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A new realization of extended quantum-mechanical supersymmetry (QM SUSY) with central extension
is investigated. We first show that two different sets of dþ 2 (dþ 1) supercharges for d ¼ even (odd),
each of which satisfies an N ¼ dþ 2 (dþ 1) extended QM SUSY algebra without central extension,
are hidden in the four-dimensional mass spectrum of the (4þ d)-dimensional Dirac action. We then
find that the whole set of the supercharges forms an N ¼ 2dþ 4 (2dþ 2) extended QM SUSY algebra
with central charges for d ¼ even (odd). The representation of the supersymmetry algebra is shown to be
1=2-Bogomol’nyi-Prasad-Sommerfield states that correspond to a short representation for the supersym-
metry algebra with a central extension. We explicitly examine the four-dimensional mass spectrum of the
models with the hyperrectangle and the torus extra dimensions, and discuss their supersymmetric
structures.

DOI: 10.1103/PhysRevD.99.065002

I. INTRODUCTION

Quantum-mechanical supersymmetry (QM SUSY) is
well known as the supersymmetry realized in quantum
mechanics, which was introduced by Witten [1] to inves-
tigate the supersymmetry breaking. These days, the QM
SUSY is applied to a wide range of research areas, e.g.,
exactly solvable systems in quantum mechanics [2–6], the
Berry phase [7–9], black holes and AdS=CFT [10–14],
the Sachdev-Ye-Kitaev model [15–19], extra dimensional
models [20–25], and so on. Recent trends in QM SUSYare
reviewed in Ref. [26].
One of the extensions of the QM SUSY is the

N -extended supersymmetry [27–34] and another one is
the central extension of the supersymmetry algebra
[35–38]. The N -extended supersymmetry has N super-
charges, each of which corresponds to a square root of

the Hamiltonian, and they lead to the degeneracy of the
spectrum. In addition, the central extension of supersym-
metry is an extension that introduces central charges into
the supersymmetry algebra.1 Central charges are operators
which commute with all the operators in the algebra,
and they can make the size of supermultiplets small,
compared with the regular representation [43,44]. Such
multiplets are called short multiplets or Bogomol’nyi-
Prasad-Sommerfield (BPS) states,2 and especially, 1=2-
BPS states are constructed from half of the supercharges.
Nevertheless, in quantum mechanics, not so many models
which realize arbitrary large N -extended QM SUSY
with central charges are known. Thus, it is worthwhile
to investigate a new realization of the N -extended QM
SUSY with central charges.
In Refs. [24,25], we have revealed that the N ¼ 2 QM

SUSY structure exists in the four-dimensional (4D) mass
spectrum of the six-dimensional Dirac action. Since a
higher dimensional Dirac spinor can be decomposed into
4D Dirac spinors with many “flavors” in the Kaluza-Klein
(KK) decomposition, we expect that some symmetries
larger than the N ¼ 2 QM SUSY will be hidden in the
4D mass spectrum of higher dimensional Dirac actions.
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1Spontaneous generations of the central charges in field-
theoretic SUSY algebras and associated materials have been
discussed (see, e.g., [39–42]).

2See also the original papers of BPS states [45,46].
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Actually, it has been shown, in the previous paper [47],
that the N ¼ 2 QM SUSY can be extended to the
N ¼ 2bd=2c þ 2 QM SUSY (but without central exten-
sion) for the (4þ d)-dimensional Dirac action, where the
symbol bd=2c denotes the largest integer less than or equal
to d=2.
In this paper, we discuss a new realization of

N -extended QM SUSY with central extension. Interes-
tingly, we find another set of 2bd=2c þ 2 supercharges in
the (4þ d)-dimensional Dirac action, which forms the
same N ¼ 2bd=2c þ 2 QM SUSY algebra as that given
in Ref. [47]. Then, we show that the whole set of the
4bd=2c þ 4 supercharges forms an N ¼ 4bd=2c þ 4
extended QM SUSY algebra with central charges, and that
the representation of the supersymmetry algebra forms a
short multiplet corresponding to 1=2-BPS states. We
further verify that the supersymmetry clearly explains
the structure of the 4D mass spectrum for the (4þ d)-
dimensional Dirac action in the hyperrectangle or the torus
extra dimensions.
This paper is organized as follows: In Sec. II, we

summarize the KK decomposition of a (4þ d)-dimensional
Dirac field and show that the N ¼ 2 QM SUSY is hidden
in the 4D mass spectrum. In Sec. III, we give two sets of
2bd=2c þ 2 supercharges, each of which satisfies the
2bd=2c þ 2 QM SUSY algebra without central charges,
and then show that the whole set of 4bd=2c þ 4 super-
charges forms the N ¼ 4bd=2c þ 4 QM SUSY algebra
with central charges. In Sec. IV, we consider the repre-
sentation of the algebra. Subsequently in Sec. V, we
examine concrete examples which realize the N -extended
supersymmetry and confirm that the KK mode func-
tions correspond to the representation given in Sec. IV.
Section VI is devoted to summary and discussion.

II. N = 2 QM SUSY IN HIGHER DIMENSIONAL
DIRAC ACTION

In this section, we give the setup of the (4þ d)-
dimensional Dirac action, and review the structure of the
N ¼ 2 QM SUSY hidden in the 4D mass spectrum of the
system [47].
Let us consider the (4þ d)-dimensional Dirac action3

with the 4D Minkowski space-timeM4 and a d-dimensional
flat internal space Ω:

S ¼
Z
M4

d4x
Z
Ω
ddyΨ̄ðx; yÞðiΓμ∂μ þ iΓyk∂yk

−M12bd=2cþ2ÞΨðx; yÞ; ð1Þ

where the coordinates of M4 and Ω are represented
by xμ (μ ¼ 0, 1, 2, 3) and yk (k ¼ 1; 2;…; d), respectively.

The 12bd=2cþ2 denotes the 2bd=2cþ2 × 2bd=2cþ2 unit matrix. The
Γμ and Γyk indicate the 2bd=2cþ2 × 2bd=2cþ2 gamma matrices
in (4þ d)-dimensions and satisfy the Clifford algebra

fΓA;ΓBg ¼ −2ηAB12bd=2cþ2 ðA;B ¼ 0; 1; 2; 3; y1;…; ydÞ;
ð2Þ

where ηAB is the (4þ d)-dimensional metric defined by
ηAB ¼ ηAB ¼ diagð−1;þ1;…;þ1Þ. The parameter M in
the action (1) is a bulk mass and Ψðx; yÞ is a (4þ d)-
dimensional Dirac spinor with 2bd=2cþ2 components. The
Dirac conjugate is defined as Ψ̄ðx; yÞ ¼ Ψ†ðx; yÞΓ0.
In this paper, we use the representation of the gamma

matrices given by the direct product of the internal spin
space and the 4D one, i.e.,4

Γμ ¼ 12bd=2c ⊗ γμ; Γyk ¼ γyk ⊗ γ5 ðk ¼ 1; 2;…; dÞ;
ð3Þ

where γμðμ ¼ 0;…; 3Þ denote the 4 × 4 4D gamma matri-
ces and γ5 ≡ iγ0γ1γ2γ3 denotes the 4D chiral matrix.
The γyk (k ¼ 1; 2;…; d) are the 2bd=2c × 2bd=2c internal
space gamma matrices and satisfy fγyk ; γylg ¼ −2δkl12bd=2c ;
ðγykÞ† ¼ −γykðk; l ¼ 1;…; dÞ.5
In terms of the 4D left-handed (right-handed) chiral

spinors ψ ðnÞ
L;αðxÞ (ψ ðnÞ

R;αðxÞ), the KK decomposition of the
(4þ d)-dimensional Dirac field Ψðx; yÞ will be given by

Ψðx;yÞ ¼
X
n

X
α

ff ðnÞα ðyÞ⊗ ψ ðnÞ
L;αðxÞþ gðnÞα ðyÞ⊗ ψ ðnÞ

R;αðxÞg;

ð4Þ
where the index n indicates the nth level of the KK modes
and α denotes the index that distinguishes the degeneracy
of the nth KK modes (if it exists). The mode functions

f ðnÞα ðyÞ (gðnÞα ðyÞ) have 2bd=2c components and are assumed to
form a complete set with respect to the internal space
associated with the 4D left-handed (right-handed) chiral

spinors ψ ðnÞ
L;αðxÞ (ψ ðnÞ

R;αðxÞ).
Substituting the expansion (4) into the action (1), we

require that the action can be written into the form

S ¼
Z
M4

d4x

�X
α

X
n

ψ̄ ðnÞ
α ðxÞðiγμ∂μ −mnÞψ ðnÞ

α ðxÞ

þ
X
α

ψ̄ ð0Þ
L;αðxÞiγμ∂μψ

ð0Þ
L;αðxÞ

þ
X
α

ψ̄ ð0Þ
R;αðxÞiγμ∂μψ

ð0Þ
R;αðxÞ

�
; ð5Þ

3For earlier works on higher dimensional spinors, see, e.g.,
[48–50].

4We here adopt a slightly different representation of the gamma
matrices from that given in the previous paper [47].

5For the case of d ¼ 1, we define γy1 as i.
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where ψ ðnÞ
α ðxÞ ¼ ψ ðnÞ

L;αðxÞ þ ψ ðnÞ
R;αðxÞ indicate 4D Dirac spinors with mass mn and ψ ð0Þ

L=R;αðxÞ are massless 4D chiral spinors.

In order to obtain the above action, the mode functions f ðnÞα ðyÞ and gðnÞα ðyÞ turn out to satisfy the following orthonormality
relations: Z

Ω
ddyf ðnÞ†α ðyÞf ðmÞ

β ðyÞ ¼
Z
Ω
ddygðnÞ†α ðyÞgðmÞ

β ðyÞ ¼ δαβδ
nm;Z

Ω
ddyf ðnÞ†α ðyÞðAgðmÞ

β ðyÞÞ ¼
Z
Ω
ddygðnÞ†α ðyÞðA†f ðmÞ

β ðyÞÞ ¼ mnδαβδ
nm; ð6Þ

where A ¼ −iγyk∂yk þM12bd=2c and A† ¼ iγyk∂yk þM12bd=2c .
6 Since the mode functions f ðnÞα ðyÞ and gðnÞα ðyÞ are assumed to

form the complete sets, the relations (6) lead to

Q

�
f ðnÞα ðyÞ

0

�
¼ mn

�
0

gðnÞα ðyÞ

�
; H

�
f ðnÞα ðyÞ

0

�
¼ m2

n

�
f ðnÞα ðyÞ

0

�
; ð−1ÞF

�
f ðnÞα ðyÞ

0

�
¼ −

�
f ðnÞα ðyÞ

0

�
;

Q

�
0

gðnÞα ðyÞ

�
¼ mn

�
f ðnÞα ðyÞ

0

�
; H

�
0

gðnÞα ðyÞ

�
¼ m2

n

�
0

gðnÞα ðyÞ

�
; ð−1ÞF

�
0

gðnÞα ðyÞ

�
¼ þ

�
0

gðnÞα ðyÞ

�
; ð7Þ

where the supercharge Q, the Hamiltonian H, and the “fermion” number operator ð−1ÞF are defined as

Q ¼
�

0 A

A† 0

�
; H ¼ Q2 ¼

� ð−∂2
y þM2Þ12bd=2c 0

0 ð−∂2
y þM2Þ12bd=2c

�
; ð−1ÞF ¼

�−12bd=2c 0

0 12bd=2c

�
: ð8Þ

The Eqs. (7) are nothing but the relations of N ¼ 2
supersymmetric quantum mechanics7 [1,2], and the mode

functions ðf ðnÞα ðyÞ; 0ÞT and ð0; gðnÞα ðyÞÞT correspond to the
“bosonic” and “fermionic” states that form an N ¼ 2
supermultiplet in the supersymmetric quantum mechanics.
Thus, we have found that the N ¼ 2 QM SUSY is hidden
in the KK mode functions and the 4D mass spectrum.
We should notice that the supercharge Q has to be

Hermitian to realize the N ¼ 2 QM SUSY. The Hermitian
property of the supercharge Q is assured if the KK mode
functions satisfy the condition for the surface integral

Z
∂Ω

dd−1yf ðnÞ†α ðyÞinykðyÞγykgðmÞ
β ðyÞ ¼ 0 ð9Þ

for all m, n, α, β. The nykðyÞ is a normal unit vector on the
boundary ∂Ω. Since the above equation can be derived
from the action principle δS ¼ 0, the Hermiticity of the
supercharge Q is guaranteed as long as the Dirac field
obeys the action principle. Thus, the N ¼ 2 QM SUSY is
always realized in the 4D mass spectrum of the higher

dimensional Dirac action and the doubly degenerate states

ðf ðnÞα ðyÞ; 0ÞT and ð0; gðnÞα ðyÞÞT are mutually related by the
supercharge Q, except for zero energy states.

III. N -EXTENDED SUPERSYMMETRY WITH
CENTRAL CHARGES

Although we have succeeded in explaining the degen-
eracy between the mode functions f ðnÞα ðyÞ and gðnÞα ðyÞ from
anN ¼ 2 supersymmetry point of view, we will see further
degeneracy labeled by α in the 4D mass spectrum. We then
expect that some structures will be hidden furthermore in
the 4D mass spectrum. Actually, in the previous paper [47],
we have revealed that an N ¼ 2bd=2c þ 2 extended QM
SUSY is hidden in the 4D mass spectrum.
In this section, we first point out that there exist two

sets of the supercharges, each of which forms the N ¼
2bd=2c þ 2 extended QM SUSY algebra without central
extension. We then show that the whole set of the super-
charges satisfies the N ¼ 4bd=2c þ 4 QM SUSY algebra
with central charges. In the next subsection, we clarify the
representation of the algebra.

A. N = 2bd=2c+ 2 supersymmetry for algebraic
and geometric extensions

In this subsection, we explicitly construct two sets of
supercharges, where one is called algebraic and the other is
geometric, respectively. We then show that each set of
them satisfies theN ¼ 2bd=2c þ 2 supersymmetry algebra
without central charges.

6It is noted that the definition of A (and A†) is different from
that in [47] as

−Γ0ðiΓyk∂yk −M12bd=2cþ2Þ≡
�

0 A
A† 0

�
⊗ 12:

7If one definesQ1 ¼ Q andQ2 ¼ ið−1ÞFQ, then they form the
N ¼ 2 SUSY algebra fQj;Qkg ¼ 2Hδjk for j, k ¼ 1, 2.

EXTENDED SUPERSYMMETRY WITH CENTRAL CHARGES IN … PHYS. REV. D 99, 065002 (2019)

065002-3



(i) Algebraic supercharges
TheN ¼ 2bd=2c þ 2 supercharges based on the algebraic property of the gamma matrices are defined as follows:

Qk ¼
�

0 −iγdþ1γykA

iA†γdþ1γyk 0

�
; Qdþ1 ¼ Q; Qdþ2 ¼

�
0 −iγdþ1A

iA†γdþ1 0

�
;

ðk ¼ 1; 2;…; dÞ; ð10Þ

for d ¼ even, and

Qk ¼
�

0 γydγykA

−A†γydγyk 0

�
; Qd ¼ Q; Qdþ1 ¼

�
0 γydA

−A†γyd 0

�
;

ðk ¼ 1; 2;…; d − 1Þ; ð11Þ

for d ¼ odd. It should be noticed that γdþ1 ≡ id=2γy1 � � � γyd can be introduced only for d ¼ even and corresponds to
the internal chiral matrix which satisfies fγdþ1; γykg ¼ 0; ðγdþ1Þ2 ¼ 12bd=2c and ðγdþ1Þ† ¼ γdþ1. On the other hand, in
the odd d dimensions, one of γyk (k ¼ 1; 2;…; d) should be represented by the product of all the other gamma
matrices. For the following sections, we use the representation of γyd ¼ −iðdþ1Þ=2γy1 � � � γyd−1 for d ¼ odd with
ðγydÞ2 ¼ −12bd=2c and ðγydÞ† ¼ −γyd .
The above supercharges are found to satisfy the N ¼ 2bd=2c þ 2 supersymmetry algebra without central

extension, i.e.,

fQi;Qjg ¼ 2Hδij; ½H;Qi� ¼ 0 ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ: ð12Þ

(ii) Geometric supercharges
Another set of the N ¼ 2bd=2c þ 2 supercharges can be constructed, by use of the internal gamma matrices

together with the reflection operators of the internal space Ω, as follows:

Q̃k ¼
�

0 −iγdþ1γykRkA

iA†γdþ1γykRk 0

�
; Q̃dþ1 ¼

�
0 PA

A†P 0

�
; Q̃dþ2 ¼

�
0 −iγdþ1PA

iA†γdþ1P 0

�
;

ðk ¼ 1; 2;…; dÞ; ð13Þ

for d ¼ even, and

Q̃k ¼
�

0 γydγykRdRkA

−A†γydγykRdRk 0

�
; Q̃d ¼

�
0 PA

A†P 0

�
; Q̃dþ1 ¼

�
0 γydRdPA

−A†γydRdP 0

�
;

ðk ¼ 1; 2;…; d − 1Þ; ð14Þ

for d ¼ odd. The Rk (k ¼ 1; 2;…; d) represents the reflection operator for the yk direction,8 and P ¼Qd
k¼1 Rk

denotes the point reflection (or parity) operator of the internal space. The above supercharges also realize the
N ¼ 2bd=2c þ 2 supersymmetry algebra without central extension

fQ̃i; Q̃jg ¼ 2Hδij; ½H; Q̃i� ¼ 0 ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ: ð15Þ

It should be noted that the supercharges Q̃i are the same as those obtained in the previous paper [47], except for Q̃dþ1

for d ¼ even and Q̃d for d ¼ odd.

8The reflection operator Rk (k ¼ 1; 2;…; d) is defined by ðRkfÞðy1;…; yk;…; ydÞ≡ fðy1;…;−yk;…; ydÞ for any function
fðy1;…; ydÞ. The Rk and ∂l satisfy Rk∂l ¼ ð1 − 2δklÞ∂lRk.
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B. N = 4bd=2c+ 4 supersymmetry
with central charges

In the previous subsection, we have seen that both of the
supercharges Qi and Q̃i (i ¼ 1; 2;…; 2bd=2c þ 2) satisfy
the same N ¼ 2bd=2c þ 2 QM SUSY algebra without the
central extension. Here, we show that the supercharges Qi

together with Q̃i (i ¼ 1; 2;…; 2bd=2c þ 2) can extend the
algebra to the N ¼ 4bd=2c þ 4 QM SUSY algebra with
central charges ðZiÞ such that

fQi;Qjg ¼ fQ̃i; Q̃jg ¼ 2Hδij;

fQi; Q̃jg ¼ 2Ziδij;

½Zi;Qj� ¼ ½Zi; Q̃j� ¼ ½Zi; Zj� ¼ ½Zi; H� ¼ ½H;Qi�
¼ ½H; Q̃i� ¼ 0;

ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ; ð16Þ

where Zi (i ¼ 1; 2;…; 2bd=2c þ 2) are given by

Zk ¼ QkQ̃k ¼
�
AA†Rk 0

0 A†RkA

�
ðk ¼ 1; 2;…; dÞ;

Zdþ1 ¼ Qdþ1Q̃dþ1 ¼
�
AA†P 0

0 A†PA

�
;

Zdþ2 ¼ Qdþ2Q̃dþ2 ¼
�
AA†P 0

0 A†PA

�
; ð17Þ

for d ¼ even, and

Zk ¼ QkQ̃k ¼
�
AA†RdRk 0

0 A†RdRkA

�

ðk ¼ 1; 2;…; d − 1Þ;

Zd ¼ QdQ̃d ¼
�
AA†P 0

0 A†PA

�
;

Zdþ1 ¼ Qdþ1Q̃dþ1 ¼
�
AA†RdP 0

0 A†RdPA

�
; ð18Þ

for d ¼ odd.9 Since Zi (i ¼ 1; 2;…; 2bd=2c þ 2) commute
with all the operators, we can regard Zi as central charges
in this algebra. As we can see the form of the central
charges, they may be interpreted as the reflection operators
(accompanied with the Hamiltonian) compatible with the
QM SUSY.
In the next section, we discuss the representation of the

supersymmetry algebra. For this purpose, it is convenient to
adopt the basis of supercharges as

Q�
i ¼ 1

2
ðQi � Q̃iÞ ði ¼ 1; 2;…; 2bd=2c þ 2Þ: ð19Þ

The explicit forms of the supercharges Q�
i are given as

Q�
k ¼

�
0 −iγdþ1γykΠ�

k A

iA†γdþ1γykΠ�
k 0

�
; Q�

dþ1 ¼
�

0 Π�
dþ1A

A†Π�
dþ1 0

�
; Q�

dþ2 ¼
�

0 −iγdþ1Π�
dþ1A

iA†γdþ1Π�
dþ1 0

�
;

ðk ¼ 1;2;…; dÞ; ð20Þ

for d ¼ even, and

Q�
k ¼

�
0 γydγykΠ�

dkA

−A†γydγykΠ�
dk 0

�
; Q�

d ¼
�

0 Π�
dþ1A

A†Π�
dþ1 0

�
; Q�

dþ1 ¼
� 0 γydΠ�

dðdþ1ÞA

−A†γydΠ�
dðdþ1Þ 0

�
;

ðk ¼ 1; 2;…; d − 1Þ; ð21Þ

for d ¼ odd, where Π�
k ¼ ð1� RkÞ=2;Π�

dþ1 ¼ ð1� PÞ=2;
Π�

dk ¼ ð1� RdRkÞ=2, andΠ�
dðdþ1Þ ¼ ð1� RdPÞ=2 play the

role of the projection operators. Then, these supercharges
are found to satisfy the algebra

fQ�
i ; Q

�
j g ¼ ðH � ZiÞδij; ð22Þ

fQ�
i ; Q

∓
j g ¼ 0; ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ: ð23Þ

In the next section, we use this basis of the supercharges.
It should be pointed out that all of the supercharges Qi

and Q̃i (or Q�
i ) (i ¼ 1; 2;…; 2bd=2c þ 2) would not be

necessarily well defined in the system. In order for them to
be well defined, the supercharges Qi and Q̃i have to be
compatible with boundary conditions (if the internal space
Ω has boundaries), that is, for any state ΦðyÞ, QiΦðyÞ and
Q̃iΦðyÞ should obey the same boundary condition as that
on ΦðyÞ, otherwise the action of Qi and Q̃i on ΦðyÞ is ill
defined. Furthermore, in order for Q̃i to be well defined, the
reflection operators Rk (k ¼ 1; 2;…; d) should properly act
on the internal space Ω. In this paper, we restrict our

9The supercharges especially satisfy QiQ̃i ¼ Q̃iQiði ¼ 1;
2;…; 2bd=2c þ 2Þ.
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considerations to the cases that all the supercharges Qi and
Q̃i (or Q�

i ) (i ¼ 1; 2;…; 2bd=2c þ 2) are well defined with
the N ¼ 4bd=2c þ 4 QM SUSY algebra.

IV. REPRESENTATION OF N -EXTENDED
SUPERSYMMETRY WITH

CENTRAL CHARGES

In this section, we clarify the representation of the
supersymmetry algebra derived in the previous section
for the nonzero energy states.
Since the Hamiltonian H and the central charges Zi

(i ¼ 1; 2;…; 2bd=2c þ 2) commute with each other,
we can introduce the simultaneous eigenstates of H
and Zi. Furthermore, since the central charges satisfy the
relations

ðZiÞ2 ¼ H2 ði ¼ 1; 2;…; 2bd=2c þ 2Þ; ð24Þ

with

Hd−1Zdþ1 ¼ Hd−1Zdþ2 ¼ Z1Z2 � � �Zd; for d ¼ even;

ð25Þ

Hd−2Zdþ1 ¼ Z1Z2 � � �Zd−1; for d ¼ odd; ð26Þ

the eigenvalues of H and Zi for the nonzero energy states
with m2

n ≠ 0 can be parametrized as follows:

HΦðnÞ
α;z⃗ðyÞ ¼ m2

nΦ
ðnÞ
α;z⃗ðyÞ; ð27Þ

ZiΦ
ðnÞ
α;z⃗ðyÞ ¼ zim2

nΦ
ðnÞ
α;z⃗ðyÞ; ði ¼ 1; 2;…; 2bd=2c þ 2Þ;

ð28Þ

with10

zi ¼ �1 ði ¼ 1; 2;…; 2bd=2c þ 2Þ; ð29Þ

zdþ1 ¼ zdþ2 ¼ z1z2 � � � zd for d ¼ even; ð30Þ

zdþ1 ¼ z1z2 � � � zd−1 for d ¼ odd; ð31Þ

where z⃗ ¼ ðz1; z2;…; zdÞ and the index α labels the
degeneracy for fixed mn with z⃗.11

It may be worthwhile explaining the physical meanings
of the discrete eigenvalues zi ¼ �1. It follows from

expressions (17) and (18) that the central charges Zi
essentially correspond to the reflection operators (accom-
panied with the Hamiltonian), so that zi may be interpreted
as the labels for “parity” even or odd of the eigenfunctions.
It should be, however, emphasized that the reflection
operators Rk (k ¼ 1; 2;…; d) and P themselves do not
commute with the supercharges Q�

i and hence they are not
compatible with the supersymmetry. On the other hand, Zi
commutes with all the supercharges, so that Zi=H (for the
nonzero energy states) can be regarded as a “reflection”
operator compatible with the supersymmetry.
In order to construct the representation, i.e., the super-

multiplet of the supersymmetry algebra (22), (23), we first
note that Q−zi

i (i ¼ 1; 2;…; 2bd=2c þ 2) acts trivially on

ΦðnÞ
α;z⃗ðyÞ with z⃗ ¼ ðz1; z2;…; zdÞ, i.e.,

Q−zi
i ΦðnÞ

α;z⃗ðyÞ ¼ 0 ði ¼ 1; 2;…; 2bd=2c þ 2Þ: ð32Þ

This is because relation (22) implies ðQ−zi
i Þ2ΦðnÞ

α;z⃗ðyÞ ¼ 0,
which leads to (32) due to the Hermitian property of the
supercharges. Thus, the supercharges that act on the states

ΦðnÞ
α;z⃗ðyÞ nontrivially are given by the set of fQzi

i ði ¼
1; 2;…; 2bd=2c þ 2Þg and the number of the supercharges
turns out to reduce effectively to half.12

The supermultiplet associated with the state ΦðnÞ
α;z⃗ðyÞ can

be constructed in the following way. In terms of the
nontrivial supercharges Qzi

i , it will be useful to introduce
the operators

S
z2p−1z2p
p ¼ −iQz2p−1

2p−1Q
z2p
2p ðp ¼ 1; 2;…; bd=2c þ 1Þ:

ð33Þ

They are explicitly given by

S
z2p−1z2p
p ¼

�AA†γðpÞΠ
z2p−1
2p−1Π

z2p
2p 0

0 A†γðpÞΠ
z2p−1
2p−1Π

z2p
2p A

�
;

ðp ¼ 1; 2;…; d=2Þ;

Szdþ1zdþ2

ðdþ2Þ=2 ¼
�
AA†γdþ1Πzdþ1

dþ1Π
zdþ2

dþ1 0

0 −A†γdþ1Πzdþ1

dþ1Π
zdþ2

dþ1A

�
;

ð34Þ

for d ¼ even and
10It should be noted that the eigenvalues zi ¼ �1 can be

defined without ambiguity for the nonzero energy states with
m2

n ≠ 0, and also that all of the eigenvalues zi (i ¼ 1; 2;…;
2bd=2c þ 2) are not independent but only zk (k ¼ 1; 2;…; d) are
independent.

11The label α given in Eq. (4) corresponds to fα; z⃗g defined in
this section.

12Note that the set of the nontrivial supercharges fQzi
i ði ¼ 1;

2;…; 2bd=2c þ 2Þg depends on the eigenvalues z⃗¼ðz1;z2;…;zdÞ
of the state ΦðnÞ

α;z⃗ðyÞ.
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S
z2p−1z2p
p ¼

�AA†γðpÞΠ
z2p−1
dð2p−1ÞΠ

z2p
dð2pÞ 0

0 A†γðpÞΠ
z2p−1
dð2p−1ÞΠ

z2p
dð2pÞA

�
; ðp ¼ 1; 2;…; ðd − 1Þ=2Þ;

Szdzdþ1

ðdþ1Þ=2 ¼
� iAA†γydΠzd

dþ1Π
zdþ1

dðdþ1Þ 0

0 −iA†γydΠzd
dþ1Π

zdþ1

dðdþ1ÞA

�
; ð35Þ

for d ¼ odd, where we introduce the pth internal chirality
γðpÞ ¼ iγy2p−1γy2p .13 Since S

z2p−1z2p
p (p ¼ 1; 2;…; bd=2c þ 1)

commute with each other as well as H and Zi (i ¼ 1;
2;…; 2bd=2c þ 2), eigenstates of S

z2p−1z2p
p can become

simultaneous eigenstates of H and Zi. Furthermore, since
S
z2p−1z2p
p satisfy the relations ðSz2p−1z2pp Þ2 ¼ H2, we can

parametrize the eigenvalues of S
z2p−1z2p
p as

S
z2p−1z2p
p ΦðnÞ

s1���sp���sbd=2cþ1;z⃗
ðyÞ ¼ spm2

nΦ
ðnÞ
s1���sp���sbd=2cþ1;z⃗

ðyÞ
ðp ¼ 1;…; bd=2c þ 1Þ; ð36Þ

with sp ¼ �1 for the nonzero energy states.14 Here, we
have replaced the index α by s1s2 � � � sbd=2cþ1, which denote
the eigenvalues of S

z2p−1z2p
p (p ¼ 1; 2;…; bd=2c þ 1).

From the relations

Qzi
i S

z2p−1z2p
p ¼

�−Sz2p−1z2pp Qzi
i for i ¼ 2p − 1; 2p;

þS
z2p−1z2p
p Qzi

i for i ≠ 2p − 1; 2p;
ð37Þ

½Qzi
i ; H� ¼ ½Qzi

i ; Zj� ¼ 0; ði; j ¼ 1; 2;…; 2bd=2c þ 2Þ;
ð38Þ

we find that the supercharges Q
z2p−1
2p−1 (or Q

z2p
2p ) (p ¼ 1;

2;…; bd=2c þ 1)15 flip the sign of the eigenvalues of
S
z2p−1z2p
p but do not change other eigenvalues. This fact

implies that the set of fΦðnÞ
s1���sp���sbd=2cþ1;z⃗

ðyÞ with sp ¼
�1ðp ¼ 1; 2;…; bd=2c þ 1Þg is 2bd=2cþ1-fold degenerate
and forms a supermultiplet of the N ¼ 4bd=2c þ 4
extended QM SUSY algebra with the central charges.
Actually, we can explicitly construct the supermultiplet

from ΦðnÞ
þþ���þ;z⃗ðyÞ as

ΦðnÞ
s1s2���sbd=2cþ1;z⃗

ðyÞ ¼ 1

ðmnÞs
ðQz1

1 Þð1−s1Þ=2ðQz3
3 Þð1−s2Þ=2 � � �

× ðQz2bd=2cþ1

2bd=2cþ1
Þð1−sbd=2cþ1Þ=2ΦðnÞ

þþ���þ;z⃗ðyÞ;
ð39Þ

where s ¼ 1
2
ð1 − s1Þ þ � � � þ 1

2
ð1 − s2bd=2cþ1Þ.

As we have seen so far, the number of the nontrivial
supercharges reduces to half, and the 2bd=2cþ1-fold degen-
erate states for fixed mn and z⃗ are related by the reduced
2bd=2c þ 2 supercharges. This situation is known as a
short representation in the context of extended supersym-
metry with central charges, and the eigenstates (39) are
called the 1=2-BPS states [43,44].

V. EXAMPLES

In this section, we examine the models with the hyper-
rectangle and the torus extra dimensions, which realize the
N ¼ 4bd=2c þ 4 extended QM SUSY, and confirm the
results given in the previous section.

A. Hyperrectangle

Let us consider the example of the action (1) whose extra
dimensional space Ω is given by the d-dimensional hyper-
rectangle,

Ω ¼
�
−
L1

2
;
L1

2

�
× � � � ×

�
−
Ld

2
;
Ld

2

�
; ð40Þ

where Lk (k ¼ 1; 2;…; d) is the length of the kth side of the
hyperrectangle with the Dirichlet boundary condition
imposed on the left-handed KK mode functions,

f ðnÞs1���sbd=2c ðyÞ ¼ 0 at yk ¼ −
Lk

2
;

Lk

2
ðk ¼ 1;…; dÞ:

ð41Þ
This boundary condition satisfies the requirement (9), and
we can confirm that all the supercharges Q�

i are Hermitian
and well defined.
The nth KK mode functions f ðnÞs1���sbd=2c ðyÞ; gðnÞs1���sbd=2c ðyÞ

with KK massm2
n > 0 are found to be written into the form

f ðnÞs1���sbd=2cðyÞ ¼ hðnÞðyÞes1���sbd=2c ;

gðnÞs1���sbd=2cðyÞ ¼
1

mn
A†hðnÞðyÞes1���sbd=2c ; ð42Þ

13The product of γðpÞðp ¼ 1; 2;…; bdc=2Þ equals the internal
chirality γdþ1 for d ¼ even and −iγyd for d ¼ odd.

14For d ¼ even, spðp ¼ 1; 2;…; d=2Þ correspond to the
eigenvalues of the pth internal chirality γðpÞ, and furthermore,
sðdþ2Þ=2 corresponds to the eigenvalue of 4þ d-dimensional
chirality since Szdþ1zdþ2

ðdþ2Þ=2 are naively given by the product of
ð−1ÞF and γdþ1. Thus, the eigenvalues spðp ¼ 1; 2;…; ðdþ
2Þ=2Þ are independent. The similar result is also obtained for
d ¼ odd.

15Since we are considering the eigenstates of S
z2p−1z2p
p ¼

−iQz2p−1
2p−1Q

z2p
2p , the action of Q

z2p
2p on ΦðnÞ

s1���sp���sbd=2cþ1;z⃗
ðyÞ is essen-

tially equivalent to that of Q
Z2p−1
2p−1 .
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where the second relation comes from the first equation
in (7). The scalar function hðnÞðyÞ and the mass eigenvalue
mn are given by

hðnÞðyÞ ¼
Yd
k¼1

ffiffiffiffiffi
2

Lk

s
sin

�
nkπ
Lk

�
yk þ

Lk

2

��
; ð43Þ

m2
n ¼ M2 þ

Xd
k¼1

�
nkπ
Lk

�
2

; ðnk ¼ 1; 2;…; k ¼ 1;…; dÞ:

ð44Þ

The es1���sbd=2c indicate the basis vectors of the spinor
space, and are chosen as eigenvectors of γðpÞ ¼
iγy2p−1γy2p [51,52]:

γðpÞes1���sp���sbd=2c ¼ spes1���sp���sbd=2c ; ð45Þ

for all p ¼ 1; 2;…; bd=2c, where sp ¼ �1 represents an
eigenvalue of the pth internal chirality of γðpÞ. To fix the
normalization factors of es1���sbd=2c , we define the es1���sbd=2c
from eþ���þ as [cf. Eqs. (20), (21), and (39)]

es1s2���sbd=2c ¼
� ðiγdþ1γy1Þð1−s1Þ=2ðiγdþ1γy3Þð1−s2Þ=2 � � � ðiγdþ1γyd−1Þð1−sd=2Þ=2eþþ���þ ðd ¼ evenÞ;
ð−γydγy1Þð1−s1Þ=2ð−γydγy3Þð1−s2Þ=2 � � � ð−γydγyd−2Þð1−sðd−1Þ=2Þ=2eþþ���þ ðd ¼ oddÞ:

ð46Þ

Then, we can construct the eigenfunctions of the model as follows:

ΦðnÞ
s1���sbd=2csbd=2cþ1;z⃗

ðyÞ ¼

8>>><
>>>:

�
f ðnÞs1 ���sbd=2c ðyÞ

0

�
for sbd=2cþ1 ¼ s1s2 � � � sbd=2c;�

0

gðnÞs1 ���sbd=2c ðyÞ

�
for sbd=2cþ1 ¼ −s1s2 � � � sbd=2c;

ð47Þ

where z⃗ ¼ ðz1; z2;…; zdÞ is given by

z⃗ ¼
� ðð−Þn1þ1;…; ð−Þndþ1Þ ðd ¼ evenÞ;
ðð−Þn1þnd ;…; ð−Þnd−1þnd ; ð−Þndþ1Þ ðd ¼ oddÞ: ð48Þ

Then, we can show that the eigenfunctions (47) satisfy
the same relations as (39) and form the supermultiplet of
the N ¼ 4bd=2c þ 4 extended QM SUSY, as the 1=2-BPS
states. Since the eigenvalues of Zi are unique at each KK
level as shown in (48), the degeneracy of the 4D spectrum
at each KK level is 2bd=2cþ1 and the eigenfunctions (47) are
mutually related by the supercharges Qzi

i (i ¼ 1; 2;…;
2bd=2c þ 2) at each KK level. It is interesting to point

out that the KK mode functions gðnÞs1���sbd=2c ðyÞ are not
eigenfunctions of the reflection operators Rkðk ¼ 1;

2;…; dÞ and P, although f ðnÞs1���sbd=2c ðyÞ are eigenfunctions

of them. On the other hand, ΦðnÞ
s1���sbd=2csbd=2cþ1;z⃗

ðyÞ are eigen-

functions of the central charges Ziði ¼ 1; 2;…;

2bd=2c þ 2Þ. Thus, Zi can be regarded as reflection
operators compatible with the supersymmetry, as noticed
in the previous section.

B. Torus

Next, we consider the model that the extra dimensional
space Ω is given by the d-dimensional torus,

Ω ¼
�
−
L1

2
;
L1

2

�
× � � � ×

�
−
Ld

2
;
Ld

2

�
ð49Þ

with the periodic boundary condition for KK mode
functions,

f ðnÞs1���sbd=2c;z⃗0 ðy1;…; yk þ Lk;…ydÞ ¼ f ðnÞs1���sbd=2c;z⃗0 ðy1;…; yk;…; ydÞ;
gðnÞs1���sbd=2c;z⃗0 ðy1;…; yk þ Lk;…ydÞ ¼ gðnÞs1���sbd=2c;z⃗0 ðy1;…; yk;…; ydÞ; ðk ¼ 1;…; dÞ: ð50Þ

The above periodic boundary condition satisfies the requirement (9), and all the supercharges are shown to be Hermitian
and well defined.
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Then, the nth KK mode functions f ðnÞs1���sbd=2c;z⃗0 ðyÞ; g
ðnÞ
s1���sbd=2c;z⃗0 ðyÞ with KK mass mn are found to be of the form

f ðnÞs1���sbd=2c;z⃗0 ðyÞ ¼ hðnÞz⃗0 ðyÞes1���sbd=2c ; gðnÞs1���sbd=2c;z⃗0 ðyÞ ¼
1

mn
A†hðnÞz⃗0 ðyÞes1���sbd=2c ; ð51Þ

hðnÞz⃗0 ðyÞ ¼
Yd
k¼1

hðnkÞz0k
ðyÞ; hðnkÞz0k

ðyÞ ¼

8>><
>>:

ffiffiffiffi
2
Lk

q
cos
	
2nkπ
Lk

yk



ðz0k ¼ þ1Þ;ffiffiffiffi
2
Lk

q
sin
	
2nkπ
Lk

yk



ðz0k ¼ −1Þ;
ð52Þ

m2
n ¼ M2 þ

Xd
k¼1

�
2nkπ
Lk

�
2

; ðnk ¼ 0; 1; 2;…; k ¼ 1;…; dÞ; ð53Þ

where z0k ¼ �1 and z⃗0 ¼ ðz01;…; z0dÞ.
Then, we can construct the eigenfunctions of the model as

ΦðnÞ
s1���sbd=2csbd=2cþ1;z⃗

ðyÞ ¼

8>>>>><
>>>>>:

 
f ðnÞs1���sbd=2c;z⃗0 ðyÞ

0

!
for sbd=2cþ1 ¼ s1s2 � � � sbd=2c;

 
0

gðnÞs1���sbd=2c;z⃗0 ðyÞ

!
for sbd=2cþ1 ¼ −s1s2 � � � sbd=2c;

ð54Þ

where z⃗ is given by

z⃗ ¼
� ðz01;…; z0dÞ ðd ¼ evenÞ;
ðz0dz01;…; z0dz

0
d−1; z

0
dÞ ðd ¼ oddÞ: ð55Þ

Then, we can show that the eigenfunctions (54) satisfy
the same relation as (39) and form the supermultiplet of
the N ¼ 4bd=2c þ 4 extended QM SUSY, as the 1=2-BPS
states. However, unlike the hyperrectangle case, both of
the eigenstates with zk ¼ þ1 and −1 for nk ≠ 0 (k ¼ 1;
2;…; d) are degenerate in the 4D mass spectrum. This
implies that the additional degeneracy 2d−N0 appears in
the 4D spectrum, where N0 is the number of zeros in
fn1; n2;…; ndg.16 The origin of the degeneracy comes from
the extra degrees of freedom with respect to the parity even

or odd for each reflection: yk → −yk in hðnÞz⃗0 ðyÞ. Therefore,
the 4D mass spectrum is ð22bd=2cþ1 × 2d−N0Þ-fold degen-
erate for the KK modes labeled by fn1; n2;…; ndg.

VI. SUMMARY AND DISCUSSION

In this paper, we have revealed that the N -extended QM
SUSY with the central charges is hidden in the 4D mass
spectrum of the higher dimensional Dirac action. The
supercharges are obtained as the extension of the N ¼ 2
QM SUSY based on the algebraic properties of the internal
gamma matrices and the reflection symmetries of the extra

dimensions. The central charges are interpreted as the
supersymmetric extension of the reflection operators.
We have also examined the representation of the

extended supersymmetry algebra and found that the super-
multiplet corresponds to the short multiplet of the 1=2-BPS
states. Furthermore, we have explicitly confirmed that
the KK mode functions in the models of the hyperrectangle
and the torus extra dimensions can be properly classified by
the representations of the N ¼ 4bd=2c þ 4 extended QM
SUSY algebra with the central charges.
In this paper, we have restricted to the cases that all the

4bd=2c þ 4 supercharges are well defined. Other boundary
conditions, other extra dimensions and nontrivial back-
ground fields would break (or partially break) the extended
supersymmetry. For example, if there are no reflection
symmetries in extra dimensions, the geometric supercharges
(13) and (14) [and also the supercharges (19)] become ill
defined, although the algebraic supercharges can be well
defined in this case with suitable boundary conditions.
Therefore, it would be of great importance to clarify how
the extended supersymmetry found in this paper is broken by
the choice of boundary conditions, extra dimensional spaces,
and background fields.
It is interesting to note that there are possibilities that

further structures might be hidden in the 4D mass spectrum
in general settings. The central charges in our models result
from the symmetries of the extra dimensions. Thus, we can
expect that new types of central charges will appear inmodels
with other symmetries. Furthermore, since it is known that
central charges are closely related to topological properties
[43,53,54], it is also interesting to investigatemodelsof curved

16Note that when nk ¼ 0, hðnkÞz0k
ðyÞ for z0k ¼ −1 is trivial, i.e.,

hð0Þz0k
ðyÞ ¼ 0. Thus, there is no degeneracy in hðnkÞz0k

ðyÞ for nk ¼ 0.
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extra dimensions or background fields with nontrivial topol-
ogies, e.g., sphere, soliton, magnetic flux, etc.
In addition, since we have obtained the new extended

supersymmetry with the central charges, it would be
worthwhile to search for new types of exactly solvable
models by use of this supersymmetry. The issues men-
tioned above remain to be done in future works.
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