þ dx2; ð17Þ
where the spacetime has topology R × S1. The topological
identification is made for x ∼ xþ L, where L is the
circumference of the cylinder. This is the same as having
a periodic cavity in (1þ 1) dimensions, i.e., a periodic
boundary condition for the scalar field in Minkowski
spacetime. The field operator can be decomposed into
two parts,

ϕ̂ðt; xÞ ¼ ϕ̂zmðtÞ þ ϕ̂oscðt; xÞ: ð18Þ
The first term ϕ̂0 is the zero mode term which is spatially
constant. The second term ϕ̂oscðt; xÞ is the harmonic
oscillator term of which the mode decomposition reads

ϕ̂oscðt; xÞ ¼
X
n≠0

1ffiffiffiffiffiffiffiffiffiffiffi
4πjnjp ½e−ijknjtþiknxân þ H:c:�;

kn ¼
2πn
L

; n ∈ Z: ð19Þ

The oscillator modes have a Fock vacuum j0i defined by
ânj0i ¼ 0 for all n ∈ Z and the usual canonical commu-
tation relation for the ladder operators ½âj; â†k� ¼ δjk.
Note that the zero mode behaves as a “free particle”;

specifically, the Lagrangian only contains the kinetic part
[16,18]
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Lzm ¼ L _Q2

2
; ð20Þ

where Q ≔ ϕ̃0 is the Fourier component of the zero mode.
We can think of this as an “oscillator” with zero frequency,
since after Legendre transformation the zero-mode free
Hamiltonian (after quantization) is given by:

Ĥzm ¼ P̂2

2L
; P ¼ ∂Lzm

∂ _Q
: ð21Þ

In the interaction picture, we have that

Q̂ðtÞ ¼ Q̂S þ
P̂St
L

; ð22Þ

where the subscript S means the Schrödinger picture
operator. The Heisenberg equation of motion then implies
that

ϕ̂ZMðtÞ ¼ Q̂ðtÞ ¼ ϕ̂ZMð0Þ þ
P̂St
L

: ð23Þ

The field commutator can be written as the sum of the
commutator for the oscillator modes and the zero mode,

½ϕ̂ðxÞ; ϕ̂ðx0Þ� ¼ ½ϕ̂zmðtÞ; ϕ̂zmðt0Þ� þ ½ϕ̂oscðxÞ; ϕ̂oscðx0Þ�: ð24Þ

The oscillator contribution to the commutator is given by
(see Appendix A)

½ϕ̂oscðxÞ; ϕ̂oscðx0Þ� ¼ −
1

4π
logð1 − e−

2iπðΔu−iϵÞ
L Þ

−
1

4π
logð1 − e−

2iπðΔv−iϵÞ
L Þ

þ 1

4π
logð1 − e

2iπðΔu−iϵÞ
L Þ

þ 1

4π
logð1 − e

2iπðΔv−iϵÞ
L Þ; ð25Þ

where u ¼ t − x and v ¼ tþ x are the double null coor-
dinates in Minkowski space and Δu ¼ u − u0 and

Δv ¼ v − v0. The commutator due to the zero mode
reads [16]

½ϕ̂zmðxÞ; ϕ̂zmðx0Þ� ¼ −
iΔt
L

; Δt ¼ t − t0: ð26Þ

Let us now check the causality estimators in (1þ 1)
dimensions. The simplest case is that in which we take
pointlike detectors and instantaneous switching, which
reduces the estimators E to be proportional to C. Note that
even if we do not know the ground state for the zero mode
the commutator is a c number, so the causality estimator is
state independent.
In general, for a pointlike detector in arbitrary dimen-

sions and delta switching, one can run into UV-divergent
detector reduced density matrix. However, the causality
estimator is UV safe and does not have such problems even
in the limiting cases in which UV divergences may appear
[35,36]. Note as well that we can always avoid this problem
by not taking both limits (infinitely fast switching and
pointlike smearing) simultaneously.
In Fig. 1(a), we show the causality estimator (16) for a

delta switching and pointlike detectors for L ¼ 10, Δx ¼ 5
(that is, the separation between the detectors so that Δt < 5
corresponds to spacelike separation). The figure demon-
strates causality violation when one removes the zero mode
contribution. The causality violation coming from ignoring
the zero mode is very strong, as can be seen in the figure.
The decay of the signaling contributions (thus, the decay of
the superluminal channel capacity between Alice and Bob)
decays only linearly with the distance to the light cone.
When we plot the whole commutator including the zero

mode in Fig. 1(b), we recover the full causal behavior: the
commutator vanishes in the spatial separation domain
Δt < 5. We should also note that in (1þ 1) dimensions
we have a violation of the strong Huygens principle
[32,35–38]; i.e., the support of the commutator is on the
whole timelike region bounded by the light cone, and in
fact it is constant inside the light cone.
Note that the zero mode contribution is inversely propor-

tional to L. As one may have expected, the oscillator mode

(a) (b)

FIG. 1. Causality estimator for delta switching and pointlike detector, with Δx ¼ 5 in natural units. (a) Excluding the zero mode. The
commutator does not vanish even for spacelike separated regions. (b) Including the zero mode. Microcausality is recovered as
commutator vanishes identically for jΔtj < jΔxj.
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contribution to the commutator dominates at large L and
also uniformly becomes microcausal for large L, as shown
in Fig. 2(a). In other words, if the cavity is large, the
causality violation is small when one ignores zero mode
contribution of the quantum field. Consequently, the usual
“toroidal” quantization used, e.g., in Ref. [34], in which
one puts a field in a torus and takes L → ∞ to reproduce
free space quantization does not suffer causality violation
because of the limit taken. However, one has to be careful
since the superluminal signaling decays only linearly with
the length L, and hence the faster-than-light signaling will
not be strongly suppressed. This is illustrated in Fig. 2(b).
In a more general setting, we could consider the presence

of compactly supported spatial smearing and switching
functions. In Fig. 3 we show the causality estimator E when
we include the zero mode for various choices of detector
size σ and duration of switching δ for each detector. In this
plot, we used the hard-sphere smearing and finite Heaviside
switching of the form

χνðtÞ ¼
�
1=δ t ∈ ½Ton

ν ; Toff
ν �

0 otherwise

Fνðx − xνÞ ¼
�
1=σ x ∈ ½xν − σ

2
; xν þ σ

2
�

0 otherwise
; ð27Þ

where δ ≔ Ton
ν − Toff

ν is the duration of the switching which
we set to be equal for both detectors and σ is the finite size
of both detectors. We also fix the time gap between the two
detector’s switch-on/-off times Δ ≔ Ton

B − Toff
A , and D is

the surface-to-surface distance between both detectors. We
choose δ=σ ¼ 1 in all cases, but we decrease the value of
δ=Δ, which amounts to a shorter switching duration and a
smaller detector size. Indeed, we see that the causality
estimator approaches the delta switching and pointlike
limit. These results also indicate that causality estimator
E is largely independent of the type of switching or sme-
aring functions and mainly dependent on their durations/
lengths. Therefore, to discuss causality violations in detec-
tor signaling for higher-dimensional cases, it suffices to
focus on the pointlike and fast-switching limits for E.
We also note here that when we impose Neumann

boundary condition instead of periodic boundary condition
it will also yield a zero mode. In this case, the spacetime
still has the same metric as Minkowski space, but now we
consider homogeneous Neumann boundary condition

∂ϕ̂
∂x

����
x¼0

¼ ∂ϕ̂
∂x

����
x¼L

¼ 0: ð28Þ

The eigenfunctions now take the form

unðt; xÞ ¼ Nn cos
nπx
L

e−ijknjt; n ∈ N ∪ 0: ð29Þ

The spatially constant solution u0ðt; xÞ corresponds to the
zero mode. Therefore, the Klein-Gordon inner product only
works for n ∈ N, which gives Nn ¼ 1=

ffiffiffiffiffiffi
nπ

p
, and the zero

mode unðt; xÞ has to be treated separately. The oscillator
part of the commutator now reads (see Appendix A)

L = 50 L = 500 L = 5000

(a)

Δ t = 0.5Δx Δ t = 1.1Δx

(b)

FIG. 2. (a): Causality estimator of the purely oscillator part as a function of time gap between detector switching times Δt for several
choices of L. For large L, microcausality is approximately recovered. (b): Causality estimator of the purely oscillator part as a function of
L. We see that the causality estimator falls quickly with increasing L when detectors are spacelike separated and quickly approaches a
constant value when they are timelike separated.

δ /Δ = 0.17 δ /Δ = 0.07 δ /Δ = 0.013

FIG. 3. Causality estimator E as a function of outer distance of
the finite-sized detectors D for various switching durations δ and
sizes of detector σ. The time gap between the switch off of
detector A and switch on of detector B is denoted Δ.
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½ϕ̂oscðxÞϕ̂oscðx0Þ�

¼ 1

4π
½logð1 − e

iπðu−v0−iϵÞ
L Þ þ logð1 − e

iπðΔv−iϵÞ
L Þ

þ logð1 − e
iπðΔu−iϵÞ

L Þ þ logð1 − e
iπðv−u0−iϵÞ

L Þ
− logð1 − e−

iπðu−v0−iϵÞ
L Þ − logð1 − e−

iπðΔv−iϵÞ
L Þ

− logð1 − e−
iπðΔu−iϵÞ

L Þ − logð1 − e−
iπðv−u0−iϵÞ

L Þ�: ð30Þ

This commutator differs from the case for periodic
boundary conditions shown in Eq. (25) by a factor of 2 in
the momentum kn and the fact that the commutator is no
longer translation invariant. The zero mode commutator
remains the same as before. The estimator E for the
Neumann boundary condition will be similar to the periodic
boundary case shown previously in Fig. 1; thus, we do not
repeat the plot for Neumann boundary conditions.
Last but not least, there is an interesting observation we

can make regarding the expressions for the commutators: if
we invoke the identity

log
ð1 − eiϕÞð1 − eiψÞ
ð1 − e−iϕÞð1 − e−iψ Þ
≡ log eiðϕþψÞ

¼ iðϕþ ψÞ þ 2πin; n ∈ Z; ð31Þ

However, one has to be careful with the branch cuts of
the logarithm when applying this simplification. When the
detectors are spacelike separated, we do not cross the
branch cut of the logarithm when taking its principal branch
(n ¼ 0). In that case, taking the principal branch of the
logarithm, the oscillator contributions ½ϕ̂oscðxÞ; ϕ̂oscðx0Þ� for
both the periodic and Neumann boundary conditions in
Eq. (25) and Eq. (30) appear to simplify further into

½ϕ̂oscðxÞ; ϕ̂oscðx0Þ� ¼
1

4π
log½e4πiðΔt−iϵÞ

L �

¼ iΔt
L

þ ϵ

L
: ð32Þ

Consequently, by adding Eq. (25) or Eq. (30) to the zero
mode commutator ½ϕ̂zmðxÞ; ϕ̂zmðx0Þ�, followed by the limit
ϵ → 0, we get the simple result for spacelike separated x, x0,

½ϕ̂ðxÞ; ϕ̂ðx0Þ� ¼ 0; ð33Þ

as it should be if microcausality is not violated.
However, there are some subtleties associated with the

above simplifications. For one, the identity seems to hide
the role of spatial separation Δx because only Δt appears in
the expression for ½ϕ̂oscðxÞ; ϕ̂oscðx0Þ� in Eq. (32). It turns out
that, depending on the values of t, t0, x, and x0, we may
cross branch cuts and the terms in the commutator may

refer to different branches of the logarithm. More specifi-
cally, from Eq. (32), we can deduce that the simplification
holds for spacelike separated x; x0 whenever the spatial
difference Δx satisfies

jΔxj
L

≡ jx − x0j
L

≥
1

4
; ð34Þ

otherwise, we will need to use the full expression given in
Eq. (25). For arbitrary separation, using Eq. (31), the
simplification will read

½ϕ̂ðxÞ; ϕ̂ðx0Þ� ¼ n
2
; n ∈ Z: ð35Þ

Here, n refers to different branches of the full simplified
logarithm in Eq. (32), which depends on t, t0, x, and x0 in a
nontrivial manner. The timelike separated case as shown in
Fig. 1(b) is in fact the n ¼ 2 branch. For arbitrary values of
x, x0, t, and t0, the value of n will depend on how many
logarithms in the sums in Eq. (25) and (30) cross branch
cuts for the value of the parameters. The consequent
piecewise simplification of the zero mode commutator
would in general be cumbersome, so we only included it
in detail for the spacelike case, which is the one we focus on
to study causality.

IV. CAUSALITY AND ZERO MODE
IN (2 + 1) DIMENSIONS

In (1þ 1) dimensions, we showed that both periodic and
(homogeneous) Neumann boundary conditions have zero
modes which lead to causality violations when they are
removed unjudiciously. Both boundary conditions are
essentially unique since there is only one way to implement
them. For example, in (1þ 1) dimensions, there is a unique
spatial topology corresponding to periodic boundary con-
ditions, namely, S1. Similarly, there is only one possible
homogeneous Neumann boundary condition; namely,
spatial derivatives at both ends are set to zero. In higher
dimensions, there are more possibilities due to more
freedom in imposing the boundary conditions. For instance,
homogeneous Neumann boundary conditions can be imple-
mented for various boundary shapes, and one can impose
periodic boundary condition on one dimension and, e.g., a
Dirichlet boundary condition on the remaining spatial
dimensions.

A. Annular boundary condition: Σ= I × S1

The simplest case we consider will involve a two-
dimensional “annular” cavity, in which the spatial topology
is I × S1 where I ⊂ R is a compact interval. This is equi-
valent to taking the massless scalar field in Minkowski
spacetime but imposing Dirichlet boundary conditions in
one direction and periodic boundary conditions in another.
If we let x be the coordinate with the periodic boundary
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condition and y be the coordinate with the Dirichlet
boundary condition, we have

ϕ̂ðt; x; yÞ ¼ ϕ̂ðt; xþ L1; yÞ;
ϕ̂ðt; x; 0Þ ¼ ϕ̂ðt; x; L2Þ ¼ 0: ð36Þ

For convenience, we consider the case with L1 ¼ L2 ¼ L.
The positive eigenmodes with respect to the Minkowski
timelike Killing vector for this case is given by

unlðt; x; yÞ ¼ Nnle−ijknljt exp
2iπnx
L

sin
lπy
L

;

jknlj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πn
L

�
2

þ
�
πl
L

�
2

s
; n ∈ Z; l ∈ N;

ð37Þ

where Nnl is a normalization constant. For clarity, we
explicitly derive the normalization using the Klein-Gordon
inner product:

δnn0δll0 ¼ −i
Z

L

0

dx
Z

L

0

dy

�
unl

∂u�n0l0
∂t − u�n0l0

∂unl
∂t

�
: ð38Þ

For n ¼ n0, l ¼ l0, this leads to

2jknljjNnlj2
Z

L

0

dx
Z

L

0

dysin2
nπy
L

¼jknljjNnlj2L2¼1; ð39Þ

and hence we can set Nnl ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ljknlj

p
.

The above expression alone is sufficient to conclude that
there is no zero mode problem even though we have n ¼ 0
eigensolutions. The reason is because, since l ∈ N, we have
jknlj ≠ 0 for all n ∈ Z including n ¼ 0. Consequently,
under canonical quantization, every mode with a definite
n, l is an oscillator mode with nonzero frequency jknlj.
Without computing the commutator, we will know that
microcausality is fully governed by the oscillator modes.
We show this concretely in Fig. 4, where we highlight the
differences between the signaling of the detectors in free
space studied in Ref. [15] (Fig. 4b) and detectors in finite
cylindrical cavity of topology I × S1 (Fig. 4b).
To have a zero mode in (2þ 1) dimensions, we must

consider the case in which we have the “harmonic” solution
with vanishing frequency jk00j ¼ 0. This suggests two
other nontrivial cases: 1) a toroidal boundary and 2) a
(2þ 1)-dimensional Einstein cylinder.

B. Toroidal boundary condition: Σ= S1 × S1

For the case with toroidal boundary, the spatial topology
is S1 × S1; i.e., both x and y have periodic boundary
conditions,

ϕ̂ðt; x; yÞ ¼ ϕ̂ðt; xþ L1; yÞ;
ϕ̂ðt; x; yÞ ¼ ϕ̂ðt; x; yþ L2Þ: ð40Þ

Again, for simplicity, let us set L1 ¼ L2 ¼ L. This gives us
the positive frequency eigenmodes of the form

umnðt; x; yÞ ¼ Nmne−ijkmnjt exp
2iπmx
L

exp
2iπny
L

;

jkmnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πm
L

�
2

þ
�
2πn
L

�
2

s
;

Nmn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ljkmnj
p ; ð41Þ

where in this case the zero mode will appear. The oscillator
part of the commutator is given by (see Appendix A)

h½ϕ̂oscðxÞ; ϕ̂oscðx0Þ�i

¼
X∞

m¼−∞

X
n≠0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ljkmnj

p ðumnu0�mn − u0mnu�mnÞ

þ
X
m≠0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ljkm0j

p ðum0u0�m0 − u0m0u
�
m0Þ: ð42Þ

− −

−

−

(a)

− −

−

−

Mode sum = 50 × 50 Mode sum = 100 × 100

(b)

FIG. 4. (a): Free space commutator. (b): Commutator for
finite cylindrical spacetime with spatial topology Σ ¼ I × S1 for
50 × 50 and 100 × 100modes. Within the timelike interval, as we
sum more higher modes, the estimator uniformly approaches zero
(here the average is already zero). At the null boundary, there is
the Gibbs phenomenon due to the UV cutoff.
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Since the sum cannot be done analytically, we resort to
partial sums for the computation of estimator C and take the
imaginary part, Im C. This will give us the same informa-
tion about superluminal signaling due to the absence of the
zero mode, since from Eq. (16) and for a delta switching
and pointlike detector the estimator E is the modulus of C,
which is purely imaginary. Plotting Im C is visually clearer.
The results are shown in Fig. 5(a). It is clear that there is a

causality violation and superluminal signaling between
detectors when one discounts the zero mode. Causality
is recovered when the zero mode contribution is included,
even at the level of partial sums. Furthermore, note that the
zero mode commutator is different from the one in (1þ 1)
dimensions, namely,

½ϕ̂zmðxÞ; ϕ̂zmðx0Þ� ¼ −
iΔt
L2

: ð43Þ

C. (2 + 1)-dimensional Einstein cylinder

The other nontrivial case involves the Einstein cylinder,
in which the only difference is that the sum over modes
along one direction is a continuum (hence, an integral over
modes instead of a summation). The mode decomposition
is given by

unlðt; x; yÞ ¼ Nnle−ijknljteily exp
2iπnx
L

;

jknlj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πn
L

�
2

þ l2

s
; n ∈ Z; l ∈ R;

Nnl ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ljknlj
p : ð44Þ

While formally it appears that the result should be the same
as the case for the toroidal scenario, we should be careful
because from the perspective of the y modes, the ω00 mode
is a point and hence is a measure-zero proper subset of the
real lineR, which has strictly greater measure. The partially
mode-summed estimator is shown in Fig. 6, in which we
can see the faster-than-light signaling that appears when
the zero mode is ignored. Indeed, one can check that taking
the principal value integral for the full commutator

½ϕ̂ðxÞ; ϕ̂ðx0Þ�

¼
X
n∈Z

Z
−ϵ

−∞
dlðunlðxÞu�nlðx0Þ − unlðx0Þu�nlðxÞÞ

þ
X
n∈Z

Z
∞

ϵ
dlðunlðxÞu�nlðx0Þ − unlðx0Þu�nlðxÞÞ ð45Þ

does not violate microcausality as ϵ → 0.
Again, we note that Neumann boundary conditions

similarly produce a zero mode, as in ð1þ 1Þ dimensions.
However, in (2þ 1) dimensions, it is now possible to have
periodic boundary conditions in one direction and
Neumann boundary conditions on another. A zero mode
will arise whenever there is a “zero frequency” component
of the eigenfunctions which is spatially constant (see
Appendix A and Appendix C for more details).

V. RESULTS IN HIGHER DIMENSIONS

Based on our results in (2þ 1) dimensions, we can easily
generalize the results to higher dimensions. In particular,
the toroidal case with topology S1 × S1 × � � � × S1 will

− −

−

−

−

Without ZM With ZM

(a)

− −

−

−

−

Without ZM With ZM

(b)

FIG. 5. Commutator for toroidal spacetime with spatial
topology Σ ¼ S1 × S1. (a): 50 × 50 modes, Δx ¼ 5, Δy ¼ 0.
(b): for 100 × 100 modes, Δx ¼ 5, Δy ¼ 2.

FIG. 6. Commutator for (2þ 1)-dimensional Einstein cylindri-
cal spacetime with spatial topology Σ¼R×S1 for ðkmin; kmaxÞ ¼
ð−50; 50Þ. It does not display causality violation despite the
integral domain excluding the zero mode.
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present a zero mode in arbitrary dimensions since the
construction is analogous. The oscillator part of the
commutator for arbitrary dimensions with toroidal boun-
dary conditions (and more general boundary conditions) is
given by Eq. (A3) in Appendix A. Another notable feature
is that in higher dimensions one can have a strong Huygens
principle, e.g., in (3þ 1) dimensions [37,38]. This is shown
in Fig. 7, in which the support of the full commutator
(including the zero mode) is only on the light cone. Notice
that the zero mode commutator in arbitrary dimensions is
given by (see Appendix C for derivation)

½ϕ̂zmðxÞ; ϕ̂zmðx0Þ� ¼ −
iΔt
Ln ; Δt ¼ t − t0: ð46Þ

That is, the impact of the zero mode is polynomially weaker
in higher dimensions. In Fig. 7, we already see that the
estimator ImC is not very different visually, but removing
zero mode nonetheless leads to causality violation and, in
this case, also a violation of the strong Huygens principle in
(3þ 1) dimensions.
Another feature of higher-dimensional cases is that there

are more transverse dimensions in which one can impose
boundary conditions. For example, to have a zero mode,
strictly speaking, one does not need the toroidal boundary
condition. One could instead use a combination of the
periodic boundary condition in some transverse dimensions
and Neumann boundary condition on the remaining
dimensions (see Appendix A for details).

VI. CONCLUSION

In this paper, we have shown that when a zero mode is
present due to periodic or Neumann boundary conditions
(associated either to cavities or spacetimes with compact
spatial topology), excluding them in modeling light-matter

interactions using particle detector models can lead to
faster-than-light signaling between two detectors.
We explicitly quantify the amount of violation in terms of

the strength of the superluminal signal that one emitter
operating a particle detector can send to another if the
detector is not coupling to the zero mode and find that for a
fixed spatial separation Δx the causality violation decays
polynomially with the temporal separationΔt and the length
across the boundary condition L. The power law of this
decay is given by the number of spatial dimensions n so that
the decay is linear in (1þ 1) dimensions, quadratic in
(2þ 1) dimensions, etc. Therefore, any relativistic scenario
in which we analyze the light-matter interaction, commu-
nication, entanglement harvesting, or any other phenom-
enological study in which relativity is of importance should
consider that particle detectors couple to the zero mode
explicitly. As a corollary, in such scenarios, one might need
to care about the state of the zero mode, the impact on
detector dynamics of which is nontrivial [16], and one
cannot get around the ambiguity of establishing the state of a
zero mode just by ignoring its presence.

ACKNOWLEDGMENTS

The authors thank Jorma Louko for useful discussions
during the Relativistic Quantum Information-North 2018
conference in Vienna. E. T. acknowledges support of
Mike-Ophelia Lazaridis Fellowship. E. M.-M. acknowl-
edges funding of the Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery program
and his Ontario Early Researcher grant.

APPENDIX A: DERIVATION OF THE
OSCILLATOR PART OF THE

COMMUTATOR 〈[ϕ̂osc(x); ϕ̂osc(x0)]〉
In this Appendix, we will write derive the expressions

for the commutators of the field in arbitrary dimensions
when periodic boundary conditions and Neumann boun-
dary conditions are imposed, or a combination of periodic
and Neumann boundary conditions if the spatial dimension
is at least 2. We first derive the most general expression and
then illustrate in full detail the particular cases for various
boundary conditions in ð1þ 1Þ and (2þ 1) dimensions.

1. General expression in arbitrary dimensions

In (nþ 1) dimensions, given an arbitrary state of the
field ρ̂ϕ̂, the expectation value of the commutator with
respect to the state ρ̂ϕ̂ is given by

h½ϕ̂oscðxÞ; ϕ̂oscðx0Þ�iρ̂ ¼ trðρ̂ϕ̂½ϕ̂oscðxÞ; ϕ̂oscðx0Þ�Þ: ðA1Þ

To reduce notational clutter, let us define I, J to be the
collective indices where n is the number of spatial

− − −

−

−

FIG. 7. Commutator for (3þ 1)-dimensional toroidal space-
time with spatial topology Σ ¼ S1 × S1 × S1 for 30 × 30 × 30
oscillator modes. Here, L ¼ 1, and Δx ¼ 0.5, Δy ¼ Δz ¼ 0. The
curve without the zero mode is somewhat tilted clockwise relative
to the origin, reflecting causality violation. The spikes correspond
to the divergences due to the support of the commutator on the
null cone.
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dimensions. This will simplify the expression for the sum
over modes in the commutators below. We define A ≔
A1; A2;…; An as the collective indexing sets for I, J, which
excludes the zero mode (if any). That is, I ∈ A means that
every component il of the multi-index I takes values in the
set Al for each l ¼ 1; 2;…; n.
We can expand the field operator in terms of a complete

set of orthonormal solutions to the Klein-Gordon equation
fuI; u�Ig, that is,

ϕ̂ðxÞ ¼
X
I∈A

ðâIuIðxÞ þ â†I u
�
I ðxÞÞ: ðA2Þ

Notice that the sum over the set of modes I can be a
continuous sum (an integral) or a discrete sum depending
on the boundary conditions imposed (by changing the
indexing set A). We can now evaluate then the expectation
of the commutator as

h½ϕ̂oscðxÞ; ϕ̂oscðx0Þ�iρ̂ ¼
X
I;J∈A

ðh½âI; âJ�iρ̂uIu0J þ h½â†I ; â†J�iρ̂u�I u0J�þh½âI; â†J�iρ̂uIu0J� þ h½â†I ; âJ�iρ̂u�I u0JÞ

¼
X
I;J∈A

ðδIJuIu0J� − δJIu�I u
0
JÞ

¼
X
I∈A

ðuIðxÞu�I ðx0Þ − u�I ðxÞuIðx0ÞÞ

≡ h½ϕ̂oscðxÞ; ϕ̂oscðx0Þ�i; ðA3Þ

where we have shortened notation by using u0I ≡ uIðx0Þ. We
have also used the canonical commutation relations
½âI; â†J� ¼ δIJ1 to show explicitly the fact that the expect-
ation value of the commutator is independent of the state of
the field and drop the subscript ρ̂ from the expectation
value.
Equation (A3) above is the most general expression for

the commutator of the oscillator part of the field. When
different boundary conditions are imposed, we vary the
choice of indexing set A. For example, in the case of

toroidal boundary conditions (periodic in all n spatial
dimensions), the eigenfunctions are given by

uI ¼ NIe−ijkI jtþikI ·x; jkIj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
l¼1

�
2πil
L

�
2

s
; ðA4Þ

where the indices il are nonzero integers (hence excludes
the zero mode), i.e., Al ¼ Znf0g. That is, the oscillator part
of the commutator reads

h½ϕ̂oscðxÞ; ϕ̂oscðx0Þ�i ¼
X
j1∈Z

� � �
X

jn−1∈Z

X
jn≠0

uj1…jnðxÞu�j1…jn
ðx0Þ − uj1…jnðx0Þu�j1…jn

ðxÞ

þ
X
j1∈Z

� � �
X

jn−2∈Z

X
jn−1≠0

uj1…jn−10ðxÞu�j1…jn−10
ðx0Þ − uj1…jn−10ðx0Þu�j1…jn−10

ðxÞ

þ
X
j1∈Z

� � �
X

jn−3∈Z

X
jn−2≠0

uj1…jn−200ðxÞu�j1…jn−200
ðx0Þ − uj1…jn−200ðx0Þu�j1…jn−200

ðxÞ

þ
X
j1≠0

uj100…0ðxÞu�j100…0ðx0Þ − uj100…0ðx0Þu�j100…0ðxÞ: ðA5Þ

For Neumann boundary conditions, the eigenfunctions
are instead given by

uI ¼ NI

Yn
l¼1

cos
ilπxl
L

e−ijkI jt; jkIj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
l¼1

�
ilπ
L

�
2

s
;

ðA6Þ
and the indexing set is given by Al ¼ N ∪ f0g in such a
way that it excludes the zero mode; i.e., at least one of the

summations is over N. More concretely, we replace the
summation for jk ∈ Z with jk ∈ N ∪ f0g and the summa-
tion for jk ≠ 0 with jk ∈ N in (A3).
We will now use these results to write down the explicit

expressions used in this paper.

2. (1 + 1) periodic boundary conditions

For periodic boundary conditions, the eigenfunctions of
the Klein-Gordon equation read
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unðt; xÞ ¼
1ffiffiffiffiffiffiffiffi
2πn

p e−ijknjtþiknx; kn ¼
2πn
L

; n ≠ 0: ðA7Þ

where the normalization constant Nn ¼ 1=
ffiffiffiffiffiffiffiffi
2πn

p
. The expectation of the commutator reads

h½ϕ̂oscðxÞϕ̂oscðx0Þ�i ¼
X∞
n¼1

1

4πn
½e−iknðΔu−iϵÞ þ e−iknðΔv−iϵÞ−eiknðΔu−iϵÞ − eiknðΔv−iϵÞ�

¼
X∞
n¼1

i
2πn

�
sin

2πn
L

ðΔu − iϵÞ þ sin
2πn
L

ðΔv − iϵÞ
�
; ðA8Þ

where u ¼ t − x and v ¼ tþ x are the double null coordinates. Finally, we invoke the identity

X∞
n¼1

sin nx
n

¼ 1

2
½log ð1 − e−ixÞ − log ð1 − eixÞ�; ðA9Þ

and we obtain the commutator in Eq. (25).

3. (1 + 1) Neumann boundary conditions

In the case of Neumann boundary condition, the eigenfunctions of the Klein-Gordon equation take the form

unðt; xÞ ¼
1ffiffiffiffiffiffi
nπ

p cos
nπx
L

e−ijknjt; kn ¼
nπ
L

; n ∈ N; ðA10Þ

where the normalization constant Nn ¼ 1=
ffiffiffiffiffiffi
πn

p
. The expectation of the commutator reads

h½ϕ̂oscðxÞϕ̂oscðx0Þ�i ¼
X∞
n¼1

1

πn

�
cos

nπx
L

cos
nπx0

L
e−iknðΔt−iϵÞ−cos

nπx0

L
cos

nπx
L

eiknðΔt−iϵÞ
�

¼
X∞
n¼1

−2i
πn

�
cos

nπx
L

cos
nπx0

L
sin

nπΔt
L

�
; ðA11Þ

where Δt ¼ t − t0. Notice that, due to the form of the eigenfunction in Eq. (A10), this commutator is no longer translation
invariant, unlike the case of periodic boundary conditions in which the mode sums are purely functions of Δu and Δv. Still,
this expression admits a closed analytic expression, namely,

h½ϕ̂oscðxÞϕ̂oscðx0Þ�i

¼ 1

4π
½log ð1 − e

iπðu−v0−iϵÞ
L Þ þ log ð1 − e

iπðΔv−iϵÞ
L Þ þ log ð1 − e

iπðΔu−iϵÞ
L Þ þ log ð1 − e

iπðv−u0−iϵÞ
L Þ

− log ð1 − e−
iπðu−v0−iϵÞ

L Þ − log ð1 − e−
iπðΔv−iϵÞ

L Þ − log ð1 − e−
iπðΔu−iϵÞ

L Þ − log ð1 − e−
iπðv−u0−iϵÞ

L Þ�: ðA12Þ

4. (2 + 1) dimensions periodic boundary conditions

In (nþ 1) dimensions with n ≥ 2, the mode sums do not
have a closed form because the normalization constant NI
mixes contributions from different transverse momenta. As
such, in practice, one would numerically impose a UV
cutoff to evaluate these sums.
For simplicity, let us impose the boundary condition

across a length L in both transverse directions. This will
simplify the expression for the normalization constant Nmn.

The eigenfunctions for the toroidal boundary condition
(periodic boundary in both spatial directions) in (2þ 1)
dimensions read

umnðt; x; yÞ ¼ Nmn exp

�
−ijkmnjtþ i

2πm
L

xþ i
2πn
L

y

�
;

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πm
L

�
2

þ
�
2πn
L

�
2

s
: ðA13Þ
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Recall that the normalization constant Nmn couples
momenta from both transverse directions,

Nmn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ljkmnj
p : ðA14Þ

The expectation value of the commutator
h½ϕ̂oscðxÞϕ̂oscðx0Þ�i is then given by the following sum:

h½ϕ̂oscðxÞϕ̂oscðx0Þ�i

¼
X∞

m¼−∞

X
n≠0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ljkmnj

p ðumnu0�mn − u0mnu�mnÞ

þ
X
m≠0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ljkm0j

p ðum0u0�m0 − u0m0u
�
m0Þ: ðA15Þ

These two sums only exclude the jk00j term corresponding
to the zero mode. This expression generalizes easily to
higher dimensions, essentially including all sums which
excludes the zero-frequency part containing jk00…0j.

5. (2 + 1) dimensions Neumann boundary conditions

For the Neumann boundary condition on both transverse
directions, we get

umnðt; x; yÞ ¼ Nmn cos
mπx
L

cos
nπy
L

e−ijkmnjt;

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
πm
L

�
2

þ
�
πn
L

�
2

s
: ðA16Þ

According to the prescription in Eq. (A3), the expectation
of the commutator will now read

h½ϕ̂oscðxÞϕ̂oscðx0Þ�i

¼
X∞
m¼0

X∞
n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ljkmnj

p ðumnu0�mn − u0mnu�mnÞ

þ
X∞
m¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ljkm0j

p ðum0u0�m0 − u0m0u
�
m0Þ: ðA17Þ

In fact, this suggests the possibility of using periodic and
Neumann boundary conditions on different transverse
dimensions. If we impose the Neumann boundary along
the x direction and periodic boundary across the y direction,
the eigenfunctions would be

umnðt; x; yÞ ¼ Nmn cos
mπx
L

exp

�
−ijkmnjtþ i

2πny
L

�
;

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
πm
L

�
2

þ
�
2πn
L

�
2

s
; ðA18Þ

where m ∈ N ∪ f0g and n ∈ Z. The expected value of the
commutator will now take the form

h½ϕ̂oscðxÞϕ̂oscðx0Þ�i ðA19Þ
¼

X∞
m¼0

X
n≠0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ljkmnj

p ðumnu0�mn − u0mnu�mnÞþ ðA20Þ

X∞
m¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ljkm0j

p ðum0u0�m0 − u0m0u
�
m0Þ: ðA21Þ

APPENDIX B: (n+ 1) EINSTEIN CYLINDER

In the case of the (nþ 1) Einstein cylinder, the result is
analogous to the toroidal case except replacing the sum
over Z with an integral over momentum along the non-
compact spatial direction [see Eq. (45) for the (2þ 1) case].
In our multi-index notation, this is basically setting Al ¼ R
for noncompact transverse dimensions and integrating over
momentum instead of summing over discrete momentum.
However, since the spectrum is continuous, the commutator
of the oscillator modes computed in this manner is in fact
the full field commutator (or rather, the zero mode does
not contribute since it is a point of measure zero in
momentum space). Therefore, effectively, there is no zero
mode relevant physics in the Einstein cylinder when n ≥ 2.

APPENDIX C: DERIVATION OF THE ZERO
MODE COMMUTATOR 〈[ϕ̂zm(x); ϕ̂zm(x0)]〉

Here, we derive the fact that the zero mode commutator
scales polynomially with the length of the “cavity” in
which the boundary conditions are imposed, i.e.,

h½ϕ̂zmðxÞ; ϕ̂zmðx0Þ�i ¼ −i
Δt
Ln ; ðC1Þ

where n is the number of spatial dimensions. Thus, in some
sense, the zero mode contribution is (polynomially) weaker
in higher dimensions.
To prove this, it is simplest to start from the Lagrangian

of the field theory. In (nþ 1) dimensions, the Lagrangian is
given by

L ¼ 1

2

Z
dnx∂μϕðt; xÞ∂μϕðt; xÞ

¼ 1

2

Z
dnx

��∂ϕ
∂t

�
2

þ ð∇ϕÞ2
�
: ðC2Þ

The boundary conditions which will produce zero modes
need to have a discrete spectrum. Hence, the field can be
expanded as a Fourier series,

ϕðt; xÞ ¼
X
I∈A

φIðtÞeikI ·x; ðC3Þ

where we have used the notation I for collective indices for
summation as defined in Appendix A. Here, we denote the
Fourier coefficients as fφIðtÞg.
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The first in term in Eq. (C2) reads

Z
dnx

�∂ϕ
∂t

�
2

¼
Z

dnx
X
I∈A

X
J∈A

_φIðtÞ _φJðtÞeiðkIþkJÞ·x: ðC4Þ

When we have periodic/Neumann boundary conditions
across distance L (in all spatial dimensions), the expression
becomes

Z
dnx

�∂ϕ
∂t

�
2

¼
Z
½0;L�n

dnx
X
I;J∈A

_φI _φJeiðkIþkJÞ·x

¼ Ln
X
I∈A

_φI _φ−I: ðC5Þ

The second term readsZ
½0;L�n

dnxð∇ϕÞ2 ¼ −jkIj2Ln
X
I∈A

φIφ−I: ðC6Þ

The full Lagrangian is therefore given by

L ¼ Ln

2

X
I∈A

½ _φI _φ−I − jkIj2φIφ−I�: ðC7Þ

From this expression, we can read off the zero mode
Lagrangian (which corresponds to jkIj ¼ 0 with
I ¼ j1j2…jn ¼ 00…0), namely,

Lzm ¼ Ln

2
_φ2
0…0 ≡ Ln

2
_Q2: ðC8Þ

The case for n ¼ 1 is given in Refs. [16,18]. The momen-
tum conjugate to φI is given by

πI ¼
∂L

∂ð _φIÞ
¼ Ln _φ−I; ðC9Þ

and hence the Hamiltonian is given by

H ¼
�X
I∈A

πIπ−I
2Ln −

jkIj2
2

X
I∈A

φIφ−I

�
: ðC10Þ

Canonical quantization converts πI and φI into operators π̂I
and φ̂I; thus, we have the zero mode Hamiltonian in (nþ 1)
dimensions:

Ĥzm ¼ P̂2
0…0

2Ln ≡ P̂2

2Ln : ðC11Þ

So, for n dimensions, the procedure that leads to Eq. (26) is
exactly the same when replacing L by Ln in (21).
Consequently, the commutator of the zero mode in
(nþ 1) dimensions is obtained by replacing L with Ln,
namely,

h½ϕ̂zmðxÞ; ϕ̂zmðx0Þ�i ¼ −
iΔt
Ln ; Δt ¼ t − t0; ðC12Þ

as claimed.
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