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One-loop analysis with nonlocal boundary conditions
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In the 1980s, Schroder studied a quantum mechanical model where the stationary states of Schrodinger’s
equation obey nonlocal boundary conditions on a circle in the plane. For such a problem, we perform a
detailed one-loop calculation for three choices of the kernel characterizing the nonlocal boundary
conditions. In such cases, the {(0) value is found to coincide with the one resulting from Robin boundary
conditions. The detailed technique here developed may be useful for studying one-loop properties of
quantum field theory and quantum gravity if nonlocal boundary conditions are imposed.
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I. INTRODUCTION

In the late 1980s, motivated by physical models of Bose
condensation and mathematical study of Schrodinger
operators, the work in Ref. [1] studied spectral properties
of the Laplace operator with nonlocal boundary conditions.
Within this framework, on considering the region

Bg = {x,y:x* +y* < R*}, (1.1)
one builds, out of a function ¢ which is both Lebesgue
summable and square-integrable on the real line, the
periodic function

0

1 . C
CIR(X) =_ Z ellx/R/ e_lly/Rq<y)dy,

1.2
271'Rl (1.2)
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which has period 2zR and approaches ¢ if R — o0. On
using polar coordinates (r, ¢), the nonlocal boundary-value
problem studied in Ref. [1] reads as
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The resulting spectrum has both a positive (£ > 0) and a
negative (E < 0) part. For E > 0, the solutions regular at
the origin » = 0 are factorized in the form

up(r,p) = Ji(rVE)e, leZ, (1.5)

the J; being Bessel functions of the first kind. On defining

the dimensionless variable & = RVE, Eq. (1.4) takes
eventually the form [1]

G(h) = hJ}(h) + Rg (Ii) L) =0, (1.6)

where g is the Fourier transform of ¢, i.e., [1]

Z’(Ilz) - /_ : g(x)e i dx.

We note from (1.6) that § must have dimension length™!,
and hence ¢ must have dimension length=.

In the present paper, we have tried to work out the one-
loop properties pertaining to the problem defined by
Egs. (1.3) and (1.4). In the physics-oriented literature,
one-loop calculations are more frequently performed in the
case of quantum field theories, but the quantum mechanical
framework is already of interest [2], and may provide
valuable information on the behaviour of solutions of
elliptic equations under a scale dilation. Such a property
is neatly described by the {(0) value, where ¢ is the spectral
(or generalized) {-function of the elliptic operator A under
consideration, defined by

(1.7)

Lals) =Trp(A™) = A4, (1.8)
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where each eigenvalue 4, is counted with its degeneracy.
For this purpose, Sec. II outlines the analytic technique of
Ref. [3] and its application to our boundary-value problem
(1.3) and (1.4). Section IIT evaluates the first three sums that
contribute to the (0) value, whereas Sec. IV studies the
fourth and last sum contributing to £(0), for three choices
of the function ¢ and hence of the dimensionless coef-
ficients f3; from Egs. (1.6) and (1.7), i.e.,

[
pPi1=Rq <E>

Concluding remarks are presented in Sec. V, whereas
relevant details are given in the Appendix.

(1.9)

II. £(0) VALUE FROM THE ¢-FUNCTION
AT LARGE h

For the Laplacian A on the left-hand side of Eq. (1.3), the
associated heat equation has a heat kernel K (¢, ; t), whose
diagonal K (&, &; 1) yields, upon integration over the whole
region By in (1.1), the integrated heat kernel (for gauge
theories, the trace to be integrated is instead the fiber trace
of the heat-kernel diagonal),

K(1) —A K(& &) = Trpe™, (2.1)

which has, as r — 0", the asymptotic expansion [3-5]

K(t) ~ io:B,ﬁ‘l. (2.2)
n=0

In our two-dimensional region By, the method used in
Ref. [3] considers the so-called spectral {-function at large
h, i.e., [4, and h being dimensionless in (2.3)]

L(s, k)= (A + h2),

n

(2.3)

which is related to the integrated heat kernel (2.1) by the
identity

/ 1o K ()dt = T(2)L(2, h). (2.4)

0

If one now inserts into the left-hand side of (2.4) the
asymptotic expansion (2.2), one finds

F(2)¢(2, h2) ~ i B,T (1 + g) R (2.5)
n=0

On the other hand, on considering the equation (1.6), which
is the equation obeyed by the eigenvalues E = ;—i by virtue
of the boundary conditions, one has also the identity
(see [3] and our Appendix)

F). ) = YN0 (5545 ) 0eln1Giin),
(2.6)

where the degeneracy N, equals 2, as is clear from (1.5)
(for each value of [, there exist 2 linearly independent
eigenfunctions proportional to cos(lg) and sin(lg), respec-
tively). In light of (2.5) and (2.6), the desired ¢(0) is the
coefficient of 2~* in the asymptotic expansion of the right-
hand side of Eq. (2.6), because {(0) = B, from the
formulae [4]

L[
F(s)/o K (t)dt

Nr(ls) [iBnAI;%+-“—2dz+/°ot-"—ll((t)dt]. (2.7)
n=0 !

In the course of performing sums over all positive and
negative values of /, it is helpful to exploit the identity

¢(s)=

J_i(2) = (=1)"(2). (2.8)

as well as the even nature of f; as a function of / (see
Sec. IV). This implies that a real root of G; with positive / is
also a real root of G; with negative /, because

G_(z) = (=1)'G(z). (2.9)

We can therefore limit ourselves to summing over positive
values of [, writing that, in (2.6),

o0

>

[

NgE

2

+ contribution of (I = 0)

N
Il

NE

2) —contribution of (I =0). (2.10)

l

Il
=}

Following Ref. [3], we use in (2.6) and (2.10) the
uniform asymptotic expansion of J; and its first derivative
Ji, which involve the polynomials #; and v, occurring
below and in the Appendix. On denoting by C a constant,

and defining a;(ih) = V> + h?, we obtain

1
log[(ih)~'G,(ih)] ~ C — llog(l + &) + Elog(a,) +a

by + b, +
+log{l+( 1 ﬂ1)+( 2 zﬂlal)

" (b3 +3ﬁzaz)

o

+ O(a,—“)] : (2.11)

where, having defined the variable
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[ [
T=—=———, 2.12
a2+ h? (2.12)

and exploiting the following among the many Debye-Olver
polynomials [6]:

uo(7) = 1, u](f)—g—%ﬁ, (2.13)
s (2) :%72—%# 1318552 6 (2.14)
vo(r) =1, v (r) = —21—1—27—413, (2.15)
2 () :—%# % 4 1415552 6 (2.16)
B0 = 10i 5107 30" oas™ 17

the polynomials a;, a,, b, by, b; are evaluated according
to the definition

(2.18)

which implies the simple but very helpful relations

e _ G Ve _ b
* (al)k’ - (al)k'

(2.19)

III. CONTRIBUTIONS INDEPENDENT OF g,

By virtue of (2.6) and (2.11) the three contributions
independent of f; are obtained by applying twice the
operator 2h dh to the first line on the right-hand side of
(2.11). For this purpose, we need the following identities:

1 day 1
— A
2hdh 24, (3.1)
LECAL (I+a) 1(l+ )2 2072 +la?],  (3.2)
2hdh og a 2 a; Qa; a; |, .
1 d\?
~— ) — a7 .
1 d)\? 1,

Thus, upon applying the split (2.10), the terms independent
of f; are obtained by taking twice [from the factor 2
multiplying > $°, in (2.10)] the following sums:

© /1 d\2
o —2Z(ﬁﬁ> Hog(l + a))

1 (o]
— _EZ I(1+ o) 2072 + 1), (3.5)
1=0
[ 1 d\2 IS
02“%(&@) log(a;) E;O‘z ) (3.6)
=1 d\? I
03 - ;(ﬁ%) 1 E;al (37)

A. Contribution of o,

The sums (3.5)—(3.7) can be studied in a thorough way
with the help of the Euler-Maclaurin summation for-
mula [7]. This states that, if f is a real- or complex-valued
function defined on [0, o), and if its derivatives of even
order are absolutely integrable on (0, ), one has, for
n=12,...,

Zf(l / F3)dy

0) +f(n)]
B,
(2s)!

ST () = fD(0)] + Ry (),

[\)
M S

S (3.8)

Il
-

s

where the Bernoulli numbers B, are defined by the
expansion

It < 2z, (3.9)

while the remainder R, (n) is majorized according to [7]

Ro(n)] < (2 2)% [N wlas. @10

As n approaches oo, Eq. (3.8) provides a very useful
asymptotic expansion for the desired sum of the series, i.e.,

SEV0)].

+Zst (25-1)(c0) —

The integral on the right-hand side of (3.11) can be
evaluated or studied in a qualitative way, while the
derivatives of odd order at O and at oo can be obtained
in a systematic way. We refer the reader to the last chapter

(3.11)
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of the book by Hardy [8] for a thorough analysis of the
Euler-Maclaurin formula.

For our purposes, after having re-expressed o; in the
form

[So]

= [F(Ih) + H(L; 1), (3.12)
1=0
where we have set
F(Ih) = —I(P + b)) (l +VP+ h2) (3.13)
2
H(l:h) = _%(12 A1 VER ) (4)

we now take the limit as n — oo in Eq. (3.8), with f(I)
replaced by F(I; h) + H(I; h). We then find that, in (3.11),
only the first derivative of F at [ = 0 gives a contribution
proportional to A~*, and indeed equal to

1. 1
51 = EBQ(—F/(O, h)) = —h_4.

> (3.15)

B. Contributions of ¢, and o5

We now rely again upon the limit as n — oo of Eq. (3.8).
By virtue of (3.11), only half the value at [ =0 of 5 1 art
contributes to the /™ term in o, i.e.,

11
5 :——h_4:

2 =33 (3.16)

1
—h™,
4
whereas o3 gives a vanishing contribution to the term
proprtional to h™*

85 =0. (3.17)

IV. CONTRIBUTION FROM
THE g, COEFFICIENTS

We now aim at studying the contribution of the second
and third line of the asymptotic expansion (2.11) to
Eq. (2.6). For this purpose, on the one hand we denote
by Q all terms added to 1 within the square brackets in
(2.11), and consider the asymptotic expansion

log(1+ Q) ~ Q—%Z—I—%S—&-O(Q“)
o Tl Ty O 4D
where

ki = by + f, (4.2)
1
Ky = (by + pray) — E(bl + )% (4.3)
1
k3 =bs+pa,— (b, +p;)(bs +ﬁ,a1)+§(b1 +41)°. (44)

On the other hand, it is clear that no further progress
can be made without explicit forms of the f; coefficients.
For example, we find from (1.7) and (1.9)

1 _2 1
q(x) = —e ¥ = p = —26_7, (4.5)
1 N 1

a0 =\ Gt A= 40
21

g(x) =25 = = ~lsen(l) @7)
2 1

q(x) = \/;W = f=ell (4.8)

Here we consider first the choice of f; in Eq. (4.6), and
exploit the formulae (2.6), (2.11)—(3.1), and (4.1)—(4.4),
arriving therefore at the sums (see details below)

1 d 2K1
)y
(64)s Z(zmm) a
0 3
= [ 4.9
16 ; Z 24 l2+1 (49)
A _ - 1 d 2 Ky
(04)11=—2; <ﬂ%> e (4.10)

supplemented, in principle, by infinitely many other terms,
1.e.,

X /1 d\? «k
P YN i RV O

IZ;<2hdh> (@)" m ©
(4.11)

In the formula (4.10), it is helpful to use (4.3) where we
reexpress a;, by, and b, in the form

1 1
l2r (l>2r
a; = ap, | —1 . b, = bi.|—] ,
2
l2r
b, = by | — |
=3 ()

(4.12)
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where the numerical coefficients a,,, by, and b,, can be
read off from (2.13), (2.15), and (2.16). Thus, a patient
calculation shows that (the superscript (/) denotes here
dependence on /)

2
K2 ( 222,

— = M) 4.13

@r Z; (4.13)
where

1
K%=bm+mwm—mw—5«mw%+wm>
= _1_6+ 2/31( =B (4.14)
(1) 5 1
Ky, = by + fi(ay — byy) = byoby, :g_iﬁh (4.15)
1 7

Kglz> :bzz—i(b11)2=—l—6, (4.16)

and, hence, by repeated application of (3.1), we obtain
from (4.10) and (4.13)

2
ST+ 1)+ 208 Prage

r=0
1 [e]
(;rl_6 — 7 Z lzoc,_8 + 5 Z l4(ll_10

+6Zﬁ,12

Ms

(64 -2

Il
=}

N
54

—2) A =pa

i

(4.17)

Il
=}

A. Effect of Eq. (4.9)
In Eq. (4.9), by virtue of the remarkable formula [3],
© 1 m 1
Z leal—Zk—m — Tk + E)F(7 - E) xl-m
=0

. k=1,23,...,
2 (k + 1)

(4.18)

I" being the standard notation for the I'-function, we find

- 2
Z lzal—7 == n,
= 15

(4.19)

a result which agrees with the application of Eq. (3.11).
Moreover, the asymptotic expansion (3.11) implies that the
first sum on the second line of right-hand side of (4.9) is
equal to

% 1
Z a7> ~ / (y2 + h?)3dy + Eh_s’ (4.20)

=0 0

where, on defining Y =7, we find

© 5 © 2
/ (y* + h?)dy = h—4/ (Y2 + 1)y =Zh,

0 0
(4.21)

It is clear once more that & plays the role of regularizing
parameter, since without it the integral (4.21), and many of
the integrals below, would not exist. Last, the third sum on
the right-hand side of (4.9) is again studied with the help
of (3.11), and we find

g h~
l:() 12+1 )+2

(4.22)

where

Sy [0
Wh= [ 2" ay=h . _ay
()‘A v+ o (Y2 +1)
[(2 = 5h*)V'h? — 1 + 3h* arccos ]

e h_4
3(h2—1)

. (423)

and hence no contribution to A~* arises from (4.22) at
large h.

B. Contribution of (4.17) and £(0) value
In Eq. (4.17), by virtue of (4.18), the sums

o0
E lzal , g l4al_10,
=0

do not contribute to 4~*, while Eq. (3.11) tells us that

© % 1
> art~ / (v + 1) dy + 0™
=0 0

o0 1
=h / (Y2 +1)73dY + 5h—ﬁ, (4.24)
0
and hence (4.24) does not contribute to h~* either.
Furthermore, the last two sums on the right-hand side of
(4.17), which contain the effect of f;, with the particular
choice (4.6) for this coefficient are found to involve

o . y2 5
=S [ o

1=0
(1+4h)z

h—3/°°Yz(Y2+1) -
o (RPY*+1)? 16(h+1)*

+h*)dy

dy =h=3

(4.25)
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o) 12 0 y2
32 = —SN/ 2 L 24y
b Z(lz+1)al 0 (y2+1)(er )7y
_S/oo Y2y +1)™ s[1+h(4+5h)x
———t—dY =h :
o (RPY*+1) 32(h+1)*
(4.26)

none of which contains terms proportional to 4~* at large h.

The contributions to 4~* arising from all terms in (4.11)
are found to vanish with the same procedure just adopted in
studying all terms in Eq. (4.17), and hence we find from the
second and third line of (2.11) a contribution to 4~* equal to

92 352 1,
04 = (163_1_6§>h “ph

Eventually, we obtain from Egs. (2.10), (3.15)—(3.17) and
(4.27)

(4.27)

1 1 1 1 5 1 1
¢(°>—2(12+4+12>‘2—6‘2—3’ (4.28)
where —% is the term denoted in (2.10) by minus the

contribution of (I = 0), and arises from o, in (3.6).

C. Other choices of f;

For a generic choice of f3; coefficient, our Eq. (4.9) gets
replaced by

. 9% 3%~ 4 -
54)1:EZO‘15__ _EZﬁlals'
1=0 1=0

If g, is taken in the form (4.5), we find, by virtue of (3.11),
the asymptotic expansion (K, being the standard notation
for modified Bessel functions of second kind and order n)

Pa;” (4.29)

2

St o [y
[ ~ 5
= ! \/i (yz—f—hz)f 2\/§

1 e, (R, 0

h—S

which has no term proportional to h~*, while f; in the
form (4.8) leads to

—hY

) o 1 _
a—5~h—4/ Y+ -(1+B)h,
2 i 20

0

(4.31)

and the integral on the right-hand side of (4.31) does not
have a term proportional to #~* at large A, either. Moreover,
the last two sums in (4.17) suggest introducing the notation

AB) =D BB - Dag®. (4.32)
=0

B =D Bilar®. (4.33)
=0

Now we find, for the two choices of f3; according to (4.5)
or (4.8),

1 © T 1
——|hS | ———dY+=h"%|, (4.34
ﬁ[ /0 (Y2+1)* 2 } (439
Ae) =D e =3 elar’
=0 =0
oo (p=2hY —hY B
~ B (e “Day| + 2256 (435
{ A T S0 (435)
1 2 1 & i
B(— e_T> =—Y el
h=> o op Y?
~ dy, 4.36
2% oy (30
() [e's] 2
B(e")—ze_’lZ(XI_SNh_S/ e—hY%dY. (4.37)
= 0 (Y2+1)

Among the integrals occurring in (4.34)—(4.37), only those
on the right-hand side of (4.34) might give rise to a
contribution proportional to 4~*, because

2
00 e_T
53 dy
A (2 +12)?

64h4[ (6 —h*) 7+ — (12—41’!24—/’14)6%71'

— (12 = 4R + h*) e nExf (%)] . (4.38)

However, the constant coefficients within square brackets
in (4.38) add up to zero, so that no term proportional to 7~*
actually occurs at large 4. Such a kind of integral may be
studied with the help of complex integration, because

/de _1 /deY (4.39)
o PP e et
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This suggests considering the following integral:

2

e_Z
¢(z)dz = /7dz,
/7 y (2 + %2)3

where z = pe'?, and y is a rectangle with a side y, given by
the closed interval [—p, p] on the real line, while the other
three sides have equation (¢ being a positive parameter
approaching 0, and we take & positive as well)

Y2t z=p+in,

h
O,§+€:|,
A h
y3. Z2=X+1 §+£ . XEp,—pl

Ystz=-—p+in, neE

h
5+8,0:|.

The resulting integrand ¢(z) has a third-order pole at

12, with residue
Resq(2)| ‘[2[ (- ig)e™ }
Z)|;=ih = 5
P e=it = 42 (z—il)P3(z+il)’ it
i
= —F(h“ —4h? + 12)e", (4.40)

which is one of the three terms occurring in (4.38).

V. CONCLUDING REMARKS

As far as we know, our paper has performed the first £(0)
calculation with nonlocal boundary conditions in quantum
mechanics. We have proved explicitly that at least three
choices of kernel in the nonlocal boundary operator exist
[see (4.5), (4.6), and (4.8)] for which the {(0) value
coincides with the value resulting from local boundary
conditions of the Robin type. Our {(0) value does not
describe a one-loop conformal anomaly, as it would be the
case in quantum field theory, but it remains relevant for
the understanding of scaling properties of the quantum
Hamiltonian operator.

It remains to be seen whether, for yet other choices of f,
in (4.17) and (4.29), a contribution to £(0) can be found
which is compatible with (1.7), (1.9), the assumption
ge€L;(R)NL,(R) and condition (A7) of the Appendix.
This means having to study the sums

Zﬂza,, Zﬂz Da;®, Zﬁlﬂ

(5.1)

The mere recourse to the formula [3]

0 hl—n

® or r (r+1) r (n—1+r)
Zlal‘l‘”fv Z—B,x‘r &) <1 2 )cos<z>
=0 \/E r=0 rt ZF(M—;)) 2

(5.2)

suggests a negative answer because, for example, upon
requiring

Bipi—1)=xl, x>0,
one finds the positive root
14+ 1+ 4kl

ﬂl = 2 b

which has a growth rate incompatible with (1.7) and (1.9),
if one looks for functions ¢ € L;(R) n L,(R). However,
the general starting point should be the asymptotic expan-
sion inspired by (3.11), i.e.,

S st~ [ sy +50:h)

=0

Z<Bz‘ 2 (soih) = 27 (Oi)]. (5.3)

and the application of (5.3) to (5.1) deserves further work.

Furthermore, with the help of the experience gained from
our calculation, it should be possible in the near future to
investigate the one-loop properties of Euclidean quantum
gravity with nonlocal boundary conditions, along the lines
of Refs. [9,10], where it was suggested that the Universe
might become classical, after a quantum origin, by virtue
of a wave function that decays as it occurs in the case of
quantum mechanical surface states [I] with nonlocal
boundary conditions. In order to help the general reader
and stress the relevance of our work, we find it also
appropriate to write what follows.

The use of spectral {-functions has led to several
important developments over the last decades, with appli-
cation to partition functions of strings and membranes,
Casimir effect, relation between the generalized Pauli-
Villars and covariant regularizations, spontaneous compac-
tification in two-dimensional quantum gravity, stability of
the rigid membrane, topological symmetry breaking in
self-interacting theories, functional determinants for
bosonic and fermionic fields, ground-state energy under
the influence of external fields, Bose-Einstein condensation
of ideal Bose gases under external conditions [11-13].
Furthermore, the work in Ref. [14] obtained heat-kernel
coefficients of the Laplace operator on the D-dimensional
ball, Ref. [15] evaluated Casimir energies for massive fields
in the bag, while the Casimir energy for a massive
fermionic quantum field with a spherical boundary was
obtained in Ref. [16]. The regularization used in our paper,
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which relies as we said on the pioneering work in Ref. [3],
was applied successfully in Ref. [17] to the first correct
calculation of one-loop conformal anomaly for a massless
fermionic field with local boundary conditions, at a time
when the powerful geometric formulas in Ref. [4] were not
in final form. It is, therefore, encouraging that, after almost
thirty years, such a regularization technique is still useful
in opening yet new perspectives. For example, it would
be interesting to apply it to the Casimir effect [13] in
cosmological backgrounds, and to establish a correspon-
dence with yet other models in Ref. [13]. For the gravi-
tational field, one cannot generalize the Schroder scheme
by simply studying the eigenvalue problem for an operator
of Laplace type on metric perturbations /,,, subject to
nonlocal boundary conditions. The reason is that boundary
conditions invariant under infinitesimal diffeomorphisms
on h,, take, in field-theoretic language, the form [18]

[(Hh>ij]0M =0,
[@,(1)]ow =0,

where I1 is a projection operator that picks out only spatial
components of /,,, while ®,(h) is the gauge-fixing func-
tional. Thus, nonlocality in the boundary conditions can only
result from the gauge-fixing term; but then the invertible
operator on metric perturbations is no longer differential but
it belongs to the broader class of pseudodifferential operators
[9,10], for which a £(0) calculation is still a challenging task.
Thus, new exciting goals are in sight in the area of physical
applications of spectral {-functions, bearing also in mind the
enlightening assessment in Ref. [19].

(5.4)

(5.5)
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APPENDIX: CONCEPTS AND FORMULAS
FROM COMPLEX ANALYSIS

We here summarize some concepts and results of
complex analysis that are applied in our paper.

If F is an entire function with a countable infinity of
zeros {u;}, the genus of the canonical product for F [20]
is the minimum integer n such that

>t
i—1 |ﬂi|n+1

converges. In particular, if the genus is equal to 1, this
ensures that one can write, for some constant y,

F(z) =yz"e"d ]| <1 —i) e,

i=1 Hi

(A1)

where the function g is entire. In particular, the function
(1.6) occurring in the nonlocal boundary condition is an
entire function of genus 1. Such a property can be checked
by pointing out that the zeros of G,;(h) at large h are given
approximately by

th%‘i‘%'i‘K‘ﬂ', kKEZ, (A2)
because for fixed [, as i — co, one has
21 T 7 3
Ji(h) ~ | ——— h—Il-—- O(h™2), A3
)~ Jeos (=15 -5) Fou). (a3
21 . V1 3
Ji(h) N—\/;ﬁsm (h—15—1> +0(h73), (A4)
and hence
2
G,(h) ~—\/:\/Esin (h— 1%—%) +O0(h72),  (A5)
n

which is independent of f;.

We further recall that if M(r) is the maximum of F(z)
on |z| = r, the order of the entire function F is defined
to be [21]

loglog(M(r)) ‘

ord(F) = lim sup Tog(7)
,

r—00

(A6)

An example of an entire function of order n is e*". Our
function G; in (1.6) can be also studied from the point
of view of its order, as defined in (A6), and its relation with
the genus [21].

Moreover, we can apply to Eq. (1.6) a theorem studied,
among the others, by Watson [22], according to which, if A
and B are real and v > —1, the function AJ, + BzJ), has all
its zeros real, except that it has 2 purely imaginary zeros
when 4 + v < 0. This implies that our G,(h) has only real
roots if

p+1=>0. (A7)
This condition is fulfilled by all forms (4.5)-(4.8) of f;
considered in our paper.

The uniform asymptotic expansions of Bessel functions
and their first derivative are due to Debye and Olver [6] and
are used extensively in Ref. [3] and in our paper. They
read as

AV
Jl(i/’l) - (lh) al_%ea,e—llog(Hal)Zl’

N (A8)
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J)(ih) ~ (’\/>2_Z; aéeale—llog(bﬂl!)zz, (A9)

where [see also (2.13)—(2.19)],
21~u0+%+%+%+~--, (A10)
22~v0+%+%+%+~-, (A1)

and, in particular,

us(e) =5 21 = 2)uy (o)

+%[(1 — 5p%)us (p)dp, (A12)

v3(7) = uz(z) + 7(e2 = 1) B uy(7) + Tu’z(r)]. (A13)
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