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Total derivative terms play an important role in the integration of the conformal anomaly.
In four dimensional space 4D there is only one such term, namely □R. In the case of six
dimensions 6D the structure of surface terms is more complicated, and it is useful to construct a
basis of linear independent total derivative terms. We briefly review the general scheme of
integrating the anomaly and present the reduction of the minimal set of the surface terms in 6D
from eight to seven. Furthermore, we discuss the comparison with the previously known equivalent
reduction based on the general covariance and obtain it also from the conformal symmetry.
Our results confirm that the anomaly induced effective action in 6D really has a qualitatively
new (compared to previously elaborated 2D and 4D cases) ambiguity, which is parametrized by the
two parameters ξ1 and ξ2.
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I. INTRODUCTION

The integration of trace anomaly is the simplest way to
derive the effective action (EA) of vacuum. The anomaly-
induced action proved being a powerful tool due to the
compact and useful form of the result, which finds many
applications (see, e.g., [1] for the review). The integration
of the anomaly was originally done in the two dimensional
space 2D in the important work of Polyakov [2]. The
generalization for 4D was done by Riegert [3] and Fradkin
and Tseytlin [4]. There are interesting general features of
anomaly, which can not be seen in 2D and can be merely
noticed in 4D. The reason is that in 4D there is only one
possible surface term□R in the anomaly, while in 2D there
are no such terms at all.
Things change dramatically in 6D, where we meet a

bunch of the surface terms, which make integration of the
anomaly quite a challenging task. As we have dis-
cussed in the previous papers [5,6], the number of possible
covariant surface terms with the proper dimension coming
from the derivatives of the metric may be larger [7], but it
can be reduced to eight [6]. In the present contribution we
show how this number can be reduced further to seven
terms and discuss the relation of the corresponding identity
to the diffeomorphism invariance from one side and with
the conformal property of the Gauss-Bonnet term in 6D

from another side. Indeed, the identity itself has been
known previously [8], but in what follows we present its
direct derivation and also show the relation to conformal
transformation of the metric.
The paper is organized as follows. In Sec. II we briefly

review the general scheme of integrating the anomaly in
even dimension and present the result of anomaly integra-
tion in 6D. In Sec. III we describe the reduction of the basis
of surface terms. Section IV describes how the main
reduction formula is related to the general covariance
and conformal invariance of the term which is topological
invariant in 6D, and why this identity is valid beyond
this particular dimension. Finally, in Sec. V we draw our
conclusions and discuss the implications of this work for
the integration of the anomaly.

II. ANOMALY INDUCED
EFFECTIVE ACTION

The general structure of conformal anomaly in an
arbitrary even dimension D ¼ 2n includes the following
three types of terms:

(i) Conformal invariant structures, such as C2
μναβ ¼

CμναβCμναβ in 4D. In the simplest case of 2D there
are no conformal terms, while in higher dimensions
there may be much more such terms

P
crWr

D, with
the sum over r. For instance, there are three of them
in 6D [9].
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(ii) The topological invariant

Eð2nÞ ¼
1

2n
εα1β1…αnβnεγ1δ1…γnδnRα1β1γ1δ1…Rαnβnγnδn :

ð1Þ
(iii) The set of surface terms ΞD ¼ P

γkχk. In 4D there
is only one surface term □R, and in higher dimen-
sions there are always much more such terms. The
main subject of the present communication is the
reduction of the minimal set of surface terms in 6D.

The reason for the described classification of constitu-
ents of the trace anomaly (see, e.g., [10–12]) is that the
anomaly reflects the form of the one-loop divergences in
the vacuum sector, and the last satisfy conformal Noether
identity in case when quantized matter fields are conformal.
Thus the anomaly can be presented in the universal form

T ¼ hTμ
μi ¼ crWr

D þ aED þ ΞD: ð2Þ

For the integration of anomaly it proves useful to start
from the conformal transformation of the metric tensor gμν,

gμν ¼ e2σðxÞḡμν: ð3Þ

The main ingredient of the scheme described in [3,4] is the
transformation rule for the corrected topological invariant,

ffiffiffiffiffiffi
−g

p
ẼD ¼ ffiffiffiffiffiffi

−ḡ
p ð ¯̃ED þ κΔ̄DσÞ; ð4Þ

where D ¼ 2; 4; 6;… and

ẼD ¼ ED þ
X
i

αiΞi ð5Þ

is the modified Euler density which is a sum of the original
topological term ED and a special linear combination of the
total derivatives of the curvature-dependent terms Ξi with
the coefficients αi. Finally, ΔD is the conformal operator,
which is a D-dimensional generalization of the Paneitz
operator in 4D, [13,14]. The 6D solution for αi is [6]

α1¼
3

5
; α2 ¼−

9

10
−
5

4
ξ1þ

3

8
ξ2; α3¼ ξ1; α4¼ 0;

α5¼
84

5
þ3ξ1þ

11

2
ξ2; α6 ¼−

36

5
−2ξ1−5ξ2

α7¼−
18

5
−ξ1−

7

2
ξ2; α8 ¼ ξ2: ð6Þ

Here ξ1 and ξ2 are two arbitrary parameters which can be
fixed only if we find more than one identically vanishing
linear combination of the surface terms. Indeed, the two-
parameter ambiguity in the conformal operator Δ̄D has
been found in the paper [15].

As far as the coefficients αi in Eq. (5) are established, the
integration of conformal anomaly becomes a relatively
simple exercise, and the general answer can be written in
the form [6]

Γind ¼ Sc þ
ZZ

xy

�
1

4
crWr

D þ a
8
ẼDðxÞ

�
Gðx; yÞẼDðyÞ

þ
X
k

ðγk − αkÞ
X
i

cik

Z
x
Li: ð7Þ

Here Sc ¼ Sc½gμν� is an arbitrary conformal invariant func-
tional,

R
x ≡

R
dDx

ffiffiffiffiffiffi−gp
, Gðx; yÞ is the Green function of

the conformal operator ΔD and, finally, Li are local
Lagrangians which generate the surface terms in the
anomaly through the relations,

−
2ffiffiffiffiffiffi−gp gμν

δ

δgμν

X
i

cik

Z
x
Li ¼ χk: ð8Þ

One can see that surface terms χk play a decisive role in
the integration of anomaly. Therefore it is very desirable to
establish a minimal set of linear independent surface terms.
According to the previous publications, e.g., [7] or [6] there
are eight such terms. In the next section we show how this
number can be reduced to seven.

III. REDUCTION OF SIX DERIVATIVE
SURFACE TERMS

The set of six derivative surface terms which was used in
[6] looks as follows:

Ξ1 ¼□
2R; Ξ2¼□R2

μναβ; Ξ3 ¼□R2
μν; Ξ4 ¼□R2;

Ξ5 ¼∇μ∇νðRμ
λαβRνλαβÞ; Ξ6¼∇μ∇νðRαβRμανβÞ

Ξ7 ¼∇μ∇νðRμ
αRναÞ; Ξ8 ¼∇μ∇νðRRμνÞ: ð9Þ

Let us start with the following statement which can be
obtained by direct calculation. Performing the conformal
transformations of the structures Ξk one can prove, with the
help of the software Mathematica [16], that the following
linear combination of surface terms is conformal invariant:

ffiffiffiffiffiffi
−g

p ðΞ2−4Ξ3þΞ4−4Ξ5þ8Ξ6þ8Ξ7−4Ξ8Þ
¼ ffiffiffiffiffiffi

−ḡ
p ðΞ̄2−4Ξ̄3þ Ξ̄4−4Ξ̄5þ8Ξ̄6þ8Ξ̄7−4Ξ̄8Þ: ð10Þ

Could the above combination be identically vanishing,
indicating linear dependence of the set (9)? The answer
to this question is positive, and we demonstrate this in what
follows. For the sake of this proof, we introduce the
following notations:
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Σ1 ¼ □
2 RΣ2 ¼ ð∇λRμναβÞ2 Σ3 ¼ Rμανβ∇μ∇νRαβ

Σ4 ¼ RμνRμλαβRν
λαβ Σ5 ¼ Rμν

αβRαβ
λτRλτ

μν Σ6 ¼ Rμ
α
ν
βRα

λ
β
τRλ

μ
τ
ν

Σ7 ¼ ð∇λRμνÞ2 Σ8 ¼ Rμν□Rμν Σ9 ¼ ð∇μRÞ2
Σ10 ¼ R□R Σ11 ¼ ð∇αRμνÞ∇μRνα Σ12 ¼ Rμν∇μ∇νR

Σ13 ¼ RμνRαβRμανβ Σ14 ¼ RμνRμαRν
α: ð11Þ

Let us elaborate each of the terms Ξi using notations
(11). We start from the trivial simplest case and then go the
more complicated part.

□
2R ¼ Σ1: ð12Þ

□R2
μναβ ¼ 2ð∇λRμναβÞ2 þ 2Rμναβ□Rμναβ: ð13Þ

Using the properties of the Riemann tensor and Bianchi
identities, the second term in the last relation can be
rewritten as [17]

Rμναβ□Rμναβ ¼ 4Rμανβ∇μ∇νRαβþ2RμνRμλαβRν
λαβ

−Rμν
αβRαβ

λτRλτ
μν−4Rμ

α
ν
βRα

λ
β
τRλ

μ
τ
ν:

ð14Þ

Thus we arrive at the first relations

□R2
μναβ ¼ 2Σ2 þ 8Σ3 þ 4Σ4 − 2Σ5 − 8Σ6; ð15Þ

□R2
μν ¼ 2ð∇λRμνÞ2 þ 2Rμν□Rμν ¼ 2Σ7 þ 2Σ8; ð16Þ

□R2 ¼ 2ð∇λRÞ2 þ 2R□R ¼ 2Σ9 þ 2Σ10: ð17Þ

Furthermore,

∇μ∇νðRμ
λαβRνλαβÞ

¼ ∇μ½ð∇νRμ
λαβÞRνλαβ þ Rμ

λαβ∇νRνλαβ�
¼ ∇μ½ð∇νRμ

λαβÞRνλαβ þ Rμ
λαβ∇αRλβ − Rμ

λαβ∇βRλα�
¼ ð∇μ∇νRμ

λαβÞRνλαβ þ ð∇νRμ
λαβÞ∇μRνλαβ

þ ð∇μRμ
λαβÞ∇αRλβ þ Rμ

λαβ∇μ∇αRλβ

− ð∇μRμ
λαβÞ∇βRλα − Rμ

λαβ∇μ∇βRλα

¼ ð∇μ∇νRμ
λαβÞRνλαβ þ ð∇νRμ

λαβÞ∇μRνλαβ

þ 2ð∇μRμ
λαβÞ∇αRλβ þ 2Σ3: ð18Þ

The first term in the expression (18) can be transformed as
follows:

ð∇μ∇νRμ
λαβÞRνλαβ

¼ð∇ν∇μRμ
λαβÞRνλαβþRνλαβ½∇μ;∇ν�Rμ

λαβ

¼ð∇ν∇αRλβÞRνλαβ− ð∇ν∇βRλαÞRνλαβþRκνRκ
λαβRνλαβ

−Rκ
λμνRμ

καβRνλαβ−Rκ
αμνRμ

λκβRνλαβ−Rκ
βμνRμ

λακRνλαβ

¼ 2Σ3þΣ4−Rκ
λμνRμ

καβRνλαβ−2Rκ
αμνRμ

λκβRνλαβ: ð19Þ

At this moment we remember that

Rκ
λμνRμ

καβRνλαβ ¼RκλμνRμκ
αβRαβνλ

¼−RκνλμRμκ
αβRαβνλ−RκμνλRμκ

αβRαβνλ:

ð20Þ

By making change of indices ν ↔ λ in the first of these
expressions, we arrive at

Rκ
λμνRμ

καβRνλαβ ¼ −RκλνμRμκ
αβRαβλν þ Σ5 ¼

1

2
Σ5: ð21Þ

Next, the last term of (19) can be transformed as

Rκ
αμνRμ

λκβRνλαβ ¼ Rκ
α
μ
νRμ

λ
κ
βRν

λ
α
β

¼ Rμ
ν
κ
αRν

λ
α
βRλ

μ
β
κ ¼ Σ6 ð22Þ

thus we get

ð∇μ∇νRμ
λαβÞRνλαβ ¼ 2Σ3 þ Σ4 −

1

2
Σ5 − 2Σ6: ð23Þ

The second term of the second expression of (18) can be
developed as

ð∇νRμλαβÞ∇μRνλαβ

¼ −ð∇λRνμαβÞ∇μRνλαβ − ð∇μRλναβÞ∇μRνλαβ: ð24Þ

By using the index exchange ν ↔ λ in the last formula
we get

ð∇νRμλαβÞ∇μRνλαβ

¼ −ð∇νRλμαβÞ∇μRλναβ − ð∇μRλναβÞ∇μRνλαβ

¼ −ð∇νRμλαβÞ∇μRνλαβ þ Σ2; ð25Þ
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hence

ð∇νRμλαβÞ∇μRνλαβ ¼ 1

2
Σ2: ð26Þ

Using the first reduced Bianchi identity, we develop the
third term of (18) such that

ð∇μRμ
λαβÞ∇αRλβ ¼ ð∇αRλβÞ∇αRλβ

− ð∇βRλαÞ∇αRλβ ¼ Σ7 − Σ11: ð27Þ

Replacing (23), (26), and (27) into (18) we obtain

∇μ∇νðRμ
λαβRνλαβÞ ¼ 1

2
Σ2 þ 4Σ3 þ Σ4 −

1

2
Σ5

− 2Σ6 þ 2Σ7 − 2Σ11: ð28Þ

The next step is to consider

∇μ∇νðRαβRμανβÞ
¼ ∇μ½ð∇νRαβÞRμανβ þ Rαβ∇νRνβμα�
¼ ∇μ½ð∇νRαβÞRμανβ þ Rαβ∇μRβα − Rαβ∇αRβμ�
¼ ð∇μ∇νRαβÞRμανβ þ ð∇νRαβÞ∇μRμανβ þ ð∇μRαβÞ2
þ Rαβ□Rαβ − ð∇μRαβÞ∇αRβμ − Rα

β∇μ∇αRβμ

¼ Σ3 þ ð∇νRαβÞ2 − ð∇νRαβÞ∇βRαν þ Σ7 þ Σ8 − Σ11

−
1

2
Rαβ∇α∇βR − Rα

β½∇μ;∇α�Rβμ

¼ Σ3 þ 2Σ7 þ Σ8 − 2Σ11 −
1

2
Σ12

− Rα
βR

β
κμαRκμ − Rα

βRκαRβκ; ð29Þ

that means

∇μ∇νðRαβRμανβÞ ¼ Σ3 þ 2Σ7 þ Σ8

− 2Σ11 −
1

2
Σ12 þ Σ13 − Σ14: ð30Þ

Next,

∇μ∇νðRμ
αRναÞ

¼∇μ

�
ð∇νR

μ
αÞRναþ1

2
Rμ
α∇αR

�

¼ð∇μ∇νR
μ
αÞRναþð∇νR

μ
αÞ∇μRναþ1

4
ð∇αRÞ2þ

1

2
Rμ
α∇μ∇αR

¼1

2
ð∇ν∇αRÞRναþð½∇μ;∇ν�Rμ

αÞRναþ1

4
Σ9þΣ11þ

1

2
Σ12

¼1

4
Σ9þΣ11þΣ12þRκνRκαRν

αþRα
κμνRμκRν

α:

¼1

4
Σ9þΣ11þΣ12−Σ13þΣ14: ð31Þ

Finally, even simpler operations provide the last ingre-
dients,

∇μ∇νðRRμνÞ ¼ 1

2
R□Rþ ð∇μRÞ2 þ Rμν∇μ∇νR;

∇μ∇νðRRμνÞ ¼ Σ9 þ
1

2
Σ10 þ Σ12: ð32Þ

Now we possess all what is needed to solve the equation
of our interest,

aΞ1þbΞ2þcΞ3þdΞ4þeΞ5þfΞ6þgΞ7þhΞ8≡0:

ð33Þ

The solution for the coefficients of this equation is as
follows:

a ¼ 0 b ¼ β c ¼ −4β d ¼ β

e ¼ −4β f ¼ 8β g ¼ 8β h ¼ −4β; ð34Þ

where β is an arbitrary number which can be equal to one.
Therefore, we have proved the identity

Ξ2 − 4Ξ3 þ Ξ4 − 4Ξ5 þ 8Ξ6 þ 8Ξ7 − 4Ξ8 ¼ 0: ð35Þ

Equation (35) resolves the main problem which we posed at
the beginning of this contribution. Namely, it reduces the
number of linearly independent six-derivative surface terms
from eight to seven. Still this is not a complete solution of
all relevant issues which one meets in the part of surface
terms, and one can find the description of the remaining
problems in the next section.

IV. TWO SIDES OF THE IDENTITY (35)

After sending the first version of this manuscript to arXiv
we learned about the well-known paper [8], where the
identity (35) has been used for deriving other relations
between the equations of motion of the six-derivative
actions in 6D. The way this identity has been obtained
in the mentioned work came from the similar consideration
in [18] for the Gauss-Bonnet invariant in 4D. The relation
can be obtained as a Noether identity for the diffeomor-
phism invariance of the corresponding topological action
(in some formulas we avoid using condensed notation for a
D dimensional integral, just to stress its dimension),

SðDÞ
GB ¼

Z
dDx

ffiffiffiffiffiffi
−g

p
ED: ð36Þ

The Gauss-Bonnet term (1) in 6D can be cast into
the form
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E6 ¼
1

8
εα1β1α2β2α3β3εγ1δ1…γ3δ3Rα1β1γ1δ1…Rα3β3γ3δ3

¼ −8L1 þ 4L2 − 24L3 þ 24L4 þ 16L5 þ 3L6

− 12L7 þ L8: ð37Þ

It is interesting that the first of these presentations does not
admit simple generalization to an arbitrary dimension D,
while for the second one it is not an obstacle. In what
follows we will assume that E6 means the expression in the
right-hand side (r.h.s.) when it is considered in D ≠ 6.
The Noether identity for the general covariance of the

action has the form

∇μ

�
2ffiffiffiffiffiffi−gp δ

δgμν
SðDÞ
GB

�
¼ 0: ð38Þ

The last identity reflects only the covariance of the action
(36) and does not use the topological nature of this
expression. Therefore this identity is going to hold even
for the dimensionD where this action is not topological. At
the same time, since in the “proper” dimension the equation
of motion for the topological action is supposed to vanish
(see [19] and the book [20] for detailed discussion), its trace
is also vanishing [5]. One can anticipate that in the case of
the action (36) this can produce another identity, which can

be related to (38) due to the topological nature of the action
in the “proper” dimension. Let us check the situation in the
case of 6D.
In what follows we will need the list of the six-derivative

actions which are not full derivatives. One can define these
actions in the form In ¼

R
x Ln, where

L1 ¼ Rα
λ
β
τRλ

ρ
τ
σR

ρ
α
σ
β;

L2 ¼ Rαβ
λτRλτ

ρσRρσ
αβ;

L3 ¼ RαβRα
γλτRβγλτ;

L4 ¼ RαβRλτRαλβτ; L5 ¼ Rα
λR

β
αRλ

β;

L6 ¼ RR2
αβλτ; L7 ¼ RR2

αβ;

L8 ¼ R3; L9 ¼ Rαβ
□Rαβ; L10 ¼ R□R: ð39Þ

Furthermore, let us give the list of the corresponding
equations of motion [17] (see also [8,21])

Φμν
n ¼ 1ffiffiffiffiffiffi−gp δIn

δgμν

and their tracesΦn ¼ gμνΦ
μν
n ; ð40Þ

which have the following form:

Φμν
1 ¼ 1

2
gμνRα

λ
β
τRλ

ρ
τ
σR

ρ
α
σ
β − 3Rα

λ
ðμ
τRρασ

νÞRλρτσ þ 3∇λ∇βðRλ
ρ
ðμ
σR

νÞρβσÞ − 3∇λ∇τðRðμ
ρ
νÞ
σR

ρ
λ
σ
τÞ;

Φ1 ¼
D − 6

2
Rα

λ
β
τRλ

ρ
τ
σR

ρ
α
σ
β þ

3

2
Ξ5 − 3Ξ6; ð41Þ

Φμν
2 ¼ 1

2
gμνRαβ

λτRλτ
ρσRρσ

αβ − 3Rαðμ
λτRρσα

νÞRλτρσ − 6∇β∇τðRτðμ
ρσRβ

νÞρσÞ;

Φ2 ¼
D − 6

2
Rαβ

λτRλτ
ρσRρσ

αβ − 6Ξ5; ð42Þ

Φμν
3 ¼ 1

2
gμνRαβRα

γλτRβγλτ − Rðμ
α RνÞγλτRα

γλτ − 2RαβRα
γ
ðμ
τR

νÞτβγ −
1

2
gμν∇α∇βðRαγλτRβ

γλτÞ þ∇α∇ðμðRνÞγλτRα
γλτÞ

−
1

2
□ðRμ

γλτRνγλτÞ − 2∇γ∇λðRðμ
α RνÞλαγÞ − 2∇α∇τðRα

βR
βðμ

τ
νÞÞ;

Φ3 ¼
D − 6

2
RαβRα

γλτRβγλτ −
1

2
Ξ2 −

D − 2

2
Ξ5 − 2Ξ6 − 2Ξ7; ð43Þ

Φμν
4 ¼ 1

2
gμνRαβRλτRαλβτ − 3ðRλα

ðμ
βRνÞλRαβÞ −□ðRαμβνRαβÞ −∇α∇βðRμνRαβÞ

− gμν∇α∇βðRλτRλατβÞ þ 2∇λ∇ðμðRνÞαλβRαβÞ þ∇α∇βðRαðμRνÞβÞ;

Φ4 ¼
D − 6

2
RαβRλτRαλβτ − Ξ3 − ðD − 2ÞΞ6 þ Ξ7 − Ξ8; ð44Þ

Φμν
5 ¼ 1

2
gμνRα

λR
β
αRλ

β − 3Rμ
βR

νλRβ
λ þ 3∇α∇ðμðRνÞ

λ R
λ
αÞ −

3

2
gμν∇α∇βðRλαRβ

λÞ −
3

2
□ðRμ

λR
νλÞ;

Φ5 ¼
D − 6

2
Rα
λR

β
αRλ

β −
3

2
Ξ3 − 3

D − 2

2
Ξ7; ð45Þ
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Φμν
6 ¼ 1

2
gμνRR2

αβλτ − RμνR2
αβλτ − 2RRλτ

αðμRα
νÞλτ þ∇μ∇νR2

αβλτ − gμν□R2
αβλτ − 4∇β∇λðRRβ

ðμ
λ
νÞÞ;

Φ6 ¼
D − 6

2
RR2

αβλτ − ðD − 1ÞΞ2 − 4Ξ8; ð46Þ

Φμν
7 ¼ 1

2
gμνRR2

αβ − RμνR2
αβ − 2RRμ

λR
νλ þ∇μ∇νðR2

αβÞ − gμν□R2
αβ þ 2∇α∇ðμðRνÞαRÞ − gμν∇α∇βðRRαβÞ −□ðRRμνÞ;

Φ7 ¼
D − 6

2
RR2

αβ − ðD − 1ÞΞ3 − Ξ4 − ðD − 2ÞΞ8; ð47Þ

Φμν
8 ¼ 1

2
gμνR3 − 3RμνR2 þ 3∇μ∇νR2 − 3gμν□R2;

Φ8 ¼
D − 6

2
R3 − 3ðD − 1ÞΞ4; ð48Þ

Φμν
9 ¼ 1

2
gμνRαβ

□Rαβ − Rαβ∇ðμ∇νÞRαβ − 2Rðμ
α □RνÞα þ 2∇α∇ðμ

□RνÞ
α − gμν∇α∇β□Rαβ −□

2Rμν þ 2∇αðRαβ∇ðμRνÞβÞ

− 2∇αðRβðμ∇νÞRαβÞ þ∇ðμðRαβ∇νÞRαβÞ − 1

2
gμν∇λðRαβ∇λRαβÞ;

Φ9 ¼
D − 6

2
Rαβ

□Rαβ −
D
2
Ξ1 −

D
2
Ξ3 þ

D − 4

4
Ξ4 þ 2ðD − 2ÞΞ6 − 2Ξ7 − ðD − 4ÞΞ8; ð49Þ

Φμν
10 ¼ −

1

2
gμνð∇αRÞ2 þ ð∇μRÞð∇νRÞ þ 2∇μ∇ν

□R − 2gμν□2R − 2Rμν
□R;

Φ10 ¼ −
D − 6

2
R□R − 2ðD − 1ÞΞ1 −

D − 2

4
Ξ4: ð50Þ

In the derivation of traces we used expressions given in
Appendix A.
Taking the last observation and new notation into

account, by combining Eqs. (41)–(48) we arrive at the
following relation:

1ffiffiffiffiffiffi−gp gμν
δ

δgμν

Z
x

E6 ¼
D − 6

2
E6 − 3ðD − 5ÞðΞ2 − 4Ξ3 þ Ξ4

− 4Ξ5 þ 8Ξ6 þ 8Ξ7 − 4Ξ8Þ: ð51Þ

The first term in the r.h.s. of the Eq. (51) obviously
vanish inD ¼ 6. At the same time, the left-hand side (l.h.s.)
also vanish in D ¼ 6, because in this specific dimension it
is the trace of the variational derivative of the topological
term.1 In this sense the relation (51) proves that the
remaining term in the r.h.s. also vanish in D ¼ 6.
However, this term is exactly an identity (35) which we
proved directly in the previous section. It is worth noticing
that the proof which we presented there does not depend on
the dimension.

Taking the identity (35) into account, we arrive at the
simple rule of conformal shift of the term under consid-
eration, namely

gμνffiffiffiffiffiffi−gp δ

δgμν

Z
x

E6 ¼
D − 6

2
E6; ð52Þ

which is perfectly consistent to the main relation of
integrating anomaly (5).
To close the story, let us mention that there is yet another

equivalent form of our identity (35)

Ξ2 − 4Ξ3 þ Ξ4 − 4Ξ5 þ 8Ξ6 þ 8Ξ7 − 4Ξ8

¼ 1

4
δμαβλτνξηκχ∇μ∇νðRξη

αβRκχ
λτÞ; ð53Þ

where (in Euclidean signature)

δμαβλτνξηκχ ¼ ϵρμαβλτϵρνξηκχ ¼ 5!δ½μν δανδ
β
ηδλκδ

τ�
χ : ð54Þ

The proof of the relation

δμαβλτνξηκχ∇μ∇νðRξη
αβRκχ

λτÞ≡ 0 ð55Þ

can be found in Appendix B.

1One can prove this even without taking trace (see, e.g., [20]),
but such a proof requires choosing a special coordinate system. In
general coordinates this equation does not look trivial, as it was
discussed in [19,22].
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V. CONCLUSIONS AND DISCUSSIONS

As we have just mentioned above, Eq. (35) reduces
the number of surface terms which is needed to construct
the full basis of such terms in 6D. Let us discuss the
importance of this formula in the general context.
Consistent and complete integration of trace anomaly in

6D requires several mathematical results which are all not
easy to accomplish, mainly because the practical calcu-
lations in 6D are essentially more involved than the ones in
4D. In the first place one needs the main formula (5) which
immediately produces the nonlocal part of the anomaly-
induced action [6,10]. The general formal expression for
this action (7) for an arbitrary even dimension has been
constructed in Ref. [6], where we also reported on the
explicit realization of the key formula (5) in the case of 6D.
Then, looking at the general expression (7) we can see that
the remaining part of the effective action is related to the
integration of total derivative terms.
Usually the importance of total derivative terms in the

anomaly is underestimated, since it is supposed that they can
be modified or eliminated by adding finite local counter-
terms. Such an addition is a mathematically legal procedure,
because the gravitational vacuum action is not quantized in
the framework of semiclassical theory. Therefore, even if the
local nonconformal terms are not needed for renormaliza-
tion, one can add them without changing the general
structure of quantum theory in curved space.
In some cases such an addition can be pretty well

justified. The main example of this sort is the
Starobinsky inflation [23,24] where the R2 term with a
very large coefficient is required to provide the control over
perturbations and, in general, correspondence with the
existing observational data. The attempts to explain the
magnitude of this coefficient from quantum field theory
arguments are currently at the rudimentary level (see, e.g.,
[25]) and hence the introduction of the large coefficient of
R2 is a phenomenological operation. In general, and
especially in 6D, there are no observational evidence which
can be used to fix the coefficients of the total derivative
terms. Therefore for us the importance of these terms is
certain and without doubts.2

In this situation the formula defining the part of effective
action which comes from the total derivative terms in the
anomaly is (8). Then the reduction of the number of the
total derivatives χk in the r.h.s. of this equation from eight to
seven increases our chances to find the solution. And, from
the general perspective, it would be interesting to have an
independent, new and nontrivial confirmation of the pos-
sibility to integrate total derivatives with the local gravi-
tational terms, according to Eq. (5).

Two concluding observations are in order. First of all,
since in 6D the structure (36) is topological, its variational
derivative is zero. At the same time, in 6D even the identity
for the trace is not easy to prove explicitly, as the reader
could ensure from Sec. III. The second aspect is that the
topological term (1) is unique and, therefore, the vanishing
linear combination (35) is also unique3 The important
consequence of this uniqueness is that further reduction of
the solution (6) is impossible, because (1) was already
taken into account in [6]. Thus the main result of the
present work is that now we can affirm that the fundamental
difference between the 2D and 4D formulas (4) from one
side and similar formula in 6D from another side is that in
the last case this important formula has two-parameter
ambiguity. The changes of ξ1 or ξ2 do not produce a change
of conformal functional Sc, which is the unique ambiguous
part of the effective action in 2D and 4D cases. Therefore,
now we can claim that in 6D we meet a qualitatively new
kind of ambiguity, that is something which does not take
place in 2D and 4D cases.
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APPENDIX A: USEFUL RELATIONS FOR
TOTAL DERIVATIVES

Let us give a useful list of relations for total derivatives,

∇μ∇νðRμ
αβλRνλβαÞ ¼ 1

2
Ξ5; ðA1Þ

∇μðRμν∇νRÞ ¼ −
1

4
Ξ4 þ Ξ8; ðA2Þ

∇αðRμν∇αRμνÞ ¼ 1

2
Ξ3; ðA3Þ

∇μðRν
λ∇νRμλÞ ¼ 1

8
Ξ4 þ Ξ7 −

1

2
Ξ8; ðA4Þ

∇μðRμανβ∇νRαβÞ¼−
1

2
Ξ3þ

1

8
Ξ4þΞ6þΞ7−

1

2
Ξ8; ðA5Þ

∇μ∇ν□Rμν ¼ 1

2
Ξ1 þ

1

2
Ξ3 −

1

4
Ξ4 − 2Ξ6 þ Ξ8: ðA6Þ

2Further arguments concerning the ambiguities related to local
terms in the induced action can be found in Ref. [26], where one
can see also the relation to the nonlocal structures in the case of
almost vanishing masses of quantum fields.

3We are grateful to Dr. Sourya Ray for stressing this point
to us.
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APPENDIX B: PROOF OF THE RELATION (55)

Let us denote the object of our interest Ω and take one of
the derivatives,

Ω ¼ δμαβλτνξηκχ∇μ∇νðRξη
αβRκχ

λτÞ
¼ δμαβλτνξηκχ∇μ½Rκχ

λτ∇νRξη
αβ þ Rξη

αβ∇νRκχ
λτ�: ðB1Þ

Using antisymmetry of the object (54) and the Bianchi
identity, the last expression transforms into

Ω ¼ 2∇μðδμαβλτνξηκχR
κχ

λτ∇νRξη
αβÞ

¼ −2∇μ½δμαβλτνξηκχ ðRκχ
λτ∇ξRην

αβ þ Rκχ
λτ∇ηRνξ

αβÞ�: ðB2Þ

Once again using antisymmetry of (54) we arrive at

Ω ¼ −4∇μðδμαβλτνξηκχR
κχ

λτ∇νRξη
αβÞ: ðB3Þ

Comparing (B2) and (B3) one can check that

Ω ¼ −2Ω; ðB4Þ
which is equivalent to Eq. (55).
Let us stress that the analog of this result can be found in

[18] for 4D and can be also found in [8] for 6D. The
derivation of this identity in both cases was based on the
relation (38) which reflects diffeomorphism invariance of
the action (36) with D ¼ 6 and E6 defined as in the r.h.s.
of Eq. (37). For this reason the identity is valid in any
dimension D. At the same time the same identity can be
also obtained in exactly D ¼ 6 as a Noether identity of the
conformal symmetry (52).
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