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We consider the standard problem of observational astronomy, i.e., the observations of light emission
from a distant region of spacetime in general relativity. The goal is to describe the changes between the
measurements of the light performed by a sample of observers slightly displaced with respect to each other
and moving with different 4-velocities and 4-accelerations. In our approach, all results of observations can
be expressed as functions of the kinematic variables, describing the motions of the observers and the
emitting bodies with respect to their local inertial frames, and four linear bilocal geodesic operators,
describing the influence of the spacetime geometry on light propagation. The operators are functionals of
the curvature tensor along the line of sight. The results are based on the assumption that the regions of
emissions and observations are sufficiently small so that the spacetime curvature effects are negligible
within each of them, although they are significant for the light propagation between them. The new
formulation provides a uniform approach to optical phenomena in curved spacetimes and, as an
application, we discuss the problem of a fully relativistic definition of the parallax and position drifts
(or proper motions). We then use the results to construct combinations of observables which are completely
insensitive to the motion of both the observer and the emitter. These combinations by construction probe
the spacetime geometry between the observation and emission regions and in our formalism we may
express them as functionals of the Riemann tensor along the line of sight. For short distances one of these
combinations depends only on the matter content along the line of sight. This opens up the possibility to
measure the matter content of a spacetime in a tomographylike manner irrespective of the motions of the
emitter and the observer.
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I. INTRODUCTION

In the previous paper [1] the expressions for the position,
redshift, Jacobi matrix, luminosity and angular distance
drift, valid in any spacetime, have been derived assuming
only that light propagation can be described using the
geometric optics approximation. In general relativity, this
simply means that light or gravitational radiation follows
the null geodesics and does not influence the spacetime
geometry [2,3]. This paper extends the results of the
previous one by including the GR corrections to the
parallax and reformulates all derivations in a simple and
convenient, geometric way. We approach here in a general
way the typical situation in observational astronomy: in a
region of spacetime, whose size is small with respect to the
spacetime curvature scale, we have one or more bodies
emitting electromagnetic radiation, called emitters or
sources. The region will act like a “stage,” where various
physical processes lead to the emission of radiation from
certain points in the spacetime. Depending on the details of

the situation the sources can be considered infinitesimally
small points or extended luminous objects. They may move
through the spacetimewith arbitrary, not necessary geodesic
motion and their emission may be continuous or pulsed. Far
away, in another small region (the “auditorium”) this
radiation is received by a number of observers, again moving
in an arbitrary way. Both regions can be considered effec-
tively flat due to their size, but the spacetime between them
cannot. The observers register the moment of receiving a
signal, measured by their proper time, and the direction from
which they have seen it coming (the position on the sky).
They are also able to compare these positions between each
other and measure the rate of change of that position across
the sky in their proper time (the position drifts, or the proper
motions in astronomical terminology).
All observables in question obviously depend on the

motions of both the sources and the observers, giving rise to
the well-known effects of the Bradley (or stellar) aberration,
parallax, relativistic time dilation etc. In a flat spacetime,
they are easy to understand within the framework of special
relativity. However, in a general, curved spacetime the
results of observations will certainly depend also on the
geometry of the spacetime in a nontrivial way. Recall that
gravity affects the light rays by the gravitational ray
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bending, which results in gravitational lensing, i.e., the
distortion and (de)magnification of the images in the
background, as well as the delays in the electromagnetic
signal arrival times. We may, therefore, expect it to affect
the position drift effects (by the position- and time-
dependent light bending and delays) as well as the parallax.
Thus all results of observations registered by the observers
will inevitably contain contributions from the momentary
motions of both the observer and the emitter as well as
various effects of light propagation in a curved spacetime.
The goal of this paper is to understand the dependence of
these results on the spacetime geometry and the motions of
the observers and sources in the most general situation.
The key observation from the theoretical point of view is

that if the two regions in question are sufficiently small, then
the influence of the spacetime geometry on light propagation
can be understood using the first order geodesic deviation
equation around a null geodesic. Geometrically the problem
becomes the question of the behavior of null geodesics
contained in a narrow, 4-dimensional tube built around an
arbitrary chosen, fiducial null geodesic connecting both
regions. Irrespective of the global spacetime geometry,
the geometry within the narrow connecting tube is close
to the flat Minkowski geometry plus small corrections due to
the curvature [4]. These corrections affect the null geodesics
and produce the well-known optical effects of linear shape
distortions, magnification etc. [5,6]. As we will show in this
paper, thiswayof conceptualizing thegeometric optics inGR
has many advantages: mathematically all resulting effects of
light propagation can be encoded in four linear mappings, or
bitensors, called the bilocal geodesic operators, that map the
tangent space on one side of the connecting geodesic to the
tangent space on the other side. Thanks to the geodesic
deviation equation these bilocal mappings can be expressed
as functionals of the Riemann curvature tensor along the null
geodesic. They can be defined covariantly, without invoking
any particular coordinate system or frame. They relate the
behavior of null geodesics near the observer’s and emitter’s
end of the narrow tube. Once these mappings are known,
including the effects of motions of the observer and the
sources is then fairly straightforward, since both the stage and
the auditorium are effectively flat regions: we simply need to
apply the machinery of special relativity formulated in a
geometric manner to calculate the observables. If we addi-
tionally assume that we may use the distant observer
approximation, in which the perspective distortions are
absent and the light cone structure of the spacetime is
simplified, we find out that only a part of the four bilocal
geodesic operatormatters. The relevant information turns out
to be included in two optical operators, constructed in a
simple way from the bilocal geodesic operators. The first of
them is the well-known Jacobi operator, relating a small
deviation of the direction between two close null geodesics
passing through the observation point to the transverse
spatial distance between the same geodesics further away.

The second one, the emitter-observer asymmetry operator, is
related to the parallax effects and the position drift. It has a
more complicated geometric interpretation which we shall
elucidate in this paper. The natural domains of both operators
are appropriate quotient spaces whose elements represent the
null geodesics in a reparametrization-invariant way.
The advantage of this approach is that the whole problem

can be formulated in a completely covariant and frame-
independent way. Therefore in the resulting expressions for
observables, we can clearly separate the dependence on the
spacetime geometry (via the curvature along the line of
sight) and the dependence on the momentary motions (i.e.,
the exact positions, the 4-velocities and the 4-accelerations
of the emitter and the observer with respect to their local
inertial frames). In the derivations we do not refer to any
external structures like a 3þ 1 splitting of the spacetime,
preferred frames such as the statistical isotropy frames, a
background (conformal) metric, or (conformal) Killing
vectors. In general relativity motions are not absolute, so
it is possible to derive expressions for observables without
invoking any fixed, external reference frames provided this
way. Moreover, since we consider geodesics displaced in
all 4 dimensions, including time, the formalism includes
also the time dependence of the observables, i.e., the drift
effects.
a. Applications. The most straightforward application of

the mathematical machinery developed in this paper is the
study of the parallax and the position drift effects in general
relativity and cosmology. Formulas derived here express all
possible observables in terms of the optical operators.
These operators, in turn, are given by solutions of a matrix
ordinary differential equation (ODE) with the curvature
tensor along the line of sight playing the role of the input
data. Given a single null geodesic in a spacetime, obtained
exactly, perturbatively or by numerical integration, we may
then integrate the appropriate matrix ODE’s. The solution
defines then two bilocal optical operators, which encode all
the relativistic light bending effects near the null geodesic.
The parallax and the position drift (proper motion) can be
then calculated easily given the details of the motions of the
source and the observer, i.e., their momentary 4-velocities
and the observer’s 4-acceleration.
This method of calculating the drift and the parallax is

particularly useful in numerical relativity since the problem
of position drift in a numerically evolved spacetime becomes
a question of solving a number of linear ODE’s using
geometric data collected along a null geodesic. The problem
of the position drift and parallax in the context of cosmo-
logical distances has recently been considered by many
authors in the context of so-called “real-time cosmology”
[7–9]: it has been shown that the position and redshift drifts
provide an additional set of observable data we may use to
probe large-scalematter flows, inhomogeneities in thematter
distributions and constraint this way cosmological models
[7,8,10–16].Moreover, numerical relativistic simulations are
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currently becoming one of the most important tools of
theoretical cosmology [17–27]. While the null geodesic
tracking is a fairly standard problem in numerical relativity
[28,29], extracting the position drift effects is not. It is, of
course, possible to do it using ray tracing together with the
shooting method: we begin with one null geodesic connect-
ing the source and the observer and then search by trial and
error for another one, connecting observer’s and emitter’s
worldline at a slightly later moment. This procedure is,
however, rather cumbersome, while the results of this paper
and [1] offer a relatively simple method to do it.
We also note that the formulation of geometric optics

presented here offers a uniform theoretical approach to
various optical phenomena connected with light propaga-
tion in a curved spacetime. In particular, since the gravi-
tational lensing, the parallax effects and the position drift
effects are all within reach of the framework described
above, it offers the possibility to study general and non-
perturbative relations between them, valid independently of
the details of the spacetime geometry. As an example, in
Sec. IV we use the optical operator-based approach to
compare and contrast various definitions of parallax in the
context of general relativity appearing in the literature and
point out their relation to the position drift. We also apply it
to study the behavior of the gravitational lensing, the
parallax and the drift effects in the vicinity of a caustic,
noting their simultaneous blowup in the general case.
Finally, a less obvious application is connected with the

longstanding problem of determining the spacetime geom-
etry from the optical observations [30,31]. Assume that a
known physical process takes place on the stage, such as a
type Ia supernova explosion, emission of gravitational
waves by a binary system, or even less energetic ones
like a simple motion of one or more luminous bodies. An
observer in the auditorium region identifies it and performs
a number of observations using various auxiliary observers
contained within the auditorium region. It is assumed that
the details of the positions and motions of those auxiliary
observers with respect to a local inertial frame are known.
The observations do not have to be momentary, in general,
they will also involve the time variations of the standard
observables. The observer then compares the results of all
these observations with the (inferred) course of events in
the stage region, as described in the emitter’s own frame.
The results will obviously depend on the relative motions
of the observers and the emitter and their motion with
respect to the gravitational field. In standard astronomical
or cosmological measurements, such as determining the
redshift or luminosity distance, this dependence must be
taken into account when interpreting the observational data.
Nevertheless, as we will see, it is possible to craft certain
observational strategies and define specific combinations of
observables inwhich the dependence onmomentarymotions
on both sides cancels out completely. These combinations
depend only on the geometry of the spacetime between the

two regions. Since in our formalism the dependence of the
observables on the momentary motions is explicit, finding
these combinations is rather straightforward. It is also easy to
show that they canbeexpressed as functionsof the twooptical
operators, which in turn constitute fairly simple functionals of
theRiemann tensor. Therefore these combinations effectively
probe the value of the curvature along the line of sight,
allowing this way to discriminate between various models of
the spacetimegeometry or providing direct information about
the tidal forces or the mass distribution within the connecting
tube. Measurements of this kind may be called direct optical
measurements of curvature. An example of such measure-
ment, based on the notions of parallax distance and angular
diameter distance, is described in Sec. V.
b. Limits of applicability. We assume that signal propa-

gation can be treated within the geometric optics approxi-
mation. This means that we require the radiation
wavelength to be much smaller than the size of the regions
considered, and therefore much smaller than the curvature
radius scale of the whole spacetime, and that the intensity of
the radiation is small enough that its contribution to the
stress-energy tensor does not disturb the underlying space-
time geometry [2,3]. Wave effects can be then added as
small, frequency-dependent corrections if necessary [32].
On top of that, we assume that the width of the connecting
tube is small with respect to the curvature radius, which
means that the first order geodesic equation approximation
is valid for those geodesics connecting the two regions
which are contained within the tube. This assumption holds
if the curvature is small with respect to the width of the tube
and roughly constant across each of its cross sections,
although it may vary strongly and rapidly along the tube.
The tube itself may be arbitrary long and it may also pass
through strongly curved regions of spacetime.
We will focus in this paper on the case of regions

positioned sufficiently far away that we may apply the
distant observer approximation. Within this approximation,
we assume that the relation between null tangent vector and
the observed position of an object on the observer’s sky can
be linearized around the fiducial geodesic and that the
condition for geodesics to be null can be linearized as well.
In a flat spacetime, these assumptions work very well when
the emitter is positioned sufficiently far away from the
observers as measured in the observer’s frame. In a nonflat
spacetime, with strong lensing between the two regions
considered, the applicability of this approximation is a
more complicated issue and we discuss their limits of
validity in more detail in Sec. III A. In most astrophysical
applications of GR, we expect the distant observer approxi-
mation to work fairly well. Note also that the position drift
formula (75) as a formula for the momentary proper motion
holds independently of the distant observer approximation,
as explained in Sec. IV D.
Note that we only linearize the equation for neighboring

geodesics and the expressions for observables in the three
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transverse directions, but not along the connecting tube. This
means that all the curvature effects (lensing, signal delays
etc.) along the connecting tube are considered exactly,
without any approximations. In particular, the formalism
captures the inherently nonlinear way the curvature correc-
tions accumulate as light passes through various regions of
the spacetime.
Throughout this work, we assume that the signals are of

electromagnetic nature. However, the results should also
apply to the gravitational radiation as long as other
assumptions listed above hold as well. Most results should
also hold in any other, modified theory of gravity as long as
the signal propagation follows the null geodesics of a
Lorentzian metric, with the only exception of the results of
Sec. V, in which we make use of the Einstein equations.
c. Structure of the paper. The paper is structured as

follows. In the next section, we formulate the physical
problem and introduce the necessary mathematical machi-
nery, including the displacement vectors, direction
deviation vectors and the first order geodesic deviation
equation which connects those vectors in both regions. We
define the bilocal geodesic operators obtained from the
general solution of the geodesic deviation equation, explain
their relation to the curvature tensor and prove a number of
algebraic relations satisfied by them. Finally, we discuss the
relation of the geometric objects introduced above to the
results of measurements by arbitrary observers, defining
also the notion of a semi-null frame connected to an
observer. The main technical results of Sec. II, used later
throughout the paper, consist of the linear relations (10)–
(11) linking the displacement and direction deviation
vectors in the stage and the auditorium regions, the direct
relations between the bilocal geodesic operator and the
curvature (12)–(21) and the equation for the apparent
position on the observer’s sky (39).
In Sec. III we introduce first the distant observer

approximation and note that under its assumptions we
may pass to the appropriate quotient spaces when discus-
sing the displacement and direction deviation vectors,
getting rid this way of the gauge degrees of freedom
(d.o.f.). We then prove the two most important technical
results of the paper, the time lapse formula (49) and the
direction deviation equation (53), linking the behavior of a
perturbed null geodesic in the stage and the auditorium
regions. We introduce for that purpose the two optical
operators D and m and derive their general relation to the
Riemann curvature tensor.
Section IV contains most of the physical results of the

paper, including the results about the relativistic corrections
to the parallax. We begin by a clarification of various
definitions of parallax in general relativity. We then discuss
the relation of the Jacobi operator D to the magnification
matrix given byEq. (65) (a standard result) and the relation of
the emitter-observer asymmetry operator m to the parallax
given by Eq. (71). We then rederive the Eq. (75) for the

position drift using the optical operators and finally consider
the most physically relevant case of an observer and an
emitting body contained both in gravitationally bound
systems undergoing a geodesic motion as a whole. We show
that the time-dependent position drift with respect to the
center ofmass frame consists of the propermotion termgiven
by the position drift formula plus the expected parallax terms,
as inEq. (77). Finally,wediscuss thebehavior of the parallax,
the image magnification and the position drift in the vicinity
of a caustic.
In Sec. V we show how one can combine the data about

the parallax and about the image magnifications and
distortions into observables which do not depend on the
momentary motions on both the emitter’s and the observer’s
end of the fiducial geodesic. The combinations are defined
by Eqs. (78) and (80). We show how these observables can
be related to the curvature and the matter content along the
line of sight and propose also a simple measurement of the
amount of gravitating matter along the line of sight. It is
based on Eq. (86), relating one of those observables to a
weighted integral of the stress-energy tensor along the line
of sight for short distances.
We conclude with a summary.
d. Notation. In this paper we will use both coordinate

bases and bases related to special frames. Within these
frames, we will need to separate out sets of 3 and 2
components. We, therefore, need to distinguish 4 types of
indices in the paper. Greek letters μ; ν;… run from 0 to 3
and will denote components expressed in coordinate bases
in the spacetime M. Boldface greek indices μ; ν;… also
run from 0 to 3, but will be used for geometric objects
expanded in frames. The boldface Latin indices i; j;… run
from 0 to 2 and denote the first three components in a
frame. Finally the boldface capital latin indices A;B;…
denote the 1 and 2 components expressed in a frame. δμν
will denote the standard Kronecker delta with any set of
indices.
Boldface letterswill also be reserved for geometric objects

in quotient spaces Qp and Pp defined in Sec. III, while
objects defined in tangent spaces will be denoted by standard
letters.
Throughout the text, we assume the speed of light c ¼ 1.

II. GEOMETRIC SETUP

a. Description of the physical problem. Consider two
regions in the spacetime, the stage and the auditorium,
separated by a large distance, but at the same time causally
connected. Both regions by definition extend in both space
and time, but we assume they are small enough that their
local geometry can be treated as flat. On the other hand, the
region connecting them is curved, although the curvature is
small enough so that light propagation can be treated within
the first order geodesic deviation equation. We assume that
from every point in the “stage” region it is possible to find
a null geodesic which crosses the auditorium in the future.
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In this setup the communication between the two regions is
possible only one way: light signals emitted from one of
them, the stage, can reach later the other one, the audito-
rium, provided that they have been sent in the right
direction.
We assume that each of the regions hosts one or more

participants who travel through the spacetime along time-
like worldlines (not necessary geodesic). The emitters in
the stage region send time-dependent electromagnetic
radiation at all directions, while the observers in the
auditorium perform the standard astronomical observa-
tions, registering the energy and the direction from which
they perceive the light coming at a given moment of their
worldline, as well as their variations in their own proper
time. The problem we will be concerned with in this paper
can be phrased in the following way: knowing the trajec-
tories of the emitters and the observers in their locally flat
regions, for example with respect to a local inertial frame,
describe the results of the observations made by the
observers in the geometric optics approximation.
As we have already noted in the Introduction, the results

will depend on the motions of both the emitters and the
observers and also on the properties of the spacetime
between them. In this paper, in the spirit of [1], we would
like to separate these dependencies. Our aim is to obtain
expressions for the observables which contain the quan-
tities describing the momentary motions on both sides (i.e.,
the 4-velocities, 4-accelerations and momentary positions
with respect to the local inertial frames) as well as geo-
metric objects describing the effects of gravitational fields
on the light propagation and defined in a frame- and
coordinate-independent way. The problem may seem at
first sight impossible to tackle in full generality, without
any assumptions about the spacetime geometry. Recall that
in general relativity the light propagation is affected by
gravity in many ways: variations of the gravitational field
induce the gravitational light bending, causing also the
Shapiro and the geometric delays in the signal arrivals. On
top of that, the gravitational fields may also increase or
decrease the energy of the photon. In a time-dependent
gravitational field, all effects may also be time- and
position-dependent, influencing this way the time varia-
tions of the observables recorded by the observers. In the
most general approach, without any simplifying assump-
tions, the light propagation in the geometric optics approxi-
mation is governed by the null geodesic equation which
contains the Christoffel symbols [2]. The Christoffel
symbols, in turn, depend on the values of the metric tensor
and its first derivatives. It seems then that without further
assumptions about the metric little can be said about the
relations between the motions of the participants in both
regions and the results of observations.
Fortunately, the problem simplifies very much when we

realize that all the information about the gravitational fields
we need is actually the geometry inside the narrow tube

connecting the two regions. This can be seen as follows: let
us single out for the sake of convenience a pair of points, E
in the stage region andO in the auditorium, connected by a
null geodesic γ0 representing a single ray of light. The two
points will serve as a reference for the positions of objects
in the corresponding regions, while the null geodesic γ0
will play the role of the fiducial null geodesic for all other
light rays. We then build a long, thin 4-dimensional tube
around it, extending in both the 2 spatial dimensions as well
as time. Its with should be comparable to the size of both
regions. Now, one can show that as long as the connecting
tube is narrow with respect to the typical curvature radius of
the manifold, the geometry of the spacetime inside it is
quite simple: it must be close to the flat space up to the
leading order corrections proportional to the value of the
Riemann tensor along γ0. This may seem slightly surprising
at first, but we can see that clearly if we introduce the
equivalent of the Fermi coordinates in the neighborhood
of γ0.
The Fermi coordinates around a timelike geodesic are

well known and described in many textbooks [33], but in
the case of a null geodesic they are less known [4]. In short,
given the null geodesic γ0 and an appropriate parallel
propagated frame along it one constructs coordinates
ðξi; λÞ, consisting of a coordinate λ agreeing with the affine
parametrization of γ0 and three transverse coordinates ξi,
such that ξi ¼ 0 corresponds to γ0. Unlike the timelike
case, all three transverse coordinates cannot be made
orthogonal to γ0. Nevertheless, the metric tensor near γ0
can be expanded as a Taylor series in ξi just like in the
“standard” Fermi coordinates [4]:

gμν ¼ Cμν þDðμ; νÞRμijνðλÞξiξj þOðjξj3Þ; ð1Þ

where Cμν is a constant matrix representing the flat space in
nonstandard coordinates, RμijνðλÞ denotes the components
of the Riemann tensor along γ0 in the parallel propagated
frame and Dðμ; νÞ are irrelevant constant coefficients
depending on the indices μ and ν. Thus the leading order
term in the expansion turns out to be always constant,
corresponding to a flat tube cut out of the Minkowski
spacetime, plus subleading curvature corrections quadratic
in the transverse coordinates. We have shown this way that
while in a general coordinate system the fiducial geodesic
may have a very complicated form, resulting in a compli-
cated form of the metric in its neighborhood, the Fermi
coordinates can “unwind” the geodesic together with the
nearby spacetime geometry, revealing that is has a fairly
simple form of a flat tube with slight deformations seen in
its outer parts.
In this setting all the light propagation effects (gravita-

tional light bending, propagation delays etc.), taking place
between the stage and the auditorium, can be understood in
terms of the geometry of the connecting tube, given by (1),
and its influence on null geodesics. Consequently, all the
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relativistic corrections to the light propagation effects
should be expressible as functionals of the only relevant
ingredient of the spacetime geometry, i.e., the Riemann
tensor along the line of sight. The geometry outside the
connecting tube on the other hand, possibly very compli-
cated and not expressible easily in terms of data defined
along γ0, is irrelevant from the point of view of the problem.
Let us stress again that the statements above hold for
arbitrary geodesics and along their whole length, even if
they are long enough to feel the global spacetime curvature
or they pass through strongly curved regions. The global
decomposition (1) of the narrow tube geometry works for
those geodesics equally well as for short ones.
The main mathematical tool of this paper, applicable

under the assumptions defined above to the problem of null
geodesics connecting both regions, is the first order
geodesic deviation equation (GDE). Recall that it is a
linear ODE relating directly the behavior of neighboring
geodesics to the Riemann tensor along a fiducial geodesic
we use as a reference [34–37]. One may obtain it from the
geodesic equation in metric (1) by neglecting the quadratic
terms in the velocity deviations.
The geodesic deviation equation of the first and higher

orders (and their generalizations) around a timelike geo-
desic, representing the relative motion of free falling
bodies, has been discussed by many authors (see e.g.,
[34–36,38–43]), but the null case has attracted less atten-
tion [1,37,44–46]. The general solution of the first order
GDE around a null geodesics allows for studying the
behavior of the rays of light in a completely covariant
manner, i.e., without invoking explicitly a coordinate
system or a frame. This is consistent with the fully
relativistic and geometric point of view we adopt in this
paper: we delay the introduction of coordinate systems,
frames or other auxiliary structures as much as possible in
order to understand the “pure” geometric relations, valid
independently of them.
b. Mathematical formulation of the problem. Let M be

the spacetime with a Lorentzian metric g, of signature
ð−;þ;þ;þÞ. We consider two regions of spacetime: the
stage NO and the auditorium NE . Both are 4-dimensional
domains in the vicinity of two points O ∈ NO and E ∈ NE
respectively. We assume that O and E are connected by a
null geodesic γ0, called the fiducial geodesic (or the optical
axis in nonrelativistic optics literature), i.e., γ0ðλOÞ ¼ O
and γ0ðλEÞ ¼ E for the values λO and λE of the affine
parameter λ of γ0. For convenience we also assume that we
have parametrized our geodesic backwards in time, i.e.,
λO < λE . As null geodesics do not have a preferred,
normalized parametrization, we may always reparametrize
γ0 by an affine transformation without violating the
assumptions above:

λ → λ0 ¼ E · λþ F; ð2Þ

with E > 0 and arbitrary F. Then the tangent vector to γ0
transforms according to

lμ → l0μ ¼ 1

E
lμ: ð3Þ

In geometric optics we are interested only in the incidence
relations between null geodesics and points, i.e., in the
question whether or not a null geodesic passes through a
given event and what null direction it follows at that
moment. These relations are invariant with respect to
reparametrization, because the value of the affine parameter
at which the null geodesic intersects a given point carries no
physical meaning. Therefore we may identify all null
geodesics which share the same path and consider affine
reparametrizations (2) gauge transformations from the
point of view of geometric optics. They should therefore
leave all physical observables invariant.
The regions NO and NE are assumed to be of the size of

L much smaller than the characteristic curvature scale of
the spacetime Rc, i.e., L ≪ Rc. In this case, we may
introduce in both regions locally flat coordinate systems,
centered atO and E respectively, in which the metric tensor
is the flat Minkowski metric up to quadratic terms in xμ:

gμν ¼ ημν þOðx2Þ:

The additional terms are due to the local spacetime
curvature and therefore scale like ðL=RcÞ2. We may
consider them negligibly small because the size of both
regions L is too small for any curvature effects to be
directly detected by experiments performed within each
region. Therefore we will effectively treat both NO and NE
as flat. Stating the same in a more coordinate-invariant
manner: with the curvature effects being negligible in
regions of size L, we may simply identify the points in
NO and NE with points in the tangent spaces TOM and
TEM in the vicinity of 0, using, for example, the
exponential map. Under this identification, the physical
spacetime metric agrees with the flat metric on the
appropriate tangent space up to quadratic terms in the
distance from 0.
Consider now all geodesics connecting points from NO

with NE contained in a 4-dimensional tube around γ0,
sufficiently narrow so that we can apply the metric
expansion (1) for its geometry. This means we can use
the first order geodesic deviation equation for those geo-
desics. The geodesics are uniquely specified by giving an
initial point iO in NO and the initial tangent vector vO in
NO. In locally flat coordinates they look like straight lines,
although their propagation through the spacetime in
between may more complicated, with details depending
on the coordinate system, see Fig. 1. They form an
8-parameter family of curves.
Now, let lμO be the tangent vector to γ0 at O and lμE at E.

We would like to parametrize the geodesics from the family
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considered by their deviation from the fiducial null geo-
desic γ0. Obviously we can parametrize every perturbed
geodesic γ̃ by its initial position p at λ ¼ λO and the tangent
vector vμ at p. With the point-vector the identification
described above we may use simply the initial displace-
ment vector δxO ∈ TOM as the parametrization of the
initial position. In a locally flat coordinate system (yμ) in
NO it is defined as

δxμO ¼ yμðγ̃ðλOÞÞ − yμðOÞ: ð4Þ

Note that δxO is a fully 4-dimensional vector, because we
consider here displacements in all 3 spatial directions and
in time.
We now move on to vμ. Fixing an arbitrary coordinate

system in NO we may use the difference between the
components of vμ and lμO to parametrize the tangent vector:

δlμO ¼ vμ − lμO ð5Þ

in analogy with (4). However, δlμO defined this way is not a
proper vector, because it does not transform like a vector
under general coordinate system transformations. In other
words, expression (5) defines, in general, different elements
of the tangent space TOM when applied in different
coordinate systems. As we know from elementary differ-
ential geometry, this is because we have subtracted here the
components of vectors defined at two close but distinct
points, p and O. Of course, this can be fixed by adding an
appropriate term involving the Christoffel symbols term:
we define

ΔlμO ¼ δlμO þ Γμ
νσðOÞlνOδxσO; ð6Þ

where Γμ
νσðOÞ are the Christoffel symbols at O. The

resulting expression ΔlμO parametrizes the initial tangent
vector equally well, but unlike the “bare” δlμO it is a proper
vector. From the geometric point of view, Eq. (6) yields the
same vector in TOM independently of the coordinate
system chosen. It is obvious, though, that in locally flat
coordinate systems like (yμ)—and only in those—we have
ΔlμO ¼ δlμO and both definitions coincide. The vector ΔlμO,
which we will call the initial direction deviation vector,
corresponds to the difference between vμ parallel trans-
ported from p to O and lμO. The pair ðδxμO;ΔlμOÞ defines a
unique geodesic considered as a perturbation of γ0 and will
be referred to as the displacement vectors, see again Fig. 1.
c. Remarks. Since the geodesics are supposed to be

confined within the narrow tube all along γ0 both the initial
displacement and the initial direction deviation cannot be
too large. Additionally, the condition for applicability of the
first order GDE means that the gravitational lensing
produces only a linear distortion of the image of all objects
in NE , which excludes the possibility of multiple imaging
for light rays contained within the tube.
The choice of the particular value λO of the affine

parameter λ at which we parametrize the initial displace-
ment and direction deviation is arbitrary: in principle we
could choose any point and any value for that purpose. This
choice is nevertheless consistent with the assumption that
the geodesics are only linearly perturbed with respect to the
fiducial one: we may expect that for slightly perturbed
geodesics the endpoint given by λ ¼ λO will lie very close
to the corresponding endpoint of γ0, i.e., O, and therefore
withinNO. Thus we can parametrize the position by a small
displacement vector. The same reasoning applies to the
other endpoint.

A. Geodesic deviation equation
and bilocal geodesic operators

We will now consider the relation between the displace-
ment vectors around O and around E for geodesics passing
through NO and NE . Assume that for λ ¼ λE the deviated
geodesic passes through NE and let δxE and ΔlE denote the
displacement vector and the direction deviation vector
respectively, see Fig. 1. Assuming the geodesics deviate
from γ0 only by distances small with respect Rc, we may
obtain these vectors by solving the ODE for the first order
perturbation of the geodesic equation around γ0, i.e., the
first order geodesic deviation equation (GDE):

∇l∇lξ
μ − Rμ

αβνlαlβξν ¼ 0; ð7Þ

with the initial data

ξμðλOÞ ¼ δxμO ð8Þ

FIG. 1. Flat, distant regions NE and NO connected by a family
of null geodesics. The fiducial null geodesic γ0 connects eventsO
and E. We consider other geodesics lying entirely within a narrow
tube around γ0. The geodesics may be parametrized by a pair of
vectors in the tangent space TOM giving the initial displacement
(δxO) and the initial direction deviation (ΔlO) with respect to γ0.
Similar parametrization ðδxE ;ΔlEÞ can also be used in NE , at
point λ ¼ λE along the displaced geodesic.
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∇lξ
μðλOÞ ¼ ΔlμO: ð9Þ

With this setup we obtain the displacements at the other end
from the values of the solution for λ ¼ λE : δx

μ
E ¼ ξμðλEÞ

and ΔlμE ¼ ∇lξ
μðλEÞ. The combination Rμ

αβνlαlβ is often
referred to as the optical tidal matrix.
Since the GDE is linear, the solution at λE must be a

linear function of the initial data at O:

δxμE ¼ WXX
μ
νδxνO þWXL

μ
νΔlνO ð10Þ

ΔlμE ¼ WLX
μ
νδxνO þWLL

μ
νΔlνO; ð11Þ

with WXX, WXL, WLX, WLL being bilocal operators (also
known as 2-point tesors [47] or bitensors [33,36]), acting
from TOM to TEM. Together they form the resolvent
operator, or the Wroński matrix [48] for the GDE,
W ¼ WðλE ; λOÞ. It is a linear mapping between vector
sums of two copies of the tangent space, i.e.,

W∶ TOM ⊕ TOM → TEM ⊕ TEM;

defined by the relation WðδxO;ΔlOÞ ¼ ðδxE ;ΔlEÞ. As
noticed by Uzun [37], it is also a symplectic mapping,
since in GR the ODE’s for null geodesics can be formulated
as a Hamiltonian system, in general as well as in the first
order perturbation theory [48,49].
In this paper the four operators WXX, WXL, WLL and

WLX will be referred to as the bilocal geodesic operators
(BGO). The notation we introduced for them highlights the
fact that they constitute four parts of a larger geometric
object. In the context of timelike geodesics the first two
have already been introduced by DeWitt and Brehme [50]
and Dixon [36,51], under the name of Jacobi propagators,
denoted by K and H (the definition of the latter involves
often an additional prefactor). They can also be obtained by
differentiating the Synge’s world function [36,47,51], but
here we will not make any use of the world function
formalism. Recently the BGO’s defined along a timelike
geodesic have been used as a tool to study of the
gravitational waves memory effect [43]. In the rest of
the paper, we will focus exclusively on the null case and
explore the relation of the BGO’s to the spacetime
geometry and to the optical observations made by observers
in NO.
a. Bilocal geodesic operators and the Riemann curva-

ture tensor. It follows easily from the geodesic deviation
equation (7) and from Eqs. (10)–(11) that the BGO’s can be
expressed as solutions to ODE’s defined along γ0 and
involving the curvature tensor. Assume we fix a parallel-
propagated frame eμ along the null geodesic. Then we solve
the following ODE for a 4-by-4 matrix-valued function
Aμ

νðλÞ with initial data at λO:

Äμ
ν − Rμ

αβσlαlβAσ
ν ¼ 0 ð12Þ

Aμ
νðλOÞ ¼ δμν ð13Þ

_Aμ
νðλOÞ ¼ 0; ð14Þ

where dot denotes the derivative with respect to the affine
parameter λ and Rμ

αβσlαlβ denotes the components of the
optical tidal matrix in the parallel propagated frame. From
the definition (10)–(11) we can prove that the two BGO’s
are given in terms of Aμ

νðλÞ and its derivative at the
emission point:

WXX
μ
ν ¼ Aμ

νðλEÞ ð15Þ

WLX
μ
ν ¼ _Aμ

νðλEÞ: ð16Þ

The other two operators can be obtained from the solution
of the same equation with different initial data, namely we
take the matrix-valued function Bμ

νðλÞ satisfying

B̈μ
ν − Rμ

αβσlαlβBσ
ν ¼ 0 ð17Þ

Bμ
νðλOÞ ¼ 0 ð18Þ

_Bμ
νðλOÞ ¼ δμν: ð19Þ

In that case we have

WXL
μ
ν ¼ Bμ

νðλEÞ ð20Þ

WLL
μ
ν ¼ _Bμ

νðλEÞ: ð21Þ

Relations presented above clarify the dependence of the
BGO’s on the spacetime geometry. They show that they can
be expressed as nonlocal functionals of the Riemann tensor
along the line of sight. We stress here that even though the
GDE and the matrix equations (12)–(19) are linear, the
BGO’s are nonlinear functionals of the curvature tensor
along γ0. The reader may check that if we take two
solutions of (12)–(14) or (17)–(19) corresponding to two
different optical tidal tensor functions Rμ

αβσlαlβðλÞ, then a
linear combination of these solutions does not satisfy the
same Eqs. (12)–(14) or (17)–(19) for the same linear
combination of the optical tidal tensor functions. The
situation is analogous to the dependence of the evolution
operator UðtÞ on the Hamiltonian HðtÞ in quantum
mechanics: UðtÞ is defined by a first order ODE and initial
condition

iℏ _UðtÞ ¼ HðtÞUðtÞ ð22Þ

Uð0Þ ¼ 1: ð23Þ

GRASSO, KORZYŃSKI, and SERBENTA PHYS. REV. D 99, 064038 (2019)

064038-8



Now, adding a perturbation term to the Hamiltonian results
a nonlinear change of the evolution operator, which can be
expressed using the well-known path-ordered exponential
formula [52].
The nonlinearity of the BGO’s as functionals of curva-

ture reflects the fact that our formalism captures all non-
linear effects of combined light bending at different points
along the fiducial geodesic. Note also that although all four
BGO’s are effectively functionals of the same optical tidal
tensor Rμ

αβσlαlβðλÞ, they are in fact different functionals and
therefore without any further assumptions regarding the
curvature their values for any pair of points O and E should
be treated as completely independent from each other.
b. Algebraic properties of the BGO’s. In [1,36] two

general properties of the solutions of the GDE have been
proved. We will show here that they immediately translate
to corresponding two properties of the bilocal geodesic
operators, which hold irrespective of the spacetime geom-
etry or whether γ0 is null or not.
Let ξμ denote a solution of the GDE (7). Then we have

ξμlμ ¼ Aþ Bλ;

whereA,B ¼ const. Thiswaywehave defined 2 constants of
motion for the GDE, namely B¼∇lξ

μlμ and A¼ξμlμ−Bλ.
The second property is that the expression

ξμ ¼ ðCþDλÞlμ ð24Þ

with C, D ¼ const is always a solution and, since the first
order GDE is linear, it can be added to any other solution
without affecting equation (7). Both properties are easy to
verify using Eq. (7).
Consider the solution (24) at O and E: we have

δxμO ¼ ðCþ λODÞlμO,ΔlμO ¼ DlμO and δxμE ¼ ðCþ λEDÞlμE ,
ΔlμE ¼ DlμE . We substitute these equations to (10)–(11) and
assuming the resulting relations must hold for all C and D
we get

WXX
μ
νlνO ¼ lμE ð25Þ

WLX
μ
νlνO ¼ 0 ð26Þ

WXL
μ
νlνO ¼ ðλE − λOÞlμE ð27Þ

WLL
μ
νlνO ¼ lμE : ð28Þ

The second set of relations can be obtained from the
conservation of the two constants of motion defined above.
Namely, for any initial data δxμO andΔlμO the values of A and
B need to remain equal in O and E. This means that

lOμΔl
μ
O ¼ lEμΔl

μ
E

lOμδx
μ
O − λOlOμΔl

μ
O ¼ lEμδx

μ
E − λElEμΔl

μ
E:

We again make use of (10)–(11) in order to express δxμE and
ΔlμE by δx

μ
O and ΔlμO. The resulting equations turn out to be

equivalent to the following 4 relations:

lEμWXX
μ
ν ¼ lOν ð29Þ

lEμWLX
μ
ν ¼ 0 ð30Þ

lEμWXL
μ
ν ¼ ðλE − λOÞlOν ð31Þ

lEμWLL
μ
ν ¼ lOμ: ð32Þ

Finally, let us note that two of the BGO’s undergo
rescalings under the affine reparametrizations of the fidu-
cial null geodesic γ0. Namely, under the reparametrization
(2) we have the following transformation law:

WXX → W0
XX ¼ WXX ð33Þ

WXL → W0
XL ¼ E ·WXL ð34Þ

WLX → W0
LX ¼ 1

E
·WLX ð35Þ

WLL → W0
LL ¼ WLL: ð36Þ

B. Observed position on the sky and seminull frames

Let uμO be the 4-velocity of an observer and lμ the past-
pointing, null tangent vector to a null geodesic passing
through O. The direction from which the observer sees the
light coming is defined as a normalized, spatial vector,
orthogonal to uμO, pointing in the same direction as lμ:

rμ ¼ 1

lσuσO
lμ þ uμO: ð37Þ

Formula (37) defines an observer-dependent mapping

VðuO; ·Þ∶N −
O → DirðuOÞ

from the set of past-oriented null vectors N −
O ¼

fX ∈ TOMjXμXμ ¼ 0; X0 < 0g to the observer’s sphere
of directions, i.e., the set of normalized, purely spatial vectors
for the observer, i.e., DirðuOÞ ¼ fX ∈ TOMjXμXμ ¼
1; uμOXμ ¼ 0g [1,53,54]. The space N −

O does not have a
well-defined metric and, therefore, by using it, it is not
possible to calculate the angular distance between points on
the sky: one really needs to pass to the observer-dependent
space DirðuOÞ in order to do that. It turns out that this
introduces the dependence of the angle measurements
between apparent positions on the sky from the observer’s
4-velocity. This is commonly referred to as the light
aberration effect, or stellar aberration andmay be explained
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by a relative tilt of the spheres of directions (and the whole
simultaneity planes) for observerswith different 4-velocities,
see [55] for a more detailed discussion involving the
historical background.
In the context of relativistic geometric optics it is

customary to introduce a frame, or vierbein, connected
with the observer. The standard approach is to use the Sachs
orthonormal frame, consisting of uμO, the direction vector r

μ

and two perpendicular, spatial vectors eμA spanning the
Sachs screen space [56–58]. We have found out that it is
more convenient to use a related, but slightly modified
frame, which we will call the seminull frame (SNF). The
frame consists of uμO, the same two perpendicular, spatial
vectors eμA and the null vector lμ instead of rμ. It is not
orthonormal and we can check that the products of the basis
vectors read

lμlμ ¼ 0

eμAlμ ¼ 0

uμOeAμ ¼ 0

eμAeBμ ¼ δAB

uμOuOμ ¼ −1

lμuOμ ¼ Q > 0;

where we have introduced the notationQ for the product of
lμ and uμO, a constant, but so far undetermined.
We remind the reader that in the subsequent calculations

the frame indices will be denoted by boldface letters, with
capital latin indices A;B;… running over the spatial
components 1 and 2, small latin indices i; j;… running
over 0, 1 and 3 and the boldface Greek indices μ; ν;…
running over all 4 dimensions from 0 to 3.
The position on the observer’s sky rμ0, determined by the

fiducial geodesic γ0, will serve as the point of reference for
all other points on the sky considered here. Namely, let kμ

be another past-oriented null vector, corresponding to
another source of light, and let r̃μ ¼ 1

kσuσO
kμ þ uμO be the

corresponding direction vector. If the position of the second
source lies on the same hemisphere as rμ0 (we will assume
that throughout the paper) then it can be uniquely deter-
mined from the transversal components of r̃μ in the semi-
null frame of the observer, denoted by r̃A, A ¼ 1, 2. We
will, therefore, use these components as the main variables
describing of positions on the observer’s sky. Note that for a
source which lies close to rμ we have a simple, direct
relation between r̃A and the angular coordinates on the sky
δθA centered at rμ, directed along eμ1 and eμ2 and expressed
in radians. Namely, we have

δθA ≈ r̃A ð38Þ

for δθA ≪ 1. The relation for larger angles requires the use
of the standard trigonometric formulas.
In the next sections, we will need to compare the

positions on the sky of various objects as registered by
observers with different 4-velocities and at different points
in NO. In a general spacetime, this is not a trivial task,
because, as we mentioned, the position on the sky is a
vector in the observer-dependent space of directions. Two
problems arise here:
(1) how do we compare position vectors at different

points,
(2) how do we compare directions on the sky registered

by observers boosted with respect to each other since
the notion of a spatial vector is different for each
of them.

It turns out that, owing to the flatness of NO, this is possible
using the reference direction given by the null vector lO.
Since the region NO is effectively flat in our approxi-

mation, we may simply identify the tangent spaces at all
points with TOM using the parallel propagation. This is
possible independently of the paths connecting points with
O we may choose for that purpose. Thus the problem of
comparing vectors at different points is solved. We also
introduce, consistently with the approach above, a parallel
propagated SNF ðuμO; eμA; lμOÞ from O throughout the whole
region NO. This way any vector or tensor can be directly
compared componentwise with a corresponding object at
another point.
From now on we assume that all equations are written

using this type of parallel frame at NO and a similar one at
NE . Following Sec. II A, we will write lμ ¼ lμO and from (5)
and (6) we have simply kμ ¼ lμO þ ΔlμO for the other null
geodesic. Then it is easy to see that for the observer uμO we
have

r̃A ¼ ΔlAO
uOσðlσOþΔlσOÞ

¼ ΔlAO
uOσlσO

�
1−

Δl0O
uOσlσO

þΔl3O

�−1
ð39Þ

in the SNF.
Consider now an observer with a different 4-velocity Uμ.

Obviously he or she uses a different screen space, but we
may introduce a SNF ðUμ; fμA; l

μ
OÞ such that the spatial

vectors are aligned along eμA, i.e., f
μ
A ¼ eμA þ CAl

μ
O, with

appropriate C1 and C2 [1]. This way we can compare also
the positions on the sky of observers boosted with respect
to each other: both uμO and Uμ may use the fiducial null
vector lμO as providing the reference direction on their skies
and the screen vectors eμA and fμA as the two perpendicular
directions on the celestial sphere used for defining the two-
dimensional angular distance from the fiducial direction.
The two spatial components of r̃, i.e., r̃A, evaluated for both
observers and expressed in the corresponding SNF’s, may
now be used to compare the registered directions on the sky
among them.
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The construction can be repeated at the emitter’s end
of the null geodesic. Given the emitter’s momentary 4-
velocity uμE and the tangent vector k̃μ ¼ lμE þ ΔlμE we can
define the viewing direction vector sμ, pointing in the
spatial direction (in emitter’s frame) from which a given
observer watches the events in NE :

sμ ¼ −
�

1

k̃σuσE
k̃μ þ uμE

�
: ð40Þ

III. INFINITESIMAL DISPLACEMENT
FORMULAS

BGO’s are fundamental objects describing the properties
of all geodesics in the vicinity of γ0. However, from the
point of view of geometric optics, they contain too much
information. Apart from null geodesics they also describe
the spatial and timelike geodesics in the vicinity of γ0. On
top of that, they distinguish differently parametrized null
geodesics sharing the same path, which is indistinguishable
in geometric optics. The affine parametrization carries no
physical information and therefore the formalism effec-
tively contains two gauge d.o.f. corresponding to the affine
reparametrizations of the null geodesics. We would like to
isolate them in our formalism and focus on the remaining,
physical d.o.f.
The condition for the displaced geodesic to remain null

reads

gμνðlμO þ ΔlμOÞðlνO þ ΔlνOÞ ¼ 0: ð41Þ

It needs to be imposed only once along the geodesic, in this
case at λ ¼ λO. We would also like to identify null geo-
desics sharing the same path. This means that we identify
the initial data for which the initial tangent vector is
proportional, while the initial points differ only by a vector
proportional to the tangent. We identify therefore the initial
data pairs of the form

�
δxμO
ΔlμO

�
∼
�
δxμO þ C1ðlμO þ ΔlμOÞ
ΔlμO þ C2ðlμO þ ΔlμOÞ

�
ð42Þ

for some nonvanishing constants C1 and C2.

A. Distant observer approximation

In the rest of this paper, we will assume that we work
within the validity regime of the relativistic distant observer
approximation (DOA) or the relativistic counterpart of the
paraxial approximation. Relativistic DOA is straightfor-
ward to explain mathematically, but it is more difficult to
understand its physical meaning and its limits of appli-
cability. Mathematically it boils down to linearizing all
equations and relations involved in the displacement
variables δxμO and ΔlO, thereby neglecting all quadratic

and higher terms, i.e., δxαOδx
β
O, Δl

α
OΔl

β
O as well as the cross

terms δxαOΔl
β
O. This is consistent with the use of the first

order GDE for the linearized relations between the
deviation vectors δx and direction deviations Δl at NO
and NE , ignoring this way higher order effects in light
propagation. Physically this is equivalent to two distinct
types of approximation:
(1) Flat light cones approximation (FLA). We assume

we may neglect higher order terms in ΔlO in
Eq. (41), in this way obtaining the null condition
in the linearized form

ΔlμOlOμ ¼ 0: ð43Þ

In Sec. IV C we will show that this approximation is
equivalent to assuming that the light cones originat-
ing on one end of O degenerate to flat null hyper-
surfaces on the other end. In other words, the regions
NO and NE are small enough that the bending of the
surface of the light cone with apex in the opposite
region is negligible.

(2) Parallel rays approximation (PRA). We assume we
can drop the Δl0O and the Δl3O term in Eq. (39). This
way we effectively linearize the whole expression in
the direction vector deviation:

r̃A ¼ ΔlAO
lOσuσO

: ð44Þ

This is equivalent to linearizing the whole mapping
VðuO; ·Þ around lO. It is straightforward to verify
using Eqs. (25)–(32) that this way we neglect the
dependence of the position on the sky on the null
SNF components δx3O and δx3E , leaving just the
transversal 1 and 2 as well as the timelike compo-
nents 0 of the position deviation vectors. This, in
turn, means that we treat all null rays considered
within NO and NE as effectively parallel to each
other (and in turn also to the original lO), neglecting
the small change of the transversal position of the
light rays between the front and the back of NO due
to the direction deviation, see Fig. 2. Indeed, for
sufficiently small NE and NO, we may neglect the
convergence or divergence of null light rays when
discussing the relation between the direction
deviation and displacement vectors. From the ob-
servational point of view, it is important to note that
in PRA we neglect all perspective distortions of the
images as perceived by the observers in NO.

We will now consider the limits of applicability of both
approximations in a concrete physical situation. We will
begin by the flat case and then move to the case of a general
spacetime with an arbitrary metric.
a. Limits of applicability—flat case. In the Minkowski

space we have simply WXX
μ
ν ¼ δμν and WXL

μ
ν ¼

ðλE − λOÞδμν. Let xμE and xμO denote the coordinates of E
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and O respectively and let dO denote the spatial distance
between O and E in the observer’s frame, given by
dO ¼ ðxμE − xμOÞuOμ. The reader may verify that in that
case the following expansions for the dimensionless com-
binations of the ΔlO components are valid:

ΔlAO
lOσuσO

¼ O

�
L
dO

�

Δl3O ¼ O

�
L
dO

�
Δl0O
lOσuσO

¼ O

�
L2

d2O

�
:

(Note that the component Δl3O is by definition dimension-
less, unlike the other two which require dividing by lOμu

μ
O).

We may substitute these expansions to (39) and (41); it
follows then easily that both FLA and PRA are equivalent
to neglecting the subleading, quadratic terms in the L

dO
expansion, while keeping the linear ones. Also, the angular
size of the region NE on the observer’s sky expressed in
radians, estimated by applying the expansion above to (44),
scales linearly like L

dO
. This justifies the use of Eq. (38)

for the angular variables δθA determining the position in
the sky.
Obviously, the approximations work well as long as the

spatial distance between both regions is much larger than
their size. This justifies the name distant observer approxi-
mation. Note, however, that the applicability of both PRA
and FLA depends not only on the position of the points O
and E but also on the observer’s 4-velocity uO. Even if they
work well for a given uO they may fail for another, strongly
boosted observer, because in his or her frame the spatial
distance dO will be much smaller due to the Lorentz
contraction. This, in turn, will lead to a relative increase of

the subleading terms in the L
dO

expansion and thus to the
increase of the perspective distortions and the light cone
bending effects. On the other hand, we point out that this
problem can always be cured by shrinking the regions NO
and NE appropriately and thus decreasing L. This analysis
should also apply to almost flat spacetimes and weak
lensing.
b. Limits of applicability—general case. In a completely

general spacetime drawing the precise limits of applicabil-
ity of the FLA and PRA is much more difficult. Guided by
the results for the flat case we assume that the following
dimensionless combinations of components of ΔlO,
expressed in the SNF, are small:

ΔlAO
lOσuσO

¼ 1

lOσuσO
WXL

−1A
νðδxνE −WXX

ν
σδxσOÞ ≪ 1 ð45Þ

Δl3O ¼ WXL
−13

νðδxνE −WXX
ν
σδxσOÞ ≪ 1: ð46Þ

These equations can be viewed as conditions for the BGO’s
WXX and WXL, the observer’s 4-velocity uO and the size L
of both domains determining the scale of the terms δxO and
δxE . Substituting these relations to Eq. (41) expressed in the
SNF yields an expansion for the remaining component of
ΔlO:

Δl0O
lOσuσO

¼ O

��
ΔlAO
lOσuσO

�
2
�
:

It is quadratic, therefore, negligible in comparison with the
other three components. NeglectingΔl0O, on the other hand,
is precisely equivalent to the FLA defined by Eq. (43).
As for the PRA, we note that with conditions (45)–(46)

we have

E

E

FIG. 2. In the parallel light rays approximation, we assume that the regions NO and NE are small enough and at the same time
sufficiently separated that we can treat the light rays of null geodesics passing through them as parallel when discussing the relation of
the direction deviation vector at O to the displacement vectors at both ends, see the figure on the left-hand side. This amounts to
neglecting all possible perspective distortions of three-dimensional images and allows us to consider only flat, two-dimensional
projections to the screen space, see the figure on the right-hand side.
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r̃A ¼ ΔlAO
lOσuσO

þO

�
ΔlAO
lOσuσO

· Δl3O

�
:

Again keeping the leading, linear order is equivalent to the
PRA condition (44). Just like in the flat case, for a given
spacetime and fixed E and O the conditions (45)–(46) are
sensitive to the 4-velocity of the observer. But in contrast to
the flat case, there is no a priori relation between the BGO’s
and the distance between the two points O and E, because
in general both WXX and WXL may take any value limited
only by conditions (25), (27), (29) and (31). In fact, with
very strong lensing the applicability of the DOA for fixed L
and observer can even begin to decrease further down γ0 as
we move away fromO. We may illustrate this with a simple
example: with very strong lensing along the way, the beam
centered atOmay become strongly convergent or divergent
far down γ0, introducing this way strong perspective
distortions observable for regions of size L and violating
this way the assumptions of the PRA. However, just like
before, the applicability of both approximations can always
be restored if we narrow down NO and NE appropriately.
Summarizing, the applicability of the DOA in a space-

time with an arbitrary metric and for any given observer is a
subtle problem and needs to be tested on a case by case
basis, for example, using conditions (45)–(46). In astro-
physics, it is assumed they hold automatically because of
the extreme ratio between the distances between O and E
and their sizes (measured in a typical observer’s frame, for
example, the CMB rest frame), but if the influence of the
curvature is strong or the observer is sufficiently boosted
this must be done with care.
In principle it is possible to use the nonlinearized

relations (41) and (39) for the observables, taking into
account this way the perspective effects and the effects of
the bending of the lightcone surfaces, but mathematical
consistency requires then to include also the nonlinear
terms in the relations between the deviations of the geo-
desics in NO and NE , for example with the help of the
higher order GDE’s [34–36]. This is significantly more
cumbersome than the formalism presented here and we
leave this for future studies.
c. Quotient spaces. Within the regime of validity of the

PRA we may simplify the equivalence relation of (42) to

�
δxμO
ΔlμO

�
∼
�
δxμO þ C1l

μ
O

ΔlμO þ C2l
μ
O;

�
ð47Þ

i.e., we identify the initial data for which the position and
directional deviations only differ by a multiple of lμO. From
(25)–(28) it is easy to see that adding this type of terms in
NO leads to a similar change in the final data:

�
δxμE
ΔlμE

�
∼
�
δxμE þD1l

μ
E

ΔlμE þD2l
μ
E ;

�
ð48Þ

with constants D1 and D2 related to C1 and C2.
This invariance leads to the following idea: instead of

considering the optical operators as acting from one tangent
space to another one we may consider them as mappings
between the appropriate quotient spaces QO ¼ TOM=lO
and QE ¼ TEM=lE , see Fig. 3. Namely, let QE be the
quotient of TEM by the equivalence relation Xμ ∼ Yμ iff
Xμ ¼ Yμ þ clμE for any real number c.QO can be defined in
an analogous way, with lE replaced by lO and TEM
replaced by TOM.
Within these 3-dimensional spaces we also consider the

2-dimensional subspaces orthogonal to lμO and lμE respec-
tively, i.e., PO ¼ l⊥O=lO and PE ¼ l⊥E =lE , see again Fig. 3.
They will be referred to as the perpendicular spaces, see
again Fig. 3. Unlike QO and QE , the perpendicular spaces
PO and PE inherit a positive definite metric q from the
Lorentzian spacetime metric g [1]: let X and Y be two
vectors in PE and let X and Y be any two corresponding
vectors in TEM, i.e., X ¼ ½X� and Y ¼ ½Y�, where ½·�
denotes the linear operation of taking the equivalence class
of a vector in TEM with respect to the relation ∼ defined
above. The reader may check that the formula qðX;YÞ ¼
gðX; YÞ defines the same value of the scalar product of X
and Y irrespective of the choice of the equivalence class
representatives X and Y.
The angles and distances calculated using q correspond

to the angles and distances measured by any observer on
points projected down to the plane perpendicular to the
direction of observation (the Sachs’s screen space) along
the null direction of light propagation [1]. This is a
reformulation of the well-known Sachs shadow theorem
[56,57] in terms of the quotient spaces. This fact gives the
geometry of the perpendicular spaces an explicitly

FIG. 3. Geometry of the quotient spaces QO, PO and their
counterparts on the other side. Elements of QO correspond to the
vectors in TOM, or points in NO, identified if they are separated
by a multiple of lO. Geometrically it is the space of null straight
lines in NO parallel to γ0. The two-dimensional subspace PO
corresponds to null straight lines parallel to γ0 which additionally
lie on the null hyperplane orthogonal to lO.
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observer-invariant meaning and we explore it later in the
paper in order to separate the dependence of observables on
the observer’s and emitter’s frame and on the spacetime
geometry.
We end this subsection by noting that both quotient

spaces have a very simple interpretation in terms of the
vector components in a SNF. Namely, they correspond
to vectors with a “forgotten” fourth component correspond-
ing to μ ¼ 3. The mapping ½·� has then a simple form
of ðX0; X1; X2; X3Þ → ðX0; X1; X2Þ. Vectors in any per-
pendicular subspace P along γ0 have additionally vanish-
ing first component, i.e., ð0; X1; X2Þ.
The reader may check that in the GDE (7) expressed in

the SNF the equations for the first three components
decouple from the fourth one and that vectors with
vanishing μ ¼ 0 component form a subspace of solutions.
This way we see that the quotient spaces defined above are
compatible with the properties of the first order GDE
around a null geodesic.

B. Time lapse formula

We multiply Eq. (10) by lEμ from both sides and make
use of Eqs. (29), (31) to obtain the following relation:

lEμδx
μ
E ¼ lOμδx

μ
O þ ðλE − λOÞΔlμOlOμ:

Comparing this formula with (43) we see that the perturbed
geodesic is null in the DOA iff

lEμδx
μ
E ¼ lOμδx

μ
O: ð49Þ

We will refer to this equation as the time lapse formula. We
have just proved that within the FLA any two points in NO

and NE respectively can be connected by a null geodesic iff
their deviation vectors satisfy the linear condition (49). This
is the first important result of this paper, because it gives
immediately the relation between the time lapse in NE and
the time lapse in NO, as registered by the observers, and
formulated in a coordinate- and frame-independent way.
Namely, for any observer whose worldline intersects NO
we may relate his or her proper time to the “null time”
χ ¼ lOμδx

μ
O (for an effectively flat space this is a simple

special relativity problem). Equation (49) shows then that at
a given moment the observer can see only the events in NE
which lie on the null hypersurface given by lEμδx

μ
E ¼ χ.

This a simple and elegant way to take into account the
Rømer delay between the regions NO and NE due to the
finite light speed.
Geometrically, the conditions lOμδx

μ
O ¼ const and

lEμδx
μ
E ¼ const define foliations of NO and NE by families

of null hypersurfaces, see Fig. 4. We can, therefore,
rephrase the result of this section as follows: the null
vectors lE and lO define two foliations by null hyper-
surfaces in the two locally flat regions. For observers
located on a leaf in NO only the points lying on the
corresponding leaf in NE can be reached by a null geodesic.
It is also clear that while the null tangent vectors lμO and lμE
are defined only up to a common rescaling according to (3),
this ambiguity does not affect the two foliations or the
correspondence between their leaves.
The two null foliations at two ends of γ0 are in fact the

degenerate families of light cones centered at the opposite
ends of γ0. If we pick a point p in NO then its past light
cone in NE will degenerate to a flat hypersurface due to the
large distance between the two regions and their small size.
Moreover, the future light cone of any point on that null

FIG. 4. Null tangent vectors lO at O and lE at E define two corresponding foliations by null hypersurfaces orthogonal to lO and lE
respectively. In the flat light cones approximation, only the pairs of points lying on the corresponding leaves can be connected by a null
geodesic. This requirement restricts the events in NE from which an observer in NO can register signals at a given instant of time.
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hypersurface will degenerate in NO to the same null
hypersurface containing p: in the FLA the light cones
with apices contained within a single foliation leaf look
exactly the same on the other end of γ0. The same argument
works with the role of the emission and observation point
reversed. These observations explain the name we have
coined for flat light cone approximation (43). Physically,
the flatness of light cones means that the Rømer delay is in
a good approximation independent of the perpendicular
displacements of the observer and the source because of the
large distance between them.
We may pull back formula (49) to the quotient spaces

QO and QE . Note that the products on both sides are
insensitive to adding multiples of lμO and lμE to the
displacement vectors. We may therefore consider gð·; lOÞ
and gð·; lEÞ as a mappings defined on the respective
quotient spaces and write

gð½δxO�; lOÞ ¼ gð½δxE�; lEÞ: ð50Þ

C. Direction variation formula

We will now recast formula (11) applied to deviations
satisfying (43) in a more convenient form. We begin by
rewriting it as follows:

WXL
μ
νΔlνO ¼ δxμE −WXX

μ
νδxνO: ð51Þ

Equation (51) can be pulled back to the quotient spacesQO
and QE , respectively.
The operator WXL defines in an operator acting on the

perpendicular space PO with the image in PE . Namely,
given a vector Y ∈ PO we may pick any vector Y ∈ TOM
such that ½Y� ¼ Y and define

DðYÞ ¼ ½WXLðYÞ�:

It is straightforward to verify using (25)–(32) that the
resulting vector in QE does not depend on the choice of
the representative Y of the equivalence class and that the
resulting vector is always perpendicular to lμE . Thus we have
defined a linear mapping

D∶ PO → PE :

This mapping can be represented by a 2-by-2 matrix and is
known in the relativistic geometric optics as the Jacobi map
[1,56]. The Jacobi map as defined here depends on the
parametrization we have chosen for the fiducial geodesic
γ0. Under an affine reparametrization (2)–(3) it rescales
according to the formula D → E ·D.
Similar reasoning can be applied toWXX: given Z ∈ QO

we may take any Z ∈ TOM such that ½Z� ¼ Z and define

WðZÞ ¼ ½WXXðZÞ�: ð52Þ

We check using (25)–(32) that this defines a linear mapping
between the quotient spaces

W∶ QO → QE :

W can be used directly, but since we are interested in the
curvature effects on the light rays we have found it
convenient to separate out the “nonflat” contribution to
the operator, related directly to the curvature. In a flat space
we have WXX

μ
ν ¼ Tμ

ν, where T is the parallel transport
operator from O to E. Let T denote the pullback of T to
the space QE , i.e., mapping T ∶ QO → QE given by the
formula

T ðZÞ ¼ ½TðZÞ�;

where Z ∈ QO and Z ∈ TOM is a vector such that
½Z� ¼ Z. With this setup we may define

m ¼ W − T :

The operator m will be referred to as the emitter-observer
asymmetry operator. While the domain ofm consists of the
whole spaceQO its image is automatically perpendicular to
lμE—this follows from (29) and the elementary property of
the parallel transport lEμTμ

ν ¼ lOν. Thus the emitter-
observer asymmetry operator is a mapping

m∶ QO → PE :

Since the dimension ofQO is 3, while the dimension of PE
is 2, the operatorm is always degenerate. Unlike the Jacobi
map, it is insensitive to affine reparametrizations of the
fiducial null geodesic γ0, i.e., m → m if λ → λ0 ¼ Aλþ B.
m has already appeared in [1], although without a full
discussion of its properties. The pair of bilocal operators D
and m will be referred to as the optical operators.
We may rewrite the pullback of the whole Eq. (51) using

the optical operators:

Dð½ΔlO�Þ ¼ ½δxE � − ½δx̂O� −mð½δxO�Þ;

where δx̂O ≡ T ðδxOÞ is a shorthand notation for the
parallel transport from O to E. In the final step we can
use the linearity of the projection ½·� to the quotient space
QE to put both deviations vector inside a common square
bracket and obtain the direction deviation equation:

Dð½ΔlO�Þ ¼ ½δxE − δx̂O� −mð½δxO�Þ ð53Þ

Note that as long as (49) is satisfied the combination δxμE −
δx̂μO is perpendicular to lμE and the first term on the right
hand side of (53) is a vector in PE , even though each
position deviation vector individually does not need to be
perpendicular to lO or lE. This is of course in full agreement
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with the fact that the left-hand side and the second term on
the right-hand side are automatically in PE . On the other
hand, we see that (53) is impossible to satisfy when applied
to a pair of deviation vectors not satisfying the time lapse
formula.
Equations (50) and (53) describe completely how

observers in NO register signals coming from events in
NE : (50) defines which events in NE are visible from which
points in NO while (53) yields the direction from which the
observers perceive the light coming. The optical properties
of the spacetime between those regions are therefore
completely contained in the following geometric structures:
(1) The pair of null vectors lO and lE , given up to a

common rescaling. They define three important
ingredients of the geometry: lO gives the null
direction from which an observer in O sees the
light coming from E, this way providing the refer-
ence direction for all other observations. lE , on the
other hand, gives null direction from which he or she
effectively observes the region NE . Finally, both
vectors together define the two null foliations in NO
and NE relating the time lapse in both regions.

(2) The Jacobi map D acting between the perpendicular
spaces on the two ends of the null geodesic (also
defined up to the same rescaling), encoding the
effects of gravitational lensing between O and E.

(3) The parallel transport operator T along γ0, preserv-
ing the metric.

(4) The emitter-observer asymmetry map m from QO to
PE . It is related to the parallax effects and the
apparent position drift. Its function will be explained
in detail in Sec. IV C.

All these objects exist independently of any other structures
in M, in particular independently from the choice of the
coordinate systems, observers and frames in NO and NE .
The last two operators can be in fact be combined into W
from Eq. (52), but we have opted to consider them
separately because m turns out to have a particularly
elegant geometric interpretation.
Geometrically the pair of Eqs. (50) and (53) can be seen

as a linearized transformation between the two ways in
which we may parametrize null geodesics passing through
NO and NE . On the one hand, we can parametrize them by
giving the initial point δxμO and the initial direction,
specified by the direction deviation vector ΔlμO. In the
DOA and for geodesics considered without parametrization
all we need is the equivalence class ½δxO�, i.e., a vector in
the 3-dimensional space QO, and the equivalence class of
ΔlμO, also inQp. The null condition (41) restricts the choice
of ½ΔlO� to the 2-dimensional subspace PO. The space of
geodesics we consider is therefore 5-dimensional.
On the other hand, we may also parametrize the null

geodesics by the endpoints δxE and δxO, or—more pre-
cisely—by their equivalence classes in QO and QE respec-
tively. In the second parametrization, we need to impose the

linear condition given by the time lapse formula (50). The
resulting dimension of the null geodesic family is therefore
again 3þ 3 − 1 ¼ 5. The direction deviation vector at O is
then given by (53) up to an irrelevant multiple of lμO.

D. Optical operators from the
Riemann curvature tensor

We will show that the two optical mappings are
effectively linear functionals of the spacetime curvature
tensor along γ0, given by solutions of linear ODE’s. Recall
that WXX and WXL expressed in a parallel propagated SNF
can be obtained from the curvature tensor directly via
(12)–(16).
Given any SNF ðuμ; eμA; lμOÞ we can construct a corre-

sponding frame ðu; eAÞ in QO by simply taking u ¼ ½u�,
eA ¼ ½eA� and a frame (eA) in PO. By parallel propagating
the SNF and repeating this procedure we obtain similar
parallel propagated frames ðûμ; êμA; l̂μOÞ, ðû; êAÞ and (êA), in
TpM, Qp and Pp respectively, defined now at all points p
along γ0. Note that the parallel propagation l̂μO of lμO along
γ0 is simply the tangent vector lμ, because the tangent
vector along a geodesic is always parallel propagated.
Moreover, at E we have l̂μO ¼ lμE .
We will now prove a direct relation between the optical

operators expressed in the frame ðû; êAÞ and submatrices of
WXX andWXL expressed in the SNF. Let ξ0 ∈ PO, with the
decomposition ξ0 ¼ ξA0 eA. Take the vector ξ0 in TOM
given by ξ0 ¼ ξA0 eA as the corresponding vector such that
ξ0 ¼ ½ξ0�. Applying the definition we get

Dðξ0Þ ¼ ½WXLðξ0Þ� ¼ ½WXLðξB0 eBÞ� ¼ ξB0 ½WXLðeBÞ�:

On the other hand we know that

½WXLðeBÞ� ¼ ½WXL
0
BûþWXL

A
BêA þWXL

3
Bl�:

The first term vanishes because of (31): since eB is
orthogonal to lO, then WXLðeBÞ must be orthogonal to
lE . It follows that WXL

0
B ¼ 0 in the semi-null frame. The

last term ½WXL
3
Bl� on the other hand vanishes because at E

we have l ¼ lE and the equivalence class of lE in QE is by
definition 0. We are thus left with

Dðξ0Þ ¼ WXL
A
BξB0 êA

or

DA
B ¼ WXL

A
B ð54Þ

in the aforementioned frames. Thus the Jacobi operator
turns out to be a two-by-two submatrix of WXL, independ-
ently of the choice of the SNF. Similar arguments prove m
expressed in ðû; êAÞ satisfies
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mA
i ¼ WXX

A
i − TA

i; ð55Þ

where i runs through 0, 1, 2, WXX is expressed in the SNF
and T is the parallel transport operator in that frame:

TA
i ¼ δAi ¼

�
1 0 0

0 1 0

�
:

We will use the results proved above to derive linear
ODE’s which relate the optical operators directly to the
curvature. We note that in the ODE (17) for WXL the
equations for the submatrix (54) decouple from the rest of
the equations. Namely, the relevant components of the
ODE’s read

B̈A
B − RA

μν0lμlνB0
B − RA

μνClμlνBC
B − RA

μν3lμlνB3
B ¼ 0:

We know that RA
μν3lμlν ¼ RA

333 ¼ 0 because of the
symmetries of the Riemann tensor. On the other hand,
B0

B must vanish, because Bμ
ν must satisfy (31) all along γ0.

We are thus left with the following equation for DA
B ¼

BA
B along γ0:

D̈A
B − RA

μνClμlνDC
B ¼ 0 ð56Þ

with the initial data

DA
BðλOÞ ¼ 0 ð57Þ

_DA
BðλOÞ ¼ δAB: ð58Þ

The value of the solution at the endpoint E gives the Jacobi
map in the frame (êA) irrespective of the choice of the
corresponding SNF. The derivation of the ODE for m
proceeds in a similar way. We begin by noting that in
Eq. (12) the ODE’s for the components AA

i decouple from
the rest:

ÄA
i − RA

μν0lμlνA0
i − RA

μνClμlνAC
i − RA

μν3lμlνA3
i ¼ 0:

The fourth term vanishes again becauseRA
μν3lμlν ¼ 0 due to

the symmetries of theRiemann. The second one survives, but
it can be simplified using the algebraic properties of WXX.
Namely, A0

ν ¼ δ0ν because of (15) and (29). We get there-
fore the following ODE for WXX in a SNF:

ẄXX
A
i − RA

μνClμlνWXX
C
i ¼ RA

μν0lμlνδ0i

WXX
A
iðλOÞ ¼ δAi

_WXX
A
iðλOÞ ¼ 0:

In the final step we rewrite the equations above replacing the
components WXX with the corresponding components of m
as variables. The relation between the variables is given by
(55). The ODE’s take the form of

m̈A
i − RA

μνClμlνmC
i ¼ RA

μνilμlν ð59Þ

mA
iðλOÞ ¼ 0 ð60Þ

_mA
iðλOÞ ¼ 0: ð61Þ

The value of the solution at λE yields m in the parallel-
propagated SNF.
We immediately note that the ODE is an inhomogeneous

version of (56) with two more components involved. The
inhomogeneity is proportional to the Riemann tensor and
the initial data is vanishing at λO. Thus, in a flat space, the
resulting operator always vanishes, unlike the Jacobi map.
A nonvanishing mapping m is therefore always an effect of
the spacetime curvature.
Just like the four BGO’s, m and D are two different

functionals of the Riemann tensor (or, more precisely, the
optical tidal matrix Rα

μνβlμlν) along the fiducial null
geodesic, given by the solutions two different matrix
ODE’s. Therefore their values are in general unrelated to
each other.

E. Remarks

a. Direction deviation formula in a seminull frame. The
derivation of the direction variation formula (53) has been
presented in an abstract and covariant manner, highlighting
this way the coordinate- and frame-invariance of the
formalism. It is nevertheless very instructive to rewrite it
in a parallel-propagated SNF. It takes the form of

DA
BΔlBO ¼ ðδxE − δx̂OÞA −mA

iδxiO: ð62Þ

b. The perpendicular part of the emitter-observer asym-
metry operator. We have already seen when discussing the
Jacobi operator that the components corresponding to two
spatial directions perpendicular to u tend to decouple from
the other two in the GDE. This suggests that a similar
independence may be present in the spatial submatrix ofm.
In order to show it we define the perpendicular part of the
emitter-observer asymmetry operator m⊥∶ PO → PE as
the restriction of m to the subspace PO:

m⊥ ¼ mjPO

In a SNF m⊥ can be represented by a 2-by-2 submatrix of
m. The reader may also check that the ODE’s (59)–(61) for
its components m⊥A

B ≡mA
B indeed decouple from the

equations for the remaining two components mA
0. We

emphasize that while the perpendicular part m⊥ of m is
defined independently of any observer, the splitting of m
into the perpendicular part and the timelike components
m0

A requires fixing an observer with a 4-velocity vector u.
c. The geodesic deviation equation as an ODE in the

quotient spaces. The ODE systems (56)–(58) and (59)–(61)
can also be interpreted as equations defined directly in the
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quotient spaces Qp and Pp [1]. Namely, it is possible do
define the covariant derivative ∇l as a differentiation in the
quotient spaces and pull back the optical tidal matrix toQp.
This way we avoid specifying a whole SNF including
an observer uμ. This interpretation highlights observer-
independence of the spatial components of the operators
considered.
d. The emitter-observer asymmetry operator extended to

the full tangent space. It is possible to extend the domain of
m to the whole tangent space, defining mextðXÞ ¼ mð½X�Þ,
i.e., with identically vanishing mextðlÞ. This is the way m
has been defined in [1]. The extended operator satisfies a
similar ODE of type

m̈ext
A
β − RA

μνClμlνmext
C
β ¼ RA

μνβlμlν

mext
A
βðλOÞ ¼ 0

_mext
A
βðλOÞ ¼ 0:

IV. PARALLAX, POSITION DRIFT AND
THE PHYSICAL MEANING OF
THE OPTICAL OPERATORS

In this section, we will discuss the physical meaning of
the optical operators D and m, and in particular, we will
point out their relation to the parallax measurements, but
before that, we need to define what precisely we mean by
parallax in the context of general relativity.

A. Parallax in general relativity

The notion of parallax is straightforward to grasp in a flat
space and in nonrelativistic context, but its generalization to
general relativity is more ambiguous [9], with various
researchers using different definitions [9,59–63]. We will,
therefore, begin this section by a short clarification what
one can mean by parallax in the context of general
relativity.
In the broadest possible sense parallax is the difference

of the apparent position of an object on the celestial sphere
when regarded from at least two different points of view.
The difference may be due to many effects, including the
gravitational light bending. Note that the definition above
requires a method of comparing the celestial spheres
defined at a different point of the spacetime, and possibly
registered by different observers. In GR this already
introduces a great deal of ambiguity, as there exist infinitely
many ways to identify points in two distinct celestial
spheres. The problem is made even more complicated by
the fact that the positions on the sky, defined as vectors in
the sphere of direction DirðuOÞ, depend on the observer’s
4-velocity uO via the aberration effect, see Eq. (37). This
means that the direction identification is also non-
trivial among two observers at the same event but with
different 4-velocities u and v. While infinitely many such

identifications are possible, it is reasonable to require that
they preserve the metric structure of the celestial sphere,
i.e., the angle measured between any two points on the sky
should be invariant under the identifications.
The definitions of parallax can be classified according to

the way we compare the directions on the sky at different
events and according to how we select the points between
which we make the comparison. In the literature the
possibilities have been considered:
a. Parallax with respect to the local inertial frame. If the

region of spacetime in which we consider the measure-
ments can be considered locally flat, like NO, then we can
employ the parallel transport of vectors for the purpose of
direction identification. Physically this assumption means
that we use local physical phenomena and the local
geometry to define the notion of parallel directions on
the celestial spheres among all nearby observers. Assume
we fix an observer with a given 4-velocity uO at one
of the observation points, say O, and a compatible SNF
ðuO; eA; lOÞ. Its parallel transport ðûO; êA; l̂OÞ defines
corresponding frames at all points in NO. This way we
have defined a way to compare the directions on the sky for
all nearby observers whose 4-velocities are equal to ûO: the
spatial vectors êA and the projection of the null direction l̂O
define 3 orthogonal directions on the spheres of direction
DirðûOÞ at each point. These, in turn, allow for angle-
preserving identification of all other points among all
spheres DirðûOÞ.
In practice, the observations at different points will most

likely be performed by observers with different 4-velocities
v ≠ ûO. A simple way around that is to assume we perform
the corresponding boost of the celestial sphere right after
the observations, subtracting this way the effects of the
Bradley aberration and reconstructing this way the sky
looks at a given point for a fictitious observer with
4-velocity ûO. The change of the apparent position of an
object in that reference frame will be referred to as the
parallax with respect to a local inertial frame.
b. Classic parallax. In general, the observations of a

distant object performed at different events will register
light emitted in different moments along the emitter’s
worldline. This means that the result of observations will
not only depend on the spacetime geometry and the
observer’s frame, but also on the motion of the emitter.
One may, however, devise a measurement in which many
observers will deliberately measure the emitter’s position at
carefully chosen moments so that all of them register
signals emitted exactly at the same moment E. This can be
achieved by appropriate timing of the observations. In the
DOA this corresponds to performing observations within a
single null hypersurface δxμOlOμ ¼ const. The observers
can be displaced in two perpendicular directions eA, but
note the displacement in the direction of lO does not
involve any parallax in the DOA. In this measurement we
are considering the parallax of a single spacetime event E,
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therefore this notion of parallax seems to be the closest in
spirit to the nonrelativistic understanding of the term.
Following Räsänen [9] it will be called the classic parallax
(in [60,62] it is referred to as the trigonometric parallax,
and in [61] it is simply called parallax or triangulation).
Since the position measurement is made by comparison
with parallel-propagated basis it is a special case of the
parallax with respect to the local inertial frame. This type of
measurement is by definition completely independent
of the motion of the emitting body, i.e., its momentary
4-velocity, 4-acceleration etc., what matters is only its exact
position at a single instant of time.
c. Single worldline parallax. The measurements of the

classic parallax must be made at points separated by space-
like vectors. They require therefore using more than one
physical observer separated by sufficiently large distances.
In astronomy, this is usually not feasible. Instead, we rely on
observations performed along the worldline of a single
observer, positioned for example on the Earth or on a
spacecraft [9,64]. This observation will certainly happen
on different null hypersurfaces, involving, therefore, light
emitted at different moments along the emitter’s worldline.
The results of observations will therefore certainly contain a
contribution from the motion of the source of light.
The comparison of the position at different moments

may nevertheless proceed as before: knowing the details
of the motion of the observer in the local inertial frame (for
example the knowing the Earth’s orbit in the barycentric
reference system) we may subtract any effects of the
Bradley aberration, Rømer delays and possibly the local
effects of light bending due to the Sun or massive planets
and consider the “pure” parallax with respect to a local
inertial frame [64,65]. The resulting effects of parallax will
be referred to as the single worldline parallax. Again it is a
special case of the parallax with respect to the local
inertial frame.
This is obviously a different type of measurement than

the classic parallax. Nevertheless, it is possible to infer
about the classic parallax from a single worldline meas-
urement under certain additional assumptions and we will
discuss the exact relation between these two types of
measurement later in this section.
d. Position drift. For a single observer with a given

worldline there is another natural way of identifying
directions on the observer’s spheres of directions at differ-
ent times, one that does not involve an artificial boosting of
the sky in order to subtract the aberration effects. Instead of
a parallel-transported basis, we may simply consider the
Fermi-Walker transport of vectors in the observer’s the
sphere of directions DirðuOÞ along the worldline as our
“fixed directions on the sky” [1,66]. The Fermi-Walker
transport preserves the metric structure of the sphere of
directions, just like the parallel transport does in a fixed
orthonormal frame [67,68]. Fixed directions defined this
way by an observer correspond physically to directions

given by a system of gyroscopes carried by the observer
during his or her noninertial motion [68,69]. The variation
of the apparent position of an object defined this way will
be referred to as the position drift [1]. It obviously depends
on the details of the motion of both the observer and the
emitter, but unlike the single worldline parallax, it also
depends on the observer’s 4-acceleration [1,63,66].
e. Relative parallax. The notions of parallax defined

above use the properties of the local inertial or noninertial
frame and the spacetime’s local geometry in order to define
the reference directions for measuring the variations of the
apparent positions. Therefore, they require not only meas-
uring the apparent position of an object at two distinct
points but also comparing it to fixed directions defined in
the local inertial or noninertial frame. This may be rather
complicated to do in practice and, therefore, in astronomy,
where one considers instead just the relative changes of the
apparent positions of images of two or more objects with
respect to each other, without any reference to the notion of
fixed directions. The observables, in this case, are given by
the variations of angles between the images. Measurements
of this kind are by far the simplest to perform since they
only require a single telescope, without a system gyro-
scopes or other devices defining fixed directions across the
observers’ region NO. This type of parallax may be called
the relative parallax. Among all possible definitions, this
one is the closest to the way parallax is normally measured
in astronomy: the positions of sources and their time
variations are expressed with respect to the Solar
System’s barycentric reference frame, in which the non-
rotating axes are determined by the apparent positions of a
number of selected extragalactic radio or optical sources
[64] rather than any local physical phenomena. Therefore,
in the end, the parallax measurements by Gaia or Hipparcos
rely only on the relative positions on the celestial sphere of
many sources. In the context of relativistic astrophysics and
cosmology, relative parallax has been introduced recently
(not under that name) by Räsänen, in his theoretical work
about the parallax of distant quasars measured by the Gaia
mission [9].
Note that it is very easy to obtain the relative parallax

from the parallax with respect to the local inertial frame or
the position drift. Since both methods of identifying
directions on the sky preserve the metric structure of the
sphere of directions the rate of change of the angle between
any two sources can be easily expressed via their momen-
tary positions and their variations using simple trigonom-
etry: let r⃗1 and r⃗2 be normalized, spatial 3-vectors pointing
towards the apparent positions of two sources in DirðuOÞ.
Then the angleα between their images is given by their scalar
product via cos α ¼ r⃗1 · r⃗2. Therefore a small variation ofα is
expressible in terms of the variations of r⃗1 and r⃗2, defined by
the parallax with respect to a local inertial frame or by the
position drift: −δα sin α ¼ δr⃗1 · r⃗2 þ r⃗1 · δr⃗2. However,
going in the opposite direction is not possible: the change
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of relative angles between images of an arbitrarily large
number of sources is not enough to recover the values of the
image drifts with respect to the local inertial frame. This is
because passing to the relative parallax involves the loss of
information about the rigid rotation of the whole celestial
spherewith respect to the fixed directions in the local inertial
frame. This would manifest itself by a secular, average
rotation the images of the faraway sources like quasars when
compared to the Solar System’s local nonrotating frame. In
the standard cosmological model it is most likely very small
due to negligiblevorticity on large scales, but note that it is by
definition unobservable using only the relative parallax
measurements. The (unphysical) Goedel metric provides a
simple and elegant example of this effect, as discussed in [9].
In the considerations above we have assumed the region

NO to be strictly flat. It is possible however to extend the
applicability of all definitions to a more physically relevant
case when the metric is flat plus small, localized Newtonian
or post-Newtonian perturbations due to the presence of
local masses. One may then use the fictitious, background
flat metric to define fixed directions in NO along the same
lines. This would correspond to using the inertial frame
defined far away from the local masses as a reference for
the parallax. Note, however, that in order to obtain the
“pure” parallax from the observations of a source one
would need to subtract all the local gravitational effects
such as the light bending due to the presence of the local
masses [64].

B. Jacobi operator and the image distortions

We now move on to the discussion of the role of the
optical operators. We begin by explaining the physical
meaning of the Jacobi operator. The material presented here
consists standard results (see for example the review paper
[56]), but will serve as an introduction to the results of the
next sections in which explain the physical significance of
the other optical operator m.
Consider a single observer performing an observation at

O (δxO ¼ 0) and a body of finite size passing through E,
see Fig. 5. Obviously δxμOlOμ ¼ 0 and from the time lapse
formula (49) we see that the observer registers light from
various points of the body emitted at the moment given by
the condition δxμElEμ ¼ 0. Thus when we pass to the

quotient space we have ½δxE � ∈ PE . Therefore Eq. (62)
takes the form of

ΔlAO ¼ D−1A
BδxBE ; ð63Þ

in a parallel-propagated seminull frame. The equation
above yields a linear relation between the deviation of
the direction of light propagation atO and the displacement
of a point on the emitting body’s cross section from E. This
latter can be related to the physical distance from E on the
emitter’s screen space as measured in the body’s own
frame, regardless of the emitter’s momentary motion: we
noted that the distances between points on the cross section,
as measured in the body’s reference frame, are given by the
distances evaluated in PE using its internal metric, irre-
spective of the body’s 4-velocity uμE.
a. Magnification matrix. We would like to relate the

distances on the emitter’s screen space to the angles
measured at the observer’s sky. This requires taking into
account the Bradley aberration effects. According to (38)
and (44) we have

δθAO ¼ 1

lOσuσO
D−1A

BδxBE ð64Þ

with uσO being the observer’s 4-velocity. The combination

MA
B ¼ 1

lOσuσO
D−1A

B ð65Þ

is called the magnification matrix in the gravitational
lensing theory (the definition here relates the perpendicular
displacements on the source plane directly to angles on the
sky rather than the position on the image plane, but these
two are related by a simple rescaling). It has the dimension
of 1=L, where L denotes length. It depends on the
observer’s motion via the aberration effect: observers with
different 4-velocities observe the celestial sphere trans-
formed by a conformal mapping with respect to each other.
This transformation makes certain parts of the sky appear
larger or smaller depending on the observer’s 4-velocity but
without any shape distortions of small objects. In (65) this
dependence is encoded in the ðlOσuσOÞ−1 factor in front of
the Jacobi matrix. The magnification matrix for weak
lensing in a perturbed Friedmann-Lemaître-Robertson-
Walker (FLRW) Universe, together with corrections due
to proper motions, has been calculated in [70].
b. Angular diameter distance. The magnification matrix

gives explicitly the relation between perpendicular distan-
ces on the emitter’s side and in his/her frame and the angles
on the observer’s sky. Its determinant measures the relation
of a light emitting body’s cross-sectional area AE to the
stereographic angle ΩE it takes up on the sky. The ratio
between these areas is used to define the angular diameter
distance to the body, also known as the area distance:

FIG. 5. A view of the projection of the null hypersurfaces
containing E andO. The angle at which the observer sees another
point in an extended emitter’s cross section is determined by δxE,
the Jacobi operator and the observer’s 4-velocity.
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Dang ¼
ffiffiffiffiffiffi
AE

ΩE

s
: ð66Þ

This quantity is related to the magnification matrix via

Dang ¼ j detMA
Bj−1=2: ð67Þ

Equivalently, we can express the angular diameter distance
directly via the Jacobi map:

Dang ¼ ðlOσuσOÞj detDA
Bj1=2: ð68Þ

Just like MA
B, Dang depends on the observer’s motion via

the aberration effects, but not on the emitter’s motions. It is
related to the luminosity distanceDlum via the Etherington’s
formula

Dlum ¼ Dangð1þ zÞ2;

see [56,71], the latter republished as [72]. The off-diagonal
part of MA

B contains the information about the image
distortions [6].
A simple physical interpretation of the angular diameter

distance can be explained as in Fig. 6. Assume we observe
from the pointO the light emitted by three pointlike objects
at the events E, E1 and E2, all lying on the same null
hypersurface lEμδx

μ
E ¼ 0. Their projections from a triangle

of area AE on the cross-sectional plane perpendicular to lE
(this value is independent of the choice of the observer in E
due to the Sachs shadow theorem). On the other hand, their
images form a triangle on the observer’s sky, covering the
stereographic angle of ΩE . In a spacetime with strong
lensing the image may be subject to a strong deformation,
including a rescaling, shear, and rotation, but the angular
diameter distance is defined simply by the ratio of AE and
ΩE via (66).

C. Emitter-observer asymmetry operator
and the classic parallax

Consider now the opposite situation: we have a single
point source emitting light while passing through the point E
and a number of observers o1; o2; ...; displaced with respect
to each other and such that o1 passes through O. Each
observer oi will register the emitter’s apparent position ei on
their celestial spheres.We assume that the observers register
the emitter’s position on the sky using light emitted only at
point E, i.e., we have δxμE ¼ 0. From (49) this means that
they all register the position of the source at the moment they
cross the null hypersurface δxμOlOμ ¼ 0. For simplicity we
also assume that they are comoving: their 4-velocities at the
moment of measurement are exactly the same, i.e., in locally
flat coordinates they are all equal to a fixed uμO. This way we
do not need to consider the aberration effects when compar-
ing the results of their measurements.
Since δxμO must be orthogonal to lμO for all observers at the

moment of observation we have ½δxO� ∈ PO for the equiv-
alence class of their displacement vectors. From (62) we get
the following relation between the observers’ displacement
vectors and the direction deviation:

DA
BΔlBO ¼ −δx̂AO −m⊥A

Bδx̂BO ¼ −ðδAB þm⊥A
BÞδx̂BO;

ð69Þ

(note that in a parallel-propagated SNF δxAO ¼ δx̂AO). We see
that the Eq. (69) differs from (63) by the sign at the position
displacement term and the presence of a term involving the
perpendicular part m⊥ of the emitter-observer asymmetry
operator m, see Fig. 7. In order to elucidate its physical
meaning, we will now compare the situation when m⊥
vanishes (for example because the spacetime is flat) and
when it does not.
In a flat space, wherem⊥ vanishes between E andO, (69)

is formally identical to (63) with δxE replaced by −δx̂O. In
other words, a perpendicular displacement of the observer
½δxO� is precisely equivalent to a displacement of the

FIG. 6. A pointlike luminous object at E and two other pointlike luminous objects nearby, forming a triangle on the cross section plane
in the direction of the propagation of light. The angular diameter distance between O and E is obtained as the square root of the ratio
between the area of the triangle on the cross section plane and the stereographic angle occupied by the triangle with vertices at the
apparent positions of the 3 objects at the observer’s sky.
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emitter in the opposite direction, i.e., ½δxE � ¼ −½δx̂O�. The
notion of opposite direction, used here for displacement
vectors defined at two different endpoints of the fiducial
null geodesic γ0, is defined by the parallel transport
along it.
These conclusions follow already from (62), where, in

the absence ofm, any value of the left-hand side (LHS) can
be attributed to either δx̂O or −δxE at will. This is easy to
understand geometrically if we realize that in the flat space
the perpendicular displacement vectors and the null geo-
desics form in this case a thin but long parallelogram, see
Fig. 8. The two null geodesics corresponding to the
displacements on two ends of γ0 are initially parallel, so
the angles between them and the direction of the fiducial
geodesic must be the same.
However, if the curvature is present along γ0 then the

property of exact equivalence between the position dis-
placements at the two ends of the null geodesic may be
broken by a term proportional tom⊥A

B. From (62) it is easy
to see that the value of the LHS cannot simply shifted from
δxE to −δx̂O since the operator m⊥ spoils the symmetry.
This observation justifies the name emitter-observer asym-
metry operator, proposed in Sec. III C.
One possible geometric interpretation of the linear

operator m⊥ is thus that it is the obstruction for the
existence of the thin and long parallelogram discussed
above, made of the two initially parallel, long null geo-
desics, and two vectors δxO and −δx̂O. If m⊥ happens to
vanish between O and E then the parallelogram exists. It

follows then that the problem of parallax is effectively
equivalent to the problem of image distortion discussed in
the previous section despite all gravitational lensing which
may happen along the way, see again Fig. 8. Ifm⊥ does not
vanish, then the parallelogram does not exist in general and
the equivalence of opposite displacements on both sides of
γ0 is broken. In this case (69) yields

ΔlAO ¼ −D−1A
CðδCB þm⊥C

BÞδx̂BO:

Recall now that we have assumed that all observers are
comoving with the observer O, i.e., their 4-velocities are
equal to uμO. Then the position on the celestial sphere of
what a displaced observer will measure is

δθAO ¼ −
1

uσOlσ
D−1A

CðδCB þm⊥C
BÞδx̂BO: ð70Þ

This is a linear relation between the perpendicular dis-
placement of the observer and the change of apparent
position as measured for a source at a single instant of the
source’s time, defined with respect to the local geometry,
i.e., the classic parallax in the terminology of Sec. IVA.
Note that if the 4-velocities of the observers o1; o2;… are

not exactly equal we need to take into account the
aberration effects when comparing the registered positions
on the sky between the observer. These effects will add
a 4-velocity-dependent term on top of the linear term from
(70). Calculating this term is a standard special relativity

FIG. 7. Aview of the projection of the null hypersurfaces containing E andO. The angle at which the displaced observer sees the point
source at E as compared to the one atO, i.e., the classical parallax, is determined by the Jacobi operator, the emitter-observer asymmetry
operator, and the observer’s 4-velocity.

FIG. 8. If the perpendicular part of the emitter-observer asymmetry operator m⊥ vanishes, it is possible to draw a thin and long
parallelogram made of two, initially parallel null geodesics γ and γ0, the displacement vector δxO and its parallel transport−δx̂O. γ0 plays
the role of its diagonal. In this case determining the parallax angle for an observer displaced by δxO is equivalent to the problem of the
angular size of an object extending from E to −δx̂O.
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problem which we leave to the reader. Here we prefer to
assume comoving observers in order to isolate the depend-
ence of the position on the sky on the observer’s
displacement.
a. Parallax matrix. In analogy with the magnification

matrix from (65) we can introduce the observer-dependent
parallax matrix

ΠA
B ¼ 1

uσOlOσ
D−1A

CðδCB þm⊥C
BÞ: ð71Þ

The parallax matrix relates perpendicular distances on the
observer’s side and two-dimensional angles measuring
the observed position on the sky in comparison with the
position observed by o1 at O. Namely, the Eq. (70) for the
classic parallax takes the form of

δθAO ¼ −ΠA
Bδx̂BO:

ΠA
B is independent of uE because its definition relies on the

observations from various points of view of the light
emitted by the source in a single moment. Therefore what
matters for the observation is only the exact position of the
emitter at the moment of observation E, while the rest of its
worldline, which for short times can be approximated by
the first two terms in the Taylor expansion, given by the
momentary 4-velocity uμE and 4-acceleration wμ

E , is irrel-
evant. On the other hand, the parallax matrix depends on
the spacetime geometry and on the observer’s 4-velocity.
The dependence on the geometry is via the curvature tensor
along γ0 because in (71) ΠA

B is expressed as a function of
the optical operators, themselves functionals of the
Riemann tensor. The dependence on uμO enters only via
the aberration effects, just like in MA

B. Thus we have

ΠA
B ≡ ΠA

BðRμ
ναβ; u

μ
OÞ:

Just like MA
B, the parallax matrix has the dimension

of 1=L.
b. Parallax distance. In astronomy determining the

parallax is one of the standard methods of measuring
the distances to objects up to few kiloparsecs [73,74].
The method relies again on the flat space formula for the
parallax matrix: in a flat space we have ΠA

B ¼ d−1δAB,
where d is the spatial distance between O and E measured
in the observer’s frame. If we include the relativistic effects
of light bendingΠA

B is not guaranteed to be proportional to
the unit matrix any more. This leads to the dependence of
the parallax effect on the orientation of the baseline δxμE [9].
It is therefore reasonable to try to extract an angle-averaged
quantity out of ΠA

B. In [9,62] the following definition has
been proposed: the parallax distance is defined to be
proportional to the inverse of the expansion of the con-
gruence of null geodesics originating from E at O. In the
language of this paper it is simply inverse of arithmetic
average of elements of the diagonal, see [1]:

D̃par ¼
2

TrðΠA
BÞ

:

This is a possible generalization, but in this paper we would
like to put forward another approach, analogous to the one
used in the standard definition of the angular diameter
distance Dang. We define the parallax distance using the
determinant of the parallax matrix

Dpar ¼ j detΠA
Bj−1=2;

or equivalently

Dpar ¼ðlOσuσOÞjdetDA
Bj1=2jdetðδABþm⊥A

BÞj−1=2: ð72Þ

The reader may check that in a flat space this definition
yields again the right answer, but in a nonflat space it
averages the results over directions in a different way than
the standard one. Let π1 and π2 be the two roots of the
characteristic equation of ΠA

B, possibly real or possibly
complex and conjugate to each other. Then D̃−1

par ¼
1
2
ðπ1 þ π2Þ while D−1

par ¼
ffiffiffiffiffiffiffiffiffiffiffiffijπ1π2j

p
. Thus the latter defini-

tion is equivalent to the inverse of the geometric average of
the moduli of the roots, while the former uses the inverse of
their arithmetic average. As a consequence we see that both
values coincide if no shear is present betweenO and E:ΠA

B
is proportional to the unit matrix in that case and both roots
are equal.
We will now explain the physical interpretation of the

new definition proposed above, highlighting this way the
analogy to the notion of the angular diameter distance.
Consider an observer o1 at O and two additional observers
o2 and o3, displaced with respect to O in two different
directions (not necessary perpendicular to each other) and
comoving with o1. They all measure the apparent position
of the emitter when it passes through E and combine their
results of observation on a single celestial sphere S2 by
identifying points on their celestial spheres corresponding
to parallel directions in the sense of locally flat coordinates
in NO. The result will be a triple of close points on S2

corresponding the three observations and forming a
solid triangle T1. On the other hand, we may also
consider a physical triangle T2 these observers form when
we project their displacement vectors to the screen space
perpendicular to lO, see Figure 9. Let AO denote the area of
the triangle T2 (again it is independent of the observer’s o1
4-velocity due to the Sachs theorem) and let ΩO denote the
solid angle taken up by T1. Then we have

Dpar ¼
ffiffiffiffiffiffiffi
AO

ΩO

s
:

The analogy with the definition of the angular distance is
now evident: the definition of Dpar is equivalent with Dang,
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but with the displacements considered on the observer’s
side of γ0 instead of the emitter’s side. As we will see in
Section V, the compatibility of both definitions opens up
the possibility of defining a new observable measuring
directly the spacetime curvature.
Summarizing, the curvature along the line of sight

produces two types of effect: the gravitational lensing,
which modifies the Jacobi map, resulting in the (de)
magnification and distortion of images seen by observers,
and introducing asymmetry between the displacements of
the two end of the null geodesic. Both effects are inde-
pendent and both affect the classic parallax.

D. Position drift formula

Before we consider more realistic models of measure-
ments of the parallax we will rederive the general position
drift formula for the momentary rate of change of the
apparent position of a source at E as observed by an observer
inO in any spacetime. The formula relates the position drift
(or proper motion) to the optical operators betweenO and E
and to the quantities describing themomentary motions both
the emitter and the observer, namely the emitter’s 4-velocity
uμE , the observer’s 4-velocity uμO and the observer’s 4-
acceleration wμ

O. It has already been presented in [1], but
the derivation there is rather involved. The derivation using
the formalism developed here on the other hand is concep-
tually simpler and computationally rather straightforward.
Let τE and τO denote the proper time as measured by

the emitter and observer respectively. Additionally, let

τE ¼ τO ¼ 0 when both objects cross E andO respectively,
i.e., at the moment of emission and observation. After a
short while we have δxμO ¼ uμOδτO and δxμE ¼ uμEδτE in the
leading, linear order in each of the proper times. The time
lapse formula (49) yields

uμElEμδτE ¼ uμOlOμδτO:

This relation can be turned into a formula for the emitter’s
time lapse as registered by the observer and compared with
his/her proper time lapse:

δτE
δτO

¼ uσOlOσ

uρElEρ
:

The ratio on the right-hand side is obviously related to the
redshift defined as the relative difference between the
photon energy as measured by E and O:

z ¼ uρElEρ
uσOlOσ

− 1:

Therefore we see that (49) is equivalent to the following
relation between the redshift z, defined by photon energy
change, and the rate of the emitter’s time lapse related to the
observer’s proper time:

FIG. 9. A single, pointlike luminous source at E observed by an observer o1 at O as well as two comoving observers o2 and o3
displaced with respect to o1, performing their measurements on the same null hypersurface. The projection of their positions to the
screen space perpendicular to lO yields a triangle T2 of area AO. On the other hand, superimposing the registered positions of the sources
by the three observers yields a triangle T1 on the “combined” celestial sphere, whose solid angle area is denoted by ΩO.
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δτE ¼ 1

1þ z
δτO

(derived earlier in [1,53,75]).
We can now evaluate the position drift. After substituting

the position deviation and simple manipulations the direc-
tion variation formula (62) yields

ΔlAO
δτO

¼ D−1A
B

��
1

1þ z
uE − ûO

�
B
−mB

iuiO

�
: ð73Þ

The ratio on the left-hand side is simply the covariant
derivative of the null tangent vector along the observer’s
worldline evaluated at O and pulled back to PO:

ΔlAO
δτO

¼ ðuνO∇νlOÞjAO

This can be related to the parallax with respect to the local
inertial frame by simple rescaling according to (38) and
(44). For a nongeodesic observer, we may also obtain the
expression for the position drift. By definition we need to
evaluate the Fermi-Walker derivative of rμ [1,66], given by

δOrμ ¼ ðuνO∇νrμÞ þ ð−uμOwOν þ wμ
OuOνÞrν; ð74Þ

with the transverse components of the term uνO∇νrμ given
by (44) and (73). δOrA corresponds to the position drift
measured with respect to inertially dragged fixed direc-
tions. Combining (74) and (73) yields

δOrA¼
1

lOσuσO
D−1A

B

��
1

1þ z
uE − ûO

�
B
−mB

iuiO

�
þwA

O

ð75Þ

for the only 2 nonvanishing components of δOrμ in a SNF.
The last term is the perpendicular component of the
observer’s 4-acceleration. It corresponds to the special
relativistic effect of the position drift due to the drift of
the aberration [1,9,63]. Its influence on the drift of the
positions of sources at cosmological distances has been
recently discussed in [63]. For a longer discussion of the
position drift formula and its physical and astrophysical
consequences see [1], here we will just briefly look at the
role of the emitter-observer asymmetry operator.
First, consider the situation in which uμE and the parallel-

transported ûμO differ only by a component along the line of
sight. In this case, it is easy to see that the perpendicular
component of the 4-velocity difference 1

1þz uE − ûO van-
ishes, so the first term in (75) does not contribute to the
drift. In the absence of mAi, this means no drift seen by
the observer. However, if the emitter-observer asym-
metry operator is not 0 the observer can perceive a

“curvature-induced” position drift even when both 4-
velocities uE , ûO and the null vector lE lie on a single 2-
plane and the first term in (75) vanishes. This type of drift is
proportional to the timelike component ofmAi, i.e.,mAiuiO.
It is independent of the velocity of the emitter’s radial
motion with respect to the observer.
Second, we note that in (75) operator m appears once

again in a term which breaks the symmetry between the
emitter and observer. This is not so easy to see at first
inspection, because, unlike (62), the formula (75) even
without the m term does not seem antisymmetric with
respect to the exchange of uE and uO at first glance because
of the 1

1þz factor in front of uE . This is because in the
derivation above we have made a choice which ties the
formula to the observer’s frame: namely, we relate the rate
of change of the apparent position to the lapse of the
observer’s proper time. This choice introduces an asym-
metry between uO and uE in (75) at the level of pure
special relativity, even without any GR effects present.
Nevertheless, the symmetry breaking role ofm can again be
seen in the following example.
Consider an emitter at E and an observer at O for whom

not only the perpendicular components of 1
1þz u

μ
E − ûμO

vanish, but actually both 4-velocities coincide. This means
that both objects are at rest with respect to each other with
the comparison made using the parallel transport along γ0.
Assume as before that the observer is geodesic (wμ

O ¼ 0). It
follows then that z ¼ 0 and the first term in (75) vanishes.
Just like in the previous example, in the absence of m the
curvature-induced drift vanishes, but additionally the whole
situation is symmetric with respect to boosting the emitter
and observer in the following sense: consider another
emitter ũμE passing through E, boosted with respect to uμE
in a direction orthogonal to the line of sight (orthogonality
determined in the uE reference frame). This new emitter
will exhibit drift according to the observer, although in
general not in the direction related to the parallel trans-
ported direction of its motion. On the other hand, the reader
may check that exactly the same position drift δOrA can be
induced by considering a free-falling, moving observer,
boosted with respect to uμO with the same velocity but in the
opposite direction (again in the sense of parallel transport)
and observing the unboosted emitter. Just like the displace-
ment equivalence on both ends of γ0 noted in Sec. IV C, this
boost equivalence property is lost whenever m⊥ ≠ 0.
We would like to remark that even though we have used

the flat light cones approximation and the parallel light rays
approximation, the formula derived here is valid without
any restrictions regarding the distance between O and E or
the bilocal geodesic operators. This is because the position
drift is by definition the first derivative of the position on
the sky and the derivative is always obtained by lineari-
zation of all relations involved, including the null condition
(41) and the position on the sky formula (39).
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E. Single worldline parallax in a general situation

Finally, we move on to discussing a more realistic model
of parallax observations. Assume that both the observer and
the emitter are located in gravitationally bound systems
whose barycenters undergo a geodesic motion (free fall)
with a good approximation. The gravitational fields binding
the systems are assumed to be so weak that the light
bending they induce is negligible—if it is not then they may
be introduced later as small, perturbative corrections, for
example using the parameterized post-Newtonian formal-
ism (PPN) [64]. We assume here that the motion of the
observer and the emitter in their respective local inertial
frames can be well approximated by short-time, nonrela-
tivistic orbital motions around the barycenters, superim-
posed on top of a secular motion of the barycenters with
constant 4-velocities UO and UE respectively, see Fig. 10.
The characteristic timescale of this short-time motion is
assumed to be smaller that the size of NO and NE , i.e., L.
Assume that points O and E lie on the worldlines of the
respective barycenters and let tE and tO denote the proper
time in the appropriate barycentric reference system (the
barycentric coordinate times in the astronomical terminol-
ogy), defined such that tE ¼ 0 at E and tO ¼ 0 at O. Then
the momentary position of the observer can be decomposed
according to

δxμO ¼ Uμ
OtO þ σμðtOÞ;

where the momentary position vector σμðtOÞ is assumed to
be orthogonal to lμO rather than Uμ

O, i.e., σμl
μ
O ¼ 0 (vector

σμ can be spacelike or null). Similar decomposition can be
used for the emitter:

δxμE ¼ Uμ
EtE þ ρμðtEÞ

with the condition ρμl
μ
E ¼ 0. In NO this decomposition is

effectively equivalent to introducing a null time coordinate
vO, consistent with the barycentric coordinate time tO at the
barycenter, but whose gradient is proportional to lOμ, and
then splitting the momentary displacement vector into the
timelike component and the other component lying on the
null surface of constant vO (Fig. 11). This is, in turn,
equivalent to the decomposition of δxO in an SNF with Uμ

O
as the first basis vector. The purpose of this operation in both
NO and NE is to take into account the Rømer delays on the
observer’s and the emitter’s side. Note that the observer’s
and the emitter’s proper times need to be related their
respective barycentric coordinate times, but this is a fairly
simple special relativity problem [64].
We now consider the apparent position of the emitter on

the observer’s sky. From the time lapse formula (49) we get
the relation between the barycentric time variables tO and
tE , calculated at the barycenters:

tE ¼ lOμU
μ
O

lEνUν
E
tO ¼ 1

1þ z
tO;

where z is the redshift between the two barycenter frames.
Then from the direction deviation formula in the SNF (62)
we get

DA
BΔlBO ¼

��
1

1þ z
UE − ÛO

�
A
−mA

iUi
O

�
tO

þ ðρ − σ̂ÞA −m⊥A
Bσ

B: ð76Þ

Assume now the observer measures the emitter’s apparent
position on the sky along his or her worldline, but
subtracting the effects of aberration due to his or her
motion with respect to the barycenter. In the terminology of

FIG. 10. The observer and the emitter in gravitationally bound systems, undergoing short-time orbital motions around their free-falling
barycenters.
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Sec. IVA this amounts to the parallax with respect to the
local inertial frame, connected with the free-falling bary-
center, and given byUO. The apparent position with respect
to lO can be obtained from (76) combined with (38) and
(44). After rearranging the terms and applying the defi-
nitions of the magnification matrix, the parallax matrix and
the position drift formula (75) we obtain

δθA ¼ δOrAtO þMA
Bρ

BðtOÞ − ΠA
Bσ̂

BðtOÞ: ð77Þ

In this formula δOrA in the first term is the position drift rate
calculated for a fictitious emitter-observer pair in which
both are located at the free-falling barycenters of their
gravitationally bound systems:

δOrA ¼ 1

lOμU
μ
O
D−1A

B

��
1

1þ z
UE − ÛO

�
B
−mB

iUi
O

�
:

MA
B andΠA

B are the magnification and the parallax matrix
in the observer’s barycenter reference frame. We can see
that the total effect is a sum of a secular drift caused by the
motions of the barycenters of both gravitationally bound
systems (proper motion), an oscillatory term due to the
emitter’s orbital motions and another oscillatory term due
to the observer’s orbital motion. The latter two terms
depend only on the perpendicular components of the
deviation vectors σμ and ρμ. This is a straightforward
consequence of the PRA which neglects the perspective
distortions. Note however that in the presence of curvature
they are multiplied by two different matrices: the magni-
fication matrix and the parallax matrix, differing by a
curvature correction proportional to m⊥A

B.
If the emitter’s short-time motion term is negligible with

respect to the third term then the result is simply a sum of
the proper motion and the classic parallax term [65,76]. In
the most important case for modern astronomy, i.e., the
question of the solar parallax σAðtOÞ has a very precisely

known functional form with an annual periodicity and can
be easily disentangled from the first, secular term [76]. This
way we may measure the parallax matrix in the Solar
System’s barycenter frame using the standard astrometric
observations performed along a timelike worldline of the
Earth-based observatory or a spacecraft. Note however that
the applicability of this procedure relies on the assumptions
that underlie the analysis above: that the emitter does not
undergo short-scale motions of similar time scale, the
gravitational field is such that the curvature is roughly
constant across a connecting tube of the size of the Earth’s
orbit, the distortions due to the light bending from nearby
masses can be disregarded or subtracted and we know
sufficiently well the short-scale motion of the observer
around the Solar System’s barycenter. The analysis above
applies also to the case when the source is positioned at
cosmological distances and we need to take into account
the nonflat geometry between the source and the observer,
or when the image has undergone strong lensing.

F. Magnification, parallax and position
drift near a caustic

We can now use formulas (65), (71) and (75) to discuss
the behavior of the magnification, classical parallax and the
position drift near a typical caustic. Recall that on a caustic
the Jacobi map becomes degenerate in at least one
direction. Assume now DA

B is degenerate along a single
direction nA, i.e., DA

BnB ¼ 0. This means that an infini-
tesimally small image undergoes a formally infinite dis-
tortion along nB and an infinite magnification. Consider
now the parallax matrix: as long as the curvature along the
line of sight is bounded, the emitter-observer asymmetry
operator m⊥ should stay finite. Moreover we may expect
the combination δAB þm⊥A

B to be an invertible operator in
a generic case. Now, since (71) contains the inverse of the
Jacobi map, we see that unless the term δAB þm⊥A

B
happens by chance to be degenerate along the very same
direction nA the parallax matrix will blow up as well. In that
case there obviously must be a direction n̄A in PO such that
the parallax for an observer displaced along it is formally
infinite. It is given by n̄A ¼ CðδAB þm⊥A

BÞ−1nB, with C
being a positive normalization factor.
We can also obtain a similar result for the position drift.

Looking at (75) we note that unless the 4-velocities of the
observer and the emitter happen to be aligned in a special
way, such that the combination ½ð1þ zÞ−1uE − ûO�−
mð½uO�Þ has a vanishing component along nA, the position
drift becomes infinite as well.
Summarizing, we have just proved that near a caustic the

magnification matrix, the parallax matrix and the value of
the position drift, registered for a generic observer and
emitter pair, will blow up simultaneously as measured on
the observer’s sky. Of course for real sources, of small but
finite size, and for observational instruments of finite

FIG. 11. The standard way to describe the position of a point
mass δxO is to decompose the position vector into the tangent and
perpendicular components with respect to the barycenter 4-
velocity UO (on the left). Here we use a modified decomposition:
δxO decomposed into the part parallel to UO and σ orthogonal to
lO. The decompositions differ by the tilt of the 3-plane containing
the second component.
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resolution, the measured values of the drift, parallax, and
magnification will be large but finite. Nevertheless, in a
generic situation, all of those effects become amplified
simultaneously when the emitter approaches a caustic.

V. MOMENTARY MOTIONS-INDEPENDENT
OBSERVABLES

As an example of an application of the formalism
presented above, we will show that by combining the data
about the classical parallax and the image distortion and
magnification it is possible to define quantities which are
entirely insensitive to the momentary 4-velocities of both
the observer and the emitter. In other words, we will
introduce momentary motions-independent observables,
which measure the geometry of the spacetime between
the emission point E and the observation point O, encoded
in the optical operators.
Recall that the magnification matrix MA

B and the
parallax matrix ΠA

B do not depend on the emitter’s
4-velocity uE, but they do depend on the observer’s
4-velocity uO because of the stellar aberration effect.
Consider now the combination

w⊥A
B ¼ ðM−1ÞABΠC

B ð78Þ

calculated in a SNF. From (65) and (71) we see that the
formula above defines an uO-independent quantity, i.e., a
combination of observables depending only on the curva-
ture along the line of sight and not on the kinematical
quantities describing the motions:

w⊥A
B ≡ w⊥A

BðRμ
ναβÞ:

Geometrically this matrix defines a frame-independent
operator w⊥∶PO → PO. Unlike M and Π it is dimension-
less. From (65) and we see that it has a simple expression in
terms of the optical operators

w⊥A
B ¼ δAB þm⊥A

B: ð79Þ

Therefore its deviation from the unit matrix may serve as a
measure of the spacetime curvature.
The value of the determinant of w⊥, calculated in a SNF,

is of particular interest. We define the dimensionless, scalar
parameter μ by

μ ¼ 1 − detw⊥A
B; ð80Þ

or equivalently

μ ¼ 1 −
detΠA

B

detMA
B
: ð81Þ

Just like w⊥, it depends only on the curvature along the
optical axis, but not on the motions of the observer and the

emitter. Using (68), (72) and (81) we show that μ can
be expressed via the parallax and the angular diameter
distance:

μ ¼ 1 − σ
D2

ang

D2
par

; ð82Þ

where σ ¼ �1 determines the sign of the second term. σ
depends on sign of the determinants of the magnification
and the parallax matrices:

σ ¼ sgn detMA
B · sgn detΠA

B:

In short, we take the minus sign in the second term of (82)
(i.e., σ ¼ 1) if both matrices are orientation-preserving (i.e.,
the image the observer sees is not flipped and neither is the
dependence of the parallax on position deviation) or both
are negative (i.e., if the observer sees an inverted image and
at the same time the linear dependence of the parallax on
the position has inverted parity with respect to the standard
one) and the plus sign (σ ¼ −1) if only one of them is
flipped. The reader may check that for sufficiently small
perturbation of the null geodesics by curvature both
determinants should be positive, so we have

μ ¼ 1 −
D2

ang

D2
par

ð83Þ

for sufficiently short distances and/or sufficiently weak
bending of light rays between O and E. Note that there are
no simple relations analogous to (82), (80) and (79) for the
other parallax distance D̃par.
We can see that μ measures the deviation of the metric

from the flat one by comparing the parallax and the angular
diameter distances measured to an object positioned far
away. Obviously, both definitions must give the same
answer in a flat spacetime, i.e., μ ¼ 0 in the Minkowski
space, but nonvanishing curvature along γ0 gives rise to the
asymmetry between the observer and the emitter, as we
have discussed in Sec. IV C. This, in turn, can make the two
optical methods of determining the distance inequivalent,
giving rise to μ ≠ 0.
It is very instructive to consider μ in the case of fairly

small curvature along the line of sight. We assume we may
use the first order perturbation theory in the GDE, effec-
tively treating the curvature tensor as a small perturbation.
In that case we obtain from (59)

m̈⊥A
B ≡ m̈A

B ¼ RA
μνBlμlν;

in the leading order. After imposing the initial conditions
(60)–(61) we obtain the solution as an iterated integral:
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m⊥A
B ≈

Z
λE

λO

dλ1

Z
λ1

λO

dλ2RA
μνBðλ2Þlμlν:

We also linearize (80) around μ ¼ 0, obtaining

μ ≈ −m⊥A
A ¼ −trm⊥:

Thus the leading order contribution to μ has also the form
of an iterated integral

μ ≈ −
Z

λE

λO

dλ1

Z
λ1

λO

dλ2RA
μνAlμlν: ð84Þ

Finally we apply the standard decomposition of the
Riemann tensor into the Weyl tensor Cμ

ναβ and the Ricci
tensor Rμν. We note first that the trace over the screen space
of the Riemann tensor contracted twice with the null vector
lμ, or the optical tidal matrix, is equal to the full trace of the
Riemann tensor contracted in the same way, i.e.,

RA
μνAlμlν ¼ Rα

μναlμlν ¼ −Rμνlμlν:

Thus the Weyl tensor does not contribute to the integral
(84). We also notice that for a null vector lμ we have
Rμνlμlν ¼ Gμνlμlν, where Gμν is the Einstein tensor.
In the final step we apply the Einstein field equations

Gμν þ Λgμν ¼ 8πGTμν

contracted with lμlν. Again we see that because lμ is null the
cosmological constant Λ does not contribute to the integral,
so we obtain

μ ≈ 8πG
Z

λE

λO

dλ1

Z
λ1

λO

dλ2Tμνðλ2Þlμlν ð85Þ

in the leading order in the curvature. Note that although we
have used a parallel-propagated SNF to derive it, this
formula is valid in any basis, including every coordinate
basis. We see that for small curvature effects the Weyl
tensor, carrying the information about tidal forces and
gravitational waves along the line of sight, and the
cosmological constant drop out from the integral, leaving
only the dependence on the matter content along γ0 and in
its vicinity. The iterated integral in (85) can be converted
into a single integral of the same expression with a linear
weight function:

μ ≈ 8πG
Z

λE

λO

TμνðλÞlμlνðλE − λÞdλ: ð86Þ

The proof of equivalence of (85) and (86) proceeds via
the integration by parts of (86), with the linear function
ðλE − λÞ undergoing differentiation and the stress-energy
tensor term being integrated.

Finally, the reader may verify that all expressions for μ
are invariant with respect to affine reparametrizations of γ0
given by (2)–(3).
a. Applications.We will sketch now a simple application

of the result above. Since the formulas (85) or (86) relate μ,
a quantity potentially measurable using optical observa-
tions, with the amount of matter along the line of sight, we
may use them to devise a purely optical method of
determining the spacetime matter distribution. Consider a
very precise, momentary measurement of the size of the
image of a small object of known physical size at E,
performed by a telescope at O from very far away. We
assume that the DOA holds in this configuration. At the
same moment, we need to perform equally precise mea-
surements of its classic parallax from at least two other,
noncollinear points nearby, displaced orthogonally to the
direction of light propagation. The measurement is done by
comparing the two-dimensional position on the sky of the
source, seen by the two displaced and comoving auxiliary
observers, with the source’s position recorded by the
telescope O. Since both auxiliary observers are displaced
strictly orthogonally to the direction of propagation of light
at O, performing the measurements simultaneously in the
observer’s framewill yield the measurement of parallax of a
single event along the emitter’s worldline. Therefore what
we measure this way is indeed the classic parallax in the
terminology of Sec. IVA.
We assume that the physical size of the emitter (in its

own frame) and the positions of the auxiliary observers
with respect to the central one (in the observer’s frame) are
known very accurately. From these data we can determine
with high precision the matrices ΠA

B andMA
B along a null

geodesic using directly the relations (65) and (71). Then
from (81) we obtain μ. This way we have effectively
weighed the whole matter content in the spacetime along
the line of sight: from (85) we see that this method
determines the amount of any kind of matter between
the observer and the emitter.
We note that the method sketched above seems to be

well-suited for a space-based mission. Due to the insensi-
tivity of μ to the momentary motions on both sides, there is
absolutely no need to know the relative motions or the
precise distance between the observer and the emitter. It is
only the distances and velocities within the group of
observers measured in the observer’s own frame, as well
as the emitter’s size, measured in its own frame, which are
used in this measurement and which need to be determined
with high precision. The exact shape of the emitter is also
irrelevant since it only provides a background image. The
angular size of this image and its apparent shift as observed
from 2 other points carry the information about the
spacetime curvature along the line of sight.
The measurement is also highly selective regarding the

matter it takes into account. Masses located off the optical
axis may introduce a measurable image displacement due
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to the gravitational light bending as well as image dis-
tortions by their tidal fields. Nevertheless, their influence
on the value of μ is negligible. This is because distant
masses may only influence the results of the observations
via the tidal effects encoded in the Weyl curvature tensor
along the line of sight. This influence, however, drops out
of the trace in (84), leaving just the integral of the energy
density on the optical axis. Thus, at least within the range of
applicability of the approximations from this paper, the
measurement of μ effectively cuts out a thin tube around the
fiducial geodesic through the matter distribution and
neglects any influence of the gravitational field sources
lying outside it. On the other hand, note that repeated
measurements along different null geodesics may provide a
tomography-like method to determine a map of the matter
content of a given region. A more detailed discussion of the
parameter μ and its applications will be provided in a
separate paper.
Comparing the parallax distance Dpar or D̃par and the

angular diameter distance Dang (or the closely related
luminosity distance Dlum) as a method of determining
the spacetime geometry has a long history in relativistic
cosmology, beginning with McCrea [59]. Weinberg [60]
noticed that in a perfectly homogeneous FLRW model
comparing the parallax distance and the luminosity dis-
tance as functions of the redshift allows one to obtain the
spatial curvature, which is impossible to determine by the
luminosity distance observations alone. Rosquist [62]
derived a differential relation between the two distances
valid under the assumption of no shear and noticed that the
comparison of both distances yields information about an
otherwise unobservable component of the spacetime metric
in the observational coordinates introduced by Ellis, Nel,
Maartens, Stoeger and Whitman [30]. Kasai [61] consid-
ered the parallax distance D̃par in an FLRW model with
first-order perturbations, comparing of the results to the
expressions for the luminosity distance Dlum in the same
setting. Finally, Räsänen [9] proposed an FLRW consis-
tency condition based on the comparison of the two types
of distance measures. None of these works, however,
mentions the independence of μ from momentary motions
or its direct relation to the curvature and the matter content
along the line of sight.

VI. SUMMARY AND REMARKS

We have presented a general, geometric approach to the
problem of geometric optics in general relativity. It con-
cerns the problems of observations of luminous objects or
outbursts of radiation, contained within a small stage region
NE , from a large distance by observers contained in another
small auditorium region NO. Both regions are assumed to
be small enough to be considered effectively flat and
light propagation is treated within the geometric optics
approximation. The approach works under rather general

assumptions and should, therefore, apply to observations
within the Solar System, the parallax measurements within
the Galaxy, as well as cosmological observations.
The problem of observation is divided into two separate

problems: the question of propagation of light through the
inhomogeneous spacetime between the regions and the
problem of the dependence of the results of observations
from the motions in both regions. The second problem lies
within the range of applicability of special relativity and is
fairly easy to formulate in a geometric way. The first
problem is considered using the first order geodesic
deviation equation around a known, fiducial null geodesic,
or the optical axis. In this formulation, the behavior of
geodesics near the fiducial one is determined by a second-
order linear ODE with the curvature playing the role of one
of the coefficients. The problem of light propagation,
considered within the distant observer approximation, turns
out to be fairly simple to reformulate in a frame- and
observer-independent way: the tangent vector the fiducial
geodesic defines two corresponding foliations of the two
regions NO and NE by null hypersurfaces. Only points
lying on the corresponding leaves of the foliations in NO
and NE can be connected by null geodesics [Eq. (49)]. The
action of curvature on the light propagation, on the other
hand, is completely encoded in two optical operators, the
well-known Jacobi operator D and the emitter-observer
asymmetry operator m, defined in Sec. III C. Both are most
conveniently defined as bilocal operators acting from a
quotient space on the observer’s side to an appropriate
quotient space at the emitter’s end. Both can be expressed
as functionals of the curvature along the line of sight
[Eqs. (56)–(58) and (59)–(61)] and they do not depend on
the coordinate systems, bases, observers or any other
structures defined on the manifold. m quantifies the differ-
ence between the direction variations measured by an
observer due to perpendicular displacements of the null
geodesic endpoints in NO and NE . Unlike D, m vanishes in
a flat space and therefore it measures directly the impact of
the curvature on the optical observations. This makesm and
quantities derived from it excellent probes of the curvature
along the line of sight.
We have then shown how one can state within this

framework the problems of the parallax, the position drift
(rate of change of the apparent position on the sky) and the
gravitational lensing in a frame- and observer-independent
way. All observables (i.e., the positions on the observers’
sky and their rates of change in the observers’ proper time)
can be obtained from the two optical operators and the data
characterizing the motions of the emitter and observer: their
momentary 4-velocities, their displacement with respect to
the fiducial null geodesic and the 4-acceleration of the
observer with respect to his or her local inertial frame. In
the resulting formulas, the effects of spacetime geometry
on the light propagation and the effects of motions on
both ends of the null geodesics are clearly separated.
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The geometric machinery allowed also to compare and
contrast various definitions of parallax appearing in the
relativistic literature and discuss relations between them.
Additionally, we managed to show that in a generic situation
the parallax and drift effects blow up along with the
magnification of the image of the source as it passes through
a caustic. The underlying reason is that the expressions for
those effects involve the inverse of the Jacobi map, which by
definition becomes degenerate at a caustic.
We remind the reader that the kinematic quantities appea-

ring in the formalism, i.e., the 4-velocities, 4-accelerations
and displacements of the observers and emitters, are defined
with respect the local inertial frames in the stage and
auditorium regions. Those frames represent the local non-
rotating reference frames falling freely in the large-scale
gravitational fields. Therefore in the formalism presented
here, the results do not depend explicitly on the potentially
complicated details of motions of the observers and the
emitters with respect to any external masses generating the
gravitational fields: all that matters is their motions
expressed in the locally flat coordinates defined within their
respective neighborhoods. This is, of course, a consequence
of the GR equivalence principle applied to geometric optics:
within our approximation, the dependence of observables on
the momentary motions is a consequence of purely special
relativistic effects. The SR effects, of course, cannot depend
on the local details of the large-scale gravitational field. Thus
the only possible dependence on the gravitational field
generated by external objects enters via the curvature tensor
along the line of sight appearing in the formulas for the
optical operators.
The reformulation of the geometric optics in terms of

the optical operators yielded finally an unexpected result.

It turns out that by combining the full data about the
parallax of a faraway object, contained in the parallax matrix
(71), and the data about themagnification and distortion of its
image, given by the magnification matrix (65), we may
define observables which are entirely independent of the
motions of both the observer and the source, given by
equation (78). In other words, neither the relative motion
of the observer and the emitter, difficult to determine for very
long distances nor themotion of any of themwith respect to a
local inertial frame has any influence on their values. This is
in a stark contrast to the standard observables like the redshift
or luminosity distance, which always depend additionally
at least on the 4-velocity of the observer [1]. The new
observables probe exclusively the spacetime geometry
between the regions NE and NO. The simplest of them,
i.e., the ratio between the suitably defined parallax distance
and the angular diameter distance [Eqs. (81)–(82)], contains
information about the amount ofmatter along the line of sight
for short distances, as seen in Eq. (86).
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