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In the 1980s, Schröder studied a quantum mechanical model where the stationary states of Schrödinger’s
equation obey nonlocal boundary conditions on a circle in the plane. For such a problem, we perform a
detailed one-loop calculation for three choices of the kernel characterizing the nonlocal boundary
conditions. In such cases, the ζð0Þ value is found to coincide with the one resulting from Robin boundary
conditions. The detailed technique here developed may be useful for studying one-loop properties of
quantum field theory and quantum gravity if nonlocal boundary conditions are imposed.
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I. INTRODUCTION

In the late 1980s, motivated by physical models of Bose
condensation and mathematical study of Schrödinger
operators, the work in Ref. [1] studied spectral properties
of the Laplace operator with nonlocal boundary conditions.
Within this framework, on considering the region

BR ≡ fx; y∶x2 þ y2 ≤ R2g; ð1:1Þ

one builds, out of a function q which is both Lebesgue
summable and square-integrable on the real line, the
periodic function

qRðxÞ≡ 1

2πR

X∞
l¼−∞

eilx=R
Z

∞

−∞
e−ily=RqðyÞdy; ð1:2Þ

which has period 2πR and approaches q if R → ∞. On
using polar coordinates ðr;φÞ, the nonlocal boundary-value
problem studied in Ref. [1] reads as

−
� ∂2

∂r2 þ
1

r
∂
∂rþ

1

r2
∂2

∂φ2

�
u ¼ Eu; ∀ r < R; ð1:3Þ

∂u
∂r þ R

Z
π

−π
qRðRðφ − θÞÞuðR; θÞdθ ¼ 0: ð1:4Þ

The resulting spectrum has both a positive (E > 0) and a
negative (E < 0) part. For E > 0, the solutions regular at
the origin r ¼ 0 are factorized in the form

ul;Eðr;φÞ ¼ Jlðr
ffiffiffiffi
E

p
Þeilφ; l ∈ Z; ð1:5Þ

the Jl being Bessel functions of the first kind. On defining
the dimensionless variable h≡ R

ffiffiffiffi
E

p
, Eq. (1.4) takes

eventually the form [1]

GlðhÞ≡ hJ0lðhÞ þ Rq̃

�
l
R

�
JlðhÞ ¼ 0; ð1:6Þ

where q̃ is the Fourier transform of q, i.e., [1]

q̃

�
l
R

�
¼

Z
∞

−∞
qðxÞe−i lRxdx: ð1:7Þ

We note from (1.6) that q̃ must have dimension length−1,
and hence q must have dimension length−2.
In the present paper, we have tried to work out the one-

loop properties pertaining to the problem defined by
Eqs. (1.3) and (1.4). In the physics-oriented literature,
one-loop calculations are more frequently performed in the
case of quantum field theories, but the quantum mechanical
framework is already of interest [2], and may provide
valuable information on the behaviour of solutions of
elliptic equations under a scale dilation. Such a property
is neatly described by the ζð0Þ value, where ζ is the spectral
(or generalized) ζ-function of the elliptic operator A under
consideration, defined by

ζAðsÞ≡ TrL2ðA−sÞ ¼
X
n

λ−sn ; ð1:8Þ
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where each eigenvalue λn is counted with its degeneracy.
For this purpose, Sec. II outlines the analytic technique of
Ref. [3] and its application to our boundary-value problem
(1.3) and (1.4). Section III evaluates the first three sums that
contribute to the ζð0Þ value, whereas Sec. IV studies the
fourth and last sum contributing to ζð0Þ, for three choices
of the function q and hence of the dimensionless coef-
ficients βl from Eqs. (1.6) and (1.7), i.e.,

βl ≡ Rq̃

�
l
R

�
: ð1:9Þ

Concluding remarks are presented in Sec. V, whereas
relevant details are given in the Appendix.

II. ζð0Þ VALUE FROM THE ζ-FUNCTION
AT LARGE h

For the Laplacian A on the left-hand side of Eq. (1.3), the
associated heat equation has a heat kernel Kðξ; η; tÞ, whose
diagonal Kðξ; ξ; tÞ yields, upon integration over the whole
region BR in (1.1), the integrated heat kernel (for gauge
theories, the trace to be integrated is instead the fiber trace
of the heat-kernel diagonal),

KðtÞ ¼
Z
BR

Kðξ; ξ; tÞ ¼ TrL2e−tA; ð2:1Þ

which has, as t → 0þ, the asymptotic expansion [3–5]

KðtÞ ∼
X∞
n¼0

Bnt
n
2
−1: ð2:2Þ

In our two-dimensional region BR, the method used in
Ref. [3] considers the so-called spectral ζ-function at large
h, i.e., [λn and h being dimensionless in (2.3)]

ζðs; h2Þ≡X
n

ðλn þ h2Þ−s; ð2:3Þ

which is related to the integrated heat kernel (2.1) by the
identity

Z
∞

0

te−h
2tKðtÞdt ¼ Γð2Þζð2; h2Þ: ð2:4Þ

If one now inserts into the left-hand side of (2.4) the
asymptotic expansion (2.2), one finds

Γð2Þζð2; h2Þ ∼
X∞
n¼0

BnΓ
�
1þ n

2

�
h−n−2: ð2:5Þ

On the other hand, on considering the equation (1.6), which
is the equation obeyed by the eigenvalues E ¼ h2

R2 by virtue
of the boundary conditions, one has also the identity
(see [3] and our Appendix)

Γð2Þζð2; h2Þ ¼
X∞
l

ð−NlÞ
�
1

2h
d
dh

�
2

log½ðihÞ−lGlðihÞ�;

ð2:6Þ

where the degeneracy Nl equals 2, as is clear from (1.5)
(for each value of l, there exist 2 linearly independent
eigenfunctions proportional to cosðlφÞ and sinðlφÞ, respec-
tively). In light of (2.5) and (2.6), the desired ζð0Þ is the
coefficient of h−4 in the asymptotic expansion of the right-
hand side of Eq. (2.6), because ζð0Þ ¼ B2 from the
formulae [4]

ζðsÞ¼ 1

ΓðsÞ
Z

∞

0

ts−1KðtÞdt

∼
1

ΓðsÞ
�X∞
n¼0

Bn

Z
1

0

t
n
2
þs−2dtþ

Z
∞

1

ts−1KðtÞdt
�
: ð2:7Þ

In the course of performing sums over all positive and
negative values of l, it is helpful to exploit the identity

J−lðzÞ ¼ ð−1ÞlJlðzÞ; ð2:8Þ

as well as the even nature of βl as a function of l (see
Sec. IV). This implies that a real root ofGl with positive l is
also a real root of Gl with negative l, because

G−lðzÞ ¼ ð−1ÞlGlðzÞ: ð2:9Þ

We can therefore limit ourselves to summing over positive
values of l, writing that, in (2.6),

X∞
l

¼ 2
X∞
l¼1

þ contribution of ðl ¼ 0Þ

¼ 2
X∞
l¼0

− contribution of ðl ¼ 0Þ: ð2:10Þ

Following Ref. [3], we use in (2.6) and (2.10) the
uniform asymptotic expansion of Jl and its first derivative
J0l, which involve the polynomials uk and vk occurring
below and in the Appendix. On denoting by C a constant,
and defining αlðihÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ h2

p
, we obtain

log½ðihÞ−lGlðihÞ� ∼ C − l logðlþ αlÞ þ
1

2
logðαlÞ þ αl

þ log

�
1þ ðb1 þ βlÞ

αl
þ ðb2 þ βla1Þ

α2l

þ ðb3 þ βla2Þ
α3l

þ Oðα−4l Þ
�
; ð2:11Þ

where, having defined the variable
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τ≡ l
αl

¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ h2

p ; ð2:12Þ

and exploiting the following among the many Debye-Olver
polynomials [6]:

u0ðτÞ ¼ 1; u1ðτÞ ¼
τ

8
−

5

24
τ3; ð2:13Þ

u2ðτÞ ¼
9

128
τ2 −

77

192
τ4 þ 385

1152
τ6; ð2:14Þ

v0ðτÞ ¼ 1; v1ðτÞ ¼ −
3

8
τ þ 7

24
τ3; ð2:15Þ

v2ðτÞ ¼ −
15

128
τ2 þ 99

192
τ4 −

455

1152
τ6; ð2:16Þ

v3ðτÞ¼−
105

1024
τ3þ5577

5120
τ5−

6545

3072
τ7þ95095

82944
τ9; ð2:17Þ

the polynomials a1, a2, b1, b2, b3 are evaluated according
to the definition

akðτÞ ¼
ukðτÞ
τk

; bkðτÞ ¼
vkðτÞ
τk

; ð2:18Þ

which implies the simple but very helpful relations

uk
lk

¼ ak
ðαlÞk

;
vk
lk

¼ bk
ðαlÞk

: ð2:19Þ

III. CONTRIBUTIONS INDEPENDENT OF βl

By virtue of (2.6) and (2.11) the three contributions
independent of βl are obtained by applying twice the
operator 1

2h
d
dh to the first line on the right-hand side of

(2.11). For this purpose, we need the following identities:

1

2h
dαl
dh

¼ 1

2αl
; ð3:1Þ

�
1

2h
d
dh

�
2

logðlþαlÞ¼−
1

4
ðlþαlÞ−2½2α−2l þ lα−3l �; ð3:2Þ

�
1

2h
d
dh

�
2

logðαlÞ ¼ −
1

2
α−4l ; ð3:3Þ

�
1

2h
d
dh

�
2

αl ¼ −
1

4
α−3l : ð3:4Þ

Thus, upon applying the split (2.10), the terms independent
of βl are obtained by taking twice [from the factor 2
multiplying

P∞
l¼0 in (2.10)] the following sums:

σ1 ¼ 2
X∞
l¼0

�
1

2h
d
dh

�
2

l logðlþ αlÞ

¼ −
1

2

X∞
l¼0

lðlþ αlÞ−2½2α−2l þ lα−3l �; ð3:5Þ

σ2 ¼ −
X∞
l¼0

�
1

2h
d
dh

�
2

logðαlÞ ¼
1

2

X∞
l¼0

α−4l ; ð3:6Þ

σ3 ¼ −2
X∞
l¼0

�
1

2h
d
dh

�
2

αl ¼
1

2

X∞
l¼0

α−3l : ð3:7Þ

A. Contribution of σ1
The sums (3.5)–(3.7) can be studied in a thorough way

with the help of the Euler-Maclaurin summation for-
mula [7]. This states that, if f is a real- or complex-valued
function defined on ½0;∞Þ, and if its derivatives of even
order are absolutely integrable on ð0;∞Þ, one has, for
n ¼ 1; 2;…,

Xn
l¼0

fðlÞ−
Z

n

0

fðyÞdy

¼ 1

2
½fð0Þ þ fðnÞ�

þ
Xm−1

s¼1

B̃2s

ð2sÞ! ½f
ð2s−1ÞðnÞ− fð2s−1Þð0Þ� þRmðnÞ; ð3:8Þ

where the Bernoulli numbers B̃s are defined by the
expansion

t
ðet − 1Þ ¼

X∞
s¼0

B̃s
ts

s!
; jtj < 2π; ð3:9Þ

while the remainder RmðnÞ is majorized according to [7]

jRmðnÞj ≤ ð2 − 21−mÞ jB̃2mj
ð2mÞ!

Z
n

0

jfð2mÞðyÞjdy: ð3:10Þ

As n approaches ∞, Eq. (3.8) provides a very useful
asymptotic expansion for the desired sum of the series, i.e.,

X∞
l¼0

fðlÞ ∼
Z

∞

0

fðyÞdyþ 1

2
fð0Þ

þ
X
s

B̃2s

ð2sÞ! ½f
ð2s−1Þð∞Þ − fð2s−1Þð0Þ�: ð3:11Þ

The integral on the right-hand side of (3.11) can be
evaluated or studied in a qualitative way, while the
derivatives of odd order at 0 and at ∞ can be obtained
in a systematic way. We refer the reader to the last chapter
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of the book by Hardy [8] for a thorough analysis of the
Euler-Maclaurin formula.
For our purposes, after having re-expressed σ1 in the

form

σ1 ¼
X∞
l¼0

½Fðl; hÞ þHðl; hÞ�; ð3:12Þ

where we have set

Fðl; hÞ≡ −lðl2 þ h2Þ−1
�
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ h2

p �
−2
; ð3:13Þ

Hðl; hÞ≡ −
l2

2
ðl2 þ h2Þ−3

2

�
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ h2

p �
−2
; ð3:14Þ

we now take the limit as n → ∞ in Eq. (3.8), with fðlÞ
replaced by Fðl;hÞ þHðl; hÞ. We then find that, in (3.11),
only the first derivative of F at l ¼ 0 gives a contribution
proportional to h−4, and indeed equal to

δ1 ¼
1

2!
B̃2ð−F0ð0; hÞÞ ¼ 1

12
h−4: ð3:15Þ

B. Contributions of σ2 and σ3
We now rely again upon the limit as n → ∞ of Eq. (3.8).

By virtue of (3.11), only half the value at l ¼ 0 of 1
2
α−4l

contributes to the h−4 term in σ2, i.e.,

δ2 ¼
1

2

1

2
h−4 ¼ 1

4
h−4; ð3:16Þ

whereas σ3 gives a vanishing contribution to the term
proprtional to h−4

δ3 ¼ 0: ð3:17Þ

IV. CONTRIBUTION FROM
THE βl COEFFICIENTS

We now aim at studying the contribution of the second
and third line of the asymptotic expansion (2.11) to
Eq. (2.6). For this purpose, on the one hand we denote
by Ω all terms added to 1 within the square brackets in
(2.11), and consider the asymptotic expansion

logð1þ ΩÞ ∼Ω −
Ω2

2
þΩ3

3
þ OðΩ4Þ

∼
κ1
αl

þ κ2
ðαlÞ2

þ κ3
ðαlÞ3

þ Oðα−4l Þ; ð4:1Þ

where

κ1 ≡ b1 þ βl; ð4:2Þ

κ2 ≡ ðb2 þ βla1Þ −
1

2
ðb1 þ βlÞ2; ð4:3Þ

κ3≡b3þβla2−ðb1þβlÞðb2þβla1Þþ
1

3
ðb1þβlÞ3: ð4:4Þ

On the other hand, it is clear that no further progress
can be made without explicit forms of the βl coefficients.
For example, we find from (1.7) and (1.9)

qðxÞ ¼ 1

R2
e−

x2

R2 ⇒ βl ¼
1ffiffiffi
2

p e−
l2
4 ; ð4:5Þ

qðxÞ ¼
ffiffiffi
π

2

r
1

R2
e−

jxj
R ⇒ βl ¼

1

ð1þ l2Þ ; ð4:6Þ

qðxÞ ¼
ffiffiffi
2

π

r
1

x2
⇒ βl ¼ −lsgnðlÞ; ð4:7Þ

qðxÞ ¼
ffiffiffi
2

π

r
1

ðR2 þ x2Þ ⇒ βl ¼ e−jlj: ð4:8Þ

Here we consider first the choice of βl in Eq. (4.6), and
exploit the formulae (2.6), (2.11)–(3.1), and (4.1)–(4.4),
arriving therefore at the sums (see details below)

ðσ̂4ÞI≡−2
X∞
l¼0

�
1

2h
d
dh

�
2 κ1
αl

¼ 9

16

X∞
l¼0

α−5l −
35

16

X∞
l¼0

l2α−7l −
3

2

X∞
l¼0

α−5l
ðl2þ1Þ ; ð4:9Þ

ðσ̂4ÞII ≡ −2
X∞
l¼0

�
1

2h
d
dh

�
2 κ2
ðαlÞ2

; ð4:10Þ

supplemented, in principle, by infinitely many other terms,
i.e.,

ðσ̂4Þm ≡ −2
X∞
l¼0

�
1

2h
d
dh

�
2 κm
ðαlÞm

; ∀ m ¼ 3; 4;…;∞:

ð4:11Þ

In the formula (4.10), it is helpful to use (4.3) where we
reexpress a1, b1, and b2 in the form

a1 ¼
X1
r¼0

a1r

�
l
αl

�
2r
; b1 ¼

X1
r¼0

b1r

�
l
αl

�
2r
;

b2 ¼
X2
r¼0

b2r

�
l
αl

�
2r
; ð4:12Þ
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where the numerical coefficients a1r, b1r and b2r can be
read off from (2.13), (2.15), and (2.16). Thus, a patient
calculation shows that (the superscript (l) denotes here
dependence on l)

κ2
ðαlÞ2

¼
X2
r¼0

κðlÞ2r l
2rα−2r−2l ; ð4:13Þ

where

κðlÞ20 ¼ b20 þ βlða10 − b10Þ −
1

2
ððb10Þ2 þ ðβlÞ2Þ

¼ −
3

16
þ 1

2
βlð1 − βlÞ; ð4:14Þ

κðlÞ21 ¼ b21 þ βlða11 − b11Þ − b10b11 ¼
5

8
−
1

2
βl; ð4:15Þ

κðlÞ22 ¼ b22 −
1

2
ðb11Þ2 ¼ −

7

16
; ð4:16Þ

and, hence, by repeated application of (3.1), we obtain
from (4.10) and (4.13)

ðσ̂4ÞII ¼ −2
X∞
l¼0

X2
r¼0

ðrþ 1Þðrþ 2ÞκðlÞ2r l2rα−2r−6l

¼ 3

4

X∞
l¼0

α−6l −
15

2

X∞
l¼0

l2α−8l þ 21

2

X∞
l¼0

l4α−10l

− 2
X∞
l¼0

βlð1 − βlÞα−6l þ 6
X∞
l¼0

βll2α−8l : ð4:17Þ

A. Effect of Eq. (4.9)

In Eq. (4.9), by virtue of the remarkable formula [3],

X∞
l¼0

l2kα−2k−ml ¼ Γðkþ 1
2
ÞΓðm

2
− 1

2
Þ

2Γðkþ m
2
Þ x1−m; k ¼ 1; 2; 3;…;

ð4:18Þ

Γ being the standard notation for the Γ-function, we find

X∞
l¼0

l2α−7l ¼ 2

15
h−4; ð4:19Þ

a result which agrees with the application of Eq. (3.11).
Moreover, the asymptotic expansion (3.11) implies that the
first sum on the second line of right-hand side of (4.9) is
equal to

X∞
l¼0

α−5l ∼
Z

∞

0

ðy2 þ h2Þ−5
2dyþ 1

2
h−5; ð4:20Þ

where, on defining Y ≡ y
h, we find

Z
∞

0

ðy2 þ h2Þ−5
2dy ¼ h−4

Z
∞

0

ðY2 þ 1Þ−5
2dY ¼ 2

3
h−4:

ð4:21Þ

It is clear once more that h plays the role of regularizing
parameter, since without it the integral (4.21), and many of
the integrals below, would not exist. Last, the third sum on
the right-hand side of (4.9) is again studied with the help
of (3.11), and we find

X∞
l¼0

α−5l
ðl2 þ 1Þ ∼WðhÞ þ 1

2
h−5; ð4:22Þ

where

WðhÞ≡
Z

∞

0

ðy2 þ h2Þ−5
2

ðy2 þ 1Þ dy ¼ h−4
Z

∞

0

ðY2 þ 1Þ−5
2

ðh2Y2 þ 1Þ dY

¼ h−4
½ð2 − 5h2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 − 1

p
þ 3h4 arccos 1h�

3ðh2 − 1Þ52 ; ð4:23Þ

and hence no contribution to h−4 arises from (4.22) at
large h.

B. Contribution of (4.17) and ζð0Þ value
In Eq. (4.17), by virtue of (4.18), the sums

X∞
l¼0

l2α−8l ;
X∞
l¼0

l4α−10l ;

do not contribute to h−4, while Eq. (3.11) tells us that

X∞
l¼0

α−6l ∼
Z

∞

0

ðy2 þ h2Þ−3dyþ 1

2
h−6

¼ h−5
Z

∞

0

ðY2 þ 1Þ−3dY þ 1

2
h−6; ð4:24Þ

and hence (4.24) does not contribute to h−4 either.
Furthermore, the last two sums on the right-hand side of
(4.17), which contain the effect of βl, with the particular
choice (4.6) for this coefficient are found to involve

Σ1
β≡

X∞
l¼0

l2

ðl2þ1Þ2α
−6
l ∼

Z
∞

0

y2

ðy2þ1Þ2 ðy
2þh2Þ−3dy

¼ h−3
Z

∞

0

Y2ðY2þ1Þ−3
ðh2Y2þ1Þ2 dY¼ h−3

ð1þ4hÞπ
16ðhþ1Þ4 ; ð4:25Þ
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Σ2
β ≡

X∞
l¼0

l2

ðl2 þ 1Þ α
−8
l ∼

Z
∞

0

y2

ðy2 þ 1Þ ðy
2 þ h2Þ−4dy

¼ h−5
Z

∞

0

Y2ðY2 þ 1Þ−4
ðh2Y2 þ 1Þ dY ¼ h−5

½1þ hð4þ 5hÞ�π
32ðhþ 1Þ4 ;

ð4:26Þ

none of which contains terms proportional to h−4 at large h.
The contributions to h−4 arising from all terms in (4.11)

are found to vanish with the same procedure just adopted in
studying all terms in Eq. (4.17), and hence we find from the
second and third line of (2.11) a contribution to h−4 equal to

δ4 ¼
�
9

16

2

3
−
35

16

2

15

�
h−4 ¼ 1

12
h−4: ð4:27Þ

Eventually, we obtain from Eqs. (2.10), (3.15)–(3.17) and
(4.27)

ζð0Þ ¼ 2

�
1

12
þ 1

4
þ 1

12

�
−
1

2
¼ 5

6
−
1

2
¼ 1

3
; ð4:28Þ

where − 1
2
is the term denoted in (2.10) by minus the

contribution of (l ¼ 0), and arises from σ2 in (3.6).

C. Other choices of βl
For a generic choice of βl coefficient, our Eq. (4.9) gets

replaced by

ðσ̂4ÞI ¼
9

16

X∞
l¼0

α−5l −
35

16

X∞
l¼0

l2α−7l −
3

2

X∞
l¼0

βlα
−5
l : ð4:29Þ

If βl is taken in the form (4.5), we find, by virtue of (3.11),
the asymptotic expansion (Kn being the standard notation
for modified Bessel functions of second kind and order n)

X∞
l¼0

βlα
−5
l ∼

1ffiffiffi
2

p
Z

∞

0

e−
y2

4

ðy2 þ h2Þ52 dyþ
1

2
ffiffiffi
2

p h−5

¼ 1ffiffiffi
2

p 1

48h2
e
h2
8

�
h2K0

�
h2

8

�
− ðh2 − 4ÞK1

�
h2

8

��

þ 1

2
ffiffiffi
2

p h−5; ð4:30Þ

which has no term proportional to h−4, while βl in the
form (4.8) leads to

X∞
l¼0

βlα
−5
l ∼h−4

Z
∞

0

e−hY

ðY2þ1Þ52dYþ1

2
ð1þ B̃2Þh−5; ð4:31Þ

and the integral on the right-hand side of (4.31) does not
have a term proportional to h−4 at large h, either. Moreover,
the last two sums in (4.17) suggest introducing the notation

AðβlÞ≡
X∞
l¼0

βlðβl − 1Þα−6l ; ð4:32Þ

BðβlÞ≡
X∞
l¼0

βll2α−8l : ð4:33Þ

Now we find, for the two choices of βl according to (4.5)
or (4.8),

A

�
1ffiffiffi
2

p e−
l2
4

�
¼1

2

X∞
l¼0

e−
l2
2α−6l −

1ffiffiffi
2

p
X∞
l¼0

e−
l2
4α−6l

∼
1

2

�
h−5

Z
∞

0

e−
h2Y2
2

ðY2þ1Þ3dYþ
1

2
h−6

�

−
1ffiffiffi
2

p
�
h−5

Z
∞

0

e−
h2Y2
4

ðY2þ1Þ3dYþ
1

2
h−6

�
; ð4:34Þ

Aðe−lÞ ¼
X∞
l¼0

e−2lα−6l −
X∞
l¼0

e−lα−6l

∼ h−5
�Z

∞

0

ðe−2hY − e−hYÞ
ðY2 þ 1Þ3 dY

�
þ B̃2

2
h−6; ð4:35Þ

B

�
1ffiffiffi
2

p e−
l2
4

�
¼ 1ffiffiffi

2
p

X∞
l¼0

e−
l2
4 l2α−8l

∼
h−5ffiffiffi
2

p
Z

∞

0

e−
h2Y2
4

Y2

ðY2 þ 1Þ4 dY; ð4:36Þ

Bðe−lÞ¼
X∞
l¼0

e−ll2α−8l ∼h−5
Z

∞

0

e−hY
Y2

ðY2þ1Þ4dY: ð4:37Þ

Among the integrals occurring in (4.34)–(4.37), only those
on the right-hand side of (4.34) might give rise to a
contribution proportional to h−4, because

Z
∞

0

e−
y2

4

ðy2 þ h2Þ3 dy

¼ 1

64h4

�
2ð6 − h2Þ ffiffiffi

π
p þ 1

h
ð12 − 4h2 þ h4Þeh2

4 π

− ð12 − 4h2 þ h4Þeh2
4 πErf

�
h
2

��
: ð4:38Þ

However, the constant coefficients within square brackets
in (4.38) add up to zero, so that no term proportional to h−4

actually occurs at large h. Such a kind of integral may be
studied with the help of complex integration, because

Z
∞

0

e−
y2

4

ðy2 þ h2Þ3 dy ¼ 1

64

Z
∞

−∞

e−Y
2

ðY2 þ h2
4
Þ3 dY: ð4:39Þ
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This suggests considering the following integral:

Z
γ
φðzÞdz ¼

Z
γ

e−z
2

ðz2 þ h2
4
Þ3 dz;

where z ¼ ρeiθ, and γ is a rectangle with a side γ1 given by
the closed interval ½−ρ; ρ� on the real line, while the other
three sides have equation (ε being a positive parameter
approaching 0, and we take h positive as well)

γ2∶ z ¼ ρþ iη; η ∈
�
0;
h
2
þ ε

�
;

γ3∶ z ¼ xþ i
�
h
2
þ ε

�
; x ∈ ½ρ;−ρ�;

γ4∶ z ¼ −ρþ iη; η ∈
�
h
2
þ ε; 0

�
:

The resulting integrand φðzÞ has a third-order pole at
z ¼ i h

2
, with residue

ResφðzÞjz¼ih
2
¼ d2

dz2

� ðz − i h
2
Þ3e−z2

ðz − i h
2
Þ3ðzþ i h

2
Þ3
�				

z¼ih
2

¼ −
i
h5

ðh4 − 4h2 þ 12Þeh2
4 ; ð4:40Þ

which is one of the three terms occurring in (4.38).

V. CONCLUDING REMARKS

As far as we know, our paper has performed the first ζð0Þ
calculation with nonlocal boundary conditions in quantum
mechanics. We have proved explicitly that at least three
choices of kernel in the nonlocal boundary operator exist
[see (4.5), (4.6), and (4.8)] for which the ζð0Þ value
coincides with the value resulting from local boundary
conditions of the Robin type. Our ζð0Þ value does not
describe a one-loop conformal anomaly, as it would be the
case in quantum field theory, but it remains relevant for
the understanding of scaling properties of the quantum
Hamiltonian operator.
It remains to be seen whether, for yet other choices of βl

in (4.17) and (4.29), a contribution to ζð0Þ can be found
which is compatible with (1.7), (1.9), the assumption
q∈L1ðRÞ∩L2ðRÞ and condition (A7) of the Appendix.
This means having to study the sums

X∞
l¼0

βlα
−5
l ;

X∞
l¼0

βlðβl − 1Þα−6l ;
X∞
l¼0

βll2α−8l : ð5:1Þ

The mere recourse to the formula [3]

X∞
l¼0

lα−1−nl ∼
h1−nffiffiffi

π
p

X∞
r¼0

2r

r!
B̃rx−r

Γððrþ1Þ
2

ÞΓððn−1þrÞ
2

Þ
2Γððnþ1Þ

2
Þ

cos

�
rπ
2

�

ð5:2Þ

suggests a negative answer because, for example, upon
requiring

βlðβl − 1Þ ¼ κl; κ > 0;

one finds the positive root

βl ¼
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4κl
p

2
;

which has a growth rate incompatible with (1.7) and (1.9),
if one looks for functions q ∈ L1ðRÞ ∩ L2ðRÞ. However,
the general starting point should be the asymptotic expan-
sion inspired by (3.11), i.e.,

X∞
l¼0

fðl;hÞ∼
Z

∞

0

fðy;hÞdyþ1

2
fð0;hÞ

þ
X
s

B̃2s

ð2sÞ! ½f
2s−1ð∞;hÞ−f2s−1ð0;hÞ�; ð5:3Þ

and the application of (5.3) to (5.1) deserves further work.
Furthermore, with the help of the experience gained from

our calculation, it should be possible in the near future to
investigate the one-loop properties of Euclidean quantum
gravity with nonlocal boundary conditions, along the lines
of Refs. [9,10], where it was suggested that the Universe
might become classical, after a quantum origin, by virtue
of a wave function that decays as it occurs in the case of
quantum mechanical surface states [1] with nonlocal
boundary conditions. In order to help the general reader
and stress the relevance of our work, we find it also
appropriate to write what follows.
The use of spectral ζ-functions has led to several

important developments over the last decades, with appli-
cation to partition functions of strings and membranes,
Casimir effect, relation between the generalized Pauli-
Villars and covariant regularizations, spontaneous compac-
tification in two-dimensional quantum gravity, stability of
the rigid membrane, topological symmetry breaking in
self-interacting theories, functional determinants for
bosonic and fermionic fields, ground-state energy under
the influence of external fields, Bose-Einstein condensation
of ideal Bose gases under external conditions [11–13].
Furthermore, the work in Ref. [14] obtained heat-kernel
coefficients of the Laplace operator on the D-dimensional
ball, Ref. [15] evaluated Casimir energies for massive fields
in the bag, while the Casimir energy for a massive
fermionic quantum field with a spherical boundary was
obtained in Ref. [16]. The regularization used in our paper,
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which relies as we said on the pioneering work in Ref. [3],
was applied successfully in Ref. [17] to the first correct
calculation of one-loop conformal anomaly for a massless
fermionic field with local boundary conditions, at a time
when the powerful geometric formulas in Ref. [4] were not
in final form. It is, therefore, encouraging that, after almost
thirty years, such a regularization technique is still useful
in opening yet new perspectives. For example, it would
be interesting to apply it to the Casimir effect [13] in
cosmological backgrounds, and to establish a correspon-
dence with yet other models in Ref. [13]. For the gravi-
tational field, one cannot generalize the Schröder scheme
by simply studying the eigenvalue problem for an operator
of Laplace type on metric perturbations hμν, subject to
nonlocal boundary conditions. The reason is that boundary
conditions invariant under infinitesimal diffeomorphisms
on hμν take, in field-theoretic language, the form [18]

½ðΠhÞij�∂M ¼ 0; ð5:4Þ

½ΦμðhÞ�∂M ¼ 0; ð5:5Þ

where Π is a projection operator that picks out only spatial
components of hμν, while ΦμðhÞ is the gauge-fixing func-
tional. Thus, nonlocality in the boundary conditions can only
result from the gauge-fixing term; but then the invertible
operator on metric perturbations is no longer differential but
it belongs to the broader class of pseudodifferential operators
[9,10], for which a ζð0Þ calculation is still a challenging task.
Thus, new exciting goals are in sight in the area of physical
applications of spectral ζ-functions, bearing also in mind the
enlightening assessment in Ref. [19].
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APPENDIX: CONCEPTS AND FORMULAS
FROM COMPLEX ANALYSIS

We here summarize some concepts and results of
complex analysis that are applied in our paper.
If F is an entire function with a countable infinity of

zeros fμig, the genus of the canonical product for F [20]
is the minimum integer n such that

X∞
i¼1

1

jμijnþ1

converges. In particular, if the genus is equal to 1, this
ensures that one can write, for some constant γ,

FðzÞ ¼ γzmegðzÞ
Y∞
i¼1

�
1 −

z
μi

�
e

z
μi ; ðA1Þ

where the function g is entire. In particular, the function
(1.6) occurring in the nonlocal boundary condition is an
entire function of genus 1. Such a property can be checked
by pointing out that the zeros of GlðhÞ at large h are given
approximately by

h ∼ l
π

2
þ π

4
þ κπ; κ ∈ Z; ðA2Þ

because for fixed l, as h → ∞, one has

JlðhÞ ∼
ffiffiffi
2

π

r
1ffiffiffi
h

p cos

�
h − l

π

2
−
π

4

�
þ Oðh−3

2Þ; ðA3Þ

J0lðhÞ ∼ −
ffiffiffi
2

π

r
1ffiffiffi
h

p sin

�
h − l

π

2
−
π

4

�
þ Oðh−3

2Þ; ðA4Þ

and hence

GlðhÞ ∼ −
ffiffiffi
2

π

r ffiffiffi
h

p
sin

�
h − l

π

2
−
π

4

�
þ Oðh−1

2Þ; ðA5Þ

which is independent of βl.
We further recall that if MðrÞ is the maximum of FðzÞ

on jzj ¼ r, the order of the entire function F is defined
to be [21]

ordðFÞ≡ lim
r→∞

sup
log logðMðrÞÞ

logðrÞ : ðA6Þ

An example of an entire function of order n is ez
n
. Our

function Gl in (1.6) can be also studied from the point
of view of its order, as defined in (A6), and its relation with
the genus [21].
Moreover, we can apply to Eq. (1.6) a theorem studied,

among the others, by Watson [22], according to which, if A
and B are real and ν > −1, the function AJν þ BzJ0ν has all
its zeros real, except that it has 2 purely imaginary zeros
when A

B þ ν < 0. This implies that our GlðhÞ has only real
roots if

βl þ l ≥ 0: ðA7Þ

This condition is fulfilled by all forms (4.5)–(4.8) of βl
considered in our paper.
The uniform asymptotic expansions of Bessel functions

and their first derivative are due to Debye and Olver [6] and
are used extensively in Ref. [3] and in our paper. They
read as

JlðihÞ ∼
ðihÞlffiffiffiffiffiffi
2π

p α
−1
2

l eαle−l logðlþαlÞΣ1; ðA8Þ
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J0lðihÞ ∼
ðihÞl−1ffiffiffiffiffiffi

2π
p α

1
2

le
αle−l logðlþαlÞΣ2; ðA9Þ

where [see also (2.13)–(2.19)],

Σ1 ∼ u0 þ
u1
l
þ u2

l2
þ u3

l3
þ � � � ; ðA10Þ

Σ2 ∼ v0 þ
v1
l
þ v2

l2
þ v3

l3
þ � � � ; ðA11Þ

and, in particular,

u3ðτÞ ¼
1

2
τ2ð1 − τ2Þu02ðτÞ

þ 1

8

Z
τ

0

ð1 − 5ρ2Þu2ðρÞdρ; ðA12Þ

v3ðτÞ ¼ u3ðτÞ þ τðτ2 − 1Þ
�
1

2
u2ðτÞ þ τu02ðτÞ

�
: ðA13Þ
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