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Three well-known exact regular solutions of general relativity coupled to nonlinear electrodynamics
(NED), namely the Maxwellian, Bardeen, and Hayward regular spacetimes, which can describe either a
regular black hole or a geometry without horizons, have been considered. Relaxation times for the scalar,
electromagnetic (EM) and gravitational perturbations of black holes and no-horizon spacetimes have been
estimated in comparison with the ones of the Schwarzschild and Reissner-Nordström spacetimes. It has
been shown that the considered geometries in general relativity coupled to the NED have never-vanishing
circular photon orbits, and on account of this fact, these spacetimes always oscillate the EM perturbations
with quasinormal frequencies. Moreover, we have shown that the EM perturbations in the eikonal regime
can be a powerful tool to confirm (i) that the light rays do not follow null geodesics in the NED by the
relaxation rates and (ii) if the underlying solution has a correct weak field limit to the Maxwell
electrodynamics by the angular velocity of the circular photon orbit.
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I. INTRODUCTION

On September 14, 2015, the first ever detection of
gravitational waves (GWs) from the coalescence of two
stellar mass black holes (BHs) by the LIGO Scientific
Collaboration led to birth of an entirely new field of
astronomy—GW astronomy [1]. Afterward, LIGO and
VIRGO scientific collaborations announced the detection
of several GWs from the merger of stellar mass BHs [2–5]
and neutron stars (NSs) [6]. Ground-based GW detectors
such as LIGO and VIRGO have a few-kilometer-long
arms and can only observe the GW sources of which the
radiation is emitted at frequencies in the deca- and
hectahertz band. Therefore, the ground-based GW detec-
tors are sensitive to the coalescence of NSs and stellar mass
BHs. On the other hand, GWs at very low frequencies have
wavelength larger than the Earth’s size as the frequency of
the GW is proportional to the inverse of the mass of the
source. In this case, these GWs cannot be detected by the
ground-based detectors. To detect them, large enough
antennas, so-called space-based antennas, away from the
Earth’s surface are required. Space-based GW detectors,
such as Laser Interferometer Space Antenna (LISA) can

have million-kilometer-long arms, and they are atmos-
phere, turbulence, and seismic noise free and can therefore
be sensitive in the millihertz band. The space-based GW
detectors are expected to be sensitive to coalescences of
supermassive BH-BH and supermassive BH-NS [7]. The
coalescence of the BHs (NSs) in binary occurs into three
phases: inspiral, merger, and ringdown—each of which is
calculated by the different methods. The inspiral represents
the early evolution of the close binary system, and since the
binary components are far enough away from each other, it
can be treated by the post-Newtonian approximation by
expanding expressions in powers of small relative velocity
v=c. In the phase of merger, strong and highly dynamical
gravitational fields develop, which can be treated only via
numerical relativity simulations. Finally, in the last, merger
phase, the final object relaxes to its equilibrium state by
radiating GWs of which the frequencies are called quasi-
normal (QN), since they are complex and subject to decay
through the imaginary part. The merger is calculable via
perturbation theory (semi)analytically. In the BH perturba-
tions theory, one obtains the wave equation by introducing
the linear small perturbation to a fixed BH background
spacetime and solving the Einstein equations in the linear
order of perturbations. A perturbed BH in its queue goes
through the following three stages: transient, quasinormal
mode (QNM) ringdown, and power law tail. Where the
transient phase strongly depends on the initial perturbations,
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while the ringdown is independent of the initial perturba-
tions.Moreover, the ringdown is characterized by the QNMs
which encode information about the BH [8–11].
The above discussion regards only the gravitational

perturbations. However, for scalar and electromagnetic
(EM) perturbations, also through the typical standard
analysis, similar wave equations can be obtained, despite
the different underlying physics. The scalar [12–15],
gravitational [16,17], and EM [18,19] perturbations of
regular BHs have been studied. One of the important
properties of the perturbations is the relaxation time, which
is defined by the inverse of the imaginary part of the
QNMs, τ ¼ 1=ωi. In this paper, we aim to study in
the eikonal regime the relaxation times of the scalar,
electromagnetic, and gravitational perturbations of the
Maxwellian, Bardeen, and Hayward regular BHs in general
relativity coupled to nonlinear electrodynamics (NED). In
the eikonal regime, scalar and gravitational perturbations
behave similarly, following the null geodesics of spacetime
[20]; however, the EM perturbations of spacetimes in
the NED behave differently [18,19], due the fact that in
the NED light rays do not follow null geodesics of the
spacetime, instead following null geodesics of the optical
metric [21–27].
The paper is organized as follows. In Sec. II, we present

the regular BH solutions in general relativity coupled to the
NED and study the main properties of the spacetime. In
Sec. III, the scalar, EM, and gravitational perturbations of
regular spacetimes in general relativity coupled to the NED
are described, and in the eikonal regime, their propagations
and relaxation times are studied in comparison with the
ones of the Schwarzschild and Reissner-Nordström (RN)
spacetimes. Finally, we summarize our results in Sec. IV. In
this paper, we mainly use the geometric units c ¼ G ¼ 1
and adopt the ð−;þ;þ;þÞ convention for the signature of
the metric.

II. BACKGROUND

The action of a system of general relativity coupled to
nonlinear electrodynamics is given as

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − LðFÞÞ; ð1Þ

where g is the determinant of the metric tensor, R is the
Ricci scalar, and L is the Lagrangian density describing the
NED theory. F≡ FαβFαβ, with the EM field tensor being
Fαβ ¼ ∂αAβ − ∂βAα, with Aα the 4-potential. Since Fαβ is
antisymmetric, it has only six nonzero components.
The covariant equations of motion are written in the form

Gαβ ¼ Tαβ; ð2Þ

∇βðLFFαβÞ ¼ 0; ð3Þ

where Tαβ and Gαβ ¼ Rαβ − Rgαβ=2 are the energy-
momentum tensor of the NED field and the Einstein tensor,
respectively. The energy-momentum tensor of the NED is
determined by the relation

Tαβ ¼ 2

�
LFF

γ
αFβγ −

1

4
gαβL

�
; ð4Þ

where LF ¼ ∂FL.
Let us consider the line element of the static, spherically

symmetric BH given in the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð5Þ

where general relativity (GR) and NED evaluate the lapse
function fðrÞ.
In general, the EM 4-potential can be written in the

following form,

Āα ¼ φðrÞδtα −Qm cos θδϕα ; ð6Þ

where φðrÞ and Qm are the electric potential and the total
magnetic charge, respectively. Since the construction of the
electrically and magnetically charged spacetime solutions
have been shown in Refs. [28–30], we do not report the
derivation of the solution here; instead, we specify the
model of NED and perform the further calculations. In
the following, we consider a generic class of magnetically
charged regular BH solutions, which is given by the
function [28,30]

fðrÞ ¼ 1 −
2Mrμ−1

ðrν þ qνÞμν ; ð7Þ

corresponding to the Lagrangian density

L ¼ 4μ

α

ðαFÞνþ3
4

½1þ ðαFÞν4�1þμ
ν

; ð8Þ

where q is the magnetic charge parameter. Here, μ ≥ 0 and
ν > 0 are dimensionless constants, and the value of μ
characterizes the strength of nonlinearity of the EM field.
Notice that μ ¼ 0 corresponds to the absence of NED,
which reduces the spacetime to the Schwarzschild solution.
Also taking μ ≥ 3 ensures the regularity of the spacetime
everywhere [28]. Finally, M is the gravitational mass. In
this framework, several classes of well-known regular BH
solutions can be obtained such as (i) ν ¼ 1—Maxwellian
solutions that corresponds to the Maxwell field in weak EM
field regime, (ii) ν ¼ 2—Bardeen-like solutions, and (iii)
ν ¼ 3—Hayward-like solutions. Hereafter, we perform
calculations in these three types of regular spacetimes
and compare their behavior relative to each other and to
the Schwarzschild BH.
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The main properties of these spacetimes have been
studied in Refs. [28,31], so here we shall mention the
most crucial points, such as horizons of the spacetimes,
since these are important for our further calculations. The
coordinate singularity so-called event horizon of the
spacetime is defined by the divergence of the spacetime
metric through the grr component of the spacetime metric,
that corresponds to fðrÞ ¼ 0 in our case. When q ¼ 0, one
recovers the Schwarzschild spacetime in Schwarzschild
coordinates, with the coordinate singularity at radius r ¼
2M and the curvature singularity at r ¼ 0. In the NED
solutions, the presence of the charge parameter decreases
the radius of event horizon and determines the existence of
an inner horizon close to the center. With the increasing
value of the charge parameter, the outer horizon’s location
decreases, while the inner horizon’s location increases. For
a specific value of q, we obtain an extreme value for the
horizon radius where the two horizons coincide. This
corresponds to the solution of equations fðrÞ ¼ 0 and
f0ðrÞ ¼ 0. For values of the charge parameter above the
extremal one, both horizons disappear, and the spacetime
no longer represents a BH; instead, it represents no-horizon
spacetime. By solving f ¼ 0 ¼ f0 for μ ¼ 3, we find two
equations,

ðrν þ qνÞ3=ν − 2Mr2 ¼ 0; rν − 2qν ¼ 0: ð9Þ

By solving them simultaneously, we find the values rext and
qext that denote the boundary of the BH case with the
horizonless case. These values are:

(i) Maxwellian BH: ð16=27 ≈ 0.5926; 8=27 ≈ 0.2963Þ;
(ii) Bardeen BH: ð4 ffiffiffi

2
p

=
ffiffiffiffiffi
27

p
≈1.0887;4=

ffiffiffiffiffi
27

p
≈0.7698Þ;

(iii) Hayward BH: ð4=3≈1.3333;4=ð3×21=3Þ≈1.0583Þ,
In Fig. 1, the boundaries of BH and no-horizon Maxwellian,
Bardeen, and Hayward regular spacetimes are presented for
the case of μ ¼ 3.1

Thus, possible values of the charge parameter for the
spacetimes (7) with μ ¼ 3 to represent the BHs lay in the
following ranges: for a Maxwellian BH, q=M ∈ ½0; 0.2963�;
for a Bardeen BH, q=M ∈ ½0; 0.7698�; and for a Hayward
BH, q=M ∈ ½0; 1.0583�. Since these ranges are different, to
facilitate the comparison, we normalize the charge parameter
asQn ≡ q=qext, and for the BH regime of the spacetime,Qn
lies in the rangeQn ∈ ½0; 1�.Qn ∈ ½1;∞Þ corresponds to the
no-horizon spacetimes.
One of the astrophysically important orbits around BHs is

light rings (photon spheres). It is well-known fact that in the
LED and other NED nonrelated spacetimes light ray always
follows the null geodesics and the radius, rc, of circular null
geodesics (CNG) of the spacetime (5) is determined by
solving equation CNG≡ 2fðrcÞ − rcf0ðrcÞ ¼ 0. In our
case, it takes the form

Mrμ−1c ðqνc þ rνcÞ−
μ
ν−1½ðμ − 3Þqνc − 3rνc� þ 1 ¼ 0: ð10Þ

The radius rc can be considered as the one of the circular
massless neutrino orbits [32]. As in the case of the event
horizon, the presence of the charge parameter evaluates the
inner and outer CNG orbits in regular spacetimes, and with
increasing the value of charge parameter the inner and outer
CNGs approach each other and before disappearing they
coincide at the extremal CNG. The extremal CNG is
determined by solving the equations CNG ¼ 0 and
CNG;r¼ 0, simultaneously. The extremal CNG is located
at the following coordinates of parametric space [rc=ext=
M; qc=ext=MðQnÞ],

(i) Maxwellian spacetime: (0.9492,0.3164(1.0679));
(ii) Bardeen spacetime: (1.7173,0.8586(1.1154));
(iii) Hayward spacetime: (2.0833,1.2183(1.1513)),

and they follow the relation

rc=ext ¼
 
μðνþ 4Þ þ ffiffiffi

μ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μðνþ 2Þ2 þ 4νðμ− 3Þ
p

− 6

6

!
1=ν

× qc=ext: ð11Þ

Since we are mainly focusing our attention on the minimal
value μ ¼ 3 that makes the spacetimes regular then, expres-
sion (11) takes a more compact form as

rc=ext ¼ ðνþ 2Þ1=νqc=ext: ð12Þ
By comparing the values given above with the ones of

the extremal horizons, or seeing Fig. 2, one can make sure
that even no-horizon spacetime can possess the circular
null geodesics, for a limited range of values of the charge
parameters as:

FIG. 1. Boundaries between the Maxwellian, Bardeen, and
Hayward regular BHs and the no-horizon spacetimes in the
parametric space. The blue points correspond to the extremal
BHs (rext=M, qext=M). Shaded regions represent the possible
values of the magnetic charge parameter for the spacetime to
represent BHs.

1Boundaries of the Maxwellian regular BHs and no-horizon
spacetimes for different values of μ were studied in Ref. [19].
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(i) Maxwellian no-horizon spacetime:Qn ∈ ð1; 1.0679�
(or q=M ∈ ð0.2963; 0.3164�) at rc=M ∈ ½0.9492;
1.3731Þ;

(ii) Bardeen no-horizon spacetime:Qn ∈ ð1; 1.1154� (or
q=M∈ð0.7698;0.8586�) at rc=M∈½1.7173;2.3012Þ;

(iii) Hayward no-horizon spacetime: Qn ∈ ð1; 1.1513�
(or q=M ∈ ð1.0583; 1.2183�) at rc=M ∈ ½2.0833;
2.6524Þ;

(iv) RN naked singularity spacetime: Qn ∈ ð1; 1.0607�
(or q=M ∈ ð1; 1.0607�) at rc=M ∈ ½1.5; 2Þ.

However, in the NED, light rays do not follow the null
geodesics of the original metric; instead, they propagate
along the null geodesics of the effective (or optical) metric,
which is given by [21,22,33]

ds2 ¼ −
1

LF

�
fðrÞdt2 − dr2

fðrÞ
�
þ r2

Φ
dΩ2; ð13Þ

where Φ ¼ LF þ 2FLFF. Thus, the photon sphere of
spacetime (5) is located at the unstable circular null
geodesics of the metric (13) that is determined by solving
equation

�
r2

Φ

�0

ps

fps
LFps

−
r2ps
Φps

�
f
LF

�0

ps
¼ 0: ð14Þ

Let us write Eq. (14) for considered spacetimes. For the
Maxwellian spacetime with μ ¼ 3, ν ¼ 1,

12M −
28Mq

r
þ ð6q2 þ 7qr − 4r2Þðqþ rÞ3

r4
¼ 0: ð15Þ

For the Bardeen spacetime μ ¼ 3, ν ¼ 2,

18M −
52q2

r2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

r2
þ 1

r �
8q6

r5
þ 24q4

r3
þ 10q2

r
− 6r

�
¼ 0:

ð16Þ

For the Hayward spacetime μ ¼ 3, ν ¼ 3,

24M − 8rþ 10q9

r8
þ 39q6

r5
þ 21q3ðr − 4MÞ

r3
¼ 0: ð17Þ

Despite that Eqs. (15)–(17) are analytically not solvable, it
is not difficult to check that for all values of q they always
have at least one real zero (see the right panel of Fig. 2). In
Fig. 2, the loci of the characteristic orbits are depicted. One
can see that, unlike the case of standard LED or other NED
not related spacetimes, in the considered regular spacetimes
given by the line element (5) with metric function (7) and
μ ¼ 3, ν ¼ 1, 2, 3, the GR coupled to the NED theory (8)
always gives a nonvanishing circular photon orbit. It must
be noted that different radial coordinates denote different
radial distances in different spacetimes. Therefore, in
principle, we cannot directly compare the values of
CNGs for different metrics. In the cases under consider-
ation here, radial distances are determined by the line
elements (5) and (13), which depend upon the parameters q
and ν and reduce to known metrics in the limits of
vanishing q. By evaluating the area of the surfaces of
revolution for t ¼ cont and r ¼ r0ps, it is easy to verify that
for nonvanishing values of q the radii of CNGs identify
indeed spherical 2-surfaces for every constant t slice. Also,
since such areas monotonically increase with q, we know
that the behavior shown in Fig. 2 is qualitatively valid. The
existence of circular photon orbits in all the Bardeen
spacetimes was first demonstrated in Ref. [32]. Here, we
have shown that the Maxwellian, Bardeen, and Hayward
regular BH and no-horizon spacetimes in the NED model
(8) have this property. One can see from Fig. 2 that with
increasing the values of the charge parameters, the radii of

A B
C

FIG. 2. Left panel: dependence of radii of event horizon (black), circular null geodesics (purple), and light ring (blue) of the
Maxwellian (ν ¼ 1, solid), Bardeen (ν ¼ 2, dashed), and Hayward (ν ¼ 3, dotted) regular BHs on the normalized charge parameters.
Points A, B, and C correspond to minimal radii of photon spheres in corresponding spacetimes. Right panel: radii of the light rings in the
Maxwellian, Bardeen, and Hayward spacetimes for the large value of the normalized charge parameter.
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the photon spheres decrease until the values that are given
by the points A; B; C, then they start to increase again.
Therefore, these points correspond to minimal radii of
photon spheres in corresponding spacetimes. Thus, the
minimal photon spheres of the regular Maxwellian,
Bardeen, and Hayward spacetimes are located at

(i) Aðr0ps=M;QnÞ ¼ ð1.0834; 1.3468Þ,
(ii) Bðr0ps=M;QnÞ ¼ ð2.3251; 1.3986Þ,
(iii) Cðr0ps=M;QnÞ ¼ ð2.8355; 1.2690Þ,

and they correspond to the no-horizon spacetimes.
Interestingly, we see that for a range of coordinate radii
r ∈ ðr0ps; 3M�, there may exist two photon spheres with the
same radius for different values of the charge parameter.

III. PERTURBATIONS OF SPACETIMES IN
GENERAL RELATIVITY COUPLED TO NED

It is known that most of the problems concerning the
perturbations of BHs can be reduced to a second order
partial differential equation after decoupling of angular
variables and considering the perturbations as harmonically
time dependent, in the following form:

� ∂2

∂x2 þ ω2
j − VjðrÞ

�
ΨjðrÞ ¼ 0. ð18Þ

Where j stands for sc (scalar), em (EM) and gr (gravita-
tional) perturbations, and x is the tortoise coordinate that is
defined as dx ¼ dr=f. Let us present the explicit forms of
potentials of scalar Vsc, electromagnetic Vem, and gravi-
tational Vgr perturbations of the BHs in the NED, which are
given separately with brief explanations in Refs. [14,34].

A. Scalar perturbations

Since the scattering potential of the test scalar field in the
field of the spherically symmetric BHs is presented in
Ref. [14], we will only provide the potential:

Vsc ¼ f
�
lðlþ 1Þ

r2
þ f0

r

�
: ð19Þ

B. Gravitational and EM perturbations

Both the axial and polar EM perturbations of the BHs in
the NED that have been studied in our preceding papers
[18,19] are just special cases of the gravitational perturba-
tion due to the fact that the EM onewas neglected. Here, we
briefly give the general case where both perturbations are
taken into account.
The EM perturbation of the magnetically charged (with

the 4-potential Āϕ ¼ −Qm cos θ) BH in the NED is given as
Aϕ ¼ Āϕ þ δAϕ, where

δAϕ ¼ ψðrÞe−iσt sin θ∂θPkðcos θÞ; ð20Þ

with σ ¼ ωem and k is a multipole number of the EM
perturbations, which is restricted by the condition k ≥ 1.
The gravitational perturbation in the “Regge-Wheeler”
gauge is introduced as gμν ¼ ḡμν þ hμν, where

hμν ¼

0
BBB@

0 0 0 h0ðrÞ
� 0 0 h1ðrÞ
� � 0 0

� � � 0

1
CCCAe−iωt sin θ∂θPlðcos θÞ: ð21Þ

We insert the perturbed metric and EM 4-potential from
Eqs. (20)–(21) into the Einstein and Maxwell equations in
the equations of motion (2) and (3) and expand to first order
in the perturbations. Thus, for the gravitational perturba-
tions, we obtain the following equations,

h000 þ iωh01 þ iω
2h1
r

−
h0½λþ 2f þ ðr2f0Þ0 þ L̄r2�

r2f
¼ 0;

ð22Þ

iωh00 − iω
2h0
r

− ω2h1 þ h1
f½λþ ðr2f0Þ0 þ L̄r2�

r2
¼ 0;

ð23Þ

iωh0 ¼ −fðh1fÞ0; ð24Þ
with

λ ¼ ðlþ 2Þðl − 1Þ: ð25Þ

By eliminating h0 from Eq. (23) by using Eq. (24), we
arrive at the master equation (18) for the gravitational
perturbations with the potential

Vgr ¼ f

�
lðlþ 1Þ

r2
þ rðrf0Þ0 þ 2ðf − 1Þ

r2
þ L̄

�
; ð26Þ

by introducing the following notation:

Ψgr ¼
f
r
h1: ð27Þ

Let us now consider propagation of the EM perturbation
(20) in the perturbed spacetime (21). The equation that
governs the EMperturbation (3) with both perturbations (20)
and (21) appears to be independent of the gravitational
perturbations in the linear order expansion. The dynamics of
the EM perturbation of the BHs in general relativity coupled
to theNEDwithout gravitational perturbationswas studied in
our previous papers [18,19]. Therefore, we report only the
potential without giving the details of derivation as2

2Since the EM perturbation is independent of the gravitational
one, in the linear order expansion, one can replace the multipole
number of the EM perturbation k with l.
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Vem ¼ f

�
lðlþ 1Þ

r2

�
1þ 4Q2

mL̄F̄ F̄

r4L̄F̄

�

−
fL̄F̄

02 − 2L̄F̄ðfL̄F̄
0Þ0

4L̄2
F̄

�
; ð28Þ

where

Ψem ¼
ffiffiffiffiffiffi
LF

p
ψ1: ð29Þ

C. Eikonal regime

In the large multipole numbers limit, the potentials (19),
(26), and (28) take the following forms:

Vgr ¼ Vsc ¼ f
l2

r2
þOðlÞ; ð30Þ

Vem ¼ f
l2

r2

�
1þ 4Q2

mL̄F̄ F̄

r4L̄F̄

�
þOðlÞ: ð31Þ

It is known that in the eikonal (large multipole number)
regime the QNMs of all perturbations of any stationary,
spherically symmetric, and asymptotically flat black holes
in any dimensions are characterized by the parameters of
the circular null geodesics [20]; namely, the real part of the
QNMs is determined by the angular velocity of the unstable
null geodesicsΩc, while the imaginary part of the QNMs is
determined by the instability timescale of the orbit, the so-
called Lyapunov exponent, λ, as

ω ¼ Ωcl − i

�
nþ 1

2

�
jλj; ð32Þ

where Ωc and λ are determined by the spacetime
metric (5) as

Ωc ¼
ffiffiffiffiffi
fc
r2c

s
; ð33Þ

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

r2c
2fc

�
d2

dx2
f
r2

�����
r¼rc

s
; ð34Þ

where rc is the radius of the unstable null circular orbit which
is determined by solving the equation rcf0c − 2fc ¼ 0.
However, as was mentioned in Refs. [18,19], the relation
(32) is not a universal feature of all stationary, spherically
symmetric, and asymptotically flat black holes in any
dimensions, as it is not satisfied in several cases such as
in the EM perturbations of BHs in NED [18,19] and the
gravitational perturbations of BHs in the Einstein-Lovelock
theory [35,36].
Thus, from the form of the potential (30), one can deduce

that in the eikonal regime the scalar and gravitational
perturbations of BHs and no-horizon spacetimes in general
relativity coupled to NED behave similarly and propagate
along null geodesics. Their oscillations and damping rates
(or relaxation time) are characterized by the unstable
circular null geodesics. At the same time, as has already
been pointed out, the EM perturbations follow the trajec-
tory of light rays or null geodesics of the effective metric
(13). Since in the Maxwellian, Bardeen, and Hayward
spacetimes of GR with NED there are always nonvanishing
circular photon orbits irrespective of the value of the mass
and charge parameters, in the eikonal regime, BHs and no-
horizon spacetimes always oscillate EM perturbations with
QN frequencies—see Figs. 3 and 4.
Since theMaxwellian, Bardeen, andHayward solutions of

(8) reduce to the Schwarzschild one when the charge
parameter is set to zero, as fNEDðQ → 0Þ ¼ fSchw≡
1–2M=r, all further calculations performed on these

FIG. 3. Dependence of angular velocities of the circular null geodesics (black) and photon orbit (blue, thick) in the generic class of
spacetimes (5) with metric function (7) in general relativity coupled to the NED from normalized charge parameters. Left panel: the
Maxwellian regular spacetimes (ν ¼ 1) with different values of μ as μ ¼ 3—solid, μ ¼ 5—dashed, μ ¼ 12—dotted curves. Right panel:
the Maxwellian regular spacetimes (μ ¼ 3, ν ¼ 1), solid; the Bardeen regular spacetimes (μ ¼ 3, ν ¼ 2), dashed, and the Hayward
regular spacetimes (μ ¼ 3, ν ¼ 3), dotted curves.
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spacetimesmust coincidewith theone that corresponds to the
Schwarzschild spacetime in that limit, i.e.,

ANEDðQn → 0Þ ¼ ASchw; ð35Þ

where A is any physical quantity. However, at Qn ¼ 0, the
angular velocities of the circular photon orbits in the Bardeen
andHayward spacetimes are different, and they do notmatch
the ones of theMaxwellianBH,which coincideswith the one
of the Schwarzschild BH (see the right panel of Fig. 3), as
they have the following limits:

ΩNEDðQn → 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
νþ 1

2

r
ΩSchw: ð36Þ

By comparing (35) and (36), one easily realizes that only the
Maxwellian spacetimes ν ¼ 1 have the correct
Schwarzschild limit. This confirms once more the fact that
the Bardeen and Hayward solutions have the wrong limit at
the weak field limit [37,38]. It was shown in our previous
papers [18,19] that from the imaginary part of the eikonal
QNMs of the EM perturbations of BHs in NED one can
verify that light rays do not follow null geodesics of the
spacetime. Here, we have shown that from the real part of the
eikonal QNMs of the EM perturbations of spacetimes in
NED one can verify if the solution (or equivalently the NED
model) has the correct behavior in the weak EM field limit.
Let us analyze the eikonal QNMs of the Maxwellian,

Bardeen, and Hayward spacetimes which are presented in
Figs. 3 and 4. In the eikonal regime, the spacetimes (7)
always oscillate the gravitational (scalar) perturbations with
bigger real frequency of QNMs than the Schwarzschild one
[ωrðQn ≠ 0Þ > ωrðQn ¼ 0Þ]. The Maxwellian spacetime

is the most favored to oscillate gravitational (scalar)
perturbation with bigger real frequency, rather than the
Hayward spacetime, while the Bardeen one is the least
favored. Moreover, the Maxwellian spacetimes with
smaller μ (μ ≥ 3) are always better oscillators than the
ones with bigger μ.
We consider now the relaxation times of the perturba-

tions in the eikonal regime. In Fig. 4, the relaxation times of
the fundamental (the least damped) mode of the gravita-
tional (and scalar) and EM perturbations are presented. In
the left panel, the Maxwellian spacetimes with different μ
are shown, while in the right panel, the Maxwellian,
Bardeen, and Hayward spacetimes with μ ¼ 3 have been
plotted. One can see from the figures that the relaxation
times of perturbations of the Maxwellian spacetimes do not
depend strongly on the parameter μ. Moreover, the relax-
ation times of the gravitational (and scalar) perturbations of
the regular Maxwellian, Bardeen, and Hayward BHs are in
the similar intermediate ranges, while the ones of the no-
horizon spacetimes diverge to infinity at the values which
correspond to extreme values of the circular null geodesics.
On the other hand, the relaxation times of the EM
perturbations of these spacetimes qualitatively behave
similarly, but quantitatively, their differences are significant
in the no-horizon spacetimes; i.e., the Hayward no-horizon
spacetime oscillates the EM perturbations with the least
damping, while the Maxwellian no-horizon spacetime has
the fastest relaxation rate.
In Table I, we present the above-discussed features of the

relaxation times of the perturbations of the regular space-
times in unit of seconds in comparison with the ones of the
Schwarzschild and RN spacetimes. To write the dimen-
sionful relaxation time in Table I from the dimensionless
one in Fig. 4, one uses the following relation:

FIG. 4. Relaxation times of the gravitational (and scalar) (black) and EM (blue, thick) perturbations of a generic class of spacetimes (5)
with metric function (7) in general relativity coupled to the NED on normalized charge parameters in the large multipole numbers limit.
Left panel: the Maxwellian regular spacetimes (ν ¼ 1) with different values of μ as μ ¼ 3, solid; μ ¼ 5, dashed; and μ ¼ 12, dotted
curves. Right panel: the Maxwellian regular spacetimes (μ ¼ 3, ν ¼ 1), solid; the Bardeen regular spacetimes (μ ¼ 3, ν ¼ 2), dashed;
and the Hayward regular spacetimes (μ ¼ 3, ν ¼ 3), dotted curves.
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τful ¼
GM
c3

τless ≈ 4.92 × 10−6τless

�
M
M⊙

�
sec : ð37Þ

Since the RN spacetimes are a solution of general
relativity coupled with linear electrodynamics (LED), the
EM perturbations follow null geodesics in the same manner
as the scalar and gravitational ones. Therefore, in Table I,
relaxation times of the scalar and gravitational perturba-
tions are identical.
The relaxation times of the nonfundamental modes are

easily determined from the relation [40]

τn ¼
τ0

2nþ 1
: ð38Þ

IV. CONCLUSION

In this paper, we have studied scalar, electromagnetic,
and gravitational perturbations of spacetimes in general
relativity coupled to the NED. Specifically, we have chosen
a generic model of NED from which the Maxwellian (i.e.,
corresponding to the Maxwell field in the weak field limit),
Bardeen, and Hayward solutions can be obtained as special
cases. In NED, light rays do not follow null geodesics of the
given spacetime; instead, they follow null geodesics of
the optical metric. We have shown for the first time that in
the Maxwellian, Bardeen, and Hayward spacetimes there is
always at least one nonvanishing radius for the circular
photon orbit around a central gravitating object, while the
existence of the circular null geodesics of the spacetime is
restricted by the spacetime parameters. These play a
fundamental role in the propagation and relaxation periods
of the scalar, EM, and gravitational perturbations in the
eikonal regime. To be more precise, since in the large
multipole numbers limit scalar and gravitational perturba-
tions follow the null geodesics of the spacetimes, they
behave similarly; therefore, they are indistinguishable from

the characteristic frequencies of the perturbations. On the
other hand, the EM perturbations follow the light ray
trajectory, and due to the fact that in the Maxwellian,
Bardeen, and Hayward spacetimes there is always a non-
vanishing circular photon orbit, even no-horizon space-
times always oscillate the EM perturbations with QNMs.
Moreover, we have shown that the EM perturbations in

the eikonal regime can be a powerful tool to confirm (i) (ii)
if the underlying solution has a correct weak field limit to
the Maxwell electrodynamics by the angular velocity of the
circular photon orbit.
We have shown that the relaxation times of gravitational

(and scalar) and EM perturbations of the regular
Maxwellian, Bardeen, and Hayward BHs are very similar.
However, in the horizonless case, they behave differently.
Interestingly, the RN naked singularity and regular no-
horizon spacetimes with the extreme circular null geodesics
oscillate the gravitational (and scalar) perturbations with
normal modes without damping; i.e., the scalar and
gravitational perturbations of these spacetimes never come
back to equilibrium. However, the EM perturbations always
have damping, and they come to relaxation faster than the
gravitational ones. Moreover, the relaxation times of the
EM perturbations of these spacetimes show qualitatively
similar behavior, but quantitatively, their differences
become significant in the horizonless spacetimes. In other
words, the Hayward no-horizon spacetime oscillates the
EM perturbations with the least damping, while the
Maxwellian no-horizon spacetime is the most favored in
terms of fastness of the relaxation rate.
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