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Recently, the gravitational scattering of two black holes (BHs) treated at the leading order in the weak-
field, or post-Minkowskian (PM), approximation to general relativity has been shown to map bijectively
onto a simpler effectively one-body process: the scattering of a test BH in a stationary BH spacetime. Here,
for BH spins aligned with the orbital angular momentum, we propose a simple extension of that mapping to
2PM order. We provide evidence for the validity and utility of this 2PM mapping by demonstrating its
compatibility with all known analytical results for the conservative local-in-time dynamics of binary BHs in
the post-Newtonian (weak-field and slow-motion) approximation and, separately, in the test-BH limit. Our
result could be employed in the construction of improved effective-one-body models for the conservative
dynamics of inspiraling spinning binary BHs.
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I. INTRODUCTION

Sometimes it is easier to solve complicated problems by
looking at seemingly more complicated ones. For example,
new insights into the study of the (classical) relativistic
gravitational interaction of massive bodies might be gained
by considering the even more formidable problem of their
quantum gravitational interaction.1

Attempts to understand surprisingly simple results from
computations of quantum scattering amplitudes, at higher
orders in perturbation theory, for gauge theories as well as
gravity theories, have led in recent years to an amplitudes
revolution of physical insights breeding new more efficient
computational techniques [2–10]. A central theme has been
that amplitudes or S matrices are determined to a surprising
extent by general principles such as symmetries, unitarity,
and locality. Very recent progress along these lines has
included analyses of tree and loop amplitudes involving
quantum particles with arbitrary masses and spins [11–13].
Directly connecting such advances to the classical

dynamics of spinning black holes (BHs) would be highly
valuable, particularly for the study of binary BHs and their
gravitational-wave (GW) emissions, with important appli-
cations to the new field of GWastrophysics [14]. In spite of
some progress along these lines [15], it remains unclear to

what extent the scattering of (minimally coupled) quantum
particles might correspond to scattering of classical BHs,
especially when the particles and BHs are spinning and
when we consider their complete multipole series. It is
hence important to approach such questions from both the
quantum and classical sides. The present paper is con-
cerned with classical scattering of spinning BHs, but we
will make tangential contact with (and draw inspiration
from) aspects of amplitudes approaches.
As another example of this section’s opening maxim

(being particularly relevant for gravitational scattering), in
an analytic treatment of the binary BH problem, we can
trade the more easily handled post-Newtonian (PN)
approximation [16–24] for the post-Minkowskian (PM)
approximation [16,19,25–35]: weak-field perturbation
theory on a background flat Minkowski spacetime, without
the further assumption of nonrelativistic speeds which
would lead to the PN approximation. The PM approxima-
tion has recently been a subject of renewed interest
concerning its applications to classical and quantum
gravitational scattering of massive bodies and to the
dynamics of bound binary systems [15,36–48] (see also
Refs. [49–51]). A related and very active line of research
aims at deriving predictions in classical gravity from
double-copy constructions, or color-kinematics dualities
[8–10,52], between scattering amplitudes for gauge theo-
ries and gravity theories [53–64].
References [38–42] in particular have considered both

PM two-body scattering and its relationship to effective-
one-body (EOB) models for binary dynamics [65–69].
This was initiated in Ref. [38] with an analysis at 1PM
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order (at linear order in the gravitational coupling G, or in
linearized gravity) of a system of two pure-monopole or
point-mass bodies. This was followed by a treatment of
dipole/linear-in-spin/spin-orbit effects at 1PM order in
Ref. [39]. The point-mass case was considered at 2PM
order (quadratic order in G) in Ref. [41], and 2PM spin-
orbit effects were treated in Ref. [42].
The pole-dipole (point-mass and spin-orbit) contribu-

tions to the classical gravitational dynamics of a system of
massive bodies (in vacuum) are universal; i.e., they are
independent of the nature of the bodies [70–73]. This
reflects local conservation of linear and angular momenta,
due to local Poincaré invariance. A body’s internal structure
influences its orbital dynamics through its intrinsic quadru-
pole and higher multipole moments. The leading contri-
butions to the 2l-pole moments Ml of a BH are fully
determined by its mass m and spin (intrinsic angular
momentum) S, its monopole and dipole, according to
Hansen’s formula [74] for a stationary Kerr BH,
Ml ∼mðiaÞl, with the rescaled spin a ¼ S=mc being the
radius of the BH’s ring singularity. For the specific case of a
two-spinning-BH system, the analysis of PM scattering was
extended to treat all-multipole/all-orders-in-spin effects at
1PM order in Ref. [40].
Here we begin to analyze the higher-multipole contri-

butions for binary BHs at 2PM order, with an eye toward
including the BHs’ complete multipole series and resum-
ming them, as in Refs. [40,75,76]. We continue, as in
Refs. [38,40], to investigate the extent to which PM results
for the conservative local-in-time dynamics of real
(arbitrary-mass-ratio) binary BHs can be deduced via
simple mappings from results in the test-body limit—
specifically, the spinning-test-BH limit, in which the mass
ratio tends to zero while keeping finite the smaller BH’s

(the test BH’s) mass-rescaled spin or ring radius a ¼ S=mc
and thus also all of its mass-rescaled multipoles. This
approach is valuable since exact solutions for the gravita-
tional field in classical gravity are known, in particular the
Schwarzschild and Kerr metrics, which makes the test-
body case particularly tractable, even nonperturbatively.
Figure 1 sketches the limiting cases encountered in the
present paper.
Our investigations are greatly simplified by restricting

attention to the aligned-spin case, in which the BHs’ spin
vectors are parallel (antiparallel) to the systems’ orbital
(and thus to its total) angular momentum vector. This is one
case in which the directions of all of these vectors are
unambiguously defined even in full general relativity. The
orbital motion is confined to a plane, the one orthogonal to
the constant direction of the angular momentum.
Regarding the conservative contributions to the orbital

dynamics (to the extent that these can be well defined), an
aligned-spin binary BH has effectively the same degrees of
freedom as a two-point-mass system, with only a 2D
relative position (and velocity or momentum) in the orbital
plane. We thus expect the aligned-spin binary BH system to
share the following important properties with the binary
point-mass system, as emphasized in Refs. [38,41]. For the
point-mass system, at 1PM order (apparently to all PN
orders) and at 2PM order (at least through the third-
subleading PN order), the complete conservative local-
in-time dynamical information is encoded in the system’s
scattering-angle function: for an unbound system, the angle
by which both masses are scattered in the center-of-mass
frame, as a function of the (rest) masses, the total energy (or
the relative velocity at infinity), and the orbital angular
momentum (or the impact parameter). The complete
conservative information, for both unbound and bound

FIG. 1. A schematic diagram of an aligned-spin two-BH system and its limits as discussed in Sec. III. We depict in green the spinning
BHs’ ring singularities with radii a ¼ jaj, and in black the BH horizons. To obtain the limit of a spinning test BH, we take its massmt to
be negligible, mt=mB → 0, while keeping its rescaled spin at finite. Taking the spin of the test BH to zero yields a monopolar test point
mass, following a geodesic in a Kerr background.
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orbits, can be defined, for example, as the part of the
information content of a (perturbative) canonical
Hamiltonian governing the conservative dynamics which
is invariant under (perturbative) canonical transformations.
In this paper, considering an aligned-spin binary BH

system instead of a binary point-mass system, we verify
that its scattering-angle function also encodes its complete
conservative local-in-time dynamics, to a similar level of
approximation. This holds according to all available PN
results (truncated at 2PM order), including in particular the
1PM and 2PM contributions through quadratic order in the
BHs’ spins, through subsubleading PN orders. Up to those
same levels of approximation, we find a simple mapping
between the scattering-angle functions for a real binary BH
and for a test BH moving in a background Kerr spacetime.
A potentially more general form of this result (still at 2PM
order but extending beyond the reach of current PN results)
is suggested by considerations of amplitudes-based deri-
vations of classical scattering angles. Given that the
scattering angle fully encodes the conservative local-in-
time dynamics, this has significant implications for con-
structions of EOB models for binary BHs.
The paper is organized as follows. We begin in Sec. II

with a discussion of two-point-mass scattering at 2PM order.
We point out a simple mapping between the real system and
its test-body limit (geodesic motion in a stationary
Schwarzschild spacetime) which is implicit in the 2PM
result for the scattering angle first derived in Ref. [33]; this
generalizes similar observations at 1PM order made in
Ref. [38]. After defining the scattering-angle function for
an aligned-spin binary BH in Sec. III A, we briefly review in
Sec. III B themappings between the real two-body angle and
its test-body limits found at 1PM order in Ref. [40]. In
Sec. III C,wepresent and discuss our generalization of one of
those mappings to 2PM order, valid at least in the restricted
2PM context described above (within the reach of available
PN results). This is the central result of the present paper. In
Sec. IV we derive a dual PN-PM expansion of the scattering
angle from known PN results for canonical Hamiltonians
encoding the conservative local-in-time dynamics of
aligned-spin binary BHs. Focusing on the 1PM and 2PM
(spin-dependent) parts of the PN results, we discuss
how the gauge-invariant information content of a canonical
Hamiltonian (defined modulo canonical transformations) is
uniquely determined by the scattering-angle function. In
Sec. V, we compare the PN-PM expansion of the real binary-
BH scattering angle to PM results which can be obtained in
the limit of test-BH motion in a stationary Kerr spacetime.
This comparison leads us to the 2PM mapping discussed in
Sec. III C, i.e., to the central result.We focus on contributions
up to quadratic order in the spin of the test BH, as PN results
with 2PM parts are available only up to spin-squared order.
Section III C also serves as an illustration of the utility of
exact BH metrics in connection with our central result.
Finally, we conclude in Sec. VI.

II. NONSPINNING-BLACK-HOLE SCATTERING
AT SECOND POST-MINKOWSKIAN ORDER

Pioneering studies of the PM approximation [25–35]
applied to the gravitational dynamics of massive bodies
culminated inWestpfahl’s computation, to 2PM order, of the
scattering-angle function for an unbound system of two
monopolar pointmasses (which could represent nonspinning
BHs), via a direct assault on the nonlinear field equations in
position space coupled with effective point-particle equa-
tions of motion [33]. In the intervening decades, this result
stood alone and quite separated from primarily PN studies of
bound coalescing binary systems and their GW emissions,
until it was revisited in the latter context in Ref. [41].
It was shown in Ref. [41] that the full gauge-invariant

information determining the two-point-mass conservative
local-in-time dynamics (for unbound and bound orbits)
through 2PM order (at least up to 3PN order) is contained in
Westpfahl’s result for the center-of-mass-frame scattering-
angle function; the information can be quantified, e.g., by
counting coefficients in a dual PN-PM expansion of the
scattering angle and of a Hamiltonian or Lagrangian along
with relevant phase-space diffeomorphisms. This property
had been discussed at 1PM order in Ref. [38], where it was
shown that the 1PM scattering angle for a real two-body
system can be deduced, via a simple kinematical mapping,
from the scattering angle for geodesics in a Schwarzschild
spacetime (truncated at 1PM order). Reference [41] dem-
onstrated that Westpfahl’s 2PM result agrees with available
PN results (up to 3PN order) and that it correctly reduces in
the test-body limit (the zero-mass-ratio limit) to the 2PM
result for Schwarzschild geodesics. (See Ref. [77] for a
calculation of the scattering angle to 4PN order, the order at
which one first encounters nonlocal-in-time contributions
[78].) Reference [41] did not explicitly discuss any map-
ping by which one could recover the real two-body angle
from the (much more easily obtained) 2PM expansion of
the Schwarzschild-geodesic angle.
It is nonetheless hard to miss the striking similarity

between the two 2PM results. Westpfahl’s [33] scattering
angle χ for an arbitrary-mass-ratio two-body system with
rest masses m1 and m2 and total center-of-mass-frame
energy E and angular momentum J and the scattering angle
χt for a test particle of mass mt with (background-frame)
energy Et and angular momentum Jt following a geodesic
in a Schwarzschild background of mass mB (B for back-
ground) are given, as in Eqs. (2.18)–(2.24) of Ref. [41], by

χðm1; m2; E; JÞ ¼ 2
2γ2 − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p GMμ

J

þ 3π

4

M
E
ð5γ2 − 1Þ

�
GMμ

J

�
2

þOðG3Þ;

γ ¼ 1þ E2 −M2

2Mμ
; ð2:1aÞ
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χtðmB; mt; Et; JtÞ ¼ 2
2γ2t − 1ffiffiffiffiffiffiffiffiffiffiffiffi
γ2t − 1

p GmBmt

Jt

þ 3π

4
ð5γ2t − 1Þ

�
GmBmt

Jt

�
2

þOðG3Þ;

γt ¼
Et

mt
; ð2:1bÞ

where M is the two-body system’s total rest mass and μ is
its reduced mass:

M ¼ m1 þm2; μ ¼ m1m2

M
¼ νM; ð2:2Þ

defining also the symmetric mass ratio ν ¼ μ=M. The
quantities γ and γt here are both denoted Êeff in Ref. [41];
they correspond to the relative Lorentz factors between the
respective pairs of the bodies’ rest frames at infinity, as
further detailed below.
It was pointed out in Ref. [38] that one mapping by

which one can obtain the 1PM part [the OðG1Þ part] of the
real two-body result (2.1a) from the 1PM part of the test-
body result (2.1b), which we will refer to as an “EOB
scattering-angle mapping,” is as follows:

μ ¼ mt;M ¼ mB;

J ¼ J; γ ¼ γt
⇒ χ ¼ χt þOðG2Þ; ð2:3Þ

i.e., the scattering angles will be equal at 1PM order if we
use the usual “Newtonian EOBmapping” of the rest masses

(the test-body mass is the reduced mass, and the back-
ground mass is the total mass), if we identify the two
angular momenta with one another, and if the two energies
are related by

γ ¼ γt ⇔ Et ¼ μþ E2 −M2

2M
; ð2:4Þ

which is the “EOB energy map,” proposed in Ref. [65] to
relate the Hamiltonian of an effective test body in an
effective background to the Hamiltonian of a real two-body
system.
It is clear from (2.1) that the mapping (2.3) breaks down

at 2PM order, specifically because of the factor of M=E in
the OðG2Þ term of (2.1a). We will see presently that an
alternative EOB scattering-angle mapping which continues
to hold at 2PM order suggests itself when we look at
the same results (2.1) expressed in terms of different
(equivalent) variables, in particular, trading the angular
momenta for the corresponding impact parameters [see
Eq. (2.15) below].
Let us first recall how the energies E and Et are related to

the respective pairs of the bodies’ asymptotic 4-momenta,
using flat-spacetime kinematics at infinity (see Fig. 2). For
the two-body system, with momenta pμ

1 and p
μ
2 and relative

Lorentz factor

γ ¼ p1 · p2

m1m2

; ð2:5Þ

FIG. 2. Above: The (arbitrary-mass-ratio) two-body case. Below: The test-body case. Left: The Minkowskian geometry of the
(incoming) zeroth-order state. Right: The spatial geometry of the scattering plane—in the center-of-mass frame above and in the
background frame below. Above left, the 4-momenta are decomposed as pμ

1 ¼ E1u
μ
cm þ pμ and pμ

2 ¼ E2u
μ
cm − pμ; E ¼ E1 þ E2 is

the total center-of-mass frame energy of Eq. (2.6). The test-body’s momentum is decomposed according to pμ
t ¼ Etu

μ
B þ pμt . The

magnitudes of the “spatial” momenta are jpj ¼ m1m2γv=E and jptj ¼ mtγv, so that Eqs. (2.11) and (2.14) can be rewritten as J ¼ jpjb
and Jt ¼ jptjb, respectively.
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the total center-of-mass-frame energy E is the magnitude of
the system’s total momentum,

E2 ¼ ðp1 þ p2Þ2 ¼ m2
1 þm2

2 þ 2m1m2γ; ð2:6Þ

which, with Eq. (2.2), leads to the expression for γ in
Eq. (2.1a). The energy Et of the test body in the background
frame is defined by

ðγt →Þγ ¼ Et

mt
¼ pt · pB

mtmB
; ð2:7Þ

where we indicate that we will henceforth drop the
subscript t on the relative Lorentz factor for the test-
background system. In both cases, the relative velocity v
between the bodies’ asymptotic rest frames is related to the
Lorentz factor by

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ð2:8Þ

The 4-momenta, pμ
1 and pμ

2, or p
μ
t and pμ

B, here could be
either (both) the initial or (both) the final momenta at
infinity, since the rest masses and the energies (and thus v
and γ) are conserved at the level of approximation we
consider. Note that we use the (þ;−;−;−) signature for the
Minkowski metric, with p2

1 ¼ m2
1, etc., and in this and the

following section we work in units in which the speed of
light c ¼ 1.
Next, let us recall how the angular momenta J and Jt are

related to the (point-mass) bodies’ asymptotic worldlines
(trajectories) and thus to the respective impact parameters
defined at infinity. For the two-body system, the total
relativistic angular momentum tensor about any point x is
given by

JμνðxÞ ¼ 2p½μ
1 ðx − z1Þν� þ 2p½μ

2 ðx − z2Þν�; ð2:9Þ

where z1 and z2 can be any points on each of the bodies’
asymptotic (zeroth-order; say, incoming) worldlines
(which are flat-spacetime geodesics) and where square
brackets denote antisymmetrization of enclosed indices. In
the center-of-mass frame, with unit 4-velocity uμcm, the total
angular momentum vector Jμ is defined by the first line
here (and turns out to be independent of x), and the second
follows from inserting Eq. (2.9):

Jμ ¼ 1

2
ϵμνρσuνcmJρσ with uμcm ¼ pμ

1 þ pμ
2

E

¼ −
1

E
ϵμνρσpν

1p
ρ
2ðz1 − z2Þσ

¼ −
1

E
ϵμνρσpν

1p
ρ
2b

σ: ð2:10Þ

Here, bμ is the vectorial impact parameter, connecting the
two worldlines’ points of mutual closest approach, equal to
the projection of ðz1 − z2Þμ orthogonal to both pμ

1 and pμ
2

(again for any points z1 and z2 on the asymptotic world-
lines). It follows from Eqs. (2.2), (2.5), (2.8), and (2.10)
that the magnitude J of the (center-of-mass-frame) angular
momentum and the magnitude b of the impact parameter
are related by

J ¼ M
E
μγvb: ð2:11Þ

On the other hand, consider the angular momentum tensor
of (only) the test body, about the background body,
assuming the latter to be at rest at the origin for simplicity
(x ¼ 0 ¼ zB),

Jμνt ¼ −2p½μ
t z

ν�
t ; ð2:12Þ

for any point zt on the test body’s asymptotic worldline.
The test body’s background-frame angular momentum
vector is

Jμt ¼ ϵμνρσuνBJ
ρσ
t with uμB ¼ pμ

B

mB

¼ −
1

mB
ϵμνρσpν

Bp
ρ
t z

σ
t

¼ −
1

mB
ϵμνρσpν

Bp
ρ
t b

σ; ð2:13Þ

where bμ is the impact parameter (which we will not
distinguish from that for the two-body system above),
orthogonal to both momenta. The magnitudes are related by

Jt ¼ mtγvb; ð2:14Þ

having used (2.7) and (2.8). Equations (2.6), (2.7), (2.11),
and (2.14) allow us to express the energies and angular
momenta, E and J for the two-body case and Et and Jt for
the test-body case, in terms of the rest masses and v and b,
where, in both cases, v is the relative velocity at infinity and
b is the impact parameter.
In terms of these new variables, the scattering angle χ

(2.1a) for the arbitrary-mass-ratio two-body system is given
by

χðm1; m2; v; bÞ

¼ 2
GE
v2b

�
1þ v2 þ 3π

4þ v2

8

GM
b

�
þOðG3Þ; ð2:15aÞ

and its test-body limit χt (2.1b), for Schwarzschild geo-
desics, is
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χtðmB;v;bÞ

¼ 2
GmB

v2b

�
1þv2þ3π

4þv2

8

GmB

b

�
þOðG3Þ: ð2:15bÞ

We now see that one simple way to obtain the two-body
result (2.15a) from the test-body result (2.15b), up to 2PM
order, is as follows, directly generalizing Eq. (92) of
Ref. [40] to 2PM order for point masses:

χðm1; m2; v; bÞ ¼
E
M

χtðM; v; bÞ þOðG3Þ ð2:16aÞ

or

χðm1; m2; v; bÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þ 2m1m2γ

p
m1 þm2

χtðm1 þm2; v; bÞ þOðG3Þ:

ð2:16bÞ

Comparing this alternative EOB scattering-angle mapping
to the original mapping (2.3) from Ref. [38], they both
involve the identifying of the relative velocity v (or γ factor)
at infinity for the test-body system with that for the two-
body system, which (along with the Newtonian rest-mass
mappings) implies the EOB energy map (2.4); the
differences are that (2.3) similarly identifies the two angular

momenta, while (2.16) instead identifies the two impact
parameters, and that the two scattering angles are equal in
(2.3), while they differ by a factor of E=M in (2.16).
We should be shocked that the two-body result is so

simple (and that it is so simply related to the test-body
result). In Westpfahl’s calculation [33], one sees many
complicated pieces—related to finite retardation effects, the
nonlinearity of the (gauge-dependent) field equations,
iterating the effective orbital equations of motion to second
order, etc.—but in the end, it all boils down to (2.15a),
which can be obtained from the test-body result (2.15b), via
the simple mapping (2.16). This is quite reminiscent of (and
not unrelated to) difficult Feynman-diagram calculations
boiling down to shockingly simple results for quantum
scattering amplitudes.
We can in fact give one explanation for the validity of the

2PM EOB scattering-angle mapping (2.16) based on
simple properties of the recent derivation in Ref. [46] of
Westpfahl’s 2PM scattering angle from the leading classical
parts of tree (1PM) and one-loop (2PM) amplitudes for
massive scalars (becoming monopolar point masses in the
eikonal limit) exchanging gravitons, obtained via the on-
shell unitarity method [11,15,44,47,79]. The relevant
classical part of the total amplitude (at the leading orders
in the momentum transfer q, those which contribute to the
classical scattering angle) is given by Eqs. (16) and (19) of
Ref. [46] as

ð2:17aÞ

with

ð2:17bÞ

where γ ¼ p1 · p2=m1m2 ¼ ð1 − v2Þ−1=2 just as in
Eqs. (2.5) and (2.8) above and where we have restored

factors of ℏ, noting that the amplitudeM is dimensionless.
As in Eqs. (23) and (24) of Ref. [46], the classical scattering
angle χ (called θ in Ref. [46]), through one-loop (2PM)
order, is a linear functional of the amplitudeM given in our
notation (and with some suggestive rearrangement) by

χ¼ 2sin
χ

2
þOðχ3Þ

¼ −ℏE
ð2γvÞ2

∂
∂b

Z
d2q
ð2πÞ2 e

−iq·b=ℏ MðqÞ
ðm1m2Þ2

þOðG3Þ; ð2:18Þ

where the integral over the (spacelike) momentum transfer q
spans the 2D plane orthogonal to pμ

1 and pμ
2, the plane

containing the impact parameter vectorb, and the result of the
integral depends only on b ¼ jbj. As in Eq. (28) of Ref. [46],
inserting the amplitude (2.17) into Eq. (2.18), dropping the ℏ
corrections resulting from the higher-order-in-q terms, yields
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the two-body scattering angle χ just as in Eq. (2.15a) or
(2.1a) above.
The important point we would like to note about

this calculation concerns the dependence of the various
contributions on the masses m1 and m2, at fixed v (or γ)
and b. Apart from the explicit appearances of m1 and m2 in
Eqs. (2.17) and (2.18), they otherwise enter only
through the total center-of-mass-frame energy E (2.6) in
the prefactor of Eq. (2.18). Thus, using the linearity of
Eq. (2.18), we can fully separate out the mass dependence
as follows:

χ½M� ¼ χ½Mtree� þ χ½M⊲� þ χ½M⊳� þOðG3Þ;
χ½Mtree� ¼ Eftreeðv; bÞ;
χ½M⊲� ¼ Em2f⊲ðv; bÞ;
χ½M⊳� ¼ Em1f⊳ðv; bÞ; ð2:19aÞ

noting, importantly, that f⊲ ¼ f⊳, and thus

χ ¼ E½ftreeðv; bÞ þMf⊲ðv; bÞ� þOðG3Þ; ð2:19bÞ

where again M ¼ m1 þm2. If we take the test-body limit,
say, m1 → 0 and m2 → mB, we have from (2.6) that
E → m2 → mB, and thus

χ → χt ¼ mBftreeðv; bÞ þm2
Bf⊲ðv; bÞ þOðG3Þ: ð2:20Þ

Here, in the test-body limit, we have lost the contribution
from M⊳. But we have not lost the most nontrivial part of
the information in M⊳, the function f⊳ðv; bÞ, due to the
symmetry property f⊳ ¼ f⊲ and to the fact that f⊲ðv; bÞ
still appears. Comparing (2.19) and (2.20), we see that,
regardless of the precise forms of the f functions, given
only that f⊳ ¼ f⊲, the arbitrary-mass-ratio two-body
result (2.19) can be obtained from the test-body result
(2.20) via the mapping (2.16).2

This kind of reasoning, about the interplay between
scattering angles, scattering amplitudes, and the test-body
limit, will guide us in our analysis below, where we
consider scattering not of two (monopolar) point masses
but of two spinning BHs (including higher-multipole
contributions).

III. EFFECTIVE-ONE-BODY SCATTERING-
ANGLE MAPPINGS FOR AN ALIGNED-SPIN

TWO-BLACK-HOLE SYSTEM

As shown in Ref. [40], a direct analog of the EOB (test-
body to two-body) scattering-angle mapping (2.16) holds
for a two-spinning-BH system, with aligned spins, at 1PM
order. This is expressed in Eq. (3.7) below. Furthermore,
the two-spinning-BH scattering angles, the two-body
version χ and its test-body limit χt, can both be obtained
at 1PM order from the scattering angle χg for geodesics in
the equatorial plane of a stationary Kerr spacetime. The
mappings and the geodesic scattering angle are given in
Eqs. (3.6)–(3.8) below.
Direct analogs of those 1PMEOB aligned-spin scattering-

anglemappings do not hold for binaryBHs at 2PMorder.We
find that there is a straightforward 2PM generalization of the
former mapping (from a spinning test BH in Kerr to the real
binary BH), but not the latter (from equatorial Kerr geodesics
to either of the two-spinning-BH cases). This, our central
result, is expressed in Eq. (3.13) below. As discussed in the
introduction, we do not prove Eq. (3.13) to its full potential
extent at 2PM order but instead verify it against available
PN results, in Sec. IV below. While we originally arrived at
the mapping (3.13) via the manipulations of PN results
described in Sec. IV, we motivate it here, in Sec. III C, with
(conjectural) arguments about derivations of aligned-spin
binary-BH scattering angles from (classical limits of) quan-
tum scattering amplitudes for massive spinning particles
exchanging gravitons.
Let us emphasize again that the utility of such mappings

is rooted in the existence of analytic expressions for BH
metrics (in particular the Schwarzschild and Kerr metrics),
with two important implications: (i) a calculation of the
test-BH scattering angle is a much more tractable problem
than of the generic binary BH (see Sec. V), and (ii) the test-
BH scattering angle can be obtained without restriction on
the impact parameter or velocity and hence is nonpertur-
bative from the PN and PM perspectives.

A. Aligned-spin scattering angles

As in the two-monopole case, the scattering angle for an
aligned-spin two-BH system can be expressed as a function
of the relative velocity v at infinity, an impact parameter b,
and the masses m1 and m2, but now with an extra
dependence on the BH’s spins S1 and S2. These (aligned)
spin components S1 and S2 are positive if they are aligned
with the orbital angular momentum, negative if antialigned.

2It is further suggested by this discussion that the EOB
scattering-angle mapping (2.16) can only be expected to hold
up to quadratic order in G, i.e., up to 2PM (or one-loop) order. If,
hypothetically, a linear formula like (2.18) continued to hold at
OðG3Þ, we could naively extrapolate the pattern of mass
dependence, χ½Mtree� ∝ E and χ½fMone-loopg� ∝ Efm1; m2g, to
continue as χ½fMtwo-loopg� ∝ Efm2

1; m1m2; m2
2g. Continuing to

naively extrapolate, we would then lose both the m2
1 and m1m2

terms in the test-body limit m1 → 0; while one might expect to
recover the m2

1 terms from symmetry with the m2
2 terms, there

would be no such hope for the m1m2 terms. At least the
conclusion of this hand-waving argument, that the mapping
(2.16) will break down at 3PM order (where complete PM
results are currently unavailable), is confirmed by results from the
PN approximation, as we will see in Sec. IV below. However, by
the same reasoning, one might expect that results at the next order
in the small-mass-ratio approximation (beyond the test-BH case)
can be mapped to the generic-mass case at 3PM order.
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Now we must also more precisely define the impact
parameter (at infinity), in relation to each BH’s total angular
momentum tensor field. For the initial and final asymptotic
states (or zeroth-order states, effectively in flat spacetime at
infinity), we define, for each BH, its “proper” center-of-
mass(-energy) worldline to be the set of points x about
which its proper mass-dipole vector ∝ JμνðxÞpν vanishes,
where JμνðxÞ is the single BH’s total relativistic angular
momentum about x and pμ is its momentum. The impact
parameter we use here is the one orthogonally separating
the two BH’s proper worldlines (asymptotically). In other
words, we employ here the “covariant” or Tulczyjew-
Dixon “spin supplementary condition” to define the rep-
resentative trajectory of each BH [40,72,80,81]. The BHs’
(Pauli-Lubanski) spin vectors Sμ are each defined by
Sμ ¼ ϵμνρσJρσpν=2m, and their magnitudes are the scalars
ð�ÞS (see, e.g., Secs. II.H and III of Ref. [40] for further
details).
We can then express the scattering angle for an aligned-

spin binary BH as

χððm1; a1Þ; ðm2; a2Þ; v; bÞ ¼ χððm2; a2Þ; ðm1; a1Þ; v; bÞ
ð3:1Þ

where

a1 ¼
S1
m1

; a2 ¼
S2
m2

ð3:2Þ

are the (oriented or signed) radii of the BHs’ ring
singularities or their mass-rescaled spins (sometimes also
referred to simply as the spins below).
Let

χtðmB; aB; at; v; bÞ ð3:3Þ

be the scattering angle for a test BH—in a way, a naked ring
singularity of finite radius at and negligible mass (see
Fig. 1)—in a background Kerr spacetime with massmB and
spin mBaB, in the aligned-spin configuration. It is obtained
as the test-body limit of the two-body angle χ, withmt → 0
at fixed at,

χtðmB;aB;at;v;bÞ¼ χððmB;aBÞ;ðmt → 0;atÞ;v;bÞ: ð3:4Þ

Then, with at → 0,

χgðm; a; v; bÞ ¼ χtðm; a; 0; v; bÞ ð3:5Þ

is the scattering angle for geodesics in the equatorial plane
of a Kerr background with mass m and spin ma.

B. At first post-Minkowskian order

The scattering angle for equatorial-Kerr geodesics is
given to 1PM order by

χg ¼
Gm
v2

�ð1þ vÞ2
bþ a

þ ð1 − vÞ2
b − a

�
þOðG2Þ

¼ 2Gm
v2

ð1þ v2Þb − 2va
b2 − a2

þOðG2Þ

¼ 2Gm
b

2γ2 − 1 − 2γ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
a=b

ðγ2 − 1Þð1 − a2=b2Þ þOðG2Þ; ð3:6Þ

as in Eq. (94) of Ref. [40]. From the latter, we can obtain
the two-body angle χ from the spinning-test-BH-in-Kerr
angle χt, much like in Eq. (2.16) for the nonspinning case,
via

χððm1; a1Þ; ðm2; a2Þ; v; bÞ

¼ E
M

χtðM; a1; a2; v; bÞ þOðG2Þ

¼ E
M

χtðM; a2; a1; v; bÞ þOðG2Þ: ð3:7Þ

Furthermore, we can obtain both of those from the result
(3.6) for equatorial Kerr geodesics, since

χtðmB; aB; at; v; bÞ
¼ χgðmB; aB þ at; v; bÞ þOðG2Þ; ð3:8Þ

as in Eq. (93) of Ref. [40].

C. At second post-Minkowskian order

At 2PM order, neither Eq. (3.7) nor Eq. (3.8) holds.
There seems to be no directly straightforward generaliza-
tion to 2PM order of the relation (3.8) which determines the
spinning-test-BH angle χt from the geodesic angle χg.
Unlike at 1PM order, from 2PM order onward, χt does not
depend only on the combination aB þ at [dropping the
(v, b) dependence]:

χtðmB; aB; atÞ ≠ χtðmB; aB þ at; 0Þ: ð3:9Þ

Furthermore, also unlike its 1PM version, χt is not
symmetric under aB ↔ at:

χtðmB; aB; atÞ ≠ χtðmB; at; aBÞ: ð3:10Þ

But there is a slight modification of the mapping (3.7),
determining the real binary-BH angle χ from the test-BH-
in-Kerr angle χt, which does hold up to 2PM order—
according to the 1PM and 2PM parts of the aligned-spin
scattering angles derived from all known PN results for
binary-BH dynamics, as we will show in Sec. IV.
We can (hand-wavingly) motivate the form of this

mapping as follows, extrapolating from the discussion of
classical limits of quantum scattering amplitudes for
monopolar (scalar) masses at the end of Sec. II. It is
suggested, most directly by the results of Ref. [11], that
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when considering particles or bodies with spin and
higher (spin-induced) multipoles, it will continue to be
true that the relevant classical-limit scattering amplitude
M, through 2PM or one-loop order, will be sufficiently
described by a sum of contributions precisely as appearing
in Eq. (2.17a), with one tree-level Mtree contribution and
two one-loop “triangles” M⊲ and M⊳ related by inter-
change of the two massive (now spinning) particles. Due to
the correspondence between the effective degrees of free-
dom for a two-monopole system and an aligned-spin two-
BH system, we are led to conjecture that there exists a
functional analogous to (2.18) which linearly produces the
aligned-spin scattering angle χ from (an appropriate form
of) the amplitude M. We can further conjecture, extrapo-
lating from (2.19a), that the contributions to the scattering
angle will take the following form, in particular regarding
their dependences on the masses m1 and m2 (and the
energy E):

χ½M� ¼ χ½Mtree� þ χ½M⊲� þ χ½M⊳� þOðG3Þ;
χ½Mtree� ¼ Eftreeðv; b; a1; a2Þ;
χ½M⊲� ¼ Em2f⊲ðv; b; a1; a2Þ;
χ½M⊳� ¼ Em1f⊳ðv; b; a1; a2Þ: ð3:11Þ

This generalizes (2.19a) only by adding a dependence of
the f functions on the mass-rescaled spins a1 and a2
(which crucially differs from having an analogous depend-
ence on, e.g., the full spins S ¼ ma, or the dimensionless
spins â ¼ a=Gm); this is motivated by Eqs. (4.12), (4.20),
and (A.10) of Ref. [11]. If we assume (3.11), then the
inherent ðm1; a1Þ ↔ ðm2; a2Þ symmetry of the two tri-
angle-loop contributions implies

f⊲ðv; b; a1; a2Þ ¼ f⊳ðv; b; a2; a1Þ: ð3:12Þ

This would mean that the information in f⊳, which would
be lost in the test-body limit m1 → 0, could be recovered
from the information in f⊲ which remains. Thus, if
Eq. (3.11) and thus Eq. (3.12) were to validly apply to
the aligned-spin scattering angle for a two-spinning-BH
system, then one would be able to conclude that the EOB
scattering-angle mapping stated in the following paragraph
holds to all orders in 1=c and to all orders in the BHs’ spins,
at 2PM order.
As we will show in the following section, given the

scattering angle χtðmB; aB; at; v; bÞ for a spinning test BH
with ring radius at in a background Kerr spacetime with
mass mB and spin mBaB, the scattering angle χ for an
arbitrary-mass-ratio aligned-spin binary BH is given, at
least to the accuracy indicated here, by

χððm1; a1Þ; ðm2; a2Þ; v; bÞ

¼ E
M

�
m1

M
χtðM; a1; a2; v; bÞ þ

m2

M
χtðM; a2; a1; v; bÞ

�

þOð4PN a0Þ þOð4.5PNa1Þ þOð5PN a2Þ
þOðG2a3Þ þOðG3Þ: ð3:13Þ

This reduces to Eq. (3.7) at 1PM order because χt is
symmetric under a1 ↔ a2 at 1PM order. There is no such
symmetry at 2PM order, and we see in Eq. (3.13) a rest-
mass-weighted average of the angles for each of a1 and a2
playing the roles of the background Kerr BH’s spin, with
the other as the test BH’s spin. We also see the same overall
factor of E=M appearing in all of the above scattering-angle
mappings, with that factor carrying the only (other)
dependence on the mass ratio, at fixed (M, a1, a2, b, v).
We have indicated in Eq. (3.13) the levels of approxi-

mation up to which we have verified this 2PM EOB
aligned-spin scattering-angle mapping against available
PN results for binary BH conservative local-in-time dynam-
ics (see Sec. IV C). This includes3

(i) the point-mass results through NNNLO, 3PN
[82–97], which are complete at (are fully determined
by the results at) 4PM order,

(ii) the spin-orbit (linear-in-spin) results, at
LO, 1.5PN [80,98–104], complete at 1PM,
NLO, 2.5PN [105–111], complete at 2PM,
NNLO, 3.5PN [112–117], complete at 3PM,

(iii) and the quadratic-in-spin results, at
LO, 2PN [67,99–101,103,118,119], complete at 1PM,
NLO, 3PN [120–128], complete at 2PM,
NNLO, 4PN [113,117,129–132], complete at 3PM.

This list includes all currently known PN results for spin-
dependent contributions with 2PM parts, with 2PM parts
first appearing at the NLO PN levels. The 1PM and 2PM
parts constitute the complete LO and NLO PN results at
each order in spin. No NLO PN results for real binary BHs
are currently available at cubic and higher orders in spin.
The mapping (3.13) holds to all orders in spin at 1PM order
[where it simplifies to (3.7)], and thus at the LO PN levels
at all orders in spin, according to the results of Ref. [40,75].

3Here, we use the standard PN order counting for rapidly
rotating BHs. Restoring factors of c, we assume spin magnitudes
S ¼ mca with the BHs’ ring radii a being on the order of their
gravitational radii, a ¼ ðGm=c2Þâwith the dimensionless spins â
being of order unity; i.e., we assume the BHs are nearly
extremally spinning. Then, using 1=c2 as the formal PN ex-
pansion parameter, an nPN contribution (to the scattering angle,
or to a Hamiltonian, as below) comes with a factor of 1=c2n
relative to Newtonian (0PN) order, when the results are expressed
in terms of the dimensionless spins â. We use the shorthand LO
for leading order (the leading PN order at a given order in spin),
NLO for next-to-leading order (or subleading order), etc., where
“next-to-” or “N” always increments by “one PN order,” i.e., by a
factor of 1=c2. See Footnote 2 of Ref. [40] for comments on the
appropriate PM order counting for spin effects.
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According to Westpfahl’s 2PM point-mass scattering angle
[33], and according to the scattering angle derived from
Bini and Damour’s 2PM spin-orbit results [42], the map-
ping (3.13) also holds for the 1PM and 2PM parts at all PN
orders up to linear order in the BHs’ spins.
A canonical Hamiltonian (in a certain gauge) encoding the

known aligned-spin binary BH dynamics at all the PN orders
listed above is shown in Sec. IV Cbelow.We derive from this
a dual PN-PM expansion of the real binary BH scattering-
angle function, through the same orders, in Sec. IV D. We
show that the complete 1PM and 2PM parts of those PN-
expanded scattering angles are indeed obtained from the
mapping (3.13) applied to results for a test BH in a back-
groundKerr spacetimepresented in Sec.V. The 2PMtest-BH
results are contained in Eq. (5.5) below.
We also argue in Sec. IV C that Eqs. (3.13) and (5.5)

allow one to reconstruct the original Hamiltonians at the
considered order (up to a gauge or canonical transforma-
tion). Hence Eq. (3.13) applied to Eq. (5.5) encodes a
number of rather lengthy PN results—the complete 1PM
and 2PM parts of all the PN results, thus including the
complete PN results through NLO, for aligned spins—in a
strikingly compact manner.

IV. THE POST-NEWTONIAN–POST-
MINKOWSKIAN EXPANSION OF THE

SCATTERING ANGLE

Here we take PN results for canonical Hamiltonians
governing the conservative local-in-time dynamics of
arbitrary-mass-ratio binary BHs, specialized to the aligned-
spin case, and derive from them a PN-PM expansion of the
scattering-angle function. This generalizes to spin-squared
order similar calculations in Ref. [77] through linear order in
spin. We also discuss how this process can be run in reverse,
to deduce from the scattering angle a complete aligned-spin
Hamiltonian (valid for both unbound and bound orbits),
modulo phase-space gauge freedom, at least at the considered
PN orders.
We begin in Sec. IVA with a general discussion of

canonical Hamiltonians for binary-BH conservative local-
in-time dynamics, the specialization to the aligned-spin case,
and the procedure for deriving the scattering angle from an
aligned-spin Hamiltonian. An important ingredient, dis-
cussed in Sec. IV B, is the translation from the “canonical
variables” associated with the canonical Hamiltonian—
specifically, the orbital angular momentum and the corre-
sponding impact parameter—to the “covariant variables”
(those used in Sec. III A) in terms of which the spin-
dependent parts of the scattering angle take their simplest
forms. In Sec. IV C, we display an aligned-spin Hamiltonian
in a “quasi-isotropic” gauge, at all of the PN orders listed in
Sec. III C, derived via canonical transformations from the
Hamiltonians given in Refs. [116,133,134]. We present the
resultant PN-PM-expanded scattering angle in Sec. IVD.We

restore in this section factors of the speed of light c which
were set to 1 in the previous two sections.

A. Canonical Hamiltonians, aligned spins,
and the scattering angle

A canonical Hamiltonian encoding the conservative
local-in-time dynamics of a generic binary BH in the
center-of-mass frame, with arbitrary spin orientations,

Hððm1; a1Þ; ðm2; a2Þ;R;PÞ; ð4:1Þ

depends on the (constant) rest masses m1 and m2, a
canonical relative position RðtÞ and its conjugate momen-
tum PðtÞ, and the canonical spin vectors S1ðtÞ and S2ðtÞ
with rescaled versions

a1 ¼
S1
m1c

; a2 ¼
S2
m2c

; ð4:2Þ

having dimensions of length. The Hamiltonian determines
the canonical equations of motion,

_R ¼ ∂H
∂P ; _P ¼ −

∂H
∂R ; _SA ¼ −SA ×

∂H
∂SA ; ð4:3Þ

with A ¼ 1, 2 (no sum implied), via the canonical Poisson
brackets

fRi; Pjg ¼ δij; fSiA; SjAg ¼ ϵijkSkA; ð4:4Þ

with all others vanishing.
In the aligned-spin configuration, both spin vectors are

constant and parallel to the constant (canonical) orbital
angular momentum vector

L ¼ R × P ¼ LL̂; ð4:5Þ

with L ¼ jLj,

a1 ¼ a1L̂; a2 ¼ a2L̂: ð4:6Þ

The orbit is confined to the plane orthogonal to L̂, in which
we can use polar coordinates (R, ϕ), where R ¼ jRj, with
canonically conjugate momenta (PR, Pϕ), where Pϕ ¼ L is
the (canonical) orbital angular momentum, with

P2 ¼ P2
R þ L2

R2
: ð4:7Þ

Note that we are implicitly employing a flat background
Euclidean 3-metric here. An aligned-spin binary-BH
canonical Hamiltonian takes the form

Hððm1; a1Þ; ðm2; a2Þ; R; PR; LÞ; ð4:8Þ
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with the equations of motion

_r ¼ ∂H
∂PR

; _PR ¼ −
∂H
∂R ;

_ϕ ¼ ∂H
∂L ; _L ¼ −

∂H
∂ϕ ¼ 0; ð4:9Þ

where L ¼ Pϕ is a constant of motion due to the system’s
axial symmetry. For the generic Hamiltonians of the form
(4.1) which we employ, from Refs. [116,133,134], the
corresponding aligned-spin Hamiltonian of the form (4.8)
can be obtained simply by inserting the aligned-spin
relations (4.6) and simplifying.4

Apart from the spins a1 and a2 appearing as constant
parameters, the aligned-spin binary-BH Hamiltonian and
equations of motion (4.8) and (4.9) are identical in form to
those for a two-point-mass system. It follows from the
equations of motion (4.9), as shown, e.g., in Ref. [41], that
the gauge-invariant scattering angle χ—the total change in
the angle coordinate Δϕ minus π (minus Δϕ for G → 0)—
can be found by solving the relation H ¼ HðR;PR; LÞ
giving the Hamiltonian for the relation PR ¼ PRðH;L; RÞ
giving the radial momentum (up to a sign) and then
evaluating

χðH;LÞ ¼ −
Z

dR
∂
∂LPRðH;L; RÞ − π; ð4:10Þ

along the appropriate path through the phase space—
namely: first, with PR < 0, from R ¼ ∞ down to Rmin
(>0) where PR ¼ 0 and then back to infinity with PR > 0.
Here we are assuming that L and H are such that PR is real
as R → ∞ (such that the orbit is unbound). Note that we
have suppressed in Eq. (4.10) the dependence on the
constant masses and spins. The total change in the angle
coordinate ϕ will correspond to the physical scattering
angle as long as the Hamiltonian reduces to a standard form
for a free system in Minkowski space as R → ∞, with H
and L being the physical center-of-mass-frame total energy
and (canonical) orbital angular momentum, respectively.
We note that for a scattering orbit, as opposed to a bound

(or, more precisely, nearly circular) orbit, the velocity and
the gravitational field strength become independent. Hence
we expand the scattering angle (4.10) independently in G

(PM expansion) and c−1 (PN expansion). When this
expansion is applied to the integrand of Eq. (4.10), then
the individual parts of the integral become simple to
evaluate (but one has to deal with singularities). We refer
the reader to Appendix B of Ref. [104] for an explanation
of this perturbative integration method.

B. Orbital angular momenta and impact parameters:
“canonical” versus “covariant” variables

The L above is the magnitude of the canonical orbital
angular momentum

L≡ Lcan ¼ R × P; ð4:11Þ

given in terms of the canonical R and P from the
Hamiltonian. This corresponds [40,135,136] to the physical
orbital angular momentum (at least at infinity) defined
in terms of the BHs’ worldlines which are specified by
canonical (or Pryce-Newton-Wigner [137–139]) spin sup-
plementary conditions for each BH with respect to the
system’s center-of-mass frame.
Referring the reader to Ref. [40] for further details, in the

aligned-spin case, a simple way to relate the canonical
orbital angular momentum L ¼ Lcan to the covariant orbital
angular momentum Lcov (the one defined in terms of
the BHs’ Tulczyjew-Dixon worldlines as discussed in
Sec. III A) is to note their respective relationships (at
infinity) to the invariant magnitude Jtot of the two-BH
system’s center-of-mass-frame total angular momentum
and to the (rescaled) spins a1 and a2. From Eqs. (96a)
and (106d) of Ref. [40], we have

Jtot ¼ Lcan þm1ca1 þm2ca2

¼ Lcov þ
E1

c
a1 þ

E2

c
a2; ð4:12Þ

where E1 and E2 are the BHs’ individual energies in
the center-of-mass frame. These energies are defined, at
infinity, by E1 ¼ p1 · ucm and E2 ¼ p2 · ucm, where u

μ
cm ¼

ðpμ
1 þ pμ

2Þ=H is the 4-velocity of the center-of-mass frame.
Like the relative speed v at infinity and the Lorentz factor γ,
the energies E1 and E2 can be expressed solely in terms of
the rest masses m1 and m2 and the total center-of-mass-
frame energy H, equal to the quantity E from (2.6):

H ¼ E ¼ Mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þ

p
¼ E1 þ E2; ð4:13aÞ

as follows. Let us define the total energy per total rest-mass
energy,

Γ ¼ H
Mc2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þ

p
; ð4:13bÞ

so that

4This involves, e.g., taking a · L → aL (as is the spin depend-
ence of all linear-in-spin terms) and setting to zero the quantities
a · R and a · P. In general, with spin-squared terms, one should be
concerned that this process may not commute with the process of
obtaining the equations of motion from the Hamiltonian (involv-
ing derivatives). However, one can verify that these processes do
commute for the generic Hamiltonians we employ, most notably
because the quantities a · R and a · P which vanish for aligned
spins never appear as lone factors in a given term in the
Hamiltonian; rather, they always appear multiplied by a second
such factor.
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γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p ¼ 1þ Γ2 − 1

2ν
; ð4:13cÞ

recalling the definitions of the total rest mass M, the
reduced mass μ, and the symmetric mass ratio ν and
introducing the antisymmetric mass ratio δ:

M ¼ m1 þm2; μ ¼ m1m2

M
¼ νM;

δ ¼ m1 −m2

M
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p m1 −m2

jm1 −m2j
: ð4:13dÞ

Then the individual energies can be expressed as

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1c
4 þ jpj2c2

q
¼ Mc2

2

�
Γþ δ

Γ

�
;

E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2c
4 þ jpj2c2

q
¼ Mc2

2

�
Γ −

δ

Γ

�
; ð4:13eÞ

where

jpj ¼ μγv
Γ

ð4:13fÞ

is the magnitude of the (physical) relative momentum p,
orthogonal to uμcm, as defined in Sec. II.H.1 of Ref. [40],
where it is called pμ

⊥, such that pμ
1 ¼ E1u

μ
cm þ pμ and

pμ
2 ¼ E2u

μ
cm − pμ, asymptotically (see Fig. 2). Note that jpj

generally differs from the magnitude jPj of the canonical
momentum P (at infinity) in the Hamiltonian. Finally, one
finds from (4.12) and (4.13) that the relationship between
the (aligned-spin) canonical and covariant orbital angular
momenta can be expressed as

Lcan ¼ Lcov þ
E1 −m1c2

c
a1 þ

E2 −m2c2

c
a2

¼ Lcov þMc
Γ − 1

2

�
aþ −

δ

Γ
a−

�
; ð4:14Þ

where we define

aþ ¼ a1 þ a2; a− ¼ a1 − a2: ð4:15Þ

The impact parameters—the distances (in either BH’s
rest frame or in the center-of-mass frame) orthogonally
separating the BHs’ asymptotic worldlines, bcan for the
center-of-mass-frame Pryce-Newton-Wigner worldlines
and bcov ≡ b for the Tulczyjew-Dixon worldlines—are
related to the orbital angular momenta by

bcan ¼
Lcan

p⊥
; b≡ bcov ¼

Lcov

p⊥
; ð4:16Þ

as in Eq. (67) of Ref. [40]. Thus, from (4.13)–(4.16), the
canonical orbital angular momentum L ¼ Lcan, appearing

in the aligned-spin Hamiltonian (4.8), is related to the
covariant impact parameter b ¼ bcov by

L ¼ Lcan ¼
μγvb
Γ

þMc
Γ − 1

2

�
aþ −

δ

Γ
a−

�
: ð4:17Þ

Using this key relation to express L in terms of b leads to
significant simplifications of the spin-dependent parts of
the PN-PM expansion of the scattering angle.
Note that, given fixed rest masses, the quantities v, γ, and

Γ are each determined by the total energyH, and vice versa,
via (4.13a) and (4.13b). We can thus trade H for v, and L
for b, as the independent variables in the scattering-angle
function. Then (4.10) is replaced by

χðv; bÞ ¼ −
Γ
μγv

Z
dR

∂
∂bPRðv; b; RÞ − π; ð4:18Þ

where PRðv; b; RÞ is found by solving the Hamiltonian
relation H ¼ HðR;PR; LÞ while using (4.13) and (4.17) to
eliminate H and L in favor of v and b.

C. The post-Newtonian Hamiltonian
in a quasi-isotropic gauge

In the following we collect the PN Hamiltonians that
enter the calculation of the scattering angle. A canonical
Hamiltonian for a binary BH including the NNLO-PN
contributions up to quadratic order in the BHs’ spins is
given in Refs. [116,134]. The NNNLO (3PN) point-mass
contributions can be found in Ref. [133]. Since the
Hamiltonians are given in different gauges (or canonical
coordinates) in the literature, we need to take special care to
transform them to the same canonical variables.
Using PN perturbative canonical transformations as

discussed in, e.g., Refs. [65,116,133], one finds that the
Hamiltonian can be brought into a form such that it depends
on the momentum P only through P2 (not separately on PR
and L), except in the odd-in-spin terms where one has
single factors of L · a → La. This defines a quasi-isotropic
gauge. One finds, in fact, that these requirements fix the
gauge of the Hamiltonian up to an overall one-parameter
family of canonical transformations—at the least, at the PN
orders considered here. It is easily verified that the
scattering angle derived from (4.18) is invariant under this
one-parameter family of canonical transformations, as is a
consequence of the less easily verified fact that the
scattering angle is invariant under arbitrary canonical
transformations of the Hamiltonian. These facts, along
with counting coefficients in the angle and in the
Hamiltonian, demonstrate that the complete (phase-
space-)gauge-invariant information of the Hamiltonian is
encoded in the scattering angle. At least perturbatively, at
the orders considered here, one can deduce a valid
Hamiltonian, modulo gauge, by posing an ansatz with
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undetermined coefficients, computing the scattering angle,
and matching coefficients. Specifically, for example, one
can start from the Hamiltonians given precisely as in
Eqs. (4.19), (4.26), and (4.28) below, with unknown
coefficients α…, compute the scattering angle from that
Hamiltonian, and set it equal to the final result (4.30);
one finds that this determines a one-parameter family of
solutions for the Hamiltonian coefficients and that this
remaining freedom corresponds precisely to a one-
parameter family of canonical transformations (with a
generating function at 1PN-nonspinning order). We present
in the following the results for the Hamiltonian in a

quasi-isotropic gauge, with the one-parameter freedom
fixed as described in the following subsection.

1. Point-mass contributions

At 4PN order the point-mass or spin-independent
Hamiltonian becomes nonlocal in time [78] (see
Ref. [77] for a calculation of the scattering angle to this
order). Since the present paper is concerned with spin
contributions, we restrict our attention here to the simpler
local-in-time point-mass Hamiltonian up to 3PN. The
point-mass contributions to the Hamiltonian, in an isotropic
gauge, can be expressed as follows:

Ha0 ¼ Mc2

þμ

�
P2

2μ2
−
GM
R

�
∶0PN

þ μ

c2

�
α10

P4

μ4
þ α11

P2

μ2
GM
R

þ α12
ðGMÞ2
R2

�
∶1PN

þ μ

c4

�
α20

P6

μ6
þ α21

P4

μ4
GM
R

þ α22
P2

μ2
ðGMÞ2
R2

þ α23
ðGMÞ3
R3

�
∶2PN

þ μ

c6

�
α30

P8

μ8|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0PM

þα31
P6

μ6
GM
R|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

1PM

þα32
P4

μ4
ðGMÞ2
R2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

2PM

þα33
P2

μ2
ðGMÞ3
R3|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

3PM

þα34
ðGMÞ4
R4

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

4PM

∶3PN

ð4:19Þ

with the 1PN coefficients

α10 ¼ −
1þ ν

8
; α11 ¼ −

3 − ν

2
; α12 ¼

1 − ν

2

or

0
B@

α10

α11

α12

1
CA ¼

0
B@

−1=8 −1=8
−3=2 1=2

1=2 −1=2

1
CA
�
1

ν

�
; ð4:20aÞ

the 2PN coefficients

0
BBB@

α20

α21

α22

α23

1
CCCA ¼

0
BBB@

1=16 1=16 1=16

5=8 5=8 −3=8
5=2 −1=4 3=4

−1=4 0 −1=2

1
CCCA
0
B@

1

ν

ν2

1
CA; ð4:20bÞ

and the 3PN coefficients

0
BBB@
α30

α31

α32

α33

1
CCCA¼

0
BBB@

−5=27 −5=27 −3=26 −5=27

−7=24 −7=24 −3=8 5=24

−27=24 −15=24 3=8 −15=24

−25=8 5=8 3=8 5=4

1
CCCA

0
BBB@

1

ν

ν2

ν3

1
CCCA

ð4:20cÞ

and

α34 ¼
1

8
þ
�
235

24
−
41π2

64

�
ν −

1

4
ν2 −

5

8
ν3: ð4:20dÞ

The gauge of the Hamiltonian here has been fixed by
requiring that it is isotropic, depending on the canonical
momentum P only through P2, and (to fix the one-
parameter freedom discussed above) by requiring that
the 0PM column of Eq. (4.19) matches the expansion in
1=c2 of

H0PM
a0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2c4 þ 2Mc2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2c4 þ P2c2

q
− μc2

	r
; ð4:21Þ

which is the result of the EOB energy map (2.4) being
applied, with E → H, to the Hamiltonian Et → Ht ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2c4 þ P2c2

p
for a free particle of mass μ in flat
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spacetime.5 This defines an isotropic EOB gauge for the
complete Hamiltonian; once the one-parameter freedom
has been fixed in this way, no further gauge freedom is
present in the following spin-dependent contributions, if we
impose the quasi-isotropic conditions discussed above.

2. Spin-orbit contributions

The linear-in-spin, or spin-orbit, Hamiltonians up to
NNLO from Ref. [116] can also be brought into a
quasi-isotropic gauge through a canonical transformation,
leading to

Ha1 ¼
L
cR2

�
7

4
aþ þ δ

4
a−

�
GM
R

∶LOð1.5PNÞ

þ L
c3R2

ð aþ δa− Þ
��

α11þ
α11−

�
P2

μ2
GM
R

þ
�
α12þ
α12−

� ðGMÞ2
R2

�
∶NLOð2.5PNÞ

þ L
c5R2

ð aþ δa− Þ
��

α21þ
α21−

�
P4

μ4
GM
R|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1PM

þ
�
α22þ
α22−

�
P2

μ2
ðGMÞ2
R2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2PM

þ
�
α23þ
α23−

� ðGMÞ3
R3

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3PM

∶NNLOð3.5PNÞ

ð4:26Þ

with the NLO coefficients

0
BBB@

α11þ
α11−

α12þ
α12−

1
CCCA ¼

0
BBB@

−5=24 −29=24

5=24 −5=24

−11=2 2

−1=2 1=2

1
CCCA
�
1

ν

�
ð4:27aÞ

and the NNLO coefficients

0
BBBBBBBBB@

α21þ
α21−

α22þ
α22−

α23þ
α23−

1
CCCCCCCCCA

¼

0
BBBBBBBBB@

7=25 11=24 59=25

−7=25 −5=24 11=25

27=24 123=24 −9=2
−27=24 21=24 −9=8
159=24 −99=24 45=24

9=24 −11=24 15=24

1
CCCCCCCCCA

0
B@

1

ν

ν2

1
CA:

ð4:27bÞ

3. Spin-squared and quadrupole contributions

The spin-squared part of the Hamiltonians up to
NNLO from Refs. [116,134] includes contributions
from the bodies’ quadrupole moments, which depend
on the internal structure. The quadrupole moments
here are specialized to those of BHs. After per-
forming a perturbative canonical transformation, the
spin-squared Hamiltonian in the quasi-isotropic gauge
reads

5The 1PN part of the Hamiltonian in the standard Arnowitt-
Deser-Misner (ADM) gauge [16] reads

HADM
1PN ¼ μ

c2

�
−
1 − 3ν

8

P4

μ4
−
3þ ν

2

L2

μ2R2

GM
R

−
3þ 2ν

2

P2
R

μ2
GM
R

þG2M2

2R2

�
: ð4:22Þ

Using the generating function

G1PN ¼ P · R
1

c2

�
β1

P2

μ2
þ β2

GM
R

�
; ð4:23Þ

a perturbative canonical transformation yields the transformed
1PN Hamiltonian H0

1PN ¼ HADM
1PN þ fG1PN; H0PNg:

H0
1PN ¼ μ

c2

�
−
1 − 3νþ 8β1

8

P4

μ4
−
3þ ν − 2β1 þ 2β2

2

L2

μ2R2

GM
R

−
3þ 2ν − 6β1

2

P2
R

μ2
GM
R

þ 1þ 2β2
2

G2M2

R2

�
: ð4:24Þ

We see that the second two terms will combine into one term
proportional to P2 ¼ L2=R2 þ P2

R if

β2 ¼
ν − 4β1

2
⇒ an isotropic gauge; ð4:25Þ

but there is still the freedom of choosing β1, so that we have a
one-parameter family of isotropic gauges. Once this freedom is
fixed, one encounters no further free parameters in fixing an
isotropic gauge at higher PN orders. Here we have chosen
β1 ¼ ν=2, which makes the 0PM column of Eq. (4.19) match
the 1=c2 expansion of Eq. (4.21), yielding an isotropic EOB
gauge. One can instead make the 0PM column matchffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1c

4 þ P2c2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2c
4 þ P2c2

p
, as in the 0PM part of the

ADM-gauge Hamiltonian [16] or as in the isotropic Hamiltonian
of Ref. [48], by choosing β1 ¼ 0.
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Ha2 ¼ − μ
a2þ
2R2

GM
R

∶LOð2PNÞ

þ μ

c2R2
ð a2þ δaþa− a2− Þ

2
64
0
B@

α11þþ
α11þ−

α11−−

1
CAP2

μ2
GM
R

þ

0
B@

α12þþ
α12þ−

α12−−

1
CA ðGMÞ2

R2

3
75 ∶NLOð3PNÞ

þ μ

c4R2
ð a2þ δaþa− a2− Þ

2
64
0
B@

α21þþ
α21þ−

α21−−

1
CAP4

μ4
GM
R

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1PM

þ

0
B@

α22þþ
α22þ−

α22−−

1
CAP2

μ2
ðGMÞ2
R2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2PM

þ

0
B@

α23þþ
α23þ−

α23−−

1
CA ðGMÞ3

R3

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3PM

∶NNLOð4PNÞ

ð4:28Þ

with the NLO coefficients

0
BBBBBBBBB@

α11þþ
α11þ−

α11−−

α12þþ
α12þ−

α12−−

1
CCCCCCCCCA

¼

0
BBBBBBBBB@

−9=25 3=4

−7=24 0

−1=25 1=8

83=25 −1
−3=24 0

3=25 1=8

1
CCCCCCCCCA

�
1

ν

�
ð4:29aÞ

and the NNLO coefficients

0
BBBBBBBBBBBBBBBB@

α21þþ
α21þ−

α21−−

α22þþ
α22þ−

α22−−

α23þþ
α23þ−

α23−−

1
CCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBB@

5=25 11=25 −15=24

3=24 25=25 0

−1=25 3=24 −1=4
93=26 −493=26 21=8

105=25 −77=26 0

9=26 −17=25 3=8

−425=26 241=26 −15=8
31=25 −45=26 0

−21=26 −7=8 1=2

1
CCCCCCCCCCCCCCCCA

0
B@

1

ν

ν2

1
CA: ð4:29bÞ

D. The scattering angle

Solving the expression of the Hamiltonian for the radial momentum PR as discussed below (4.18), inserting this into
(4.18), and integrating (using, e.g., the method described in [104]) yields the scattering angle as follows. Factoring out the
quantity Γ ¼ H=M seen in the numerator of the prefactor in (4.18), we find the spin0 part

χa0

Γ
¼ GM

v2b

�
2þ 2

v2

c2
þO

�
v8

c8

��
þ π

�
GM
v2b

�
2
�
3
v2

c2
þ 3

4

v4

c4
þO

�
v8

c8

��

þ
�
GM
v2b

�
3
�
−
2

3
þ 2

15 − ν

3

v2

c2
þ 60 − 13ν

2

v4

c4
þ 40 − 227ν

12

v6

c6
þO

�
v8

c8

��

þ π

�
GM
v2b

�
4
�
15

7 − 2ν

4

v4

c4
þ
�
105

4
−
437

8
νþ 123

128
π2ν

�
v6

c6
þO

�
v8

c8

��
; ð4:30aÞ

the spin1 part
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χa1

Γ
¼ v

c
ð aþ δa− Þ

b
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v2b

��−4
0

�
þO

�
v6

c6

��
þ π

�
GM
v2b

�
2
�
−
1

2

�
7

1

�
−
3

4

�
7

1

�
v2

c2
þO

�
v6

c6

��

þ
�
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v2b

�
3
�
−2

�
5

1

�
− 20

�
5 − ν=2

1

�
v2

c2
− 10

�
5 − 77ν=20

1

�
v4

c4
þO

�
v6

c6

���
; ð4:30bÞ

and the spin2 part

χa2

Γ
¼ ð a2þ δaþa− a2− Þ

b2

8<
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v2b

2
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0
B@

2

0

0

1
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0
B@

2

0

0

1
CA v2

c2
þO

�
v6

c6

�375

þ π

�
GM
v2b

�
2

2
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2

0
B@

1

0

0

1
CAþ 3

16

0
B@

59
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−1

1
CA v2

c2
þ 3

64

0
B@

47
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−1

1
CA v4

c4
þO

�
v6

c6
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þ
�
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v2b

�
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2
64
0
B@

4

0

0

1
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0
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35 − ν
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−2ν

1
CA v2

c2
þ

0
B@
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−12ν

1
CA v4

c4
þO

�
v6

c6

���
: ð4:30cÞ

We can already see here that, in these forms, in terms of
these variables, remarkably, the 1PM and 2PM parts (of the
right-hand sides) are independent of the symmetric mass
ratio ν and linear in the antisymmetric mass ratio δ. In the
test-body limit, say, m2 → 0, we have ν → 0, δ → 1, and
Γ → 1. One can then verify directly from Eq. (4.30) and its
test-body limit that our main result, the EOB scattering-
angle mapping (3.13), holds up to these PN orders. At 1PM
order, also the dependence on δ drops out, and the simpler
map in Eq. (3.7) is valid.
As discussed above, the scattering angle χ determines the

Hamiltonian H (for arbitrary mass ratios) up to gauge, at
these PN orders (not just at 1PM and 2PM orders, but also
including the 3PM and 4PM parts seen here). The process
of deriving χ from H projects out precisely the gauge
information, and H can be fully recovered from χ, modulo
phase-space-gauge freedom, at these orders. While we have
started here from a PN Hamiltonian, one could also start
from independent results for the scattering angle and
deduce a valid Hamiltonian.
Such independent results for the scattering angle can be

obtained up to 2PM order by applying the 2PM EOB
scattering-angle mapping (3.13) to results for spinning test
BH in a background Kerr spacetime presented in the
following section. The test-BH results below are in fact
valid for arbitrary v=c, i.e., to all PN orders at a given PM
order. While we have shown conclusively only that the
mapping (3.13) produces correct arbitrary-mass-ratio
results up to certain PN orders and certain orders in spin,
we conjecture that its validity extends beyond these orders,
specifically for higher orders in spin at 2PM order.

V. TEST-BLACK-HOLE SCATTERING IN A
BACKGROUND KERR SPACETIME

Above we have worked with the dynamics of arbitrary-
mass-ratio binary BHs as calculated in the PN (weak-field
and slow-motion) approximation, in particular having com-
puted the binary BH scattering angle as a dual expansion in
G and in 1=c2, to orders accessible by use of previous
derivations of PN Hamiltonians. Here we present analogous
PM (weak-field, arbitrary-speed) results which can be
obtained in a certain test-body limit (a limit where the mass
ratio tends to zero) of the binary BH problem.We verify that
(i) when we take the test-body limit of the PN results from
Sec. IV D, we obtain the PN expansions (expansions in
1=c2) of the test-body results presented here, and (ii) the
1PM and 2PM parts of the arbitrary-mass-ratio PN results
are fully recovered from the PN expansion of the mapping
(3.13), our central result, applied to the test-body results.We
emphasize again that the (PM, or even strong-field) test-
body computations are significantly more easily accom-
plished than the arbitrary-mass-ratio (PN) computations,
while ourmapping (3.13) allows one to obtain the latter from
the former, up to 2PM order, to the extent that PN results are
available. The PM test-body results below are in fact
obtained by PM-expanding exact (nonperturbative,
strong-field) equations governing the motion of a test body
(a test BH) in a background Kerr spacetime, at low orders in
the multipole expansion of the test body.We again set c ¼ 1
in this section.
We consider in particular an extended-test-body limit, in

which the mass of one body (and thus its influence on the
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gravitational field) becomes negligible, but in which it
retains a finite spatial extent; even as its mass tends to zero,
the extended test body’s mass-rescaled multipole moments
remain finite and influence its motion. Such a test body,
moving in an arbitrary (possibly strong-field) fixed back-
ground spacetime with metric gμν, can be described by a
(physical or effective) stress-energy tensor Tμν which is
conserved according to ∇μTμν ¼ 0, where ∇μ is the
covariant derivative for the background gμν. Following
the early analyses of Mathisson [70,71] and Papapetrou
[140] at pole-dipole order (see also [80]), it was most
rigorously demonstrated by Dixon [72,73] (see also
[81,141–143]) that such a test body must obey translational
and rotational equations of motion of the following form,
obtained via a multipole expansion of the body’s stress-
energy distribution, the so-called Mathisson-Papapetrou-
Dixon (MPD) equations:

Dpμ

dσ
þ 1

2
Rμνρσ _zνSρσ ¼ −

1

6
∇μRνρστJνρστ þ � � � ;

DSμν

dσ
− 2p½μ _zν� ¼ 4

3
R½μ

ρστJν�ρστ þ � � � ;
Sμνpν ¼ 0: ð5:1Þ

The MPD equations (the first two lines) govern the
evolution of the test body’s linear momentum vector
pμðσÞ and angular momentum (or spin) tensor SμνðσÞ
along a worldline x ¼ zðσÞ with tangent _zμ ¼ dzμ=dσ,
where σ is an arbitrary parameter. The last line is the
Tulczyjew-Dixon supplementary condition [72,80,81],
which fixes a choice for the body’s centroid worldline
by setting to zero its mass-dipole vector (∝ Sμνpν) about
that worldline as defined in the body’s own local rest frame.
The equations further depend only on the background
spacetime (through the metric gμν and its covariant curva-
ture tensors, the Riemann tensor Rμνρσ and its covariant
derivatives) and on the body’s higher (relativistic) multipole
moments, beginning with the quadrupole Jμνρσ.
We refer the reader to [72,73,142,143] for detailed

discussions of Dixon’s definitions of the multipoles, the
monopole pμ, the dipole Sμν, etc., in terms of its stress-
energy Tμν, noting here only the following two properties.
Firstly, in the absence of spacetime curvature, the defi-
nitions of pμ and Sμν reduce to the standard definitions for
an isolated body in flat spacetime. Secondly, given any
Killing vector ξμ of the background, the quantity

Q ¼ pμξ
μ þ 1

2
Sμν∇μξ

ν ð5:2Þ

is exactly conserved, to all orders in the multipole expan-
sion [72,141,143].
We are interested here in taking an extended-test-body

limit for a spinning BH, to obtain a “spinning test BH.”

By this we understand that we neglect the influence of the
test BH on the curvature of spacetime (its mass is small
compared to the scale of the “background” curvature),
while we keep its spatial extent finite. This can be achieved
by taking the limit mt=mB → 0 while keeping the ring
radius at fixed. Strictly speaking, this does not describe a
BH (with a ring singularity hidden behind an event horizon)
but a “naked” ring singularity of negligible mass. But the
mass-rescaled multipoles, and hence the equations of
motion, of both the naked ring singularity and the BH
ring singularity are identically determined as a function of
the ring radius at [74] at the level of approximation that we
are interested in; these are the spin-induced multipole
moments. (We neglect tidal-induced multipole moments,
including absorption or “tidal heating” effects from the
horizon, which would contribute at orders beyond those
considered here.) At the quadrupolar level in the multipole
expansion, a worldline action including a generic spin-
induced quadrupole was derived in Ref. [124], which can
be related to the MPD equations [136,144–148] and
specialized to a BH, leading to

Jμνρσ ¼ 3
p · _z
ðp2Þ2 p

½μSν�κp½ρSσ�κ: ð5:3Þ

Let us now discuss the motion of a test BH in the
background spacetime of a large BH described by the Kerr
metric. The Kerr metric possesses two Killing vectors, a
timelike Killing vector tμ (time translation symmetry) and
an axial Killing vector ϕμ (rotation symmetry about the spin
axis), leading, respectively, to the conserved energy E and
total angular momentum J via Eq. (5.2):

mtγ ¼ E ¼ pμtμ þ
1

2
Sμν∇μtν;

mtγðvbþ atÞ ¼ J ¼ −pμϕ
μ −

1

2
Sμν∇μϕ

ν: ð5:4Þ

[See Eq. (2.7) and the test-body (ν → 0) limits of Eqs. (4.12)
and (4.17), and discussion, e.g., in Refs. [40,149], for the
identifications on far-left-hand sides.] These conservation
laws allow one to integrate the equations of motion for the
aligned-spin case [145,149]: we have three independent
equations from the supplementary condition Sμνpν ¼ 0,
another three from its time derivative, the normalization
_zμ _zμ ¼ 1, the (approximately) conservedmass of the test BH
related topμpμ [see Eq. (64) in Ref. [145] or Ref. [149]], one
equation restricting the motion to the equatorial plane, three
equations expressing alignment of the test spin, and the two
conservation laws (5.4). These 14 algebraic equations can be
solved for the 14 independent components of pμ, _zμ,
and Sμν ¼ −Sνμ.
Having an algebraic solution for _zμ, one can integrate it

to yield zμðσÞ. However, since we are only interested in the
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scattering angle, we can directly integrate dϕ=dr ¼ _zϕ=_zr

given by Eq. (66) from Ref. [149] between the initial
and final state. Expanding the integrand in spins and in G
(PM expansion) to the same levels as in the last section

(but without PN expansion in v) leads to following
result for the aligned-spin scattering angle for a test BH
with spin mtat in a Kerr background with mass mB and
spin mBaB:

χt
2
¼

�
GM
b

1þ v2

v2
þ 3π

8

ðGMÞ2
b2

4þ v2

v2
þ 1

3

ðGMÞ3
b3

−1þ 15v2 þ 45v4 þ 5v6

v6
þ 105π

128

ðGMÞ4
b4

16þ 16v2 þ v4

v4
þOðG5Þ

�

þ
�
−2

GM
b2

1

v
aþ −

π

8

ðGMÞ2
b3

2þ 3v2

v3
ð7aþ þ a−Þ −

ðGMÞ3
b4

1þ 10v2 þ 5v4

v5
ð5aþ þ a−Þ þOðG4Þ

�

þ
�
GM
b3

1þ v2

v2
a2þ þ 3π

128

ðGMÞ2
b4

�
32þ 236v2 þ 47v4

v4
a2þ þ 4þ v2

v2
a−ð14aþ − a−Þ

�

þ 2
ðGMÞ3
b5

�
1þ 35v2 þ 55v4 þ 5v6

v6
a2þ þ 2

5þ 10v2 þ v4

v4
aþa−

�
þOðG4Þ

�
þOða3�Þ; ð5:5Þ

where a� ¼ aB � at. Firstly, one can verify that the test-
body limit of the PN scattering angle given by Eqs. (4.30),
to the given PN orders, matches this result derived from the
test-BH MPD equations. Finally and most importantly,
applying the mapping (3.13) to the test-BH-in-Kerr scatter-
ing angle (5.5) and PN-expanding the result, one obtains
precisely the 1PM and 2PM parts of the results from the
previous section.

VI. CONCLUSIONS

The encounter of two BHs is a fundamental process in
our Universe, from the inspiral of astrophysical BHs,
observed through GWs, to the (hypothetical) scattering
of two BHs in analogy to particle physics experiments. In
the present paper, we proposed that the scattering-angle
function for two spinning BHs at 2PM order is related in a
particularly simple way to the scattering angle for a test BH
in a stationary BH spacetime, for the case of aligned spins
[see Eq. (3.13)]. While we were unable to verify these maps
to their full extent at 2PM order and at all orders in spins,
we checked their validity against all available results for the
conservative local-in-time dynamics of binary BHs in the
PM, PN, and test-BH approximations: the PN Hamiltonian
including sub-sub-LO results up to quadratic order in spin
[116,133,134], the 1PM scattering angle at all orders in
spin [40] (implying agreement with the LO PN
Hamiltonian to all orders in spin [75]), the 2PM spin-orbit
(linear in spin) scattering angle [42], and the scattering
angle for a test BH in a Kerr background to quadratic order
in spin [149].
This result is interesting not only for the scattering of

BHs, but also for BHs in bound orbits. The reason is that,
for aligned spins and at least to 2PM order (at least up to the
subsubleading PN orders), the scattering angle uniquely

encodes the Hamiltonian dynamics (more precisely, an
equivalence class of Hamiltonians subject to canonical
transformations). An important possible application of our
result is the 2PM resummation of conservative spin effects
in the EOB gravitational waveform model for inspiraling
BHs. The challenge here is to find a suitable gauge
(canonical representation) for the EOB Hamiltonian
informed by the 2PM scattering angle.
It is not uncommon that elegant resummations at lower

orders have extrapolated to new results. For instance, it was
shown in Ref. [75] that the simple “EOB spin map”
employed in Ref. [68] and some subsequent EOB models
(identifying the ring radius of an effective [ν-deformed]
Kerr spacetime with the sum of the ring radii of the
individual BHs, as first suggested in Ref. [67]), while
intending to resum LO PN results to quadratic order in spin
only, in fact led to the correct dynamics at the leading PN
orders for all even orders in spin. If the map (3.13) holds at
2PM order, and if one had results for the test-BH-in-Kerr
scattering angle at higher orders in spin, then this would
provide new and complete sub-LO PN results beyond
quadratic in spin (for aligned spins). Furthermore, since
the scattering angle for a test BH could be obtained exactly
(based on exact solutions like the Kerr metric), the map
(3.13) represents a PM-nonperturbative resummation in the
spirit of the EOB model.
The simplicity of the BH scattering-angle map at 2PM

order is reminiscent of the elegance of on-shell methods
used to calculate scattering amplitudes of elementary
particles, using consistency with relativistic kinematics,
gauge symmetries, locality, and unitarity [2–13]. This is in
sharp contrast to the lengthy calculations of scattering
amplitudes through Feynman diagrams, rules, and inte-
grals. Likewise, we suspect that a proof of the BH
scattering-angle map at 2PM is possible using simple
generic principles, instead of going through lengthy
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iterative solutions of the equations of motion (which should
in complete generality involve asymptotic matching to
perturbed BH spacetimes). In fact, it is conceivable that
the simplest proof of the scattering-angle map might come

from a classical limit of a seemingly more complicated
problem, namely calculation of the (quantum) scattering
amplitude involving two (quantum) BHs obtained through
on-shell methods.
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