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The Wigner rotations arising from the combination of boosts along two different directions are rederived
from a relative boost point of view and applied to study gyroscope spin precession along timelike geodesics
in a Kerr spacetime. First this helps to clarify the geometrical properties of Marck’s recipe for reducing the
equations of parallel transport along such world lines expressed in terms of the constants of the motion to a
single differential equation for the essential planar rotation. Second this shows how to bypass Marck’s
reduction procedure by direct boosting of orthonormal frames associated with natural observer families.
Wigner rotations mediate the relationship between these two descriptions for reaching the same parallel
transported frame along a geodesic. The comparison is particularly straightforward in the case of equatorial
plane motion of a test gyroscope, where Marck’s scalar angular velocity captures the essential cumulative
spin precession relative to the spherical frame locked to spatial infinity. These cumulative precession effects
are computed explicitly for both bound and unbound equatorial plane geodesic orbits. The latter case is of
special interest in view of recent applications to the dynamics of a two-body system with spin. Our results
are consistent with the point-particle limit of such two-body results and also pave the way for similar
computations in the context of gravitational self-force.
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I. INTRODUCTION

Given any two forward pointing timelike unit vectors u1
and u2 in the tangent space to a Lorentzian spacetime
(signature þ2), which may be interpreted as the 4-velocities
of a pair of test observers at that event, there is a unique
active Lorentz transformation Bðu2; u1Þ which takes one
(u1) into the other (u2), termed a relative observer boost,
acting only in the plane of the two vectors as a hyperbolic
rotation. This boost is most conveniently parametrized
by the hyperbolic rotation angle, often called the rapidity
β ¼ arccoshð−u1 · u2Þ. For boosting between three such
successive 4-velocities in the same plane, the rapidity
parameters are additive, but when their 4-velocities are
not coplanar, two successive relative observer boosts are
equivalent to a single such boost followed by a rotation,
called the Wigner rotation [1], due to the fact that the boost
generators of the Lorentz group do not form a closed Lie
subalgebra, but their commutators lead to rotation gener-
ators. All of the calculations in this case involve only special
relativity. Furthermore, to combine boosts with the Lorentz
group multiplication law, they should all be referred to a
common time direction, say, u, i.e.,Bðu2; uÞBðu1; uÞX when
applied to some spacetime vector X [2–4].
The Wigner rotation is intimately connected with the

Thomas precession effect in special relativity, most notably

studied for a classical spinning electron in a circular orbit
[5–14]. The Thomas precession is a dynamical expression
of the instantaneous Wigner rotation effect, in the context
of the succession of boosts from the laboratory frame to
the particle rest frame along the changing direction of the
particle trajectory. This takes a slightly different form in the
general relativistic analysis of spin precession of a test
gyroscope in a given curved spacetime through Fermi-
Walker transport of the spin four-vector, but the Wigner
rotation and a generalized Thomas precession remains
important. Along geodesic world lines, Fermi-Walker
transport reduces to parallel transport.
In the study of the precession of the parallel transported

spin vector of a test gyroscope moving along a geodesic
orbit in a rotating Kerr black hole spacetime, the key to
geodesic motion and parallel transport is the Carter
orthonormal frame [15] in Boyer-Lindquist coordinates
ft; r; θ;ϕg, which together with the Killing vectors ∂t
and ∂ϕ, symmetric Killing 2-tensor Kαβ and Killing-Yano
2-form fαβ leads to the separability of the geodesic
equations and the reduction of the equations of parallel
transport along geodesics expressible entirely in terms of
the constants of the motion to a single first order differential
equation for the essential planar rotation. The Carter
orthonormal frame is boosted along the azimuthal direction
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associated with the rotational Killing vector field compared
to the usual static observer frame, with the latter observers
having world lines which are the time lines of the Boyer-
Lindquist coordinate system. The Carter frame “corotates”
with the black hole and is well defined everywhere outside
its outer horizon. An orthonormal frame is said to be
adapted to an observer if its timelike member is the four-
velocity of that observer.
The Carter frame differs only by a boost from the more

familiar slicing and threading “spherical” orthonormal
frames associated with the Boyer-Lindquist coordinate
system. The slicing frame or zero-angular-momentum-
observer (ZAMO) frame is obtained by normalizing the
orthogonal spatial coordinate frame to a spherical ortho-
normal triad and completing it by adding the unit normal n
to the time coordinate hypersurfaces. These observers are
also sometimes called the “locally nonrotating observers.”
The threading frame adapted to the so-called static observ-
ers following the time coordinate lines (when timelike,
having four-velocity m) differs only by a boost in the 2-
plane of the two Killing vector fields tangent to the
cylinders of the t-ϕ coordinates—namely, a boost along
the azimuthal direction. Similarly the Carter frame also
differs only by a boost in that same 2-plane.
Each of these boosts just reflects how different observers

in relative rotation around the azimuthal direction see the
same orthonormal triad of vector fields rigidly attached to
the coordinate system, which in turn is rigidly connected to
the “distant stars” (spatial infinity) in the sense that the
threading observers (sometimes called the “distantly non-
rotating observers”) see the incoming light rays from those
distant stars forming a time-independent pattern on the
celestial sphere. Since the spin vector along any timelike
world line remains in the local rest space of that world line,
one can also boost the spherical triad to that local rest space
in order to measure the rotation of the spin with respect to
the triad of vectors as seen by an observer following that
world line. In a sense this subtracts the spherical aberration
of the incoming light rays from spatial infinity on the local
celestial sphere. Whether one boosts one of the other
boosted spherical frames or performs a direct boost from
the static frame to the local rest space of a gyro, the results
differ only by orientation induced Wigner rotations reflect-
ing the relative tilting of the local rest spaces and do not add
to any accumulating angle of precession.
The local rest space of the gyro’s geodesic world line is

related to the Carter frame by two successive relative
observer boosts at right angles, first along the radial
direction which preserves the radial alignment of the
electric and magnetic parts of the Killing-Yano 2-form
while eliminating the radial relative velocity of the gyro,
and then along an orthogonal angular direction to reach
the local rest space of the geodesic by eliminating its
angular velocity. Thus a sequence of three successive
relative observer boosts, each at right angles to each other,

takes the static observer frame to a frame aligned with the
geodesic four-velocity. This geodesic frame is rotated with
respect to a direct relative observer boost of the static
observer axes to the gyro local rest space, which are an
important comparison reference frame with respect to
which the spin angular velocity precession has the stellar
aberration effect subtracted away. Each pair of successive
boosts leads to a Wigner rotation with respect to the
equivalent direct boost. The result of the three successive
boosts is then rotated with respect to the direct boost. One
can evaluate each of these rotations.
Starting from the Carter frame, Marck’s construction

[16,17] of a parallelly propagated frame along a time-
like geodesic with four-velocity U utilizes the electric part
f ∟ U of the Killing-Yano 2-form as seen by the test
observer following the gyro. This vector is parallel trans-
ported along the world line and defines the parallel trans-
ported normal direction to the 2-plane of the parallel
transport rotation within the local rest space LRSU of
the gyro [18]. The rest of his construction uses a sequence
of boosts along the radial and angular directions to
determine a natural pair of orthonormal vectors in this
plane to express the angular velocity of the parallel trans-
port rotation within it. Ultimately it is the comparison of
this angular velocity of rotation with the local static
Cartesian frame associated with the spherical frame which
allows one to extract the spin precession with respect to the
distant stars. Absent the condition of stationarity which
allows a connection between the “local sky” and the
“distant sky,” one only has spin transport via local
Fermi-Walker transport without the possibility of compar-
ing it to a preferred local reference frame.
We begin by rederiving the Wigner rotation associated

with two successive boosts. We then use this formalism to
relate various adapted orthonormal frames aligned with
and defined along a given world line by boosting those
associated with special observer frame fields existing in any
stationary axisymmetric spacetime. Such adapted frames
can be conveniently rotated within the local rest space of
the world line in order to undergo special transport laws
along the orbit, e.g., parallel transport for geodesics or
Fermi-Walker transport for accelerated world lines.
We illustrate our approach by analyzing the well-known

case of parallel transport along geodesic orbits in the Kerr
spacetime, where the integrability of the geodesic equations
further allows results to be expressed in terms of the
constants of the motion. For simplicity we analyze in
detail the simpler case of equatorial plane geodesic motion
of a test gyroscope, both for parallel transport and its
relation to the cumulative spin precession, a topic which
has not been given much attention in the literature. In fact,
in the latter case this total spin precession is a possible
observational signature of hyperbolic encounters between
two black holes, which can have a counterpart in the
detection of gravitational wave signals and which neces-
sitates further study. This case also has some relevance to
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recent work on the dynamics of a extended two-body
systems with spin (see, e.g., Ref. [19]), whose point-
particle limit is consistent with our results, which can also
serve as a preliminary model for similar computations in
the context of gravitational self-force.
The same manipulations described here to identify an

adapted parallelly transported frame along timelike geo-
desics would apply to any spacetime given a preferred
family of observers with an associated preferred adapted
orthonormal frame, but without the special simplifica-
tions which occur due to the high symmetry of the Kerr
spacetime. This approach gives a prescription for rewri-
ting the equations of parallel transport along a timelike
geodesic in terms of an angular velocity in the associated
rest space with respect to axes which are locked onto the
preferred observer adapted frame by removing the relative
motion between the geodesic and the observer. The Gödel,
Kasner, and de Sitter spacetimes are briefly discussed
in Appendix B to illustrate this point. For a stationary
asymptotically flat spacetime where the symmetry allows a
connection between the local celestial sphere and a global
such sphere at spatial infinity, one can then go further and
interpret the results in terms of gyro spin precession with
respect to distant observers, as developed in a previous
series of articles [20–22].
The real significance of the Marck work is that, like the

reducibility of the geodesic equations of motion to first
order equations parametrized by the constants of the
motion, the equations of parallel transport can be reduced
to a similarly expressed single differential equation for an
angle of rotation about an axis determined by the symmetry
rather than a general rotation, once expressed in terms of an
adapted frame along the geodesic obtained by boosting a
frame adapted to a preferred family of test observers. In the
special case of equatorial plane motion, this allows evalu-
ation of the cumulative precession with respect to non-
rotating observers at spatial infinity.
We use the signature −þþþ and Greek and Latin index

conventions α, β, γ ¼ 0, 1, 2, 3 and i, j, k ¼ 1, 2, 3.

II. A RELATIVE OBSERVER BOOST

Consider two 4-velocities in the same tangent space, u
and U. The orthogonal decomposition of U with respect to
u and its local rest space LRSu defines a relative velocity
νðU; uÞ and unit direction vector ν̂ðU; uÞ ¼ νðU; uÞ=
kνðU; uÞk

U ¼ γðU; uÞ½uþ νðU; uÞ�
¼ cosh α uþ sinh α ν̂ðU; uÞ; ð1Þ

where the associated gamma factor has the usual expression
γðU; uÞ ¼ ð1 − kνðU; uÞk2Þ−1=2 ¼ coshα defining the
rapidity α ≥ 0, in terms of which the relative speed is
kνðU; uÞk ¼ tanhα. An active relative observer boost

BðU; uÞ of the tangent space takes u onto U ¼ BðU; uÞu
and acts as the identity orthogonal to the plane of u and U,
mapping the local rest space LRSu onto LRSU [18,23,24].
Note that BðU; uÞνðU; uÞ ¼ −νðu;UÞ.
Let PðuÞ ¼ Idþ u ⊗ u♭, PðUÞ ¼ Idþ U ⊗ U♭ be the

mixed tensors representing projections onto these res-
pective local rest spaces, with Id denoting the identity
tensor. Then restricting this boost to a map BðlrsÞðU; uÞ ¼
BðU; uÞPðuÞ from LRSu onto LRSU [see Eq. (4.22) of
Ref. [18] for additional details], one finds that

BðlrsÞðU; uÞS ¼ Sþ ðU · SÞ
γðU; uÞ þ 1

ðU þ uÞ ð2Þ

for any vector S belonging to the local rest space of u
(S · u ¼ 0 ¼ U · ½BðlrsÞðU; uÞS�). Adjacent ð1

1
Þ tensors are

understood to be contracted on their adjacent indices,
reflecting the composition of the corresponding linear
maps of the tangent space. To express the full boost in
this notation, let

X ¼ XðkÞuþ Xð⊥Þ; ð3Þ

with

XðkÞ ¼ −u · X; Xð⊥Þ ¼ X þ ðu · XÞu ¼ PðuÞX; ð4Þ

be a generic spacetime vector orthogonally decomposed
with respect to u. Then one finds that

BðU; uÞX ¼ BðU; uÞðXðkÞuþ Xð⊥ÞÞ;

¼ XðkÞU þ Xð⊥Þ þ Xð⊥Þ ·U
γðU; uÞ þ 1

ðuþ UÞ

¼
�
Id −

1

γ þ 1
½ð2γ þ 1ÞU − u� ⊗ u♭

þ 1

γ þ 1
ðU þ uÞ ⊗ U♭

�
X ð5Þ

with the shorthand abbreviation γ ¼ γðU; uÞ.
Replacing U with Eq. (1) and then using the identity

Id ¼ PðuÞ − u ⊗ u♭, one finds that

BðU; uÞ ¼ Id − ðγ − 1Þ½u ⊗ u♭ − ν̂ ⊗ ν̂♭�
− γν½ν̂ ⊗ u♭ − u ⊗ ν̂♭�

¼ BðlrsÞuðU; uÞ − γνðU; uÞ ⊗ u♭

þ γu ⊗ νðU; uÞ♭ − γu ⊗ u♭; ð6Þ

where
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BðlrsÞuðU; uÞ ¼ PðuÞBðU; uÞPðuÞ

¼ PðuÞ þ γ2

γ þ 1
νðU; uÞ ⊗ νðU; uÞ♭

¼ PðuÞ þ ðγ − 1Þν̂ðU; uÞ ⊗ ν̂ðU; uÞ♭: ð7Þ

Its inverse map is

½BðlrsÞuðU; uÞ�−1 ¼ BðlrsÞuðu;UÞ
¼ PðuÞBðu;UÞPðuÞ
¼ PðuÞ − ðγ − 1Þν̂ðU; uÞ ⊗ ν̂ðU; uÞ♭: ð8Þ

Let eðuÞa be an orthonormal spatial triad adapted to
u ¼ eðuÞ0, and let ωðuÞα be the dual frame with
ωðuÞ0 ¼ −u♭. The frame components of BðU; uÞ with
respect to this frame,

BðU; uÞαβ ¼ ωαðBðU; uÞeβÞ; ð9Þ

are then explicitly

B0
0 ¼ γ; B0

a ¼ γνðU; uÞa; Ba
0 ¼ γνðU; uÞa;

Ba
b ¼ PðuÞab þ ðγ − 1Þν̂ðU; uÞaν̂ðU; uÞb: ð10Þ

However, using only orthonormal frames to express the
relative boost matrices, the latter are a function only of the
orthonormal components ν ¼ hν1; ν2; ν3i of the relative
velocity νðU; uÞ relative to the starting frame, which makes
composing the boosts easier to manage,

BðνÞ ¼ ðBðU; uÞαβÞ; ð11Þ

dropping for the moment the functional dependence ðU; uÞ.
Defining the generator KðuÞi ¼ eiðuÞ ⊗ u♭ − u ⊗ e♭i of

boosts in the direction eðuÞi, one has the following
representation for the generator of a boost in the direction
ν̂ðU; uÞ:

KðuÞiν̂ðU; uÞi ¼ ν̂ ⊗ u♭ − u ⊗ ν̂♭: ð12Þ
Then

ðKðuÞiν̂ðU; uÞiÞ2 ¼ ðKðuÞiν̂ðU; uÞiÞðKðuÞjν̂ðU; uÞjÞ
¼ −u ⊗ u♭ þ ν̂ ⊗ ν̂♭; ð13Þ

and our previous expression (6) becomes

BðU; uÞ ¼ Idþ ðγ − 1Þðν̂ · KðuÞÞ2 þ γνðν̂ · KðuÞÞ
¼ Idþ ðcosh α − 1ÞðKðuÞiν̂ðU; uÞiÞ2
þ sinh αðKðuÞiν̂ðU; uÞiÞ

¼ eαKðuÞiν̂ðU;uÞi : ð14Þ
This corresponds directly to a matrix relation [see Eq. (A5)
of Appendix A] when expressed in an adapted orthonor-
mal frame.
For example, for a boost relative velocity in the 1-2

plane with direction ν̂ðU; uÞa ¼ ðcos δ; sin δ; 0Þ and
speed jjνðU; uÞjj ¼ tanhα > 0, we have ν ¼ hν1; ν2; 0i ¼
htanh α cos δ; tanh α sin δ; 0i and

BðνÞ ¼

0
BBB@

cosh α sinh α cos δ sinh α sin δ 0

sinh α cos δ cosh α cos2δþ sin2δ sinh2α cos δ sin δ
1þcoshα 0

sinh α sin δ sinh2α cos δ sin δ
1þcoshα coshα sin2δþ cos2δ 0

0 0 0 1

1
CCCA; ð15Þ

with permutations of this holding for the remaining cases.

A. Composition of velocities

Consider expressing a single four-velocity U in terms of
two distinct observer 4-velocities u and u0,

U ¼ γðU;uÞ½uþ νðU;uÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Uvsu

¼ γðU;u0Þ½u0 þ νðU;u0Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Uvsu0

; ð16Þ

with

u ¼ γðu; u0Þ½u0 þ νðu; u0Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u vs u0

;

u0 ¼ γðu; u0Þ½uþ νðu0; uÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u0 vs u

: ð17Þ

A straightforward calculation shows that the gamma factors
are related by

γðU; u0Þ
γðU; uÞ ¼ γðu; u0Þ½1 − νðU; uÞ · νðu0; uÞ�; ð18Þ

and the “velocity subtraction” formula is

Pðu0; uÞ
�

νðU; uÞ − νðu0; uÞ
1 − νðU; uÞ · νðu0; uÞ

�
¼ γðu; u0ÞνðU; u0Þ: ð19Þ

Reexpressing this four-vector formula in terms of the boost
rather than the projection for relative velocities in opposite
directions leads to a more familiar formula written in terms
of orthonormal components. In fact, it is enough to note
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that in the plane of u and u0, the projection is γðu; u0Þ times
the boost but acts as the identity orthogonal to that plane.

III. COMBINATION OF BOOSTS

Boosts along a fixed spatial direction form a subgroup of
the Lorentz group, but the subset of all boosts do not form a
subgroup: the product of two boosts along distinct spatial
directions is no longer a boost along any direction but
instead the product of a single boost with a rotation, the
Wigner rotation. To discuss this phenomenon, it is essential
to introduce the matrix representation of boosts and rota-
tions to divorce them from the various orthonormal frames
in which our tensor representations can be expressed. The
notation Bðu2; u1Þ facilitates expressing boosts from one
local rest space to the next but is simple only when
expressed in terms of an orthonormal frame adapted to
the initial local rest space LRSu1 so when composed with a
second boost Bðu3; u2Þ, that matrix representation of the
successive boost is complicated when expressed in terms
of the intermediate four-velocity u2 instead of the original
four-velocity u1. Fortunately these boosts depend only on
the orthonormal components of the relative velocity, so the
alternative notation BðνÞ for a given relative velocity
νðu2; u1Þ simplifies the discussion.
Consider the combinations of two boosts in different

directions. To this end let u1, u2, and u3 be three
4-velocities, with the last one determining the final local
rest space of the combination of Lorentz boosts associated
with u1 and u2 with respect to the common time direction u,

u3 ¼ Bðu1; uÞu2
¼ Bðu1; uÞBðu2; uÞu; ð20Þ

and define the relative gamma factors and relative
velocities by

ui ¼ γiðuþ νiÞ; ð21Þ

where it is convenient to use the abbreviated nota-
tion ðγi; νiÞ ¼ ðγðui; uÞ; νðui; uÞÞ.
Explicit calculation of u3 using Eq. (6) (or by multipli-

cation of the corresponding matrices using a computer
algebra system) gives the relativistic addition of velocities
formula in terms of the relative velocities

γ3 ¼ γ1γ2ð1þ ν1 · ν2Þ ð22Þ

and

ν3 ¼
1

1þ ν1 · ν2

��
1þ γ1ν1 · ν2

1þ γ1

�
ν1 þ

1

γ1
ν2

�
; ð23Þ

namely, ν3 belongs to the 2-plane spanned by ν1 and ν2. If
the two relative velocities are collinear, this reduces to the

familiar scalar formula for velocity addition along one
common direction.
Consider two successive active boosts of a vector

X ¼ Xaea ∈ LRSu (a ¼ 1, 2, 3)—namely,

Bðu1; uÞBðu2; uÞX ¼ eαBðν1ÞαγBðν2ÞγbXb; ð24Þ

where the labeling from left to right of the boosts is
appropriate for the group composition law, even though
2 acts first followed by 1 in this active point transformation.
The first boost, Bðu2; uÞ∶LRSu → LRSu2 , takes u to u2,
and the next boost, Bðu1; uÞ∶LRSu1 → LRSu3 , takes u2 to
u3, the time direction of the final local rest space of the
combined boosts. One can also directly boost X from LRSu
to Bðu3; uÞX ∈ LRSu3 . These two vectors both belong to
the final local rest space but differ by a Wigner rotation
defined by

Bðu1; uÞBðu2; uÞX ¼ RðWÞ
L ðu1; u2; uÞBðu3; uÞX

¼ Bðu3; uÞRðWÞ
R ðu1; u2; uÞX; ð25Þ

namely,

RðWÞ
R ðu1; u2; uÞ ¼ Bðu3; uÞ−1Bðu1; uÞBðu2; uÞ

RðWÞ
L ðu1; u2; uÞ ¼ Bðu1; uÞBðu2; uÞBðu3; uÞ−1

¼ Bðu3; uÞRðWÞ
R ðu1; u2; uÞBðu3; uÞ−1;

ð26Þ

with the last line being a similarity transformation. The
right Wigner rotation is a rotation in LRSu, simply
expressed in the adapted frame eα, while the left Wigner
matrix is the boosted rotation in LRSu3 , not so simply
expressed. However, the latter can always be written in the
canonical form (see Appendix A) once the matrix compo-
nents are computed with respect to the frame eðu3Þα.
Like the relative boost matrix, the Wigner rotation matrix

depends only on the orthonormal components of the two
successive boost relative velocities

RðWÞ
R ðν1; ν2Þαβ ¼ ½RðWÞ

R ðu1; u2; uÞ�αβ ð27Þ

or

RðWÞ
R ðν1; ν2Þ ¼ Bðν3Þ−1Bðν1ÞBðν2Þ: ð28Þ

We need the passive right action of the Lorentz group
transforming orthonormal frames in succession, in contrast
with the left action actively transforming the points of the
tangent space. We successively boost the original frame eα,

eðu1Þα ¼ eγBðu1; uÞγα; ð29Þ
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and then

eðu3Þα ¼ eðu1ÞβBðu2; uÞβα ¼ eγBðu1; uÞγβBðu2; uÞβα
¼ eγ½Bðu1; uÞBðu2; uÞ�γα
¼ eγ½Bðu3; uÞRðWÞ

R ðu1; u2; uÞ�γα
¼ eγ½Bðν3ÞRðWÞ

R ðν1; ν2Þ�γα: ð30Þ
We consider below some explicit examples correspond-

ing to special choices of ν1 and ν2. Without any loss of
generality one can align ν1 with the axis eðuÞ1 and let the
axis eðuÞ3 be orthogonal to the 2-plane spanned by ν1 and
ν2; namely,

ν1 ¼ tanhα1eðuÞ1;
ν2 ¼ tanhα2½cos β2eðuÞ1 þ sin β2eðuÞ2�; ð31Þ

where α1 > 0; α2 > 0;−π < β2 ≤ π so that the speeds are
ðν1; ν2Þ ¼ ðtanh α1; tanh α2Þ and sin β2 ¼ e3 · ðν̂1 × ν̂2Þ. In
this case we find

ν1 · ν2 ¼ tanhα1 tanhα2 cos β2;

ν3 ¼ tanhα3½cos β3eðuÞ1 þ sin β3eðuÞ2�; ð32Þ
with

cosh α3 ¼ cosh α1 coshα1ð1þ tanh α1 tanh α2 cos β2Þ
ð33Þ

and

tan β3 ¼
ν2 sin β2

γ1ðν1 þ ν2 cos β2Þ
: ð34Þ

The left Wigner rotation, RðWÞ
L ðu1; u2; uÞ, takes place in

LRSu3 in the plane of the two relative velocities, while the

right one, RðWÞ
R ðu1; u2; uÞ, takes place in LRSu, so its matrix

is simple,

RðWÞ
R ðν1; ν2Þ ¼ R3ð−θðWÞÞ; ð35Þ

where the explicit expression R3ðθÞ for a counterclockwise
rotation in the 1-2 plane by an angle θ is given in
Appendix A, and the Wigner angle here is

sin θðWÞ ¼
�
1þ γ1 þ γ2

1þ γ2γ1ð1þ ν1ν2 cos β2Þ
�

×
γ1γ2ν1ν2

ð1þ γ1Þð1þ γ2Þ
sin β2; ð36Þ

cos θðWÞ ¼ 1 −
ð1 − γ1Þð1 − γ2Þ

1þ γ2γ1ð1þ ν1ν2 cos β2Þ
sin2 β2: ð37Þ

Since the two speeds are nonnegative, θðWÞ has the same
sign as β2, so a clockwise rotation results when β2 > 0;
namely, as long as the angle from the first to the second
relative velocity in this plane is a positive counterclockwise
angle between 0 and π, the Wigner rotation is clockwise,
and vice versa for β2 < 0. For boosts in the same direction
(β2 ¼ 0), the rapidity is simply additive, α3 ¼ α1 þ α2,
reflecting the fact that boosts along a fixed direction form a
subgroup, and the Wigner rotation reduces to the identity.
For the complementary case ν1 · ν2 ¼ 0 of boosts in

orthogonal directions—say, for definiteness, β2 ¼ π=2—
the rotation angle is maximized for constant values of the
two speeds, and these formulas reduce to

γ3 ¼ γ1γ2; ν3 ¼ ν1 þ γ1
−1ν2; ð38Þ

since the first applied boost velocity ν2 must be adjusted to
the proper time of the second applied boost (ordered right
to left). The Wigner angle in this case is given by

cos θðWÞ ¼ γ1 þ γ2
1þ γ1γ2

; sin θðWÞ ¼ γ1γ2ν1ν2
1þ γ1γ2

: ð39Þ

Varying the speeds, one finds that the extreme values of the
Wigner angle for orthogonal relative velocities occur when
the speeds are equal, ν1 ¼ ν2 and β2 ¼ �π=2; namely,

� sin θðWÞ
ðextÞ ¼

γ21ν
2
1

1þ γ21
¼ sinh2 α1

1þ cosh2 α1
ð40Þ

or

cos θðWÞ
ðextÞ ¼

2γ1
1þ γ21

¼ 2 cosh α1
1þ cosh2 α1

; ð41Þ

which confines the Wigner angle to the interval

− π
2
< θðWÞ

ðextÞ <
π
2
, approaching the end points at high speeds.

The composite boost itself in this special case actually has a
manageable expression. For β2 ¼ π=2 it is

Bðν3Þ ¼

0
BBBBB@

cosh α1 cosh α2 sinh α1 cosh α2 sinh α2 0

sinh α1 cosh α2 1þ sinh2α1cosh2α2
1þcoshα1 coshα2

coshα2 sinh α1 sinhα2
1þcoshα1 coshα2

0

sinh α2
cosh α2 sinh α1 sinh α2
1þcoshα1 coshα2

cosh α2ðcoshα1þcoshα2Þ
1þcoshα1 coshα2

0

0 0 0 1

1
CCCCCA: ð42Þ
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A. Boosted observer adapted frames

A direct application of the above formalism within the
tangent spaces to a spacetime arises when constructing an
orthonormal frame defined along a given world line with
four-velocity U by using relative observer boost to boost
into LRSU an orthonormal spatial frame field eðuÞa (a ¼ 1,
2, 3) in LRSu adapted to an observer family with four-
velocity u ¼ eðuÞ0 which exists in some open tube around
the world line,

eðU; uÞa ¼ BðU; uÞeðuÞa ¼ eðuÞβBðνÞβa: ð43Þ

This is a boost of the three vectors eðuÞa along the
direction of the relative motion of U, and u essentially
shows how this frame would appear if it were not in
relative motion.
However, if one is interested in a spatial frame belonging

to LRSU along this world line which undergoes a particular
transport law which respects orthonormality, the desired
frame will be related to the boosted frame by a rotation of
the local rest space at each point of the world line. This
translates the equations of the transport into differential
equations for the relative rotation between the two frames.
Both parallel transport and Fermi-Walker transport are such
transports which have a physical interpretation, and they
coincide along geodesics. We will illustrate this for the Kerr
spacetime, where Marck showed how a particular parallel
transported frame along timelike geodesic could be defined
in terms of the constants of the motion, modulo a final
rotation in a 2-plane, leading to a single differential
equation for the angle of rotation in that plane, whose
orientation is determined by the electric part of the Killing-
Yano 2-form as seen by U. Independent of Marck’s
construction, one can evaluate the effective rotation of a
parallel transported frame relative to a boosted static frame,
differing from Marck’s parallel transported frame only by a
Wigner rotation.
In the Kerr case one has at least three natural special

observer families due to its stationary axisymmetry, all in
relative azimuthal motion with 4-velocities in the same
relative observer plane spanned by the two Killing vector
fields: the static observers, the ZAMOs, and the Carter
observers. Their associated natural adapted spherical
orthonormal frames are each related to the others by
azimuthal boosts of the normalized spatial coordinate
frame associated with the Boyer-Lindquist coordinate
system, so when boosted to the local rest space of U,
they generate spatial frames which differ one from the
other by Wigner rotations.

IV. SPECIAL OBSERVERS AND ADAPTED
FRAMES IN THE KERR SPACETIME

Consider the Kerr spacetime with metric written in the
Boyer-Lindquist coordinate system ðt; r; θ;ϕÞ [25],

ds2 ¼ gαβdxαdxβ

¼ −dt2 þ Σ
Δ
dr2 þ Σdθ2 þ ðr2 þ a2Þ sin2 θdϕ2

þ 2Mr
Σ

ðdt − a sin2 θdϕÞ2; ð44Þ

where M and a are the mass and the specific angular
momentum of the source, respectively, and

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð45Þ
The inner and outer horizons are located at r� ¼
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

In this spacetime there exist at least three families of
fiducial/special observers who play a role from either
a geometrical point of view or a physical point of view.
They are ZAMOs (with four-velocity u ¼ n), static observ-
ers (with four-velocity u ¼ m), and Carter observers (with
four-velocity u ¼ uðCarÞ).
The ZAMOs have world lines orthogonal to the Boyer-

Lindquist t ¼ constant hypersurfaces, the static observers
have world lines aligned with Boyer-Lindquist temporal
lines, and the Carter observers have four-velocity belonging
to the intersection of the two 2-planes: the one spanned by
the temporal and azimuthal Killing vectors and the one
spanned by the two repeated principal null directions of the
Kerr (Petrov type D) spacetime, aligned with uðCarÞ � er̂.
One may form adapted frames to any test particle world
line, e.g., moving along a timelike geodesic, by conven-
iently boosting adapted frames to each of them.

A. The static observes and their relative adapted frame

The static observers, which exist only in the spacetime
region outside the black hole ergosphere where gtt < 0,
form a congruence of accelerated, nonexpanding, and
locally rotating world lines. They are, however, nonrotating
with respect to observers at rest at spatial infinity and have
four-velocity u ¼ m where

m ¼ 1ffiffiffiffiffiffiffiffi−gtt
p ∂t ¼

�
1 −

2Mr
Σ

�
−1=2∂t: ð46Þ

An orthonormal frame adapted to m is

eðmÞ1 ¼
1ffiffiffiffiffiffi
grr

p ∂r ¼
ffiffiffiffi
Δ
Σ

r
∂r ≡ er̂;

eðmÞ2 ¼
1ffiffiffiffiffiffi
gθθ

p ∂θ ¼
1ffiffiffi
Σ

p ∂θ ≡ eθ̂;

eðmÞ3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gϕϕ − g2tϕ=gtt
q

�
∂ϕ −

gtϕ
gtt

∂t

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ − a2 sin2 θ

p

sin θ
ffiffiffiffiffiffiffi
ΔΣ

p
�
∂ϕ −

2Mar sin2 θ
Δ − a2 sin2 θ

∂t

�
: ð47Þ
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B. The ZAMOs and their relative adapted frame

The ZAMOs are locally nonrotating (but locally rotating
in the azimuthal direction in the same sense as the rotation
of the black hole) and exist everywhere outside of the outer
horizon, They have four-velocity u ¼ n, where

n ¼
ffiffiffiffiffiffiffiffi
−gtt

p �
∂t þ

gtϕ

gtt
∂ϕ

�

¼
ffiffiffiffiffiffiffi
A
ΔΣ

r �
∂t þ

2aMr
A

∂ϕ

�

≡ N−1ð∂t − Nϕ∂ϕÞ; ð48Þ

where N and Nϕ denote the lapse and shift functions,
respectively, and

A ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ: ð49Þ

The normalized spatial coordinate frame vectors

eðnÞ1 ¼ er̂; eðnÞ2 ¼ eθ̂;

eðnÞ3 ¼
1ffiffiffiffiffiffiffigϕϕ

p ∂ϕ ¼
ffiffiffi
Σ

p

sin θ
ffiffiffiffi
A

p ∂ϕ ≡ eϕ̂ ð50Þ

together with n form an orthonormal adapted frame. A
boost along eϕ̂ maps n onto m, i.e.,

m ¼ γðm; nÞ½nþ νðm; nÞ�; ð51Þ

with relative velocity in the opposite azimuthal direction as
the rotation of the black hole associated with the sign of a
(resisting the “dragging of inertial frames”)

νðm; nÞ ¼ −
2Mr
Σ

a sin θffiffiffiffi
Δ

p eϕ̂; ð52Þ

and associated Lorentz factor γðm; nÞ so that ZAMOs and
static observers share the same r-θ 2-plane of their local rest
spaces.

C. The Carter observers and their
relative adapted frame

The Carter family of observers u ¼ uðCarÞ are geomet-
rically special because their four-velocity is aligned with
the intersection of two geometrically special 2-planes: the
one which is the span of the two Killing vectors ∂t and ∂ϕ,
and the other spanned by the two principal null directions
of the spacetime. This coincidence connects them to the
separability of the geodesic equations as well as to the
alignment of all relevant vectors and tensors in the Kerr
spacetime. In particular their relation to the Killing-Yano 2-
form allows the solution of the equations of parallel
transport found by Marck through successive boosts which

isolate the effective spin precession from the various
possible boosts of the spherical frame linked to spatial
infinity.
The Carter observers are boosted in the opposite azimu-

thal direction from the static observers compared to the
ZAMOs in order to “comove” with the black hole, their
angular velocity at the outer horizon being defined as that
of the black hole itself. Their four-velocity uðCarÞ is given by

uðCarÞ ¼
r2 þ a2ffiffiffiffiffiffiffi

ΔΣ
p

�
∂t þ

a
r2 þ a2

∂ϕ

�
;

u♭ðCarÞ ¼ −
ffiffiffiffi
Δ
Σ

r
ðdt − a sin2 θdϕÞ; ð53Þ

with the ♭ symbol denoting the fully covariant form of any
tensor. Decomposing it with respect to the static observers,

uðCarÞ ¼ γðuðCarÞ; mÞ½mþ νðuðCarÞ; mÞ�; ð54Þ

leads to the relative velocity

νðuðCarÞ; mÞ ¼ a sin θffiffiffiffi
Δ

p eðmÞ3: ð55Þ

A spherical orthonormal frame adapted to uðCarÞ is
obtained by using the triad boosted from the either the
ZAMO or the static observer spherical frame along the
azimuthal direction, with

e1ðuðCarÞÞ ¼ er̂; e2ðuðCarÞÞ ¼ eθ̂ ð56Þ

and

e3ðuðCarÞÞ ¼
a sin θffiffiffi

Σ
p

�
∂t þ

1

a sin2 θ
∂ϕ

�
;

e3ðuðCarÞÞ♭ ¼ −
a sin θffiffiffi

Σ
p

�
dt −

r2 þ a2

a
dϕ

�
: ð57Þ

In terms of boost map we have

eðuðCarÞÞα ¼ eðmÞβBðuðCarÞ; mÞβα: ð58Þ

V. TIMELIKE GEODESICS

A geodesic timelike world line has a four-velocity unit
tangent vector U ¼ Uα∂α with coordinate components
Uα ¼ dxα=dτ, which can be expressed using the Killing
symmetries [15,26] as a system of first order differential
equations
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dt
dτ

¼ 1

Σ

�
aBþ ðr2 þ a2Þ

Δ
P

�
;

dr
dτ

¼ ϵr
1

Σ
ffiffiffiffi
R

p
;

dθ
dτ

¼ ϵθ
1

Σ
ffiffiffiffi
Θ

p
;

dϕ
dτ

¼ 1

Σ

�
B

sin2θ
þ a
Δ
P

�
; ð59Þ

where τ is a proper time parameter along the geodesic, ϵr
and ϵθ are sign indicators, and

P ¼ Eðr2 þ a2Þ − La ¼ Er2 − ax;

B ¼ L − aE sin2 θ ¼ xþ aE cos2 θ;

R ¼ P2 − Δðr2 þ KÞ;

Θ ¼ K − a2 cos2 θ −
B2

sin2 θ
: ð60Þ

Here E and L denote the conserved Killing energy and
angular momentum per unit mass and K is a separation
constant, usually called the Carter constant, while the
combination x ¼ L − aE proves to be useful. For example,
in place of K one often uses

Q ¼ K − ðL − aEÞ2 ¼ K − x2; ð61Þ

which vanishes for equatorial plane orbits. Corresponding
to the four-velocity vector field U is the index-lowered
1-form

U♭ ¼ −Edtþ Σ
Δ
_rdrþ Σ_θdθ þ Ldϕ

¼ −Edtþ ϵr
ffiffiffiffiffiffiffiffiffi
RðrÞp
Δ

drþ ϵθ
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
dθ þ Ldϕ: ð62Þ

Here we use the overdot notation _f ¼ df=dτ for the proper
time derivative along the geodesic. A remarkable (but not
very familiar) property of the geodesic family of world
lines is that they form an irrotational congruence, dU♭ ¼ 0,
since each of the covariant component of U depends on the
coordinates in a separated form. Consequently, there exists
a new temporal parameter, say, T, such that

U♭ ¼ −dT: ð63Þ

The relation of T with the Boyer-Lindquist coordinates
follows immediately,

T ¼ Et−Lϕ− ϵr

Z
r

ffiffiffiffiffiffiffiffiffi
RðrÞp
Δ

dr− ϵθ

Z
θ ffiffiffiffiffiffiffiffiffiffi

ΘðθÞ
p

dθ; ð64Þ

and can be further expressed in terms of elliptic func-
tions [27].

For later use we decompose the geodesic four-velocityU
with respect to the Carter observers,

U ¼ γðU; uðCarÞÞ½uðCarÞ þ νðU; uðCarÞÞaeðuðCarÞÞa�; ð65Þ

with

½γðU; uðCarÞÞνðU; uðCarÞÞa� ¼
� ffiffiffiffi

Σ
Δ

r
_r;

ffiffiffi
Σ

p
_θ;

Bffiffiffi
Σ

p
sin θ

�
ð66Þ

and

γðU; uðCarÞÞ ¼
Pffiffiffiffiffiffiffi
ΔΣ

p : ð67Þ

A. Parallel transported frame along a geodesic
bypassing Marck’s approach

The construction of the various natural adapted frames
along timelike geodesics is facilitated by using the boost
maps introduced above [see, e.g., Eq. (6)] applied to the
various spherical frames associated with the Boyer-
Lindquist coordinates; namely,

eðU; uÞa ¼ BðU; uÞeðuÞa ð68Þ

for any observer family u ∈ fm; n; uðCarÞg, i.e.,

eðU;mÞa ¼ BðU;mÞeðmÞa;
eðU; nÞa ¼ BðU; nÞeðnÞa;

eðU; uðCarÞÞa ¼ BðU; uðCarÞÞeðuðCarÞÞa: ð69Þ

The boosted spatial frames on the left are related to each
other by Wigner rotations in LRSU since the unboosted
frames on the right are themselves related to each other by
boosts. One can study their parallel transport along U,
defining the corresponding angular velocities by

D
dτU

eðU;mÞa ¼ ΩðU;mÞ ×U eðU;mÞa; ð70Þ

and similarly for ΩðU; nÞ and ΩðU; uðCarÞÞ.
One may then evaluate the angular velocity ΩðU; uÞ ¼

ΩðU; uÞaeðU; uÞa in terms of the relative motion of the
geodesic U and these three observer families as a sum of
the following three terms as given in Ref. [18],

ΩðU;uÞ ¼−γðU;uÞBðU;uÞ½ωðfw;uÞ þωðsc;U;uÞ þωðgeo;U;uÞ�;
ð71Þ

using its notation for the Fermi-Walker and the spatial
curvature angular rotation vectors which characterize the
covariant derivatives of the orthonormal frame along the
orbit
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PðuÞ∇UeðuÞa ¼ −γðU; uÞ½ωðfw;uÞ þ ωðsc;U;uÞ� ×u eðuÞa;

as well as the geodetic precession term in the gyroscope
precession formula [see Eq. (9.10) of Ref. [18] ]

ωðgeo;U;uÞ ¼
1

1þ γðU; uÞ νðU; uÞ ×
u
FðGÞ
ðfw;U;uÞ; ð72Þ

defined in terms of the spatial gravitational forceFðGÞ
ðfw;U;uÞ ¼

−∇Uu. Additional details, including notation, can be found
in Ref. [18] and will not be repeated here.
Among the family of all frames adapted to U there is one

which is geometrically special, corresponding to a parallel
propagated frame along U. This frame was explicitly found
by Marck long ago [16,17], and his elegant construction
uses the properties of the Killing-Yano tensor of the Kerr
spacetime to pin down the orientation of the 2-plane of the
relative rotation. We have already discussed the geometrical
meaning of this frame in previous articles [20–22], sum-
marized in the next section. The question thus naturally
arises whether it is possible to bypass Marck’s approach
and provide a prescription which can be used for other
stationary axisymmetric spacetimes which do not admit a
Killing-Yano tensor. The answer is yes, and the main
computation needed is to determine the rotation matrix
mapping the axes eðU; uÞa onto parallel transported axes
eðparÞðU; uÞa. This is a cumbersome task in practice,
although not in principle. In fact, it is enough to arbitrarily
rotate the frame feðU; uÞag parametrizing the rotation by
three Euler angles and solve the parallel transport equations
for the new triad feðparÞðU; uÞag for these angles, instead of
for a single angle needed to complete Marck’s construction.
Let us describe this procedure in more detail.
Given any initial frame eðU; uÞa along a geodesic, one

can perform a generic rotation on it:

eðparÞðU; uÞa ¼ eðU; uÞbRðU; uÞba: ð73Þ

The rotated frame can then be required to be parallel
transported along U. The two conditions

D
dτU

eðU; uÞa ¼ ΩðU; uÞ ×U eðU; uÞa;
D
dτU

eðparÞðU; uÞa ¼ 0 ð74Þ

then determine the frame components RðU; uÞba of the
rotation matrix, obeying the equations

�
d

dτU
RðU; uÞbd

�
ðRðU; uÞ−1Þda ¼ ϵbacΩðU; uÞc: ð75Þ

Therefore, going back to the local rest space of the chosen
observer u by applying the boost operation yields

eðparÞðU; uÞa ¼ eðU; uÞbRðU; uÞba
¼ eðuÞcBðU; uÞcbRðU; uÞba: ð76Þ

If the adapted triad eðuÞa is in turn obtained by boosting
to u the triad eðu0Þa adapted to another observer u0, then

eðu; u0Þc ¼ Bðu; u0Þeðu0Þc ¼ eðu0ÞdBðu; u0Þdc; ð77Þ

so

eðparÞðU; uÞa ¼ eðu0ÞdBðu; u0ÞdcBðU; uÞcbRðU; uÞba;
ð78Þ

where the combination of the two successive boosts leads
to an additional Wigner rotation.
This procedure is general but may become very com-

plicated computationally. In Appendix B we show how to
construct a parallel transported frame along geodesics in
some simple spacetimes, where Marck’s recipe cannot be
applied.

VI. FRAMING MARCK’S RESULT WITHIN
THE PREVIOUS APPROACH

Whatever family of observers is chosen to start the
procedure described above and leading to the construction
of a parallelly propagated frame along U, all of the various
steps can be easily performed, but this does not avoid long
formulas. As always happens, some specific choice can be
preferable if computational simplifications may arise.
Knowing the result in advance (Marck’s result), one can
identify a suitable, special family of observers and elucidate
this approach when going in reverse. This will be done “in
steps” in the next subsections, revisiting recently obtained
results.

A. Decomposing U in Carter’s frame: A new
family of radially moving observers uðradÞ

Consider a generic timelike geodesic with unit tangent
vector (62) decomposed relative to the Carter observers
[see Eqs. (65) and (66)]. To make the notation less
cumbersome below, we introduce the abbreviations
γðU; uðCarÞÞ ¼ γc, νðU; uðCarÞÞ ¼ νc. Let us introduce the
angular part ν⊤ of the Carter relative velocity and an
orthogonal vector ν⊥ ¼ eðuðCarÞÞ1 ×uðCarÞ ν

⊤ of the same
magnitude in the angular subspace

ν⊤ ¼ ν2ceðuðCarÞÞ2 þ ν3ceðuðCarÞÞ3 ≡ kν⊤kν̂⊤;
ν⊥ ¼ −ν3ceðuðCarÞÞ2 þ ν2ceðuðCarÞÞ3 ≡ kν⊥kν̂⊥; ð79Þ

where kν⊤k ¼ kν⊥k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2cÞ2 þ ðν3cÞ2

p
, with
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ν1c ¼
Σ_r
P

; ν2c ¼
Σ

ffiffiffiffi
Δ

p
_θ

P
; ν3c ¼

B
ffiffiffiffi
Δ

p

P sin θ
: ð80Þ

We will use the notation

ν̂⊥ ¼ cosϒeðuðCarÞÞ2 þ sinϒeðuðCarÞÞ3
≡ eðuðradÞÞ2;

ν̂⊤ ¼ − sinϒeðuðCarÞÞ2 þ cosϒeðuðCarÞÞ3
≡ eðuðradÞÞ3 ð81Þ

for a clockwise rotation by angle ϒ in the 2-3 plane
given by

tanϒ ¼ −
ν2c
ν3c

¼ −
Σ_θ
B

: ð82Þ

In the case of equatorial plane motion, one has ϒ ¼ 0,
while in the general case this rotates the azimuthal direction
into the angular direction of relative motion.
Completing these new angular basis definitions to a new

frame fuðradÞ; eðuðradÞÞag obtained by a boost along the
radial direction to comove radially with the four-velocity U
defines a key transitional frame in Marck’s approach
to reducing the equations of parallel transport along a
geodesic

uðradÞ ¼ γk½uðCarÞ þ ν1ceðuðCarÞÞ1�;
¼ cosh αuðCarÞ þ sinh αeðuðCarÞÞ1;

eðuðradÞÞ1 ¼ γk½ν1cuðCarÞ þ eðuðCarÞÞ1�
¼ sinh αuðCarÞ þ cosh αeðuðCarÞÞ1; ð83Þ

where the boost rapidity α is given by

ν1c ¼ tanhα; γk ¼ cosh α ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðr2 þ KÞ

p ; ð84Þ

and eðuðradÞÞ2 and eðuðradÞÞ3 are defined above in Eq. (81).
In compact form we have

eðuðradÞÞa ¼ eðuðCarÞÞβ½R1ðϒÞBðν1Þ�βa; ð85Þ

where with tanhα ¼ ν11 ¼ νðuðradÞ; uðCarÞÞ1 we have

Bðν1Þ ¼ B1ðαÞ: ð86Þ

The notation and expressions for rotations and boosts along
an axis are given in Appendix A.

B. Marck’s frame

The (timelike) geodesic four-velocity U is boosted from
uðradÞ in the direction eðuðradÞÞ3 of the angular motion

U ¼ cosh βuðradÞ þ sinh βeðuðradÞÞ3; ð87Þ

where

cosh β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ r2

Σ

r
; sinh β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − a2cos2θ

Σ

r
: ð88Þ

From this relation one can easily identify the orthogonal
(spatial, azimuthal) direction in this plane,

eðMarÞðUÞ3 ¼ sinh βuðradÞ þ cosh βeðuðradÞÞ3: ð89Þ

Marck showed that a unit vector eðMarÞðUÞ2 orthogonal to
both U and eðMarÞðUÞ3, which is also parallel propagated
along U, arises naturally by normalizing the electric part
fαβUβ of the Killing-Yano 2-form f of the Kerr spacetime
with respect to U. Because this 2-form is so simply
expressed in both the Carter and intermediate frames
(see Appendix A of Ref. [20]), the resulting vector frame
components are obtained by a simple anisotropic rescaling
of the two vector components of U expressed in the form
(87). The normalized electric part of the Killing-Yano
2-form is then

eðMarÞðUÞ2 ¼ − sinΞeðuðradÞÞ1 þ cosΞeðuðradÞÞ2; ð90Þ

where

cosΞ ¼ rffiffiffiffi
K

p sinh β; sinΞ ¼ −
a cos θffiffiffiffi

K
p cosh β: ð91Þ

The last frame vector is then

eðMarÞðUÞ1 ¼ eðMarÞðUÞ2 ×U eðMarÞðUÞ3
¼ cosΞeðuðradÞÞ1 þ sinΞeðuðradÞÞ2: ð92Þ

This rotation in the 2-plane orthogonal to the final boost in
the angular motion direction simply realigns what was
originally the θ direction to be the normal to the plane of
the instantaneous parallel transport rotation while rotating
the radial direction to remain orthogonal to it and within
the plane of the parallel rotation containing the angular
direction of motion.
In compact form we have

eðMarÞðUÞa ¼ eðuðradÞÞβ½Bðν2ÞR3ðΞÞ�βa
¼ eðuðMarÞÞβ½R3ðϒÞBðν1ÞBðν2ÞR3ðΞÞ�βa;

ð93Þ

where

Bðν2Þ ¼ B3ðβÞ; ð94Þ
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with tanh β ¼ ν2
3 ¼ νðU; uðradÞÞ3. The successive boosts

can then be replaced by the direct boost and a Wigner
rotation.
This boosted and then rotated adapted frame

fU; eðMarÞðUÞag is a degenerate Frenet-Serret frame
along U; namely,

DU
dτ

¼ 0;
DeðMarÞðUÞ2

dτ
¼ 0;

DeðMarÞðUÞ1
dτ

¼ T eðMarÞðUÞ3;
DeðMarÞðUÞ3

dτ
¼ −T eðMarÞðUÞ1; ð95Þ

with

T ¼
ffiffiffiffi
K

p

Σ

�
P

r2 þ K
þ aB
K − a2cos2θ

�

¼
ffiffiffiffi
K

p

ðr2 þ KÞðK − a2cos2θÞ ðKEþ axÞ; ð96Þ

the only surviving (spacetime) torsion of the world line,
which reversed in sign describes the scalar angular velocity
of two frame vectors with respect to parallel transport.
The vector angular velocity of the frame is aligned

with the parallel transported third spatial direction in this
frame, i.e.,

ΩðparÞ ¼ −T eðMarÞðUÞ2: ð97Þ

Thus a parallel transported frame is obtained by further
rotating this pair of frame vectors along the world line at the
opposite angular velocity dΨ=dτ ¼ T ,

eðparÞðUÞa ¼ eðMarÞðUÞβR2ð−ΨÞβa: ð98Þ

Introducing the Wigner rotation, this finally becomes

eðparÞðUÞa ¼ eðuðCarÞÞβLβ
a; ð99Þ

where

L ¼ R3ðϒÞBðν1ÞBðν2ÞR3ðΞÞR2ð−ΨÞ
¼ R3ðϒÞBðν3ÞRðWÞ

R ðν1; ν2ÞR3ðΞÞR2ð−ΨÞ: ð100Þ

Figure 1 illustrates the succession of three rotations in
Eq. (100) modulo the relative boosts in the sequence
transforming from the Carter frame to the final parallel
transported frame, identifying the three distinct local rest
spaces in this sequence for comparison purposes.
Note that in the case of equatorial plane motion θ ¼ π=2

where Uθ ¼ 0, the angles ϒ and Ξ vanish so that the inter-
mediate Marck frame remains aligned with the spherical

frame (modulo boosts), and only the final rotation Ψ
remains. From Eq. (61) it follows that K ¼ x2, and in turn
from Eq. (84) we have

cosh α ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðr2 þ x2Þ

p : ð101Þ

FIG. 1. The initial and final rotations required to orient the
spherical frame with the final Marck frame adapted to the plane of
the parallel transport rotation, where the final rotation (Ψ) takes
place. The top panel shows the initial orientation of a spherical
frame in the equatorial plane. The azimuthal vector e3 is first
rotated about the radial vector e1 by the angle ϒ to align it with
the direction of the angular relative velocity. The two successive
boosts to the intermediate Marck frame comoving with the
geodesic have relative velocities spanning the upper plane, where
the resulting Wigner rotation takes place. Then e2 is rotated about
the new e3 by the angle Ξ to align it with the electric part of the
Killing-Yano 2-form, which is the normal to the (lower) parallel
rotation plane, leading to the bottom panel, with the final triad
in bold.
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Finally, from Eq. (88) we find that

sinh β ¼ jxj
r
: ð102Þ

The torsion simplifies to

T ¼ jxj
r2 þ x2

�
Eþ a

x

�
: ð103Þ

Note that the sign of x ¼ L − aE depends on the relative
signs of L and a, i.e., if the orbit is either prograde (same
sign) or retrograde (opposite sign). For example, if a > 0,
then x > 0 (x < 0) for prograde (retrograde) orbits.
We have shown in the previous section how to resolve the

parallel transport equations relative to a boosted observer
frame along the world line in a general spacetime using a
“brute force” approach without relying on the Killing-Yano
2-form essential for Marck’s elegant construction for the
Kerr spacetime. The complication is that in general one
cannot confine the essential rotation to a parallel transported
2-plane but would require a general rotation parametrized by
three angles and a vector angular velocity rather than a single
scalar one. For the Kerr spacetime one simply boosts the
static spherical frame into LRSU and evaluates the parallel
transport angular velocity of the boosted axes. Such a direct
calculation was done for general motion in Ref. [22] and is
not so complicated, but it lacks the geometrical interpretation
of Marck’s construction. Marck’s scalar angular velocity
captures the essential precession of a gyro spin vector with
respect to the celestial sphere at spatial infinity, i.e., the
rotation of the spin vector which accumulates to give a net
change in its orientation over a finite interval of time,
disregarding wandering Wigner rotations in the local rest
space of the gyro.

C. Relationship of the Killing-Yano 2-form
to the axis of rotation

Neglecting the details of the Kerr metric components
which deform them from their flat spacetime values, we can
get a sense of how the 2-plane of the parallel transport
rotation along a timelike geodesic depends on its location,
i.e., how the orientation of the axis of rotation in the
comoving local rest space depends on position. The electric
part of this 2-form as seen in that local rest space defines the
axis of the parallel transport rotation—namely, the direction
of the associated angular velocity.
In the spherical coordinate frame the Killing-Yano

2-form

F ¼ dt ∧ ½−adðr cos θÞ�
þ ½ðr2 þ a2Þrdθ − a2 sin θ cos θdr� ∧ sin θdϕ ð104Þ

has a single electric part term wedged into dt and a magnetic
part consisting of two angular terms. The nonvanishing
magnetic part when a ¼ 0 (coming from the dθ ∧ dϕ term

corresponding to a radial vector) leads to a comoving electric
part vector in LRSU (boosted from that radial magnetic part
vector term) which is perpendicular to the plane of the planar
geodesic motion in the Schwarzschild case, leading to
parallel transport rotation only in that plane in the comoving
local rest space of the geodesic.
On the other hand, the electric part linear in a represents

a constant vertical vector field in the Cartesian coordinates
associated with the spherical coordinate system in the usual
way (z ¼ r cos θ), thus aligned with the axis of rotation of
the black hole and contributing a smaller parallel transport
angular velocity about that vertical direction. The last term
quadratic in a is a higher order angular correction which
grows with angular distance from the equatorial plane,
where it vanishes.

VII. SPIN-PRECESSION FRAMES

In a stationary spacetime one can formulate a precise way
of measuring locally the precession of the spin of a test
gyroscope in geodesic motion with respect to the distant
stars; namely, the celestial sphere at spatial infinity [20–22].
The static observers determine a local reference frame rigidly
linked to the distant celestial sphere in the sense that these
observers see an unchanging distant sky pattern of incoming
photons from spatial infinity. Thus one can establish a
Cartesian frame in the local rest space along each static
observer world line which establishes the local celestial sky,
and the Killing symmetry links that frame to a single
Cartesian frame at spatial infinity. With the additional axial
symmetry and reflection symmetry across the equatorial
plane, the natural Cartesian frame linked to the Boyer-
Lindquist spherical frame is uniquely a candidate for this
link, but off the equatorial plane of the Kerr spacetime,
though not unique (in the case of nonspherical symmetry), it
is the simplest frame to serve this purpose. Spheroidal spatial
coordinates would provide another spherical orthonormal
triad which could be used to introduce a corresponding
Cartesian frame, for example, that would differ from the
Boyer-Lindquist frame except on the equatorial plane.
For a gyro at rest with respect to the static observer grid,

the precession is unambiguous and straightforward to
measure, but for relative motion one has the additional
complication that in the local rest space of the gyro, the
local axes linked to spatial infinity by the incoming null
geodesics from spatial infinity in the static observer local
rest space are distorted by spatial aberration. Boosting
those axes into the local rest space of the gyro enables one
to measure the relative rotation of the spin vector, or
equivalently, boosting the spin vector back to the static
observer rest frame gives the same result (because of the
isometric property of the boost). Of course one can
compare the projection of the spin vector into the static
observer rest space, the spin vector as seen by that observer,
but even for circular motion in flat spacetime, this projected
spin vector does not undergo a uniform precession, instead
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undergoing a periodic tilting (in spacetime) effect to
maintain orthogonality with the four-velocity of the gyro
resulting in a changing spin vector magnitude and orbital-
dependent additional rotation. The traditional Thomas
precession formula for circular orbits, for example,
describes this boosted spin vector precession [28,29].
The Carter spatial frame is azimuthally boosted with

respect to the static observer spherical frame, which in turn
is azimuthally boosted with respect to the Boyer-Lindquist
spherical coordinate normalized frame. The Carter frame is
associated with the Killing tensor and Killing 2-form that in
turn are associated with the separability of the geodesic
equations, and the solution of the equations for Fermi-
Walker transport along those geodesics, the latter of which
describes free fall gyro spin behavior in the timelike case.
The Marck procedure for solving the differential equations
for a parallelly transported frame along geodesics (which is
also a Fermi-Walker frame in this case) relies on a two step
procedure for transforming to the local rest frame of the
geodesic, first boosting the Carter frame along the radial
direction common to all three frames (ZAMO, static,
Carter) to comove radially with the gyro, preserving the
Killing 2-form in this step, then followed by a boost in the
remaining angular direction to comove with the gyro. This
defines his preliminary frame eðMarÞðUÞα, which isolates the
remaining parallel transport rotation to a 2-plane of the first
and last spatial frame vectors, leaving the remaining frame
vector aligned with its spatial normal direction invariant
under parallel transport.
The spin vector of a test gyro moving along such a

geodesic simply has constant components in this final
parallel transported frame. However, to compare this
evolution with the (nonrotating) celestial sphere at spatial
infinity, one needs the Marck frame which is anchored to
the local spherical frame modulo boosts. The Marck frame
vector eðMarÞðUÞ1 is locked to the radial direction er̂ in the
spherical grid of the static observers following the time
lines, differing only by a boost due to the radial motion of
the gyro alone until the final rotational realignment into the
plane of the parallel transport rotation. Along the gyro
geodesic world line, the spherical axes rotate with an orbital
angular velocity with respect to spatial infinity, so one must
subtract this more complicated rotation from the simpler
parallel transport rotation to obtain the net rotation of the
axes with respect to spatial infinity. For equatorial plane
motion this is simple since both the orbital and parallel
transport rotations lie in a 2-plane, and it is a matter of
subtracting the two scalar angular velocities to get the net
angular velocity of precession in the Marck frame. These
matters are discussed in Refs. [20–22].

VIII. ISOLATING CUMULATIVE
PRECESSION EFFECTS

We now discuss the cumulative precession effects on a
test gyroscope moving along an equatorial plane geodesic

orbit. While the bound case has been given much more
attention in the literature and explicit expressions already
exist describing the precession [30–33], the unbound case
has been studied only within certain approximation
schemes; namely, in a post-Newtonian expansion (weak
field and slow motion, in a power series in the reciprocal
of the speed of light, 1=c) and in a post-Minkowskian
expansion (weak field, power series in the gravitational
constant G) [19,34–39].
We evaluate exactly the total spin-precession angle Ψ,

the accumulated azimuthal phase Φ, and the associated
spin-precession invariant [40]

ψ ¼ 1 −
Ψ
Φ
: ð105Þ

For bound orbits these quantities are evaluated between two
successive passages at periastron corresponding to one
period of the radial motion, whereas for unbound (hyper-
boliclike) orbits they are evaluated for the entire scattering
process (from the two asymptotic states at spatial infinity).
We provide in both cases closed form analytical expres-
sions in terms of elliptic functions as well as approximate
expressions which facilitate comparison with known
results. The combined quantity ψ is a sort of average
azimuthal precession rate since the full spin precession with
respect to spatial infinity measured from the perihelion is
just ψΦ.

A. Gyroscope moving along a bound
equatorial orbit

In the case of bound equatorial orbits not captured by the
black hole, the radial motion is periodic and confined
between a minimum radius rper (periastron) and a maxi-
mum radius rapo (apastron). It is convenient to introduce the
relativistic anomaly χ ∈ ½0; 2π� such that

r ¼ Mp
1þ e cos χ

; ð106Þ

with dimensionless semilatus rectum p ¼ 1=up and eccen-
tricity 0 ≤ e < 1 (see, e.g., Ref. [20] for additional details).
The parameters ðup; eÞ are related in turn to the energy and
angular momentum (per unit mass) ðE;LÞ entering the
geodesic equation (59), with E < 1. This relation (106)
with these parameters represents a classical Newtonian
orbit in the Boyer-Lindquist polar coordinates in the
equatorial plane which precesses due to general relativity
according to a function χ rather than the azimuthal angle ϕ
itself.
In terms of χ the rate of gyroscope precession and

azimuthal change are given by
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dϕ
dχ

¼ u1=2p
x̂þ âE − 2upx̂ð1þ e cos χÞ

½1þ u2px̂2ðe2 − 2e cos χ − 3Þ�1=2½1 − 2upð1þ e cos χÞ þ â2u2pð1þ e cos χÞ2� ;

dΨ
dχ

¼ u1=2p
âþ Ex̂

½1 − u2px̂2ð3 − e2 þ 2e cos χÞ�1=2½1þ u2px̂2ð1þ e cos χÞ2� ; ð107Þ

where dΨ=dτ ¼ T is defined in Eq. (103) and

M
dχ
dτ

¼ u3=2p ð1þ e cos χÞ2½1þ u2px̂2ðe2 − 2e cos χ − 3Þ�1=2: ð108Þ

Equation (107), once integrated over a radial period, i.e.,

Φ ¼
Z

2π

0

dϕ
dχ

dχ; Ψ ¼
Z

2π

0

dΨ
dχ

dχ; ð109Þ

then leads to Φ, Ψ, and ψ being expressible in terms of elliptic functions. We find that

Φ ¼ −
κ

â2e2u2p
ffiffiffiffiffiffiffiffiffiffiffiffi
eupx̂2

q
ðbþ − b−Þ

f½L̂ − 2upx̂ð1þ ebþÞ�kþΠðkþ; κÞ − ½L̂ − 2upx̂ð1þ eb−Þ�k−Πðk−; κÞg;

Ψ ¼ −
i
2

κðâþ Ex̂Þ
x̂2ðeupÞ3=2

½kΠðk; κÞ − k̄Πðk̄; κÞ�; ð110Þ

where L̂ ¼ L=M,

κ2 ¼ 4eu2px̂2

1 − ð1 − eÞð3þ eÞu2px̂2
; k� ¼ 2

1þ b�
; b� ¼ 1 − â2up �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − â2

p

â2eup
; k ¼ 2ieupx̂

1þ ið1 − eÞupx̂
1þ ð1 − eÞ2u2px̂2

;

ð111Þ

with the overbar denoting complex conjugation, and where

Πðn;mÞ ¼
Z π

2

0

dz

ð1 − n sin2 zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2 sin2 z

p ð112Þ

is the complete elliptic integral of the third kind [41].
Expanding these expressions in terms of the eccentricity e so that Φ ¼ Φ0 þ e2Φe2 þOðe4Þ and similarly for Ψ and ψ ,

one finds that

Φ
2π

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6up þ 8âu3=2p − 3â2u2p

q

þ e2
3u2pð−1þ 2up þ ð−3þ 22upÞ ffiffiffiffiffiup

p â − 33u2pâ2 þ 13u5=2p â3Þðâ ffiffiffiffiffiup
p −1Þ3

4ð1 − 2up þ â2u2pÞð1 − 6up þ 8âu3=2p − 3â2u2pÞ5=2
þOðe4Þ;

Ψ
2π

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3up þ 2âu3=2p

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6up þ 8âu3=2p − 3â2u2p

q þ e2
3Pðup; âÞðâ ffiffiffiffiffiup

p −1Þ2u2p
4ð1 − 2up þ â2u2pÞð1 − 6up þ 8âu3=2p − 3â2u2pÞ5=2

þOðe4Þ; ð113Þ

where

Pðup; âÞ ¼ 14â5u9=2p þ ð−81up þ 13Þu3pâ4 þ 4u5=2p ð47up − 12Þâ3 þ ð−225u2p − 3þ 68upÞupâ2

þ 2u1=2p ð72u2p − 22up þ 1Þâ − 1 − 42u2p þ 15up: ð114Þ
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Finally,

ψ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3up þ 2âu3=2p

q

−
3

2
e2

ð2â3u5=2p − 3â2u2p − 2âu3=2p þ 4up − 1Þu2pðâ ffiffiffiffiffiup
p −1Þ2

ð1 − 6up þ 8âu3=2p − 3â2u2pÞðâ2u2p − 2up þ 1Þð1 − 3up þ 2âu3=2p Þ1=2
þOðe4Þ; ð115Þ

which correctly goes to zero far from the black hole where
up → 0.

B. Gyroscope moving along an unbound
equatorial orbit

In the case of unbound orbits not captured by the black
hole, Eq. (106) represents a classical Newtonian parabolic
(e ¼ 1) or hyperbolic (e > 1) orbit which precesses due to
general relativity, with a minimal radius rper of closest
approach. We consider only the hyperboliclike orbits of the
latter type resembling a classical scattering process in
which the geodesic path does not circle the black hole
more than once, which occurs as long as the periastron is
not too close to the black hole. Mathematically this
corresponds to ϕðχðmaxÞÞ < π. We compare the direction
of the spin of the gyroscope before starting its gravitational
interaction with the black hole (i.e., at τ → −∞) with that
after their interaction (i.e., at τ → ∞). The relativistic
anomaly now varies in the range χ ∈ ½−χðmaxÞ; χðmaxÞ�,
where χðmaxÞ ¼ arccosð−1=eÞ.
For computational purposes it is convenient to para-

metrize the orbit instead in terms of the dimensionless
inverse radial variable u ¼ M=r such that

�
du
dτ

�
2

¼ 2x̂2

M2
u4ðu − u1Þðu − u2Þðu − u3Þ;

dϕ
dτ

¼ 2x̂
Mâ2

u2
u4 − u

ðu − uþÞðu − u−Þ
: ð116Þ

Here u1 < u2 < u3 are the ordered roots of the equation

u3 − ðx̂2 þ 2â Ê x̂þâ2Þ u2

2x̂2
þ u
x̂2

þ Ê2 − 1

2x̂2
¼ 0; ð117Þ

whereas

u� ¼ M
r�

; u4 ¼
L
2x

; ð118Þ

for hyperbolic orbits u1 < 0 < u ≤ u2 < u3, with u2 cor-
responding to the distance of closest approach.
The rates of gyroscope precession and azimuthal change

are given by

dϕ
du

¼ �
ffiffiffi
2

p

â2
u4 − u

ðu − uþÞðu − u−Þ
×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu − u1Þðu2 − uÞðu3 − uÞp ;

dΨ
du

¼ � âþ Ex̂ffiffiffi
2

p
x̂ð1þ x̂2u2Þ

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðu − u1Þðu2 − uÞðu3 − uÞp ; ð119Þ

which can be integrated in terms of elliptic functions. Since
the scattering process is symmetric with respect to the
closest approach distance, the total change results from
twice the integration between 0 and u2, i.e.,

Φ ¼ 2

Z
u2

0

dϕ
du

du; Ψ ¼ 2

Z
u2

0

dΨ
du

du; ð120Þ

where we have assumed that Φðu2Þ ¼ 0 ¼ Ψðu2Þ and that
the plus sign must be selected in Eq. (119). The following
explicit expressions in terms of elliptic functions hold,

Φ ¼ −
4

ffiffiffi
2

p

â2ðuþ − u−Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3 − u1

p
�
u4 − uþ
u1 − uþ

ðΠðα; βþ; mÞ − Πðβþ; mÞÞ − u4 − u−
u1 − u−

ðΠðα; β−; mÞ − Πðβ−; mÞÞ
�
;

Ψ ¼ −i
ffiffiffi
2

p
mðâþ Ex̂Þ

x̂2ðu2 − u1Þ3=2
½βðΠðα; β; mÞ − Πðβ; mÞÞ − β̄ðΠðα; β̄; mÞ − Πðβ̄; mÞÞ�; ð121Þ

where

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u1
u3 − u1

r
; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−u1

u2 − u1

r
; β� ¼ u2 − u1

u� − u1
; β ¼ ix̂ðu2 − u1Þ

1 − ix̂u1
; ð122Þ
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and

Πðφ; n; kÞ ¼
Z

φ

0

dz

ð1 − n sin2 zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 z

p ; ð123Þ

with Πðπ=2; n; kÞ ¼ Πðn; kÞ, is the incomplete elliptic
integral of the third kind [41].
For the case of “simple” scattering orbits under consid-

eration here, the total change in the azimuthal angle is less
than 2π (less than a single revolution about the black hole).
The scattering angle of the whole process can then be
defined as

1

2
χscat ¼

1

2
Φ −

π

2
ð124Þ

with χscat < π.
To compare with the existing literature (see, e.g.,

Ref. [35]), we define an energy-related variable Ē

Ē ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p
ð125Þ

in place of the energy per unit mass E and a combined
(dimensionless) variable

α ¼ 1ffiffiffiffiffiffiffiffiffiffi
2Ēj2

p ; ð126Þ

defined through Ē and the (dimensionless) angular momen-
tum per unit mass j≡ L̂ ¼ L=M and used in turn in place
of Ē. Once all factors of c are restored,

Ē → Ēc2; j →
j
c
; ð127Þ

one can perform the post-Newtonian expansion of Eq. (119)
and integrate order by order by taking theHadamard’s partie
finie, following the prescriptions of Ref. [35] (see Sec. III B
there). The final result forΨ ¼ Ψ0 þ âΨâ þ â2Ψâ2 þOðâ3Þ
then has the form of a power series in 1=j, that is,

1

2
Ψ0 ¼ BðαÞ þ 1

j2

�
3

2
BðαÞ þ 1

2

ð1þ 3α2Þ
αðα2 þ 1Þ

�
þ 1

j4

�
3ð2þ 35α2Þ

8α2
BðαÞ þ ð−1þ 67α2 þ 181α4 þ 105α6Þ

8α3ðα2 þ 1Þ2
�

þ 1

j6

�
3ð−1þ 140α2 þ 770α4Þ

16α4
BðαÞ þ 3þ 193α2 þ 5913α4 þ 18597α6 þ 19740α8 þ 6930α10

48α5ðα2 þ 1Þ3
�
þOð1=j8Þ;

1

2
Ψâ ¼ −

1

j3

�
3BðαÞ þ ð1þ 3α2Þ

αðα2 þ 1Þ
�
−

1

j5

�
3ð3þ 35α2Þ

2α2
BðαÞ þ ð71þ 184α2 þ 105α4Þ

2αðα2 þ 1Þ2
�
þOð1=j7Þ;

1

2
Ψâ2 ¼

1

j4

�
3

2
BðαÞ þ ð2þ 3α2Þ

2αðα2 þ 1Þ
�
þ 1

j6

�
9ð4þ 35α2Þ

4α2
BðαÞ þ 2þ 228α2 þ 561α4 þ 315α6

4α3ðα2 þ 1Þ2
�
þOð1=j8Þ; ð128Þ

where

BðαÞ ¼ arctanðαÞ þ π

2
: ð129Þ

Similarly

1

2
Φ0 ¼ BðαÞ þ 1

j2

�
3BðαÞ þ ð2þ 3α2Þ

ðα2 þ 1Þα
�
þ 1

j4

�
15ð1þ 7α2Þ

4α2
BðαÞ þ 81þ 190α2 þ 105α4

4αðα2 þ 1Þ2
�

þ 1

j6

�
105ð3þ 11α2Þ

4α2
BðαÞ þ 256þ 3663α2 þ 10143α4 þ 10185α6 þ 3465α8

12α3ðα2 þ 1Þ3
�
þOð1=j8Þ;

1

2
Φâ ¼ −

1

j3

�
4BðαÞ þ 2

ð1þ 2α2Þ
ðα2 þ 1Þα

�
−

1

j5

�
12

ð1þ 7α2Þ
α2

BðαÞ þ ð1þ 65α2 þ 152α4 þ 84α6Þ
α3ðα2 þ 1Þ2

�
þOð1=j7Þ;

1

2
Φâ2 ¼

1

j4

�
3

2
BðαÞ þ ð2þ 3α2Þ

2ðα2 þ 1Þα
�
þ 1

j6

�
3ð11þ 70α2Þ

2α2
BðαÞ þ 4þ 167α2 þ 383α4 þ 210α6

2α3ðα2 þ 1Þ2
�
þOð1=j8Þ: ð130Þ

The above expression forΦ0 agrees with Eqs. (45) and (46)
(in the point-particle limit ν ¼ 0) of Ref. [35].

IX. CONCLUDING REMARKS

All of the relevant observer-adapted frames needed to
construct geometrically motivated frames along a general

timelike geodesic in a Kerr black hole spacetime are
described in terms of combinations of boost operations
applied to the natural orthonormal frames associated with
Boyer-Lindquist coordinates. Thus Marck’s seemingly
arbitrary recipe for obtaining a parallel transported frame
along timelike geodesics acquires a nice interpretation in
terms of identifying a parallel transported axis of rotation
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and an angular velocity of rotation in the 2-plane orthogo-
nal to it, anchored radially to the usual coordinate grid of
the spacetime. The sequence of boosts and rotations needed
to interpret Marck’s frame has now been made explicit.
Furthermore, we have shown how to bypass Marck’s
procedure using a suitable combination of boosts and
(associated) Wigner rotations starting from any given
family of fundamental observers. We have explicitly given
the connection between the ZAMO and Carter observer-
adapted frames and the parallel transported one.
Finally, we have discussed the cumulative precession

effects of a test gyroscope moving along both bound and
unbound equatorial plane geodesic orbits by evaluating the
total spin-precession angle and the cumulative azimuthal
phase as well as the associated spin-precession invariant.
The latter is a new addition to the current literature, which
also plays an important role in the physics of a two-body
system with spin. Indeed, in this case one has a deflection
of the orbit (by the orbital” scattering angle χ) and a

rotation of the spin vector (by the spin” rotation angle ψ) in
the full scattering process.

APPENDIX A: BOOST AND
ROTATION MATRICES

The six-dimensional Lie algebra of the Lorentz matrix
group is generated by 4 × 4 matrices corresponding to the
components of mixed second rank tensors which are
antisymmetric when the flat Minkowski metric [component
matrix ðηαβÞ ¼ diagð−1; 1; 1; 1Þ] is used to lower or raise
indices to a completely covariant or covariant form. Six
linearly independent matrices from this set,

Lαβ ¼ ð½Lαβ�γδÞ; ½Lαβ�γδ ¼ δγδαβ ¼ 2δ½γαδδ�β; ðA1Þ

form a basis of the matrix Lie algebra. Three rotation
generators are

J1 ¼ ðL23
α
βÞ ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 −1
0 0 1 0

1
CCCA; J2 ¼ ðL31

α
βÞ ¼

0
BBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

1
CCCA; J3 ¼ ðL12

α
βÞ ¼

0
BBB@

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

1
CCCA;

ðA2Þ
and three boost generators are

K1 ¼ ðL01
α
βÞ ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; K2 ¼ ðL02

α
βÞ ¼

0
BBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCCA; K3 ¼ ðL03

α
βÞ ¼

0
BBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1
CCCA:

ðA3Þ

The rotation and boost matrices are obtained exponen-
tiating linear combinations of these two subsets of the Lie
algebra, collapsing the exponential series to three terms
from the cubic identities

ðniJiÞ3 ¼ −niJi; ðniKiÞ3 ¼ niKi ðA4Þ
satisfied for a unit vector δijninj ¼ 1. One finds that

Rðθ; niÞ ¼ eθn
iJi

¼ Idþ sin θðniJiÞ − ðcos θ − 1ÞðniJiÞ2;
Bðα; niÞ ¼ eαn

iKi

¼ Idþ sinh αðniKiÞ þ ðcoshα − 1ÞðniKiÞ2:
ðA5Þ

These represent an active rotation by an angle θ of the
2-plane orthogonal to ni in space (in the direction related to

ni by the right-hand rule), and an active boost by the
rapidity α along the spatial velocity νi ¼ tanh αni. The
boost may instead be parametrized by the relative velocity
components νi themselves,

BðνÞ ¼ Bðα; niÞ: ðA6Þ

The special rotations and boosts along an axis are particu-
larly useful. Letting RiðθÞ ¼ expðθJiÞ, BiðαÞ ¼ expðαKiÞ,
one has explicitly

R3ðθÞ ¼

0
BBB@

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

1
CCCA; ðA7Þ

and permutations thereof, and similarly
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B1ðαÞ ¼

0
BBB@

cosh α sinh α 0 0

sinhα coshα 0 0

0 0 1 0

0 0 0 1

1
CCCA; ðA8Þ

which equalsBðhν1; 0; 0iÞwith ν1 ¼ tanhα. Note thatR3ðθÞ
is an active counterclockwise rotation of the 1-2 plane;
namely, rotating the first frame vector towards the second.

APPENDIX B: PARALLEL TRANSPORTED
FRAMES ALONG GEODESICS IN ABSENCE

OF KILLING-YANO SYMMETRY

In absence of a Killing-Yano tensor, Marck’s recipe
cannot be applied, and one has to rely to the general
procedure outlined in Sec. VA. We consider below some
simple examples for which the solutions to the timelike
geodesic equations are known analytically.

1. The Gödel spacetime

Gödel spacetime [42,43] is a stationary axisymmetric
solution of Einstein’s equations with separable geodesics.
One can start from a natural observer family with its
adapted orthonormal frame, then boost it along a geodesic
and rotate it so that it is parallel transported.
The spacetime metric in cylindrical-like coordinates (t, r,

ϕ, z) adapted to the stationary axisymmetry about any point
in this homogeneous spacetime is given by

ds2 ¼ 2

ω2
½−dt2 þ dr2 þ sinh2rð1 − sinh2rÞdϕ2

þ 2
ffiffiffi
2

p
sinh2rdtdϕþ dz2�: ðB1Þ

This nonvacuum spacetime has a dust fluid source
with energy-momentum tensor T ¼ ρu ⊗ u, with con-
stant energy density ρ proportional to the cosmological
constant Λ ¼ −ω2 ¼ −4πρ and unit timelike four-velocity
u ¼ ðω= ffiffiffi

2
p Þ∂t aligned with the time coordinate lines. We

assume that ω > 0 to describe an intrinsic counterclock-
wise rotation of the spacetime around the z axis.
The geodesic equations are separable and the covariant

four-velocity 1-form of a general timelike geodesic has the
following separated form:

U♭ ¼ −Edtþ Ldϕþ bdzþ Urdr; ðB2Þ

where E, L, and b are Killing constants and

U2
r ¼

1

ω2sinh2r

�
Acosh2rþ B þ C

cosh2r

�
; ðB3Þ

while the constants A, B, and C are given by

A ¼ −½ω2ðb2 þ E2Þ þ 2�;
B ¼ −Aþ 2ω2EðEþ

ffiffiffi
2

p
LÞ;

C ¼ −ω2ð
ffiffiffi
2

p
Eþ LÞ2; ðB4Þ

with Aþ B þ C ¼ −ω2L2. Turning points for radial
motions are the roots of the equation Ur ¼ 0, i.e.,
r ¼ r� such that

cosh2r� ¼ −B �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2A
ðB5Þ

with r− ≤ r ≤ rþ. Circular geodesics have r− ¼ rþ.
We start with an orthonormal frame adapted to the static

observers with four-velocity u ¼ e0 ¼ ðω= ffiffiffi
2

p Þ∂t,

e1 ¼
ωffiffiffi
2

p ∂r; e3 ¼
ωffiffiffi
2

p ∂z;

e2 ¼ ω tanh r

�
∂t þ

1ffiffiffi
2

p
sinh2r

∂ϕ

�
; ðB6Þ

with respect to which the orthonormal components ofU are

U ¼ ωEffiffiffi
2

p e0 þ
ωUrffiffiffi

2
p e1 þ

ω½L −
ffiffiffi
2

p
Esinh2ðrÞ�ffiffiffi

2
p

sinhðrÞ coshðrÞ e2 þ
bωffiffiffi
2

p e3:

ðB7Þ
Setting b ¼ 0 confines the geodesic motion to a plane
orthogonal to the axis of cylindrical symmetry, allowing the
vector e3 orthogonal to these planes to be parallel trans-
ported along U so that the situation is exactly analogous to
the case of equatorial plane motion in Kerr, where parallel
transport rotation is confined to the equatorial plane
directions. Boosting the frame (B6) into LRSU leads to

Ea ¼ ea þ
U þ e0

1 −U · e0
ðU · eaÞ; ðB8Þ

where E3 ¼ e3 is invariant. Rotating this frame around E3

by an angle βðrÞ using the radial coordinate as a parameter
along the geodesic leads to a parallel transported frame
fFag,

F1 ¼ cos βE1 þ sin βE2;

F2 ¼ − sin βE1 þ cos βE2;

F3 ¼ E3: ðB9Þ
For noncircular orbits where r can be used to para-
metrize the orbit, one finds that the parallel transport angle
satisfies

dβ
dr

¼ 1

ωsinh2rUr

�
2sinh2r −

ffiffiffi
2

p
ωðEþ

ffiffiffi
2

p
LÞ

þ ω

cosh2r
ðLþ

ffiffiffi
2

p
EÞ

�
; ðB10Þ
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which requires piecing together continuously the solutions for the half of the orbit where r is increasing with those for the
second half of the orbit where r is decreasing, during one oscillation in the radial coordinate from its minimum to maximum
value and back.
Remarkably this can be integrated to find, up to an additive constant,

β ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2E2 þ 2

p arcsin

�
Uðr; rþÞ þ Uðr; r−Þ

Uðrþ; r−Þ
�
− arctan

�
sinh rþ
sinh r−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðr; r−Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðrþ; rÞ

p
�

þ 1

2
arctan

�
cosh2rþUðr−; rÞ þ cosh2r−Uðrþ; rÞ
2 cosh rþ cosh r−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðr; r−ÞUðrþ; rÞ

p
�
; ðB11Þ

where

Uðr1; r2Þ ¼ cosh2r1 − cosh2r2: ðB12Þ

In the limit r → rþ we find that

βðrþÞ ¼
π

4

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2E2 þ 2
p − 3

�
; ðB13Þ

while in the limit r → r−

βðr−Þ ¼ −
π

4

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2E2 þ 2
p − 1

�
; ðB14Þ

so

βðrþÞ þ βðr−Þ ¼ −
π

2
ðB15Þ

and

βðrþÞ − βðr−Þ ¼
πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2E2 þ 2
p − π: ðB16Þ

However, for general motion b ≠ 0, the absence of a
Killing-Yano tensor leaves only the brute force approach to
finding a parallel transported frame. The boosted frame
along the geodesic is still given by Eq. (B8), but with the
additional term U · e3 ¼ ωb=

ffiffiffi
2

p
≠ 0. First one needs to

rotate the frame so that E3 becomes the parallel transported
vector and then perform an additional rotation about that
direction to fix the remaining two vectors. Starting from a
triad of orthonormal vectors parametrized by three Euler
angles θiðrÞ,

ðH1H2H3Þ ¼ ðE1E2E3ÞRðθ1; θ2; θ3Þ;
Rðθ1; θ2; θ3Þ ¼ R3ðθ1ÞR1ðθ2ÞR3ðθ3Þ; ðB17Þ

where here RiðθÞ refer to the obvious three-dimensional
submatrices of those of Appendix A. The first two angles
(θ1, θ2) determine the orientation of the axis of parallel
transport rotation, while the last angle describes the rotation
in the orthogonal 2-plane. The ordinary differential equa-
tions along the geodesic for these angles set the Lie algebra

derivative of the rotation matrix equal to the parallel
transport angular velocity in the comoving frame [see
Eq. (75)], where the proper time derivative is converted
into a derivative with respect to r using the chain rule
d=dτ ¼ Urd=dr ¼ ðω2=2ÞUrd=dr

ðdR=dτR−1Þab ¼ ϵabcΩc: ðB18Þ
Evaluating the explicit frame components of the angular
velocity (B18) with respect to the frame (B8), one finds the
system

Ω1 ¼ −
ω3bUrffiffiffi

2
p ðωEþ ffiffiffi

2
p Þ

¼ sin θ2 sin θ3
dθ1
dτ

þ cos θ3
dθ2
dτ

;

Ω2 ¼ −
ω3b

ðωEþ ffiffiffi
2

p Þ sinh 2r ½
ffiffiffi
2

p
L − Eðcosh 2r − 1Þ�

¼ sin θ2 cos θ3
dθ1
dτ

− sin θ3
dθ2
dτ

;

Ω3 ¼ ω2L
cosh 2r − 1

þ ω2ðLþ ffiffiffi
2

p
EÞ

cosh 2rþ 1

− ω

�
1þ ω2b2ffiffiffi

2
p ðωEþ ffiffiffi

2
p Þ

�

¼ dθ3
dτ

þ cos θ2
dθ1
dτ

: ðB19Þ

This procedure could have been used for the Kerr
spacetime, but the required equations for the three Euler
angles are more complicated by the fact that they depend
explicitly on the two nonignorable coordinates (r, θ) rather
than just r alone. Unfortunately, in either case they are still
too complicated to be solved analytically.

2. The Kasner spacetime

Another illustrative example is the Kasner vacuum
spacetime [44], with metric written in Cartesian-like
coordinates (t, x, y, z)

ds2 ¼ −dt2 þ t2p1dx2 þ t2p2dy2 þ t2p3dz2; ðB20Þ
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where the constant parameters pi (i ¼ 1, 2, 3) satisfy the
relations

p1 þ p2 þ p3 ¼ 1 ¼ p2
1 þ p2

2 þ p2
3: ðB21Þ

Here the natural “fiducial observers” are the comoving
observers following the time coordinate lines (at fixed
values of the spatial coordinates) with four-velocity e0 ¼ ∂t
and their associated orthonormal triad is

ea ¼ t−pa∂a; ða ¼ 1; 2; 3Þ: ðB22Þ

This frame is parallel transported along the temporal
geodesic world lines

∇e0ea ¼ 0: ðB23Þ

The general timelike geodesics are characterized by the
four-velocity U given by

U ¼ Utdtþ pxdxþ pydyþ pzdz; ðB24Þ

where

Ut ¼ −Ut ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t−2p1p2

x þ t−2p2p2
y þ t−2p3p2

z

q
;

ðB25Þ

and with px, py, pz (Killing) constants. As above, one can
form a frame adapted to U by boosting the comoving
observer adapted frame along U,

Ea ¼ ea þ
U þ e0

1 −U · e0
ðU · eaÞ; ðB26Þ

where now

U · e0 ¼ −Ut; U · ea ¼ t−papxa: ðB27Þ

The same Euler angle approach as in the previous case can
be taken, except here the explicit equations are much more
complicated because of the time dependence of the space-
time metric.

3. de Sitter spacetime

Finally, consider the de Sitter spacetime with metric
written in Cartesian-like coordinates (t, x, y, z)

ds2 ¼ −dt2 þ e2Htδijdxidxj; ðB28Þ

satisfying the Einstein’s equations with cosmological
constant Λ ¼ 3H2. The above line element is actually
associated with the part of de Sitter’s spacetime with
constant positive curvature only.
The static observers have four-velocity e0 ¼ ∂t and

associated orthonormal frame

ea ¼ e−Ht∂a; ða ¼ 1; 2; 3Þ: ðB29Þ

It is easy to show that this frame is parallel propagated
along the geodesics

U ¼ Ut∂t þ e−2HtCi∂i; ðB30Þ

where Ci are Killing constants and

Ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2HtδijCiCj

q
: ðB31Þ

In fact, it is enough to boost the frame (B29) along U, i.e.,

Ea ¼ ea þ
U þ e0

1 −U · e0
ðU · eaÞ ðB32Þ

with

U · e0 ¼ −Ut; U · ea ¼ e−HtCa: ðB33Þ
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