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We derive the general conditions for a large family of shift symmetry breaking degenerate higher order
scalar-tensor (DHOST) theories to admit stealth black hole solutions. Such black hole configurations
correspond to vacuum solutions of general relativity and admit a scalar hair which does not gravitate,
revealing itself only at the perturbative level. We focus our investigation on hairy Schwarzschild-(A)dS or
pure Schwarzschild solutions, dressed with a linear time-dependent scalar hair, and assuming a constant
kinetic term. We also discuss subclasses of this family which satisfy the observational constraint
cgrav ¼ clight, as well as the recent constraint ensuring the absence of graviton decay. We provide at
the end concrete examples of DHOST Lagrangians satisfying our conditions. This work provides a first
analysis of exact black hole solutions in shift symmetry breaking DHOST theories beyond Horndeski.
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I. INTRODUCTION

Since the discovery of the acceleration of the expansion
of the Universe, an important effort has been devoted to
constructing large scale modification of general relativity
(GR). Scalar-tensor theories are by far the most studied
extensions. As any modified gravity theory, these scalar-
tensor candidates have to successfully explain the observed
acceleration on large scale, while restoring GR on scales in
which the theory is experimentally confirmed, typically for
the local tests within the Solar System. Additionally to the
IR modifications in the cosmological sector, the new scalar-
metric coupling allows us to violate some of the assump-
tions of the famous no hair theorem which strongly restricts
the black hole solution in general relativity [1–3].
The search for such hairy black hole solutions beyond

general relativity is however quite challenging. Hawking,
and later Sotiriou and Faraoni, derived no hair theorems for
Brans-Dicke scalar-tensor theories and their generalization
[4]. An exact black hole solution with scalar hair was then
found by violating some assumptions of these theorems, an
example of which is the Bocharova-Bronnikov-Melnikov-
Bekenstein hairy black hole [5]. However, such scalar hairy
configurations are usually unstable and the scalar field fails
to be regular at the horizon. An additional no hair theorem
was found later on in the more general shift symmetric
Horndeski theory in [6]. Soon after, it was shown how to by

pass the assumptions of this no-go result. Hairy solu-
tions were obtained following two different strategies: by
introducing a Gauss-Bonnet-scalar coupling [7–11], or
by allowing the scalar field for a linear time-dependent
profile [12].
In this work [12], a stealth Schwarzschild-(A)dS black

hole dressed with a linear time-dependent scalar field was
obtained. Such stealth configuration corresponds to a
vacuum metric solution of GR supplemented with a non-
trivial scalar hair which does not gravitate. The scalar
field is a spectator admitting a vanishing energy momentum
tensor and its physical effects only show up at the
perturbative level. Such stealth black hole solutions were
initially introduced in [13] and represent the simplest
example of hairy black hole configuration, i.e., in which
the scalar field remains regular on the horizon.
These stealth black hole configurations were then

investigated in several scalar-tensor extensions, such as
biscalar extension of Horndeski [14], covariant galileons
theories [15], shift symmetric beyond Horndeski [16–19],
and more recently in shift symmetric breaking Horndeski
theory [20,21]. More details on the black holes solutions
and stars within the Horndeski and beyond Horndeski
classes can be found in [22–25].
For single scalar field extension of GR, the most general

theory constructed so far, up to cubic order in the derivative
of the scalar field, was presented in [26], and dubbed
degenerate higher order scalar tensor theories, i.e., degen-
erate higher order scalar-tensor (DHOST), owing to the
degeneracy property of its Lagrangian which ensures the
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absence of an Ostrogradsky ghost. See [27] for a recent
review on DHOST theories and [28–32] for further details,
as well as [33] for a recent investigation of their cosmo-
logical sector and [34] concerning the Vainshtein mecha-
nism. This DHOST construction encompasses most of the
existing scalar-tensor candidates studied so far, among
them the Gleyzes–Langlois–Piazza–Vernizzi (GLPV)
theory [35,36], and represents therefore an unifying frame-
work to discuss viable scalar-tensor theories and confront
them with observational tests. (See [37] for a review with a
more general perspective.)
Recently, the joined detection of the events GW170817

and GR170817 led to the new observational constraint that
the speed of gravitational wave be equal to the speed of
light, i.e., cgrav ¼ clight (up to deviations of order 10−15), at
least on cosmological scales [38,39]. The remaining
DHOST theories satisfying this observational constraint
were derived in [40], restricting drastically the viable
candidates. Additional constraints preventing the potential
decay of graviton into dark energy fluctuations were
presented in [41].
In this article, we provide a first scan of shift symmetry

breaking DHOST theories beyond Horndeski and derive
the general conditions for a large class of these theories to
admit stealth black hole configurations. We focus on
hairy Schwarzschild-(A)dS and pure hairy Schwarzschild
black hole solutions. The scalar field is assumed to be
linearly time dependent while its kinetic term remains
constant.
This work is organized as follow. In Sec. I A, we present

the general DHOST model. In Sec. I B, we discuss the
algorithm to solve the modified field equations in the
spherically symmetric case and with our scalar profile. This
algorithm is borrowed from [19]. In Sec. I C, we present our
general conditions for the hairy Schwarzschild-(A)dS and
pure Schwarzschild black hole solutions. Section I D is
devoted to the subclasses satisfying the observational
constraint cgrav ¼ clight as well as the subclass free from
graviton decay. In Sec. I E, we consider also the reduction
to the GLPV and Horndeski subclasses satisfying
cgrav ¼ clight. Finally, in Sec. I F, we provide concrete
examples of Lagrangian solutions of our conditions.
Our work extends the results obtained in previous

works in several subclasses of shift symmetric DHOST
theories [16–20] as well as on shift symmetry breaking
Horndeki theory satisfying cgrav ¼ clight [21].

A. The DHOST model

Let us consider the family of DHOST theories given by
the action

SvDHOST½g;ϕ� ¼
Z

d4
ffiffiffiffiffi
jgj

p X
I

LIðg;ϕÞ; ð1Þ

where the different Lagrangians read

L2 ¼ Pðϕ; XÞ; ð2Þ

L3 ¼ Qðϕ; XÞ□ϕ; ð3Þ

L4 ¼ Fðϕ; XÞR; ð4Þ

L5 ¼ A3ðϕ; XÞϕμϕνϕμν□ϕþ A4ðϕ; XÞϕμϕλϕμνϕ
νλ

þ A5ðϕ; XÞðϕμνϕ
μϕνÞ2; ð5Þ

where the six potentials ðP;Q; F; AIÞ with I ∈ f3; 4; 5g are
free functions of ϕ and its kinetic term X. We have
adopted the notation of [40]. This family of theories
corresponds to the quadratic DHOST theories amputated
from the Lagrangians L1;1 ¼ ð□ϕÞ2 and L1;2 ¼ ϕμνϕ

μν,
namely A1 ¼ A2 ¼ 0 in the standard notation [28].
This class of DHOST theories can be made consistent

with the recent observational constraint from GW170817
which imposes that the speed of gravitons equal the speed
of light (up to deviations of order 10−15), at least on
cosmological scales [40]. In order to satisfy this constraint,
the last two functions A4ðϕ; XÞ and A5ðϕ; XÞ are related to
Fðϕ; XÞ and A3ðϕ; XÞ through

A4 ¼
1

8F
ð48F2

X − 8ðF − XFXÞA3 − X2A2
3Þ ð6Þ

A5 ¼
1

2F
ð4FX þ XA3ÞA3: ð7Þ

The potentials A3ðϕ; XÞ and Fðϕ; XÞ remain free functions,
and the viable DHOST theories contain thus only four free
potentials ðP;Q; F; A3Þ.
In the following, we derive general conditions on the

potential of the DHOST family (1) to admit stealth black
hole solutions without restricting ourselves to the subclass
satisfying cgrav ¼ clight. This constraint, together with the
constraint derived in [41] concerning the graviton decay, is
discussed in the last section. The reduction to the beyond
Horndeski (GLPV) and Horndeski theories is also dis-
cussed at the end.

B. Solving the fields equations: the algorithm

In order to solve the field equations, we adopt the
elegant strategy presented in [19]. Starting from the
model (1), we derive the field equations that we write in
a compact way,

δL ¼ EðgÞ
αβ δg

αβ þ EðϕÞδϕ: ð8Þ

The field equations being rather complicated, we do not
write them explicitly here. Instead, the equation of motion
with respect to the metric gαβ can be written in the simple
form
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FGαβ ¼ T αβ ð9Þ

ðQϕ −QX − PXÞ□ϕ ¼ ζ; ð10Þ

where Gαβ is the standard Einstein tensor and where T αβ

and ζ account for all the other terms obtained from the
variation of the action respectively with respect to gαβ and
ϕ, containing therefore all the higher order terms.
Looking for stealth black hole solutions implies that the

scalar field does not gravitate. This can be translated in (9)
by T αβ ¼ 0. Then, one can solve the left-hand side of the
equation of motion using a GR black hole solution such
that Gαβ ¼ 0. A common strategy is to assume e.g., a
constant kinetic term for the scalar field profile, such that
X ¼ X�. Then, under some specific conditions on the
potentials of the Lagrangian, the effective energy momen-
tum tensor T αβ can be written as

T αβ ¼ fðXÞTαβ ð11Þ

such that fðX�Þ ¼ 0, an example of which being fðXÞ ¼
log ðX�=XÞ. Below, we should derive the condition on the
DHOST Lagrangian (1) to admit such stealth black hole
solutions.
We consider therefore a static spherical symmetric metric

which reads

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2dΩ2; ð12Þ

and we choose a linear time-dependent profile for the scalar
field

ϕðt; rÞ ¼ _ϕctþ ψðrÞ; ð13Þ

where _ϕc is assumed to be a constant. Following [19], we
introduce the notation _ϕc ¼ Mq, which implies that the
kinetic term reads

X ¼ −
gαβ∂βϕ∂αϕ

M2
¼ q2e−ν − e−λ

ðψ 0Þ2
M2

: ð14Þ

In order to further (drastically) simplify the field equations,
we also assume that the kinetic term is constant every-
where, such that X ¼ X� ¼ q2. Notice that the kinetic
energy −M2X is negative since the gradient of the scalar
field is a timelike vector. With this assumption, all the
unknown potentials, commonly denoted fðϕ; XÞ, can now
be written as function

fðϕ; XÞ ¼ fðqtþ ψðrÞ; X�Þ: ð15Þ

In the following, we restrict further to potentials fðϕ; XÞ
satisfying

fϕðϕ; X�Þ ¼ 0 ⇒ ∂n
ϕfðϕ; X�Þ ¼ 0 ∀ n ∈ N: ð16Þ

This allows us to simplify our conditions in the beyond
shift symmetric case. Notice that while this condition is
quite general, it is still possible to find a counterexample in
principle, and thus, we are potentially restricting the set of
allowed potentials.
The third simplification, inherited from the assumption

of a constant kinetic term, lies in that the radial dependent
part of the scalar field is given by

ψ 0 ¼ Mq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eλð1þ e−νÞ

q
: ð17Þ

Hence, ψ 0 is directly known in terms of the metric
components, as well as its higher order derivatives: ψ 00,
ψ 000 etc. This can be plugged back in the field equations to
further simplify the expression.
In the end, the field equations become lengthy expres-

sions depending on the radial coordinate r. Now these field
equations have to be satisfied at any point of space-time,
and thus at any couple ðt; rÞ. The elegant strategy followed
in [19] is to expand the resulting field equations around a
given r� and check the resulting conditions between the
unknown potential AIðqtþ ψðrÞ; q2Þ and their derivatives.
Denoting ϵ ¼ r − r�, the expansion of the equations of
motion can be written as

Ettðr; tÞ ¼
Xm
n

EðnÞ
tt ðt; rÞjr�ϵn þOðϵmÞ ¼ 0; ð18Þ

Errðr; tÞ ¼
Xm
n

EðnÞ
rr ðt; rÞjr�ϵn þOðϵmÞ ¼ 0; ð19Þ

Eϕðr; tÞ ¼
Xm
n

EðnÞ
ϕ ðt; rÞjr�ϵn þOðϵmÞ ¼ 0: ð20Þ

The conditions we obtain out of this procedure are of the
form

EðnÞ
tt ðt; rÞjr� ¼ EðnÞ

rr ðt; rÞjr� ¼ EðnÞ
ϕ ðr; tÞjr� ¼ 0; ð21Þ

but these conditions are not all independent. Moreover,
they are only valid when evaluated at X ¼ X� ¼ q2. Once
conditions on the potentials ðP;Q;F; AIÞ (and their deriv-
atives) are obtained at a given order, we inject them back in
the full field equations and expand once more around the
same r� to obtain new conditions. The algorithm closes
when we obtain enough conditions between the potentials
such that the full field equations are completely satisfied.
Notice that this perturbative algorithm is rather general,

and especially useful when working with such a compli-
cated Lagrangian. Owing to the large freedom in the
potentials AIðϕ; XÞ, the search for black hole solutions
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in these theories is somehow reversed, since one can start
with any black hole metric and scalar profile, and using this
algorithm, look for a specific Lagrangian which admits this
ansatz as solution of its field equations.
Obviously, one can in principle proceed to the expansion

around any value of r. But in practice, some specific values
will allow one to close the algorithm in a quicker way. In
the following, we expand the field equations around
r� ¼ 0. The set of conditions we obtained being quite
involved to reduce, we emphasize that, once the full
conditions on the potentials have been found, we have
checked the consistency of our solution by injecting it
directly in the full (spherically symmetric reduced) field
equations and check that they are identically vanishing.
Having reviewed the method of resolution of the field
equations borrowed from [19], we present now our result.

C. Exact hairy black hole solutions

We consider the Schwarzschild-(A)dS metric given by

eν ¼ e−λ ¼ 1 −
2m
r

− Λr2: ð22Þ

The radial dependent part of the scalar field is straightfor-
wardly obtained by integrating (17) and reads

ψ 0ðrÞ ¼ Mq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mþ Λr3Þr

ð2m − rþ Λr3Þ2

s
; ð23Þ

and one observes that ψ 0ðrÞ → 0 when r → 0. We can now
inject this in the equations of motion and proceed to the
expansion around r� ¼ 0.

1. Stealth Schwarzschild-(A)dS solution

Applying the algorithm reviewed above, we obtain a
complete set of conditions on the potentials which fully
solve the field’s equations. These conditions, valid only
when evaluated at the value X� ¼ q2, read

QϕjX� ¼ FϕjX� ¼ 0; ð24Þ

QXjX� ¼ −
X
2
A3ϕjX� ; ð25Þ

PjX� ¼ −6ΛFjX� ; ð26Þ

A3jX� ¼
2

9XΛ
ðPX þ 12ΛFXÞjX� : ð27Þ

At this stage, there are no conditions on the potentials A4

and A5, and the class solution of our conditions depends
still on sic free potentials ðP;Q; F; AIÞ. With the conditions
(24) to (27), we have obtained a subset of DHOST theories,
larger than the sector satisfying cgrav ¼ clight, which admits
a stealth Schwarzschild-(A)dS solution dressed with a

linear time-dependent scalar field (13), assuming a constant
kinetic term X ¼ X� ¼ q2.

2. Stealth Schwarzschild solution: Λ= 0

It is interesting to investigate the case Λ ¼ 0 which
corresponds to a pure Schwarzschild geometry. In that case,
several of the previous conditions are modified because
some of them are proportional to Λ and therefore disappear
for pure Schwarzschild. The new set of conditions, valid at
X ¼ X�, is

QϕjX� ¼ FϕjX� ¼ 0; ð28Þ

PjX� ¼ PXjX� ¼ 0; ð29Þ

QXjX� ¼ −
X
2
A3ϕjX� : ð30Þ

Once again, there are no conditions on the potentials A4 and
A5 which remain free. In total, this class depends still on six
free potentials ðP;Q;F; AIÞ subject to conditions (28)–(30)
at X ¼ X�.
We can now investigate an additional requirement for the

subclass of DHOST that we found in order to satisfy the
recent observational constraints.

D. Observational constraints

1. Subsector satisfying cgrav = clight
We can now impose the recent observational constraint

cgrav ¼ clight and reduce the above constraints to the viable
subsector of DHOST remaining after GW170817 [40].
Schwarzschild-(A)dS: This is done by imposing the

relations (6) and (7) to obtain the two last potentials A4

and A5 at X ¼ X�. These conditions read for A4ðϕ; XÞ

A4jX� ¼
6F2

X

F
−
ð12ΛFXþPXÞ2

162Λ2FX
þ2ðX−1Þð12ΛFXþPXÞ

9ΛX

����
X�

ð31Þ

while for A5ðϕ; XÞ, one has

A5jX� ¼
2ð12ΛFX þ PXÞð30ΛFX þ PXÞ

81Λ2XF

����
X�

; ð32Þ

which ensure that cgrav ¼ clight for the Schwarzschild-(A)
dS solution sector.
Pure Schwarzschild: In that case, we do not have any

constraint on ðA3; A3X; F; FXÞ at X ¼ X�; there is no
additional constraint on A4 and A5 for this subsector.
Notice that despite the above constraints on A4 and A5

at X ¼ X�, the subset of theories satisfying (31) and (32)
has again six free potentials ðP;Q; F; AIÞ.
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2. Absence of graviton decay

If one takes into account now the recent constraint
derived in [41] for the absence of graviton decay, in
addition to the constraint cgrav ¼ clight, then the DHOST
action (1) reduces to

L ¼ Pðϕ; XÞ þQðϕ; XÞ□ϕþ Fðϕ; XÞR
þ 6F2

Xðϕ; XÞ=Fðϕ; XÞϕμϕλϕμνϕ
νλ; ð33Þ

with only three free potentials ðP;Q; FÞ. It implies that

A3ðϕ; XÞ ¼ 0 A4ðϕ; XÞ ¼ 6F2
Xðϕ; XÞ=Fðϕ; XÞ: ð34Þ

Schwarzschild-(A)dS: The constraint (27) implies that

FXjX� ¼ −
PX

12Λ

����
X�

; ð35Þ

which, as expected, automatically satisfies the constraint on
A4 at X ¼ X� as seen from (31).
Pure Schwarzschild: In that case, the vanishing of

A3ðϕ; XÞ implies from (30)

QXjX� ¼ 0 ð36Þ
and no additional restriction other than (28) and (29) occurs.
It implies therefore that the subclass of shift symmetry

breaking DHOST theories successfully accounting for the
observational constraints cgrav ¼ clight, and satisfying the
requirement of absence of graviton decay, still admits
nontrivial stealth black hole solutions. In each case, the
remaining theory still has three free potentials ðP;Q;FÞ
still depending on ϕ and X.

E. Beyond Horndeski and Horndeski subclasses

We consider now the GLPV and Horndeski subclasses
satisfying cgrav ¼ clight. These two subclasses are given, in
the standard notation, by P ¼ G2, Q ¼ G3 and F ¼ G4

with,

A3 ¼ −A4 ¼ −4FX=X GLPV; ð37Þ

A3 ¼ A4 ¼ FX ¼ 0 Horndeski; ð38Þ

and A5 ¼ 0 valid for any ϕ and X. The resulting Lagrangian
depends on only three free potentials ðP;Q;FÞ.
Schwarzschild-(A)dS: Using (31) and (32), one obtains

the following constraints in each case,

FXjX� ¼ −
PX

30Λ

����
X�

GLPV ð39Þ

PXjX� ¼ QXjX� ¼ 0 Horndeski; ð40Þ

additionally to the constraint (24) and (26).

Pure Schwarzschild: For this solution, one obtains from
(30) the following constraints,

No additional constraints GLPV ð41Þ

QXjX� ¼ 0 Horndeski; ð42Þ

additionally to constraints (28) and (29). Notice that in the
Horndeski case, since F depends only on ϕ, constraint (28)
implies that FðϕÞ ¼ ζ where ζ is a constant [42].

F. Concrete examples

As a last step, we provide concrete examples of potential
solutions of our conditions for both the Schwarzschild-(A)
dS and pure Schwarzschild cases for the general DHOST
case, but also for the GLPV and Horndeski subclasses.

1. Examples for DHOST

Let us first focus on the general DHOST Lagrangian.
Schwarzschild-(A)dS: An example of solution of our

conditions (24)–(27) is given by

Fðϕ; XÞ ¼ f1ðϕ; XÞ log
�
q2

X

�
þ f2ðXÞ; ð43Þ

Pðϕ; XÞ ¼ f3ðϕ; XÞ log
�
q2

X

�
− 6Λf2ðXÞ; ð44Þ

A3ðϕ; XÞ ¼
2

9XΛ

�
6Λf2XðXÞ −

f3ðϕ; XÞ þ 12Λf1ðϕ; XÞ
X

�
;

ð45Þ

Qðϕ; XÞ ¼ −
1

9Λ
½f3ϕðϕ; XÞ þ 12Λf1ϕðϕ; XÞ� log

�
q2

X

�

þ
Z

dX log

�
q2

X

�
f4ðXÞ; ð46Þ

where ðf1; f3Þ are free potentials depending on both ϕ and
X while ðf2; f4Þ are free potentials depending only on X.
Pure Schwarzschild: For the pure Schwarzschild

solution, an example of potentials solving our conditions
(28)–(30) is given by

Fðϕ; XÞ ¼ f1ðϕ; XÞ log
�
q2

X

�
þ f2ðXÞ; ð47Þ

Pðϕ; XÞ ¼ f3ðϕ; XÞ log2
�
q2

X

�
; ð48Þ

Qðϕ;XÞ¼X2

2
A3ϕðϕ;XÞ log

�
q2

X

�
þ
Z

dX log

�
q2

X

�
f4ðXÞ;

ð49Þ
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where again, ðf1; f3Þ are free potentials depending on both
ϕ and X while ðf2; f4Þ are free potentials depending only
on X.

2. Examples for GLPV

We focus now on the GLPV subclass satisfying the
observational constraint cgrav ¼ clight.
Schwarzschild-(A)dS: A set of potential solutions of our

conditions is given e.g., by

Fðϕ; XÞ ¼ f1ðϕ; XÞ log
�
q2

X

�
þ f2ðXÞ ð50Þ

Pðϕ; XÞ

¼ ½−30Λf1ðϕ; XÞ þ 24ΛXf2XðXÞ� log
�
q2

X

�
− 6Λf2ðXÞ

ð51Þ

A3ðϕ;XÞ

¼−
4

X

�
f1Xðϕ;XÞ log

�
q2

X

�
−
f1ðϕ;XÞ

X
þf2XðXÞ

�
ð52Þ

Qðϕ; XÞ ¼ 2½f1ϕðϕ; XÞ� log
�
q2

X

�
þ
Z

dX log

�
q2

X

�
f4ðXÞ;

ð53Þ

which depends again on four free potentials.
Pure Schwarzschild solution: For the pure Schwarzschild

case, an example of potential solutions of our conditions is
given by

Fðϕ; XÞ ¼ f1ðϕ; XÞ log
�
q2

X

�
þ f2ðXÞ; ð54Þ

Pðϕ; XÞ ¼ f3ðϕ; XÞ log2
�
q2

X

�
; ð55Þ

A3ðϕ;XÞ¼−
4

X

�
f1Xðϕ;XÞlog

�
q2

X

�
−
f1ðϕ;XÞ

X
þf2XðXÞ

�
;

ð56Þ

Qðϕ; XÞ ¼ 2f1ϕðϕ; XÞ log
�
q2

X

�
þ
Z

dX log

�
q2

X

�
f4ðXÞ:

ð57Þ

3. Examples for Horndeski

Finally, let us consider the Horndeski theory with
cgrav ¼ clight. An example of a Horndeski Lagrangian
admitting a stealth Schwarzschild-(A)dS black hole solution
for our specific scalar profile is the standard Einstein-Hilbert

term plus a cosmological constant together with a general-
ized Galileon term, given by

LHorndeski ¼ R − 6Λþ log2
�
q2

X

�
qðϕ; XÞ□ϕ; ð58Þ

where qðϕ; XÞ is a free potential. One can easily check that it
satisfies conditions (40). The pure stealth Schwarzschild
solution is simply obtained for Λ ¼ 0. As mentioned in the
introduction, the square log term allows one to obtain an
effective energy momentum tensor for the scalar field of the
form (11), which vanishes for X ¼ q2. Therefore, the scalar
field does not gravitate and the metric remains a pure GR
solution. This provides a simple example of the mechanism
behind stealth black hole configuration in such higher order
scalar-tensor theories.

II. CONCLUSION

In this letter, we have provided a first scan of the
spherically symmetric sector of a large family of shift
symmetry breaking DHOST theories (the quadratic
Lagrangian with A1 ¼ A2 ¼ 0). We have derived general
conditions for this subclass to admit the vacuum
Schwarzschild-(A)dS solution, Eqs. (24)–(27), or a pure
Schwarzschild solution of GR, Eqs. (28)–(30), with a linear
time-dependent scalar dressing as well as for a static scalar
dressing under the assumption of a constant kinetic term,
i.e., X ¼ q2.
Then, we have restricted the class of theories by

requiring the remaining shift symmetric DHOST theories,
solutions of our conditions, to satisfy the observational
constraint cgrav ¼ clight as discussed in [40], and finally, the
recent theoretical requirement of absence of graviton decay
discussed in [41]. For all these viable subclasses, we have
shown that stealth black hole solutions, with or without a
cosmological constant, exist.
Finally, we have considered the restriction to the shift

symmetry breaking GLPV and Horndeski subclasses,
satisfying the constraint cgrav ¼ clight. We have shown that
in each subclass, one can also find stealth black holes
solutions upon satisfying the conditions (39)–(42). In the
last section, we have provided concrete examples satisfying
the conditions we found.
This work extends previous results focusing on stealth

black hole solutions in DHOST with a constant scalar
profile [20], in shift symmetry breaking Horndeski theory
with cgrav ¼ clight for more general scalar profiles [21], as
well as previous results obtained for linear time-dependent
scalar dressing in shift symmetric GLPV and DHOST
theories with or without cgrav ¼ clight [16–19].
A crucial step for the future would be to investigate the

fate of the stealth black hole solutions considered here at
the perturbative level to fully contemplate the scalar field
backreaction on the metric and investigate its stability.
Indeed, it is well known that the stealth hairy black hole
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solutions found in shift symmetric Horndeski theory
with X ¼ Constant are either unstable or strongly coupled
as shown in [43]. We leave this stability analysis for
future work.
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