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In this paper we revisit the nonmanifestly Lorentz-covariant canonical analysis of the Holst action
with a cosmological constant. We take a viewpoint close to that of F. Cianfrani and G. Montani
[Phys. Rev. Lett. 102, 091301 (2009)] and realize that the solution of the second-class constraints that
the authors provide is incomplete, thus not accounting for the correct local dynamics of general relativity.
We then mend their approach by adding the missing degrees of freedom to the solution and give a
complete description of the resulting theory, which preserves Lorentz invariance but turns out to be
endowed with a noncanonical symplectic structure. Later on and without resorting to any gauge condition,
we perform a Darboux transformation to bring this theory into a canonical form. Finally, we show
that in the time gauge both formulations, namely the noncanonical and the canonical ones, lead to the
Ashtekar-Barbero variables.
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I. INTRODUCTION

It is very well-known that the Lorentz-covariant canoni-
cal analysis of the Holst action for general relativity [1]
features the presence of second-class constraints [2,3] (this
is true for the Palatini action as well [4]). Because the
canonical quantization program requires us to get rid of
them, there are in literature several ways of tackling the
second-class constraints either by introducing the Dirac
bracket [2] or by solving them explicitly; the latter can be
divided into one approach without manifest Lorentz
covariance [3] and those that manifestly preserve it [5].
Nevertheless, an important simplification occurs when
adopting the so-called “time gauge”, which reduces the
local Lorentz symmetry to its subgroup SOð3Þ and gives
rise to the suð2Þ-valued Ashtekar-Barbero variables [1,6].
Remarkably, these variables have established the founda-
tions of what is known today as loop quantum gravity
[7–10] and also carry information about the Immirzi
parameter [11], which drops out “on shell” in the
Lagrangian theory but is present “off shell” in the gauge
symmetry of the Holst action [12] as well as in both the
spectra of quantum observables [13] and the black hole
entropy [14] derived within the loop approach.
Despite the elegance and beauty entailed by the use of

the Ashtekar-Barbero variables to describe the phase space
of general relativity, it cannot be denied that this simplicity
comes at the expense of sacrificing local Lorentz invariance

through the use of the time gauge, and then one may
wonder whether the dependence of the quantum theory on
the Immirzi parameter could be a consequence of this
gauge fixing and whether one can implement the loop
approach without resorting to it. These questions are not
new, and much of the work contained in [2,15–19] under-
takes these issues, although no definitive answer has been
given yet. Our work, although utterly classical, also deals
with the issue of Lorentz invariance in the Hamiltonian
setting of general relativity and hence could be helpful for
understanding the role of this symmetry in canonical
quantum gravity.
One of the first attempts at doing loop quantum gravity

without imposing the time gauge is the work of Cianfrani
and Montani [17], who provided a certain parametrization
of the solution of the second-class constraints resulting in a
noncanonical symplectic structure (for which they also
asserted to have found canonical variables). Nevertheless,
such a symplectic structure is incorrect because it involves
21 variables and thus does not give the right count of the
local degrees of freedom (d.o.f.) of general relativity. What
is wrong with their approach? It turns out that their solution
of the second-class constraints is not the most general one
as implied by these constraints. More precisely, the
expression for the spatial part of the Lorentz connection
provided by them involves only nine of the 12 free variables
entailed by the homogeneous solution of the second-class
constraints. Therefore, Cianfrani and Montani’s solution is
incomplete and thus not equivalent to the second-class
constraints they began with. What is more, because of the
missing free variables, the parametrization of the Lorentz
connection given by Cianfrani and Montani cannot be
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related to the one given by Barros in Ref. [3] as they claim
to do, for Barros actually provides a solution of the second-
class constraints that ultimately leaves the two propagating
d.o.f. of general relativity without performing any gauge
fixing whatsoever. Hence, the procedure of Cianfrani and
Montani is undoubtedly not right.
In this work we mend the path followed by Ref. [17]; we

provide the most general solution of the second-class
constraints in the same spirit of Ref. [17] that correctly
reproduces the local d.o.f. of general relativity, but that
leads to a noncanonical symplectic structure. We then
perform a Darboux transformation that clearly maps these
variables to a canonical set similar to the one introduced in
Ref. [3]; this is what we think Cianfrani and Montani
should have done in order to establish an appropriate link
between their work and the one by Barros. Finally, we show
that, in the time gauge, the aforementioned Darboux map
coincides with Barbero’s canonical transformation up to a
term proportional to the Gauss constraint, subsequently
arriving at the Ashtekar-Barbero formulation, as expected.

II. HAMILTONIAN ACTION WITH FIRST- AND
SECOND-CLASS CONSTRAINTS

As usual in the canonical approach, we assume that the
spacetime manifold M has topology M ¼ R × Σ, with Σ
being a spatial compact 3-manifold without a boundary. We
use adapted coordinates ðt; xaÞ, where t stands for the time
direction and fxag3a¼1 are coordinates on Σ, and represent
time derivatives by a dot over the corresponding variable.
Indices in capital latin letters (I; J;…) denote internal flat
indices, which take values f0; ig, with i ¼ 1, 2, 3; they are
raised and lowered with the metric ðηIJÞ ¼ diagðσ; 1; 1; 1Þ,
for σ ¼ �1. We designate by SOðσÞ the internal group,
where SOðσ ¼ −1Þ ¼ SOð1; 3Þ and SOðσ ¼ þ1Þ ¼
SOð4Þ. Regardless of the nature of indices, we define
the symmetrizer and the antisymmetrizer by AðαβÞ ≔
ðAαβ þ AβαÞ=2 and A½αβ� ≔ ðAαβ − AβαÞ=2, respectively.
For any quantity UIJð¼ −UJIÞ taking values in the Lie
algebra of SOðσÞ, we define the endomorphism,

U
ðγÞ

IJ ≔ UIJ þ
1

2γ
ϵIJ

KLUKL; ð1Þ

where γ ∈ R (γ ≠ 0 and γ2 ≠ σ) is the Immirzi parameter
and ϵIJKL, with ϵ0123 ¼ þ1, is totally antisymmetric
(in three dimensions ϵijk ≔ ϵ0ijk). When working with a
tensor density wewill indicate its positive (negative) weight
with the number tildes above (under) it (for weights higher
than þ2 or lower than −1 the tildes will be omitted, but the
weight will be specified elsewhere).
In the Lorentz-covariant canonical analysis of the Holst

action with a cosmological constant one arrives at the
following [3] (see also Ref. [20] for the canonical analysis
of its BF counterpart):

S ¼
Z
R
dt
Z
Σ
d3x

 
Π̃
ðγÞ

aIJ _ωaIJ − H̃

!
; ð2Þ

where ðωaIJ; Π̃
ðγÞ

aIJÞ [or equivalently ðωðγÞaIJ; Π̃aIJÞ] are the
canonical variables that parametrize the extended phase
space at this level, and H̃ is the Hamiltonian density that
turns out to be a linear combination of constraints,

H̃ ¼ ξIJG̃
IJ þ NaṼa þ N

˜

˜̃Hþφ
˜
ab

˜̃Φab þ ψabΨab; ð3Þ

with ξIJ, N
˜
, Na, φ

˜
ab and ψab (of weight −2, since Ψab has

weight þ3) being Lagrange multipliers that enforce the
constraints

G̃IJ ≔ Da Π̃
ðγÞ

aIJ ¼ ∂a Π̃
ðγÞ

aIJ þ 2ωa
½Ij

K Π̃
ðγÞ

aKjJ� ≈ 0; ð4aÞ

Ṽa ≔
1

2
Π̃bIJ F

ðγÞ
baIJ ≈ 0; ð4bÞ

˜̃H ≔
1

2
Π̃aIKΠ̃b

K
JF
ðγÞ

abIJ þ σΛ ˜̃q ≈ 0; ð4cÞ

˜̃Φab ≔ −σϵIJKLΠ̃aIJΠ̃bKL ≈ 0; ð4dÞ

Ψab ≔ ϵIJKLΠ̃ðajIMΠ̃c
M
JDcΠ̃jbÞKL ≈ 0; ð4eÞ

where, FabIJ ≔ 2ð∂ ½aωb�IJ þ ω½ajIKωjb�KJÞ is the curvature
of the spatial part of the SOðσÞ connection 1-form ωIJ, Λ is
the cosmological constant, and ˜̃q ≔ detðqabÞ > 0 is the
determinant of the induced metric on Σ (or spatial metric),
whose inverse is determined by the relation ˜̃qqab ¼
ðσ=2ÞΠ̃aIJΠ̃b

IJ. Here, G̃
IJ, Ṽa, and

˜̃H (the Gauss, vector,
and scalar constraints, respectively) are, in Dirac’s termi-
nology [21], first class, and as such they are responsible
for generating the gauge symmetries of general relativity
[local SOðσÞ transformations and spacetime diffeomor-

phisms1]. On the other hand, ˜̃Φab
and Ψab are second class,

which will be dealt with in Sec. III.
Before closing this section, it is worth convincing our-

selves that the theory embodied in the constraints (4a)–(4e)
propagates ð2 × 18 − 2 × 10 − 12Þ=2 ¼ 2 d.o.f., as it must
be for general relativity.

1The diffeomorphism constraint (which generates diffeomor-
phisms tangent to Σ) is given by the combination D̃a ≔
Ṽa þ ð1=2ÞωaIJG̃

IJ , which takes the form

D̃a ¼
1

2

"
∂b

 
Π̃
ðγÞ

bIJωaIJ

!
− Π̃

ðγÞ
bIJ∂aωbIJ

#
: ð5Þ
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III. NONMANIFESTLY LORENTZ-COVARIANT
SOLUTION OF THE SECOND-CLASS

CONSTRAINTS

Since one of our goals is to compare our results with
those of Cianfrani and Montani [17], we will solve the
second-class constraints following an approach close to
theirs, which, as shown in Sec. IV, allows us to make
contact with a parametrization in terms of canonical
variables similar to those given by Barros in Ref. [3]. To
proceed, we first split the configuration and momentum
variables into their “electric” and “magnetic” components,
and pick the electric ones as part of the independent
variables parametrizing the phase space once all the
second-class constraints have been explicitly solved. The
internal indices are in consequence raised and lowered with
the three-dimensional Euclidean metric δij, which is the
remnant of the original internal metric ηIJ. The solution of
the constraint (4d) reads (cf. Ref. [3])

Π̃ai0≕ Ẽai; ð6aÞ

Π̃aij ¼ 2χ½ijẼajj�; ð6bÞ

with χi being an arbitrary internal 3-vector. Using this
parametrization, the spatial metric takes the form

qab ¼ ϵj ˜̃EjΘijE
˜
aiE

˜
bj; ð7Þ

where we have assumed that ˜̃E ≔ detðẼaiÞ is nonvanishing,
E
˜
ai denotes the inverse of Ẽai, ϵ ≔ sgnð1þ σχiχ

iÞ, and

Θi
j ≔ δij þ σχiχj: ð8Þ

Hence, the internal vector χi can be interpreted as an
obstruction for E

˜
ai to become an orthonormal (densitized)

triad of the spatial metric. For the sake of future compu-
tations, it is also convenient to employ the quantity

ηij ≔ ð1þ σχkχ
kÞδij − σχiχj; ð9Þ

which is related to Θij through the equality Θij ¼
ð1þ σχkχ

kÞðη−1Þij.
In order to solve the remaining second-class constraints

(4e), we introduce the Levi-Civita connection Γ compatible
with qab that satisfies∇aqbc ¼ 0 and Γa

bc ¼ Γa
cb. We then

define Γa
i
j as the quantity fulfilling

∂aẼbi þ Γb
caẼci − Γc

caẼbi þ Γa
i
jẼbj ¼ 0: ð10Þ

Notice that this relation completely determines Γa
i
j in

terms of ðẼai; χiÞ. Γa
i
j is just a suitable object that allows us

to write in a compact form the particular solution of the
constraint (4e) given in Eq. (12) below. Although Γa

i
j can

be interpreted as the Levi-Civita connection with respect to
the nonorthonormal frame defined by Eq. (7), this

geometrical interpretation (and its consequences) will not
be used here because we want to relate our results to those
of Ref. [3] where such an interpretation is not put forward.
Furthermore, observe that in general Γa

i
j is not antisym-

metric in the internal indices, unless we impose the
time gauge ( χi ¼ 0), in which case it becomes the
Levi-Civita connection compatible with the orthonormal

frame j ˜̃Ej−1=2Ẽai.
To solve the constraint (4e), it is worth realizing that it

defines a nonhomogeneous linear system of six equations
for the 18 components of the connection ωaIJ. As a result,
the solution for the connection must contain 12 arbitrary
parameters coming from the homogeneous solution of the
system. Choosing nine of these parameters as the “electric”
components ωa0i, the constraint (4e) can be reinterpreted as
a system of six equations for the nine “magnetic” compo-
nents ωaij whose solution takes the form

ωaij ¼ Ωaij þ 2σωa0½iχj� − 2E
˜
akΘk½iỸj�; ð11Þ

where the quantities Ỹi account for the three remaining free
parameters of the homogeneous solution and Ωaij is a
particular solution given by

Ωaij ≔ ΓaikΘk
j − σðη−1Þijχk∂aχ

k þ σχj∂aχi; ð12Þ
or, more explicitly,

Ωaij ¼ Θ½ijkẼbjj�ð∂bE
˜
a
k − ∂aE

˜
b
kÞ

− Θ½ijkẼbjj�E
˜
a
kẼcl∂bE

˜
cl þ ΘklE

˜
akẼb½ijẼcjj�∂cE

˜
bl

− E
˜
a
kẼb½ij∂bΘjj�k − σχ½ij∂aχjj�: ð13Þ

At this point we can compare with the solution of the
constraint (4e) provided by Cianfrani and Montani in
Ref. [17]: we immediately realize that their solution
completely neglects the last term on the right-hand side
of Eq. (11), meaning that the parameters Ỹi, which are part
of the homogeneous solution of the constraint (4e) as seen
above, do not exist in the approach of Cianfrani and
Montani. In consequence, their approach is not right simply
because the phase-space parametrization employed by
them after solving the second-class constraints is not the
most general implied by (4e).
With the solution of the second-class constraints suc-

cessfully accomplished, we now have to express the action
(and the constraints) in terms of the resulting phase-space
variables. Substituting Eqs. (6a), (6b), (11) and (13) into the
action (2), after some algebra we get

S¼
Z
R
dt
Z
Σ
d3xðμai _̃Eaiþ ν̃i _χ

iþ α̃ai _ωa0iþβi
_̃Y
i−H̃0þ∂aB̃aÞ;

ð14Þ

with the functions μai, ν̃i, α̃ai, and βi being given by
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μai ≔ ηij∂aχ
j þ ∂aχi þ 2ð1þ σχkχkÞE

˜
ajχjỸi − 2E

˜
ajΘj

iχ
kỸk − Ẽblχl½2Θk

i∂ ½aE
˜
b�k−2ΘjkE

˜
ajẼc

i∂ ½bE
˜
c�k þ Θk

iE
˜
akẼcm∂bE

˜
cm

−2σE
˜
a
jχðjj∂bχjiÞ� − Ẽb

iχk½2Θjk∂ ½bE
˜
a�j−ΘjkE

˜
ajẼcl∂bE

˜
cl þ 2σE

˜
ajχðjj∂bχ

jkÞ� − 2

γ
ϵijkE

˜
alΘjlỸk; ð15aÞ

ν̃i ≔ 4σẼa
iẼbjχjχ

k∂ ½aE
˜
b�k − 2σẼa½iχj�χjẼbk∂aE

˜
bk þ 4σẼa½iχj�ωa0

j þ 4σẼa½ijχj∂aχjj� þ 4σχjχ½iỸj�

−
2σ

γ
ϵijkẼaj

�
Ẽbk∂aðχlE

˜
blÞ þ ωa0

k −
1

2
χkẼbl∂aE

˜
bl

�
; ð15bÞ

α̃ai ≔ −2ηijẼaj; ð15cÞ

βi ≔ 4χi: ð15dÞ

Likewise, H̃0 stands for the Hamiltonian density formed
by the linear combination of the first-class constraints

G̃IJ, Ṽa and
˜̃H (see below), whereas the boundary term B̃a

is given by

B̃a ≔ −2 _̃Eai
χi þ

1

γ
ϵijkðΘilE

˜
blẼaj _̃E

bk − σ _χiχjẼakÞ; ð16Þ

which can be ignored in the present context since Σ has no
boundary, but that notwithstanding we have displayed here
because it will be reabsorbed in the Darboux map given
in Sec. IV.

For the sake of simplicity, before introducing the explicit
expressions of the constraints, let us define the variable
(whose relation with Γaij becomes clear once we adopt the
time gauge),

ϒai ≔
1

2
ϵijkωa

jk; ð17Þ

together with the auxiliary matrices

Pij ≔ δij þ
σ

γ
ϵijkχ

k; ð18Þ

Qij ≔
1

γ
δij þ ϵijkχ

k: ð19Þ

All of this allows us to write the (first-class) constraints as

G̃i
boost ≔ G̃0i ¼ −∂aðPi

jẼajÞ −Ωa
i
jPj

lẼal þ 2σẼa½iωa0
j�χj þ

σ

γ
ϵijkωa0jẼa

k þ
1

γ
ϵjklωa0

jẼakχlχi − ðηij þ Pi
jÞỸj; ð20aÞ

G̃i
rot ≔

1

2
ϵijkG̃jk ¼−∂aðQi

jẼajÞ−Ωa
i
jQj

lẼalþ2
σ

γ
Ẽa½iωa0

j�χjþ ϵijkωa0jẼa
kþσϵjklωa0

jẼakχlχi−
�
1

γ
ηijþQi

j

�
Ỹj; ð20bÞ

Ṽa ¼ −ωa0i∂bðPi
jẼbjÞ −ϒai∂bðQi

jẼbjÞ þ 2Pi
jẼbj∂ ½aωb�0i þ 2Qi

jẼbj∂ ½aϒb�i − ωa0iG̃
i
boost −ϒaiG̃

i
rot; ð20cÞ

˜̃H ¼ −ẼaiχiṼa − σð1þ σχnχ
nÞϵijkẼaiẼbj

�
σ

γ
∂aωb0

k þ ∂aϒb
k −

1

2
ϵklm

�
2
σ

γ
ωa0lϒbm þ σωa0lωb0m þϒalϒbm

��

þ σΛj1þ σχiχ
ijj ˜̃Ej; ð20dÞ

where we have split the Gauss constraint into its “boost” and “rotational” parts.

From expressions (15a)–(15d), we observe that μai, ν̃i,
α̃ai, and βi are functions solely of the 24 phase-space
variables (Ẽai, χi, ωa0i, Ỹi), therefore giving rise to the
symplectic potential. In particular, neither of the pairs
ðωa0i; ẼaiÞ and ðχi; ỸiÞ are canonical, which may compli-
cate the construction of the quantum theory emanating from
this phase-space parametrization, but at least classically
these 24 variables subject to the ten first-class constraints
(20a)–(20d) give an alternative and faithful description of

the two propagating d.o.f. of general relativity. On the other
hand, in the approach of Ref. [17] the phase space is
described just by 21 variables (an odd number), which
translates in an incorrect number of local d.o.f. for the
underlying theory. This inconsistency results from
Cianfrani and Montani’s solution of the system of equa-
tions defined by the constraint (4e), which actually corre-
sponds to a particular solution of it and not to its most
general solution; thus, not accounting for the homogeneous
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solution constitutes an incomplete parametrization of the
phase space. What is more, even if we restrict our attention
to the case when χi is time independent, as Cianfrani and
Montani do in the first part of their analysis, it does not
mean that the variables Ỹi do not exist anymore, but that
they take some determinate values (nonvanishing in gen-
eral) according to the compatibility of this assumption with
the Gauss constraints (20a)–(20b), which in principle
allows us to express these variables in terms of the
remaining variables (fixing χi can also be interpreted as
a gauge condition). Therefore, to assure that the resulting
theory can also be cast as an SUð2Þ gauge theory, the terms
proportional to (fixed) Ỹi must also be carefully handled all
along, something completely overlooked in Ref. [17].

IV. DARBOUX MAP

As seen in the previous section, the phase space is para-
metrized by 24 noncanonical coordinates. Nevertheless, we
can in principle construct, by means of a Darboux trans-
formation, a set of canonical variables to account for the same
kinematic d.o.f. In this section we explicitly exhibit this map,
which in turn establishes a bridge between the results of
Sec. III and those of Ref. [3].2 We are able to accomplish this
by keeping Ẽai and χi unchanged,whilemaking the following
definitions:

Aai ≔ −γω
ðγÞ

a0i − γω
ðγÞ

aijχ
j; ð21aÞ

ζ̃i ≔ −γω
ðγÞ

aijẼaj; ð21bÞ
where the expression for ωaij in terms of the noncanonical
phase space variables is given in Eq. (11). With these
definitions we will replace both ωa0i and Ỹi with Aai and
ζ̃i. To express the action (14) in terms of the new variables, we
first invert the relations (21a)–(21b), giving

ωa0i ¼ ðη−1Þij
�
−
1

γ
Aaj −

1

2
ϵklmQkjΩalm −

γ2

2ðγ2 − σÞ

×MjklE
˜
a
kΘl

m

�
1

γ
ζ̃m − Ẽb

n

�
1

γ
SmnpAbp

− TmnpqΩbpq

���
; ð22aÞ

Ỹi ¼−
γ2

2ðγ2−σÞΘ
i
j

�
Ẽa

k

�
TjklmΩalm−

1

γ
SjklAal

�
þ1

γ
ζ̃j
�
;

ð22bÞ

where we have defined the following internal quantities:

Mijk ≔ δijχk − ηikχj þ
1

γ
ϵijk −

σ

γ
ϵiklχ

lχj; ð23aÞ

Sijk ≔ σϵijlQlmðη−1Þmk; ð23bÞ

Tij
kl ≔ δi½kδ

j
l� −

σ

2
ϵijmϵklqðη−1ÞnpQmnQq

p: ð23cÞ

Substituting (22a)–(23c) into (14) is a lengthy but
straightforward computation that results in

S ¼
Z
R
dt
Z
Σ
d3x

�
2

γ
_AaiẼai þ 2

γ
_χiζ̃

i − H̃0
�
; ð24Þ

which tells us that the pairs ðAai; ẼaiÞ and ðχi; ζ̃iÞ are
canonical, and that in consequence they obey the fundamental
Poisson brackets fAaiðxÞ;ẼbjðyÞg¼ðγ=2Þδbaδjiδ3ðx−yÞ and
fχiðxÞ;ζ̃jðyÞg¼ðγ=2Þδjiδ3ðx−yÞ. In addition, the constraints
(20a)–(20d) now read

G̃i
boost ¼ −∂aðPi

jẼajÞ þ 2σ

γ
AajẼa½jχi� þ σ

γ
ζ̃jχ

jχi þ 1

γ
ζ̃i;

ð25aÞ

G̃i
rot ¼ −∂aðQi

jẼajÞ − 1

γ
ϵijkðAa

jẼak − ζ̃jχkÞ; ð25bÞ

Ṽa¼
2

γ
Ẽbi∂ ½bAa�i−

1

γ
ζ̃i∂aχ

iþ γ2

γ2−σ

�
ðQi

jG̃
j
boost−Pi

jG̃
j
rotÞJai

−
2σ

γ2
Ẽb½iχj�AaiAbjþ

1

γ2
Aaiðζ̃iþσζ̃jχ

jχiÞ

−
σ

γ3
ϵijkðẼbiAb

jþ ζ̃iχjÞAa
k

�
; ð25cÞ

˜̃H ¼ −ẼaiχiṼa − σð1þ σχpχ
pÞϵijkẼaiẼbj

�
∂aJbk

−
σγ2

2ðγ2 − σÞ
�
ϵklm

�
1

γ2
AalAbm þ σJalJbm

þ 2

γ2
AalJbm

�
−
2

γ
ðAal þ JalÞJbkχl

þ 2

γ
AalJblχk þ ϵlmnJalJbmχnχk

��

þ σΛj1þ σχiχ
ijj ˜̃Ej: ð25dÞ

These are analogous to the ones obtained in Ref. [3], with the
variation that the scalar constraint (25d) has been expressed in
an alternative manner thanks to the definition

2The variables defined in this paper are related with those
introduced by Barros through the simultaneous changes
Ẽai → −Ẽai, Aai → −γAai, and ζi → γζi. This discrepancy with
Barros allows us to make contact with the Ashtekar-Barbero
formalism within usual conventions (see for instance Ref. [9]).
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Jai ≔ ðP−1Þji
��

1 −
σ

γ2

�
ϒaj −

σ

γ2
Aaj

�
; ð26Þ

with ϒai being written in terms of the above canonical
variables with the help of Eqs. (11) and (22a)–(22b). For the
sakeof completeness,wewrite downbelow theexpression for
the diffeomorphism constraint (5) in terms of these variables,

D̃a ¼
2

γ
Ẽbi∂ ½bAa�i þ

1

γ
Aai∂bẼbi −

1

γ
ζ̃i∂aχ

i; ð27Þ

which establishes that under spatial diffeomorphisms Aai

transforms as a 1-form, Ẽai as a vector density, ζ̃i as a scalar
density, and χi as a scalar function.

V. TIME GAUGE

Up to now the Hamiltonian formulations contained in
Secs. III and IV are covariant under the full group SOðσÞ;
because of the splitting of the internal group into boosts and
rotations, they might not display it manifestly, but they are
indeed (see Ref. [5] for a manifestly Lorentz-covariant
approach). In order to make contact with the Ashtekar-
Barbero formalism, we must impose the time gauge χi ¼ 0
(assumed throughout this section), which removes the
boost freedom of the theory. Regardless of which of the
previous formulations we take as the starting point, this
gauge condition together with the boost constraint G̃i

boost
form a second-class set, indicating that they both have to be
solved jointly to successfully fix the boost freedom.
From Eq. (7) we observe that, in the time gauge, the

variables Ẽai become the inverse of the densitized triad for
the spatial submanifold Σ, whereas Eq. (10) implies that

Γai ≔ −
1

2
ϵijkΓa

jk ð28Þ

is the spin connection compatible with the densitized triad
Ẽai [or the spatial Levi-Civita connection as seen from the
SOð3Þ frame], its expression being given by

Γai ¼ ϵijkẼbjð∂ ½bE
˜
a�k þ E

˜
a
½ljẼcjk�∂bE

˜
clÞ: ð29Þ

In the following paragraphs, we elaborate on the conse-
quences of imposing the time gauge starting independently
from the results of Secs. III and IV.

A. Time gauge in noncanonical coordinates

Looking first at the noncanonical approach of Sec. III,
the solution of the boost constraint (20a) gives

Ỹi ¼
σ

2γ
ϵijkωa0

jẼak; ð30Þ

where we have made use of (10) to cancel the terms
involving the spin connection. Using the previous expres-
sion together with χi ¼ 0 in the action (14) yields

S ¼
Z
R
dt
Z
Σ
d3xðμai _̃Eai þ α̃ai _ωa0i − H̃0 þ ∂aB̃aÞ; ð31Þ

in which, from Eqs. (15a) and (15c), μai and α̃ai are
given by

μai ≔ −
2σ

γ2
ωb0½iẼb

j�E
˜
a
j; ð32Þ

α̃ai ¼ −2Ẽai; ð33Þ

whereas the boundary term (16) collapses to

B̃a ¼ 1

γ
ϵijkE

˜
b
iẼaj _̃E

bk
: ð34Þ

In terms of the phase-space variables ðωa0i;ẼaiÞ the con-
straints (20b)–(20d), which make up H̃0, can be expressed as

G̃i ¼
�
1 −

σ

γ2

�
ϵijkωa0

jẼak; ð35aÞ

Ṽa ¼ 2∇½aðωb�0iẼbiÞ þ σ

2ðγ2 − σÞ ϵijkẼ
biE

˜
a
j∇bG̃

k; ð35bÞ

˜̃H ¼ σ

2
ϵijkẼaiẼbjRab

k þ Ẽa½ijẼbjj�ωa0iωb0j

−
σγ2

4ðγ2 − σÞ2 G̃
iG̃i þ σΛj ˜̃Ej; ð35cÞ

wherewe have omitted the label “rot” in the rotational Gauss
constraint, Rabi ≔ 2∂ ½aΓb�i þ ϵijkΓa

jΓb
k is the curvature of

the spin connectionΓai and∇a is the full covariant derivative
associated to it, that is, ∇a annihilates Ẽai [see Eq. (10)],

∇aẼbi ≔ ∂aẼbi þ Γb
caẼci − Γc

caẼbi þ ϵijkΓa
jẼbk ¼ 0:

ð36Þ

Notice that in Eq. (35b) the variables ωa0i are treated as
spatial 1-forms by ∇a, whereas G̃i is considered as a
densitizated internal vector (for instance, ∇aG̃

i ¼ ∂aG̃
i−

Γb
baG̃

i þ ϵijkΓa
jG̃k). By comparing the Gauss constraint

(35a) with Eq. (32) we immediately conclude that

μai ¼ −
σ

γ2 − σ
ϵijkE

˜
a
jG̃k ≈ 0; ð37Þ

which means that, in Eq. (31), the variables ðωa0i; ẼaiÞ are
actually canonical, sincewe can eliminate the first term of the
integrand of the action (31) by redefining the Lagrange
multiplier that accompanies the Gauss constraint inside H̃0.
Notice that the set of constraints (35a)–(35c) resembles that of
the SOð3Þ ADM formalism, which arises from the canonical
analysis of thePalatini action in the timegauge [22]. Since this
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action corresponds to the limit γ−1 → 0 of the Holst action,
the constraints (35a)–(35c) in that limit indeed reproduce
those of the SOð3Þ ADM formalism (−ωa0i gets identified
with the extrinsic curvature).Evenmore remarkably, although
the above constraints explicitly depend on the Immirzi
parameter, it appears as a global factor in Eq. (35a) and as
a multiplicative factor of the terms proportional to G̃i in the
other two constraints. We can then rescale the Gauss con-
straint and appeal again to the redefinition of the Lagrange
multiplier appearing in front of the Gauss constraint in H̃0 to
cast the action in such a way that the Immirzi parameter does
not explicitly show up in it (because of the term with spatial
derivatives of the Gauss constraint in the vector constraint,
there are boundary terms involved in the process, but they can
be dropped if the spatial 3-manifold has no boundary). Thus,
the Immirzi parameter still remains classically undetectable in
the action (31), and the constraints (35a)–(35c) actually
correspond to the SOð3Þ ADM formalism [22] after making
the redefinitions already explained.
We now make contact with the Ashtekar-Barbero for-

mulation. We point out that, in order to arrive exactly at the
same results as in the following subsection, we will not
neglect the first term of the integrand of Eq. (31) but rather
it will be included in the definition of the new phase-space
variables; if we decide to disregard it, the resulting sets of
constraints then differ from each other by terms propor-
tional to the Gauss constraint (see below). First, from
Eqs. (32) and (34), we obtain the following identity:

μai
_̃E
ai þ ∂aB̃a ¼ 2

γ
Ẽai∂t

�
Γai −

σ

γ
E
˜
a
jẼb½ijωb0jj�

�
: ð38Þ

Using this, the action (31) takes the form

S ¼
Z
R
dt
Z
Σ
d3x

�
2

γ
Ẽai _Aai − H̃0

�
; ð39Þ

whereof it is clear that the variables Ẽai and

Aai ≔ −γωa0i þ Γai −
σ

γ
E
˜
a
jẼb½ijωb0jj�; ð40Þ

are canonically conjugate to each other, then satisfying
fAaiðxÞ;ẼbjðyÞg¼ðγ=2Þδbaδjiδ3ðx−yÞ. The change of vari-
ables (40) resembles Barbero’s canonical transformation
except for the last term, which is the contribution coming
from μai (which—we remind the reader—is proportional to
the Gauss constraint). This is the same expression one finds
after imposing the time gauge in Eq. (22a), and that is why
we decided to preserve the term proportional to the Gauss
constraint and denoted by the same symbol Aai to the new
configuration variables. It is worth emphasizing the use-
fulness of the time gauge not only for rendering the
complicated symplectic structure of Sec. III canonical in
the initial variables ðωa0i; ẼaiÞ, but also for helping to

uncover a canonical transformation linking these variables
with ðAai; ẼaiÞ.
To express the constraints (35a)–(35c) in terms of the

canonical pair ðAai; ẼaiÞ we first have to invert Eq. (40) for
ωa0i, obtaining

ωa0i¼
1

2γ

�
2γ2−σ

γ2−σ
δjiδ

b
a−

σ

γ2−σ
Ẽb

iE
˜
a
j

�
ðΓbj−AbjÞ: ð41Þ

Plugging this back into Eqs. (35a)–(35c) leads to

G̃i ¼ −
1

γ
ð∂aẼai þ ϵijkAajẼa

kÞ; ð42aÞ

Ṽa ¼
1

γ
ẼbiFbai þ ðΓai − AaiÞG̃i; ð42bÞ

˜̃H ¼ 1

2γ2
ϵijkẼaiẼbj½Fab

k þ ðσγ2 − 1ÞRab
k�

−
1

γ
Ẽa

i∇aG̃
i þ σ

4ðγ2 − σÞ G̃
iG̃i þ σΛj ˜̃Ej; ð42cÞ

with Fabi ≔ 2∂ ½aAb�i þ ϵijkAa
jAb

k being the strength of the
connection Aai.
If, on the other side, we decide to neglect the third

term on the right-hand side of Eq. (40) and work with
the Barbero’s original connection BAai ≔ −γωa0i þ Γai

(BFabi ≔ 2∂ ½ajBAjb�i þ ϵijkBAa
j
BAb

k), the constraints
become

G̃i ¼ −
ðγ2 − σÞ

γ3
ð∂aẼai þ ϵijkBAajẼa

kÞ; ð43aÞ

Ṽa ¼
1

γ
Ẽbi

BFbai þ
σ

2ðγ2 − σÞ ϵijkẼ
biE

˜
a
j∇bG̃

k

þ γ2

γ2 − σ
ðΓai − BAaiÞG̃i; ð43bÞ

˜̃H¼ 1

2γ2
ϵijkẼaiẼbj½BFab

kþðσγ2−1ÞRab
k�

−
γ

γ2−σ
Ẽa

i∇aG̃
i−

σγ2

4ðγ2−σÞ G̃
iG̃iþσΛj ˜̃Ej; ð43cÞ

which take exactly the same form as Eqs. (42a)–(42c)
except for the global factor in the expression of the Gauss
constraint and the constant factors in front of the terms
proportional to G̃i in the remaining constraints. Both sets of
constraints, Eqs. (42a)–(42c) or Eqs. (43a)–(43c), embody
the Ashtekar-Barbero formulation.

B. Time gauge in Darboux coordinates

If, on the other side, we start from the canonical
formulation of Sec. IV, the implementation of the time
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gauge in the action (24) immediately leads to the Ashtekar-
Barbero formulation. To get this, we just have to note two
things; first, that in the time gauge the variable Jai becomes

Jai ¼ −
1

2
ðδbaδji þ Ẽb

iE
˜
a
jÞ
�
σ

γ2
Abj þ

�
1 −

σ

γ2

�
Γbj

�

þ 1

2γ
ϵijkE

˜
a
jζ̃k; ð44Þ

and second, that we need the solution of the boost
constraint (25a), which in these variables reads

ζ̃i ¼ γ∂aẼa
i ¼ −γϵijkΓa

jẼak; ð45Þ

where, to obtain the last equality, we have used Eqs. (10)
and (28). Substituting both expressions in Eqs. (25b)–(25d)
(together with χi ¼ 0) readily collapses the latter into
Eqs. (42a)–(42c) without any further consideration.

VI. DISCUSSION

In this paper we have solved, without resorting to the
time gauge, the second-class constraints arising in the
Lorentz-covariant canonical analysis of the Holst action
with a cosmological constant. We have followed a path
closely related to that of Cianfrani and Montani [17],
finding a complete parametrization of the phase space in
terms of the 24 noncanonical coordinates (Ẽai, χi, ωa0i, Ỹi)
subject to the ten first-class constraints (20a)–(20d), which
means that the reduced phase space of the ensuing theory
has dimension four at each spatial point, as expected for
general relativity. We then performed a Darboux trans-
formation that allowed us to establish the right link with the
canonical formulation of Barros [3]. At the end we showed,
in both the noncanonical and the canonical parametriza-
tions of the phase space, how the Ashtekar-Barbero
variables are obtained once the time gauge is implemented.
Our main motivation to do this work was to find the

missing link between the canonical formulation presented by
Cianfrani andMontani, and the one reported by Barros. It all
stems from the fact that the solution of the second-class
constraint (4e) given by the former authors corresponds to a
particular solution of the associated system of equations and
not to its general solution. Indeed, the solution given in
Ref. [17] neglects part of the solution of the homogeneous
system, thus not only providing an incomplete solution, but
also an insufficient number of independent variables to
properly label the points of the kinematic phase space since
thevariables Ỹiwere completely ignored in their approach. In
consequence,Cianfrani andMontani’s solution is not enough
to establish an appropriate link with Barros’s formulation,
which actually gives a correct description of the phase space
of general relativity in terms of canonical variables.Hence, in
this paper we have healed the mismatch between both
approaches, first by solving correctly the aforementioned

second-class constraints, and later by providing the invertible
Darboux transformation connecting our formulation with
Barros’s one. In addition, we have provided explicit expres-
sions of the constraints in terms of the noncanonical variables
(Ẽai, χi,ωa0i, Ỹi) [see Eqs. (20a)–(20d)], which now become
the starting point before any attempt to implementing a
determinate gauge fixing on this formulation.
On the other side, since Cianfrani and Montani omitted

the parameters Ỹi, their approach to exhibit the SUð2Þ
invariance of the theory with a nondynamical χi (and even
with a dynamical one) must be reconsidered. Assuming—
as they do in the first part of their analysis—that χi is time
independent (_χi ¼ 0) does not mean that Ỹi has to vanish,
but rather that it must be fixed by the simultaneous solution
of an appropriate combination of boosts and rotations
compatible with the assumed condition on χi (they have
to form a second-class set). In this regard, the work of
Ref. [23], where the authors perform a gauge fixing along a
nondynamical χi using Barros’ parametrization, may help
to work out the same kind of gauge fixing in the variables
found at the end of Sec. III and subsequently allow us to
write the resulting theory in an explicitly SUð2Þ or SUð1; 1Þ
invariant fashion with respect to the fixed χi.
Although it is true that the phase-space variables

involved in the constraints (20a)–(20d) have associated a
complicated and noncanonical symplectic structure, it is
remarkable how neatly the Ashtekar-Barbero formulation is
obtained from them in the time gauge. The link between the
formulation of this paper and the one due to Barros—
something that is made tangible thanks to the Darboux
transformation (21a)–(21b)—actually allows us to express
the analogues of the constraints of Barros (in particular the
form of the scalar constraint), namely Eqs. (25a)–(25d), in
such a way that by enforcing the time gauge there we are
immediately led to the Ashtekar-Barbero variables too. In
constrast, the derivation of the latter in Barros’s work
follows a different and longer path where the expressions of
the resulting constraints are not used directly, but rather he
goes back to the solution of the second-class constraints
and solves them jointly with the restraints entailed by the
time gauge. We stress that in our approach this is not
necessary: we can impose the time gauge directly on the
constraints (25a)–(25d) and arrive at the Ashtekar-Barbero
formulation without any effort.
Finally, it would also be interesting to establish a link

between the formulations contained in this paper and the
manifestly Lorentz-covariant ones of Ref. [5]. After all, the
canonical theories with nonmanifest Lorentz symmetry
have enriched the discussion around the significance of
the time gauge in quantum gravity (this was also the idea of
Ref. [17], even if their approach is incomplete), allowing
the identification of Lorentz-covariant connection variables
and fluxes with interesting results as to the relevance of the
Immirzi parameter at the quantum level [18,19]. We can
then ask whether the same kind of information can be
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extracted from the Lorentz-covariant variables of Ref. [5]
while preserving the manifestly Lorentz invariance of the
theory. Perhaps, this could enlighten the path towards
solving the ambiguities posed by the Immirzi parameter
once for all.
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